9
1 ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR Oleh: 1) Umrowati, 2) Prof. DR. Basuki Widodo, M.Sc, 3) Drs. Kamiran, M.Si Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 2011 Jl.Arif Rachman hakim,Sukolilo-Surabaya (60111) 1) [email protected] Abstrak Penelitian mengenai aliran pada sebuah pelat datar sampai saat ini terus berkembang dan masih dilakukan. Penelitian dilakukan dengan berbagai tujuan antara lain untuk mengetahui lapisan batas yang terbentuk. Namun, dalam kehidupan sehari-hari seringkali ditemukan adanya pelat panas yang dialiri oleh fluida sehingga perlu adanya analisis tentang pengaruh panas tersebut terhadap karakteristik lapisan batas yang terbentuk. Dalam penelitian ini, dilakukan analisis secara numerik dengan menggunakan metode beda hingga besar pengaruh perpindahan panas terhadap karakteristik lapisan batas. Kemudian divisualisasikan dengan bantuan software Matlab 7.1 dengan menggunakan konstanta-konstanta, yaitu , , , dan ( ). Hasil simulasi tersebut menunjukkan bahwa kecepatan udara yang diukur pada saat dan temperatur rata-rata adalah mengalami peningkatan dari pada saat hingga mencapai titik maksimum di dengan kecepatan mencapai , kemudian turun secara bertahap sampai dengan pada daerah lapisan batas. Begitu pula ketebalan lapisan batas yang meningkat dengan bertambahnya dan bertambahnya temperatur. Namun,berbeda dengan temperatur udara mengalami penurunan dari hingga mencapai 10, yaitu sama dengan temperatur arus bebas di daerah lapisan batas. Kata kunci: Karakteristik Lapisan Batas, Perpindahan Panas, Metode Beda Hingga. 1. Pendahuluan Kecanggihan teknologi berkembang cukup pesat, keadaan ini semakin mendorong manusia untuk terus melakukan berbagai macam percobaan dan penelitian untuk pengembangan maupun penemuan cara-cara baru guna memberikan manfaat lebih kepada manusia dalam menjalankan aktivitasnya. Misalnya dalam bidang mekanika fluida, penelitian mengenai peningkatan optimalisasi aliran fluida sampai saat ini terus berkembang dan masih dilakukan. Salah satu di antaranya adalah optimalisasi aliran fluida pada model dan dimensi pelat datar. Penelitian ini dilakukan dengan berbagai tujuan di antaranya adalah untuk mengetahui karakteristik lapisan batas dengan berbagai model gangguan misalnya model gangguan berbentuk U, V, dan lain-lain. Fluida yang mengalir pada suatu permukaan benda, baik aliran tersebut laminar maupun turbulen, maka partikel-partikel di sekitar permukaan bergerak lambat akibat gaya viskos. Partikel-partikel fluida yang dekat ke permukaan menempel pada permukaan tersebut dan kecepatannya relatif nol terhadap batas. Sementara fluida yang lain berusaha untuk bergerak lambat di atas partikel yang relatif diam sebagai akibat interaksi antara gerakan fluida yang lebih cepat dan fluida yang lebih lambat. Hal ini merupakan fenomena yang dapat meningkatkan gaya atau tegangan geser. Lapisan yang kecepatannya terpengaruh oleh tegangan geser akibat viskositas disebut lapisan batas (boundary layer). Terjadinya lapisan batas seperti yang dijelaskan di atas tidak memperhatikan adanya perpindahan panas, sedangkan dalam bidang aerodinamika sering ditemukan adanya pelat panas yang dialiri oleh fluida. Oleh karena itu perlu dilakukan penelitian tentang hal tersebut. Namun, dalam penelitian ini hanya akan dilakukan analisis secara numerik besar pengaruh perpindahan panas yang terjadi terhadap karakteristik lapisan batas yang

ANALISIS PENGARUH PERPINDAHAN PANAS … · 1 ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR. Oleh: 1) Umrowati, 2)Prof. DR. Basuki Widodo,

  • Upload
    lynga

  • View
    229

  • Download
    0

Embed Size (px)

Citation preview

1

ANALISIS PENGARUH PERPINDAHAN PANAS

TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR

Oleh:

1) Umrowati, 2)Prof. DR. Basuki Widodo, M.Sc, 3) Drs. Kamiran, M.Si Jurusan Matematika

Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 2011 Jl.Arif Rachman hakim,Sukolilo-Surabaya (60111)

1) [email protected] Abstrak

Penelitian mengenai aliran pada sebuah pelat datar sampai saat ini terus berkembang dan masih

dilakukan. Penelitian dilakukan dengan berbagai tujuan antara lain untuk mengetahui lapisan batas

yang terbentuk. Namun, dalam kehidupan sehari-hari seringkali ditemukan adanya pelat panas yang

dialiri oleh fluida sehingga perlu adanya analisis tentang pengaruh panas tersebut terhadap karakteristik

lapisan batas yang terbentuk.

Dalam penelitian ini, dilakukan analisis secara numerik dengan menggunakan metode beda hingga

besar pengaruh perpindahan panas terhadap karakteristik lapisan batas. Kemudian divisualisasikan

dengan bantuan software Matlab 7.1 dengan menggunakan konstanta-konstanta, yaitu ,

, , dan ( ).

Hasil simulasi tersebut menunjukkan bahwa kecepatan udara yang diukur pada saat dan

temperatur rata-rata adalah mengalami peningkatan dari pada saat hingga mencapai

titik maksimum di dengan kecepatan mencapai , kemudian turun secara

bertahap sampai dengan pada daerah lapisan batas. Begitu pula ketebalan lapisan batas yang

meningkat dengan bertambahnya dan bertambahnya temperatur. Namun,berbeda dengan temperatur

udara mengalami penurunan dari hingga mencapai 10, yaitu sama dengan temperatur arus bebas di

daerah lapisan batas.

Kata kunci: Karakteristik Lapisan Batas, Perpindahan Panas, Metode Beda Hingga.

1. Pendahuluan

Kecanggihan teknologi berkembang cukup pesat, keadaan ini semakin mendorong manusia untuk terus melakukan berbagai macam percobaan dan penelitian untuk pengembangan maupun penemuan cara-cara baru guna memberikan manfaat lebih kepada manusia dalam menjalankan aktivitasnya. Misalnya dalam bidang mekanika fluida, penelitian mengenai peningkatan optimalisasi aliran fluida sampai saat ini terus berkembang dan masih dilakukan. Salah satu di antaranya adalah optimalisasi aliran fluida pada model dan dimensi pelat datar. Penelitian ini dilakukan dengan berbagai tujuan di antaranya adalah untuk mengetahui karakteristik lapisan batas dengan berbagai model gangguan misalnya model gangguan berbentuk U, V, dan lain-lain.

Fluida yang mengalir pada suatu permukaan benda, baik aliran tersebut laminar maupun turbulen, maka partikel-partikel di sekitar permukaan bergerak lambat akibat gaya

viskos. Partikel-partikel fluida yang dekat ke permukaan menempel pada permukaan tersebut dan kecepatannya relatif nol terhadap batas. Sementara fluida yang lain berusaha untuk bergerak lambat di atas partikel yang relatif diam sebagai akibat interaksi antara gerakan fluida yang lebih cepat dan fluida yang lebih lambat. Hal ini merupakan fenomena yang dapat meningkatkan gaya atau tegangan geser. Lapisan yang kecepatannya terpengaruh oleh tegangan geser akibat viskositas disebut lapisan batas (boundary layer).

Terjadinya lapisan batas seperti yang dijelaskan di atas tidak memperhatikan adanya perpindahan panas, sedangkan dalam bidang aerodinamika sering ditemukan adanya pelat panas yang dialiri oleh fluida. Oleh karena itu perlu dilakukan penelitian tentang hal tersebut. Namun, dalam penelitian ini hanya akan dilakukan analisis secara numerik besar pengaruh perpindahan panas yang terjadi terhadap karakteristik lapisan batas yang

2

terbentuk yaitu terhadap profil kecepatan dan distribusi panas pada lapisan batas tersebut. 2. Tinjauan Pustaka

2.1 Penelitian Terdahulu

Pada tahun 2008, telah dilakukan penelitian oleh Setyo Budi Utami tentang distribusi aliran panas pada pelat besi yang kemudian dibuat persamaan matematikanya dan diselesaikan dengan metode volume hingga. Hasil penelitian ini menunjukkan bahwa perubahan konsentrasi distribusi aliran panas dipengaruhi oleh kecepatan, panjang pelat, dan lebar pelat.

Sedangkan dalam penelitian ini akan dibahas tentang distribusi panas pada lapisan batas di atas pelat yang kemuadian dianalisis pengaruhnya terhadap karakteristik lapisan batas yang diketahui terbentuk akibat gesekan antara permukaan pelat dengan aliran fluida. Lapisan batas yang dibahas adalah lapisan batas dimana efek viskositas sangat berpengaruh (viscous

flow). Metode yang digunakan adalah metode beda hingga.

2.2 Dasar Teori

2.2.1 Konveksi

Konveksi adalah perpindahan panas yang terjadi antara permukaan padat dengan fluida yang mengalir di sekitarnya, dengan menggunakan media penghantar berupa fluida (cairan/gas) karena perbedaan suhu di antara keduanya (benda-fluida). a. Konveksi Alami

Perpindahan panas konveksi alami adalah perpindahan panas yang disebabkan oleh beda suhu dan beda rapat saja dan tidak ada tenaga dari luar yang mendorongnya. Contohnya yaitu pelat panas dibiarkan berada di udara sekitar tanpa ada sumber gerakan dari luar. b. Konveksi Paksa

Konveksi paksa adalah perpindahan panas aliran gas atau cairan yang disebabkan adanya tenaga dari luar. Contohnya adalah pelat panas dihembus udara dengan kipas/blower.

2.2.2 Lapisan Batas(Boundary Layer)

Lapisan batas merupakan bagian dari permasalahan mekanika fluida yang merupakan lapisan yang terbentuk karena adanya gesekan antara fluida yang mengalir dengan permukaan benda yang disebabkan adanya viskositas dari

fluida yang melewati benda tersebut. Kedudukan lapisan batas pada ilmu mekanika fluida dapat dilihat pada diagram berikut ini yang menjelaskan tentang hubungan bagian dari cabang mekanika fluida(Genick, 2010):

Gambar 2.1 Diagram Hubungan Bagian dari

Cabang Mekanika Fluida

Konsep lapisan batas ditemukan oleh Ludwig Prandlt pada tahun 1904 yang merupakan seorang ahli aerodinamika Jerman (Schlichting,1979). Prandtl mengklasifikasikan aliran yang melewati suatu kontur permukaan menjadi dua daerah, yaitu : 1. Daerah di dalam lapisan batas (dekat

permukaan kontur) dimana efek viskositas sangat berpengaruh (viscous flow) Daerah ini sering disebut sebagai lapisan

batas laminer(laminar boundary layer), adalah suatu lapisan tipis yang berada di sebelah dari perbatasan benda. Pada kawasan ini kecepatan aliran adalah nol pada dinding, dan bertambah dengan cepatnya dalam perbandingan terhadap kecepatan permukaan bebas. Dalam kawasan lapisan batas, distribusi kecepatan sangat dipengaruhi oleh gaya geser. 2. Daerah di luar lapisan batas dimana efek

viskositas diabaikan (inviscid flow) Pada daerah ini pengaruh viskositas sangat

kecil sehingga cenderung diabaikan, gaya geseran dapat diabaikan bila dibandingkan dengan gaya inersia. Dalam hal ini fluida dapat dianggap inviscid (non viscous) dan tanpa rotasi (irotasi).

Hal pertama yang diperlukan dalam menyelesaikan lapisan batas adalah menentukan jenis/tipe aliran. Tipe aliran yang ada dalam

3

mekanika dan dinamika fluida umumnya dibagi menjadi tiga, yaitu: 1. Aliran Laminer

Aliran dengan fluida yang bergerak dalam lapisan–lapisan, atau lamina–lamina dengan satu lapisan meluncur secara lancar. Dalam aliran laminar ini viskositas berfungsi untuk meredam kecendrungan terjadinya gerakan relatif antara lapisan. 2. Aliran Turbulen

Aliran turbulen memiliki streamline yang berputar dan tidak beraturan (menimbulkan olakan yang tidak teratur). 3. Aliran Transisi

Aliran ini merupakan aliran peralihan dalam aliran laminar menjadi aliran turbulen.

Tipe aliran yang sudah dijelaskan di atas, dapat dilihat pada Gambar 2.3 berikut ini:

Gambar 2.2 Fase Aliran di atas Pelat Datar

Tebal lapisan batas dibagi menjadi dua, yaitu lapisan batas kecepatan dan lapisan batas termal. Tebal lapisan batas kecepatan ( ) adalah jarak yang diukur dari permukaan benda sampai suatu titik dimana efek viskositas sudah tidak berpengaruh lagi. Tebal lapisan batas termal

adalah jarak yang diukur dari permukaan benda sampai suatu titik dimana efek perpindahan panas sudah tidak berpengaruh.

2.2.3 Persamaan Lapisan Batas Pada Pelat

Datar

Persamaan lapisan batas yang berlaku pada perpindahan panas konveksi alami untuk pelat datar(dua dimensi) pada kondisi tak-tunak (unsteady), mampu mampat (compressible). Persamaan-persamaan tersebut adalah: a. Persamaan Kontinuitas

b. Persamaan Momentum

c. Persamaan Energi

2.2.4 Bilangan Grashof dan Bilangan

Rayleigh

Pada bagian 2.2.1 telah dijelaskan bahwa gerakan fluida pada konveksi alami terjadi karena gaya apung (bouyancy force) yang timbul apabila densitas fluida berkurang akibat proses pemanasan. Dan satuan rasio yang merupakan perbesaran gaya apung (bouyancy force) terhadap viskositas pada aliran konveksi alami adalah Bilangan Grashof. Secara matematis dituliskan sebagai:

Sedangkan bilangan yang digunakan sebagai salah satu acuan untuk menentukan jenis aliran dalam konveksi alami adalah Bilangan Rayleigh yang didefinisikan sebagai satuan tak berdimensi hasil kali antara bilangan Grashof dengan bilangan Prandtl , yang dirumuskan sebagai:

dengan batasan sebagai berikut:

: Aliran Laminer : Aliran Transisi : Aliran Turbulen

Bilangan Prandtl didefinisikan sebagai rasio difusivitas momentum (viskositas kinematik) untuk difusivitas termal. Bilangan Prandtl dirumuskan sebagai:

(2.22) Dengan Sehingga didapat .

2.2.5 Metode Beda Hingga

Metode beda hingga didasarkan pada ekspansi deret Taylor, yaitu metode pendekatan agar sebuah persamaan diferensial parsial dapat diubah menjadi operasi aritmatika dan operasi logika yang dapat dibaca oleh komputer (Hoffmann, 1989).

4

Ekspansi deret Taylor untuk fungsi dua variabel menghasilkan beda maju orde pertama, beda mundur orde pertama, beda tengah orde pertama, dan beda tengah orde kedua.

1. Beda Maju Orde Pertama Dengan menggunakan kisi beda hingga maka

biasa ditulis sebagai:

atau

Untuk beda hingga terhadap waktu dapat digunakan salah satu dari diskritisasi di bawah ini:

atau

Gambar 2.3 Skema Beda Maju

2. Beda Mundur Orde Pertama Dengan menggunakan kisi beda hingga maka

biasa ditulis sebagai:

atau

Untuk beda hingga terhadap waktu dapat digunakan salah satu dari diskritisasi di bawah ini:

Gambar 2.4 Skema Beda Mundur

3. Beda Tengah atau Pusat Orde Pertama atau

atau

Gambar 2.5 Skema Beda Pusat

4. Beda Tengah atau Pusat Orde Kedua

Beda Tengah atau Pusat Orde Kedua didapatkan dari pengurangan dari beda maju orde pertama dengan beda mundur orde pertama, yaitu:

3. Metodologi Penelitian

3.1 Langkah Pengerjaan

1. Studi literatur

5

2. Menentukan model matematika 3. Menyelesaikan model matematika secara

numerik 4. Memvisualisasikan hasil

3.2 Diagram Alir Penelitian

Alur penelitian yang dilakukan dalam tugas akhir ini dapat dilihat pada diagram alir berikut:

Mulai

Studi Literatur

Menentukan model matematika

Menyelesaikan model matematika dengan metode numerik

Memvisualisasikan hasil dan Pembahasan

Program Benar

Menarik kesimpulan

Menyusun Laporan

Selesai

Tidak

Ya

Gambar 3.1 Diagram Alir Penelitian

4. Penyelesaian Numerik

4.1 Diskritisasi Persamaan Lapisan Batas

Dalam Bentuk Tak Berdimensi

(Dimensionless)

Variabel referensi tak berdimensi yang digunakan untuk menyederhanakan penyelesaian derivasi persamaan lapisan batas adalah sebagai berikut:

Dengan variable-variabel di atas persamaan

lapisan batas berdimensi berubah menjadi

persamaan lapisan batas tak berdimensi sebagai berikut: a. Persamaan Kontinuitas

b. Persamaan Momentum

c. Persamaan Energi

4.1.1 Diskritisasi Persamaan Kontinuitas

Diskritisasi persamaan kontinuitas dengan metode beda hingga untuk tiap suku persamaan di atas adalah sebagai berikut: Diasumsikan derivatif di titik ( )

sama dengan rata-rata dari derivatif di titik ( dan ( , yaitu:

Derivatif menggunakan pendekatan beda hingga tengah

Didapat:

Dan disederhanakan menjadi:

4.1.2 Diskritisasi Persamaan Energi

Diskritisasi persamaan energi dengan metode beda hingga untuk tiap suku persamaan di atas adalah sebagai berikut:

Didapat:

6

Koefisien matriks untuk persamaan di atas adalah:

Sehingga didapat persamaan:

Dari persamaan tersebut dapat dibuat matriks tridiagonal arah , untuk ( dan adalah kondisi batas),

4.1.3 Diskritisasi Persamaan Momentum

Diskritisasi persamaan momentum dengan metode beda hingga untuk tiap suku persamaan di atas adalah sebagai berikut:

Didapat:

Koefisien matriks untuk persamaan di atas adalah:

Sehingga didapat persamaan:

Dari persamaan tersebut dapat dibuat matriks tridiagonal arah , untuk ( dan adalah kondisi batas),

Untuk koefisien-koefisien matriks, yaitu , , , dan baik untuk persamaan energi

maupun persamaan momentum harus dilakukan uji stabilitas terlebih dahulu sebelum digunakan dalam simulasi. Uji stabilitas koefisien matriks dilakukan dengan membagi dan terhadap

dengan syarat dan . Hasil ini menunjukkan bahwa koefisien matriks tersebut konvergen. Jika hasil dari uji tersebut lebih dari 1 maka koefisien matriks tersebut divergen.

4.2 Syarat Awal dan Syarat Batas

Untuk melakukan simulasi dan proses numerik dibutuhkan syarat awal dan syarat batas dari model. Pada penelitian ini, diasumsikan bahwa aliran gas dalam pipa mempunyai syarat awal adalah steady state, yaitu pada saat . Syarat awal dan syarat batas yang digunakan pada penelitian ini dapat dinyatakan sebagai syarat Dirichlet berikut ini: - dan - dan - dan 5. Simulasi dan Pembahasan

5.1 Algoritma

Untuk menyelesaikan persamaan disusun algoritma penyelesaian seperti pada Gambar 5.1. 5.2 Program

Algoritma pada Sub bab 5.1 tersebut diterapkan ke dalam program dengan menggunakan bantuan Matlab 7.1.

7

Gambar 5.1 Flow Chart untuk simulasi

5.3 Simulasi

Pada penelitian ini disimulasikan beberapa skenario yang berbeda untuk memperoleh gambaran yang lebih lengkap tentang pengaruh perpindahan panas terhadap kecepatan aliran gas di atas pelat datar. Contoh kasus yang disajikan didasarkan pada beberapa perkiraan kondisi operasi yang ada di lapangan. Berikut adalah parameter-parameter yang digunakan dalam untuk kebutuhan simulasi:

Dengan , dan diperoleh distribusi panas dan kecepatan ditunjukkan oleh Gambar 5.2 berikut ini.

Gambar 5.2 Profil Temperatur Udara hasil

Penelitian

Gambar 5.2 menunjukkan profil temperatur udara. Semakin besar maka temperatur udara semakin mengecil dari 60 pada pelat sampai mencapai temperatur konstan 10 pada daerah lapisan batas. Hal ini terjadi karena pada daerah lapisan batas sudah tidak terjadi perpindahan panas, dimana efek panas yang ditimbulkan pelat sudah tidak ada, sehingga temperatur udara sama dengan temperatur arus bebas (free

stream), yaitu 10.

Gambar 5.3 Profil Kecepatan Udara hasil

Penelitian

Gambar 5.3 di atas adalah gambar yang menunjukkan profil kecepatan udara hasil penelitian dengan temperatur Pelat dan temperatur fluida pada daerah arus bebas (freestream) Gambar tersebut menunjukkan bahwa kecepatan yang diukur pada saat

dan temperatur rata-rata adalah mengalami peningkatan dari pada saat

hingga mencapai titik maksimum di dengan kecepatan mencapai

dan kemudian turun secara bertahap sampai dengan pada daerah lapisan batas.

Selain profil temperatur dan profil kecepatan, simulasi ini juga menghasilkan profil

8

ketebalan lapisan batas yang ditunjukkan oleh Gambar 5.4 berikut ini.

Gambar 5.4 Profil Tebal Lapisan Batas Udara

hasil Penelitian

Gambar 5.4 di atas menunjukkan bahwa ketebalan monoton naik mulai dari nol pada saat

dan terus meningkat hingga menghasilkan ketebalan maksimal yaitu pada saat

. Dari hasil simulasi juga diperoleh hubungan

antara temperatur dengan kecepatan. Konstanta dan masukan(input) yang digunakan untuk memvisualisasikan hubungan tersebut sama dengan Konstanta dan masukan(input) yang digunakan untuk simulasi kecepatan pada Gambar 5.3 yaitu dan dengan partisi sebanyak 21 partisi. Hubungan antara temperatur dengan kecepatan ditunjukkan pada Gambar 5.5. berikut ini.

Gambar 5.5 Hubungan antara temperatur dan

kecepatan

Dari Gambar 5.5 di atas dapat dilihat bahwa kecepatan yang berawal di titik nol akan mengalami peningkatan seiring meningkatnya temperatur hingga mencapai titik maksimum dan turun secara bertahap hingga kecepatan kembali

ke titik nol saat temperatur berada pada titik maksimum.

Namun, keadaan berbeda bila temperatur dihubungkan dengan ketebalan lapisan batas. Ketebalan lapisan batas akan terus naik seiring naiknya temperatur. Akan tetapi, kenaikan yang terjadi pada ketebalan lapisan batas ini bukan monoton naik tegas melainkan hanya monoton naik saja. Artinya, ada beberapa tinggi ketebalan yang sama pada saat tingkat temperatur berbeda tapi tetap mengalami kenaikan. Dalam memvisualisasikan hubungan ini, konstanta dan masukan(input) yang digunakan sama dengan konstanta dan masukan(input) yang digunakan untuk memvisualisasikan hubungan antara temperatur dan kecepatan. Hubungan antara temperatur dan ketebalan lapisan batas ditunjukkan pada Gambar 5.6 di bawah ini.

Gambar 5.5 Hubungan antara temperatur dan

ketebalan

6. Kesimpulan dan Saran

6.1 Kesimpulan

Dari analisis dan pembahasan yang telah dilakukan pada bab sebelumnya, dapat disimpulkan sebagai berikut: 1. Model matematika untuk lapisan batas adalah

sebagai berikut: a.

b.

c.

2. Dari penyelesaian numerik yang dilakukan

didapat penyelesaian berupa persamaan yang dapat dibuat matriks, yaitu:

0

0,000001

0,000002

0,000003

10

10

10,0005

10,0179

10,6097

30,7108

Ke

cep

atan

Temperatur

Hubungan Antara Temperatur Dan Kecepatan

Kec…

0

0,0005

0,001

0,0015

10

10

10,0005

10,0179

10,6097

30,7108

Ke

teb

alan

Temperatur

Hubungan Antara Temperatur Dan Ketebalan

Ket…

9

dengan:

dengan:

3. Kecepatan udara yang diukur pada saat

dan temperatur rata-rata adalah mengalami peningkatan dari pada saat

hingga mencapai titik maksimum di dengan kecepatan mencapai

dan kemudian turun secara bertahap sampai dengan pada daerah lapisan batas.

4. Temperatur udara mengalami penurunan dari 60 yang bersinggungan dengan pelat, hingga mencapai 10, yaitu sama dengan temperatur arus bebas di daerah lapisan batas.

5. ketebalan lapisan batas meningkat dengan bertambahnya dan bertambahnya temperatur.

6.2 Saran

Untuk pengembangan penelitian lebih lanjut, disarankan: 1. Pada tugas akhir ini menggunakan asumsi

bahwa temperatur konstan sepanjang pelat. Selanjutnya dapat dikembangkan penelitian untuk temperature yang tidak konstan di sepanjang pelat agar lebih mendekati kondisi di lapangan.

2. Dilakukan penelitian untuk aliran laminer benda yang lain misalnya pipa, di antara dua pelat sejajar, juga dapat dilakukan penelitian untuk aliran turbulen

3. Untuk semua saran penelitian tersebut dapat diselesaikan dengan metode numerik yang berbeda.

7. Daftar Pustaka

Bar–Meir, Genick. 2010. Basics of Fluid

Mechanics. Chicago Budi Utami, Setyo. 2008. Analisa Distribusi

Aliran Panas pada Sebuah Pelat Besi

dengan Menggunakan Metode Volume

Hingga. Institut Teknologi Sepuluh Nopember. Tugas Akhir S1 Jurusan Matematika.

Holman, J.P. 1995. Perpindahan Kalor. Edisi

Ke Enam. Diterjemahkan oleh Ir. E. Jasjfi, M.Sc. Jakarta: Erlangga.

Munson, Bruce R., Young, Donald F., Okiishi, Theodore H. 1990. Fundamentals of Fluid

Mechanic. New York: John Wiley and Sons.

Kaprawi. 2008. Pengaruh Angka Prandtl dalam

Perpindahan Panas Pada Suatu Benda

Bulat. Jurnal Rekayasa Sriwijaya, no. 3 Vol. 17

Meyrawati, Zusnita. 2010. Pemodelan dan

Simulasi Numerik Gas Dalam Saluran

Pipa Menggunakan Metode Crank-

Nicolson. Institut Teknologi Sepuluh Nopember. Tugas Akhir S1 Jurusan Matematika.

Ozgen, Serkan. 2004. Effect of Heat Transfer on

Stability and Transition Characteristics of

Boundary-layers 47, 4697-4712. Schlichting, H. 1979. Boundary-Layer Theory.

New York: McGraw-Hill. White, Frank M. 1991. Viscous Fluid Flow.

Second edition. Singapore: McGraw-Hill. http://www.ipb.ac.id~erizalmekfludmodul114.pd

f. Diakses pada tanggal 14 Maret 2011 pukul 09.57 WIB

http://www.reocities.com/CollegeParkDorm142

1kuliahDasar

RefrigerasiB2_Termodinamikadan_Perpin

dahan_Panas1109.pdf. Diakses pada tanggal 14 Maret 2011 pukul 10.47 WIB