27
ATLCE - A4 01/03/2016 © 2016 DDC 1 01/03/2016 - 1 ATLCE - A4 - © 2016 DDC Politecnico di Torino - ICT School Analog and Telecommunication Electronics A4 – MOS amplifier stages » Operating point » Static In/Out characteristic » Voltage gain » Output dynamic range » Cascode circuits AY 2015-16

Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

  • Upload
    vokiet

  • View
    229

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 1

01/03/2016 - 1 ATLCE - A4 - © 2016 DDC

Politecnico di Torino - ICT School

Analog and Telecommunication Electronics

A4 – MOS amplifier stages

» Operating point » Static In/Out characteristic» Voltage gain» Output dynamic range» Cascode circuits

AY 2015-16

Page 2: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 2

01/03/2016 - 2 ATLCE - A4 - © 2016 DDC

Lesson A4: MOS amplifier stages

• Setting the operating point (bias circuits)

• Static In/Out characteristic (load line)

• Small signal voltage gain

• Output dynamic range

• Circuit configuration– Common Source/Drain/Gate– Cascode circuits– Differential

• Ref.: F.Fiori: Introduction to CMOS Analog Circuits, CLUT, 2009– Chapter 1: MOS Devices; Chapter 2: Basic Gain Stages

Page 3: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 3

01/03/2016 - 3 ATLCE - A4 - © 2016 DDC

Operating point

• Rs defines operating point and gain

• Separation of bias and gain(as for BJT)

– Bias: R– Gain: R + C (+L)

or R-R-C Source feedback

• Nonlinear Id(Vgs)– Graphical/numeric solution– Square-law approx

» Two “solutions”, one good

Page 4: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 4

01/03/2016 - 4 ATLCE - A4 - © 2016 DDC

Basic CS circuit

Page 5: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 5

01/03/2016 - 5 ATLCE - A4 - © 2016 DDC

Common Source Vo(Vi)

• Set operating pointNegative slope: inverting amplifier

Page 6: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 6

01/03/2016 - 6 ATLCE - A4 - © 2016 DDC

CS gain

Page 7: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 7

01/03/2016 - 7 ATLCE - A4 - © 2016 DDC

Operating point and output swing

off

Page 8: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 8

01/03/2016 - 8 ATLCE - A4 - © 2016 DDC

Current source load

ID0

Page 9: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 9

01/03/2016 - 9 ATLCE - A4 - © 2016 DDC

Comparison with BJT active load

• Active load used also for BJT stages– Similar to complementary stages

• Benefit:– High dynamic impedance

• Problem: – Gain is sensitive to load

• Next step:– Use variable current source complementary stage

Page 10: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 10

01/03/2016 - 10 ATLCE - A4 - © 2016 DDC

Active complementary load

Page 11: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 11

01/03/2016 - 11 ATLCE - A4 - © 2016 DDC

CS (CE) stage frequency response

• LF limits– Series capacitors, high-pass cells– Source feedback network

• HF limits– Capacitors to GND, low-pass cells– Parasitic – Capacitors between points with “negative gain”

(G and D, Miller effect)

Page 12: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 12

01/03/2016 - 12 ATLCE - A4 - © 2016 DDC

HF equivalent circuit

Multiplied by Miller effect

Page 13: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 13

01/03/2016 - 13 ATLCE - A4 - © 2016 DDC

Frequency resp.: Miller approximation

Page 14: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 14

01/03/2016 - 14 ATLCE - A4 - © 2016 DDC

Source feedback (degeneration)

Page 15: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 15

01/03/2016 - 15 ATLCE - A4 - © 2016 DDC

Effect of Source feedback

Page 16: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 16

01/03/2016 - 16 ATLCE - A4 - © 2016 DDC

Common Drain (CD) basic stage

Page 17: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 17

01/03/2016 - 17 ATLCE - A4 - © 2016 DDC

Source follower Vo(Vi)

Positive slope: Av = 1 noninverting amplifier

Page 18: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 18

01/03/2016 - 18 ATLCE - A4 - © 2016 DDC

CD (CC) voltage gain

• High input impedance• Low output impedance• No voltage gain• Current gain

• Voltage follower behavior

Source follower

Page 19: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 19

01/03/2016 - 19 ATLCE - A4 - © 2016 DDC

Common Gate (CB) basic stage

VS VOUT

Page 20: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 20

01/03/2016 - 20 ATLCE - A4 - © 2016 DDC

CG (CB) voltage gain

• Low input impedance• High output impedance• Some voltage gain• No current gain

Page 21: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 21

01/03/2016 - 21 ATLCE - A4 - © 2016 DDC

Cascode circuit

• M1: CS stage– VD1 held at VG2, no voltage gain– CGD1 parasitic towards ground– No Miller effect (C multiplier)– Provides current gain

• M2: CG stage – Provides voltage gain– CGD2 parasitic towards ground– No Miller effect (C multiplier)

• Overall result– higher gain at high frequency

CGD1

CGD2

Page 22: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 22

01/03/2016 - 22 ATLCE - A4 - © 2016 DDC

Basic differential amplifier stage

Page 23: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 23

01/03/2016 - 23 ATLCE - A4 - © 2016 DDC

Differential stage transfer function

Page 24: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 24

01/03/2016 - 24 ATLCE - A4 - © 2016 DDC

Benefits of differential signals/circuits

• Exploit difference, not values

• Rejection of everything which can be considered “Common mode”

– Noise– Unbalance– …

Page 25: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 25

01/03/2016 - 25 ATLCE - A4 - © 2016 DDC

Several differential configurations

• Active load• Cascode• Folded cascode• ….

Page 26: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 26

01/03/2016 - 26 ATLCE - A4 - © 2016 DDC

Next: take into account nonlinearity

• Evaluate the effects of nonlinearity (BJT, then MOS)

• How to reduce the nonlinearity effects– Feedback,– Tuned circuits

• How to exploit nonlinearity– Using gain change compression, AGC, …– Exploit harmonics frequency multipliers

• Lab 2: – Large signal behaviour (nonlinear)

• Text reference (Del Corso):– Narrowband and tuned amplifiers: 1.2.3

Page 27: Analog and Telecommunication Electronics - · PDF fileLesson A4: MOS amplifier ... – Gain: R + C (+L) or R-R-C Source feedback • Nonlinear Id(Vgs) ... – No Miller effect (C multiplier)

ATLCE - A4 01/03/2016

© 2016 DDC 27

01/03/2016 - 27 ATLCE - A4 - © 2016 DDC

:

Lesson A4 – final test

• Set the operating point of MOS device.

• Describe the “load line” technique.

• Which are the benefits of active loads?

• Discuss output dynamic range with active load.

• Characteristics and applications of CS, CD, CG.

• Draw a CG circuit with bias network.

• Compare HF performance of CS and CG.

• Draw the schematic of CS with parasitic elements.

-:

-