44
Analog to Digital Converters (ADC) Ben Lester, Mike Steele, Quinn Morrison

Analog to Digital Converters (ADC)

  • Upload
    colby

  • View
    100

  • Download
    1

Embed Size (px)

DESCRIPTION

Analog to Digital Converters (ADC). Ben Lester, Mike Steele, Quinn Morrison. Topics. Introduction Why? Types and Comparisons Successive Approximation ADC example Applications ADC System in the CML-12C32 Microcontroller. - PowerPoint PPT Presentation

Citation preview

Page 1: Analog to Digital Converters (ADC)

Analog to Digital Converters (ADC)

Ben Lester, Mike Steele, Quinn Morrison

Page 2: Analog to Digital Converters (ADC)

Topics

Introduction Why? Types and Comparisons

Successive Approximation ADC example Applications ADC System in the CML-12C32

Microcontroller

Page 3: Analog to Digital Converters (ADC)

Analog systems are typically what engineers need to analyze. ADCs are used to turn analog information into digital data.

Page 4: Analog to Digital Converters (ADC)

Process Sampling, Quantification, Encoding

Output States

Discrete Voltage Ranges (V)

0 0.00-1.251 1.25-2.502 2.50-3.753 3.75-5.004 5.00-6.255 6.25-7.506 7.50-8.757 8.75-10.0

Out-put

Binary Equivalent

0 0001 0012 0103 0114 1005 1016 1107 111

Page 5: Analog to Digital Converters (ADC)

Resolution, Accuracy, and Conversion time Resolution – Number of discrete

values it can produce over the range of analog values; Q=R/N

Accuracy – Improved by increasing sampling rate and resolution.

Time – Based on number of steps required in the conversion process.

Page 6: Analog to Digital Converters (ADC)

Comparing types of ADCs

Flash ADC Sigma-delta ADC Wilkinson ADC Integrating ADC Successive Approximation

Converter

Page 7: Analog to Digital Converters (ADC)

Flash ADC

Speed: High Cost: High Accuracy: Low

Page 8: Analog to Digital Converters (ADC)

Sigma-delta ADC

Speed: Low Cost: Low Accuracy: High

Page 9: Analog to Digital Converters (ADC)

Wilkinson ADC

Speed: High Cost: High Accuracy: High

Wilkinson Analog Digital Converter

(ADC) circuit schematic diagram

Page 10: Analog to Digital Converters (ADC)

Integrating ADC

Speed: Low Cost: Low Accuracy: High

Page 11: Analog to Digital Converters (ADC)

Successive Approximation Converter

Speed: High Cost: High Accuracy: High but limited

Page 12: Analog to Digital Converters (ADC)

Topics

Introduction Why? Types and Comparisions

Successive Approximation ADC example Applications ADC System in the CML-12C32

Microcontroller

Page 13: Analog to Digital Converters (ADC)

Successive Approximation ADC ExampleMike Steele

Goal: Find digital value Vin

• 8-bit ADC• Vin = 7.65

• Vfull scale = 10

Page 14: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 7• (Vfull scale +0)/2 = 5• 7.65 > 5 Bit 7 = 1

Vfull scale = 10, Vin = 7.65

1             

Page 15: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 6• (Vfull scale +5)/2 = 7.5• 7.65 > 7.5 Bit 6 = 1

Vfull scale = 10, Vin = 7.65

1  1           

Page 16: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 5• (Vfull scale +7.5)/2 = 8.75• 7.65 < 8.75 Bit 5 = 0

Vfull scale = 10, Vin = 7.65

1  1  0         

Page 17: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 4• (8.75+7.5)/2 8.125• 7.65 < 8.125 Bit 4 = 0

Vin = 7.65

1  1  0  0       

Page 18: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 3• (8.125+7.5)/2 = 7.8125• 7.65 < 7.8125 Bit 3 = 0

Vin = 7.65

1  1  0  0 0      

Page 19: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 2• (7.8125+7.5)/2 = 7.65625• 7.65 < 7.65625 Bit 2 = 0

Vin = 7.65

1  1  0  0 0   0   

Page 20: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 1• (7.65625+7.5)/2 = 7.578125• 7.65 > 7.578125 Bit 1 = 1

Vin = 7.65

1  1  0  0 0   0 1  

Page 21: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 0• (7.65625+7.578125)/2 =

7.6171875• 7.65 > 7.6171875 Bit 0 = 1

Vin = 7.65

1  1  0  0 0   0 1  1 

Page 22: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• 110000112 = 19510

• 8-bits, 28 = 256• Digital Output

• 195/256 = 0.76171875• Analog Input

• 7.65/10 = 0.765

• Resolution• (Vmax – Vmin)/2n 10/256 = 0.039

1  1  0  0 0   0 1  1 

7 6 5 4 3 2 1 00

0.2

0.4

0.6

0.8

1

Volta

ge

Bit

Vin = 7.65

Page 23: Analog to Digital Converters (ADC)

ADC Applications• Measurements / Data Acquisition• Control Systems• PLCs (Programmable Logic Controllers)• Sensor integration (Robotics)• Cell Phones• Video Devices • Audio Devices

t t

e e*Controller00

1001

0100

1110

11

∆t

e*(∆t)

1001

0010

1010

0101

∆t

u*(∆t)

Page 24: Analog to Digital Converters (ADC)

ATD10B8C on MC9S12C32

Presented by

Quinn Morrison

Page 25: Analog to Digital Converters (ADC)

MC9S12C32 Block Diagram

ATD 10B8C

Page 26: Analog to Digital Converters (ADC)

ATD10B8C Block Diagram

Page 27: Analog to Digital Converters (ADC)

ATD10B8C Key Features Resolution

8/10 bit (manually chosen) Conversion Time

7 usec, 10 bit Successive Approximation ADC

architecture 8-channel multiplexed inputs External trigger control Conversion modes

Single or continuous sampling Single or multiple channels

Page 28: Analog to Digital Converters (ADC)

ATD10B8C Modes and OperationsModes Stop Mode

All clocks halt; conversion aborts; minimum recovery delay Wait Mode

Reduced MCU power; can resume Freeze Mode

Breakpoint for debugging an application

Operations Setting up and Starting the A/D Conversion Aborting the A/D Conversion Resets Interrupts

Page 29: Analog to Digital Converters (ADC)

ATD10B8C External Pins There Are 12 External Pins

AN7 / ETRIG / PAD7 Analog input channel 7 External trigger for ADC General purpose digital I/O

AN6/PAD6 – AN0/PAD0 Analog input General purpose digital I/O

VRH, VRL High and low reference voltages for

ADC

VDDA, VSSA Power supplies for analog circuitry

Page 30: Analog to Digital Converters (ADC)

ATD10B8C Registers

6 Control Registers ($0080 - $0085) Configure general ADC operation

2 Status Registers ($0086, $008B) General status information regarding ADC

2 Test Registers ($0088 - $0089) Allows for analog conversion of internal states

16 Conversion Result Registers ($0090 - $009F) Formatted results (2 bytes)

1 Digital Input Enable Register ($008D) Convert channels to digital inputs

1 Digital Port Data Register ($008F) Contains logic levels of digital input pins

Page 31: Analog to Digital Converters (ADC)

ATD10B8C Control Register 2

Page 32: Analog to Digital Converters (ADC)

ATD10B8C Control Register 3

Page 33: Analog to Digital Converters (ADC)

ATD10B8C Control Register 4

Page 34: Analog to Digital Converters (ADC)

ATD10B8C Control Register 5

Page 35: Analog to Digital Converters (ADC)

ATD10B8C Single Channel Conversions

Page 36: Analog to Digital Converters (ADC)

ATD10B8C Multi-channel Conversions

Page 37: Analog to Digital Converters (ADC)

ATD10B8C Status Register 0

Page 38: Analog to Digital Converters (ADC)

ATD10B8C Status Register 1

Page 39: Analog to Digital Converters (ADC)

ATD10B8C Results Registers

Page 40: Analog to Digital Converters (ADC)

ATD10B8C Results Registers

Page 41: Analog to Digital Converters (ADC)

ATD10B8C ATD Input Enable Register

Page 42: Analog to Digital Converters (ADC)

ATD10B8C Port Data Register

Page 43: Analog to Digital Converters (ADC)

ATD10B8C Setting up the ADC

Page 44: Analog to Digital Converters (ADC)

References• Dr. Ume, http://www.me.gatech.edu/mechatronics_course/• Maxim Integrated Products, AN1870, AN 1870, APP1870, Appnote1870,

Appnote 1870

• "An Introduction to Sigma Delta Converters." Die Homepage Der Familie Beis. 10 June 2008. Web. 27 Sept. 2010. <http://www.beis.de/Elektronik/DeltaSigma/SigmaDelta.html>.