6
K + Na + outside inside K + Na + Plasma membrane K + Na + outside inside K + Na + Plasma membrane fluid outside neuron gated sodium channel In a membrane at rest, the inside of the neuron is negative relative to the outside. An electrical disturbance (yellow arrow) spreads from an input zone to an adjacent trigger zone of the membrane, which has a large number of gated sodium channels. fluid outside neuron gated sodium channel In a membrane at rest, the inside of the neuron is negative relative to the outside. An electrical disturbance (yellow arrow) spreads from an input zone to an adjacent trigger zone of the membrane, which has a large number of gated sodium channels. Na + Na + Na + A strong disturbance initiates an action potential. Sodium gates open. Sodium flows in, reducing the negativity inside the neuron. The change causes more gates to open, and so on until threshold is reached and the voltage difference across the membrane reverses. voltage reversed ©2007 Thomson Higher Education Na + Na + Na + A strong disturbance initiates an action potential. Sodium gates open. Sodium flows in, reducing the negativity inside the neuron. The change causes more gates to open, and so on until threshold is reached and the voltage difference across the membrane reverses. voltage reversed BIO 201 Trainor Action Potentials and Synapses Neurons and Potentials Neurons are highly irritable Respond to adequate stimulus by generating an action potential (nerve impulse) Two types of signals Graded potentials Incoming shortdistance signals Action potentials Longdistance signals of axons Potential difference across the membrane of a resting cell Approximately –70 mV in neurons (cytoplasmic side of membrane is negatively charged relative to outside) Generated by the differences in ionic makeup of intracellular fluid and the extracellular fluid

Action Potentials and Synapses Handouts

Embed Size (px)

Citation preview

Page 1: Action Potentials and Synapses Handouts

K+

Na+ outside

inside

K+

Na+

Plasma membrane

K+

Na+ outside

inside

K+

Na+

Plasma membrane

fluid outsideneuron

gated sodiumchannel

In a membrane at rest, the inside of the neuron is negative relative to the outside. An electrical disturbance (yellow arrow) spreads from an input zone to an adjacent trigger zone of the membrane, which has a large number of gated sodium channels.

fluid outsideneuron

gated sodiumchannel

In a membrane at rest, the inside of the neuron is negative relative to the outside. An electrical disturbance (yellow arrow) spreads from an input zone to an adjacent trigger zone of the membrane, which has a large number of gated sodium channels.

©2007 Thomson Higher Education

Na+

Na+

Na+

A strong disturbance initiates an action potential. Sodium gates open. Sodium flows in, reducing the negativity inside the neuron. The change causes more gates to open, and so on until threshold is reached and the voltage difference across the membrane reverses.

voltage reversed

©2007 Thomson Higher Education©2007 Thomson Higher Education

Na+

Na+

Na+

A strong disturbance initiates an action potential. Sodium gates open. Sodium flows in, reducing the negativity inside the neuron. The change causes more gates to open, and so on until threshold is reached and the voltage difference across the membrane reverses.

voltage reversed

BIO 201 ‐ Trainor Action Potentials and Synapses   Neurons and Potentials  Neurons are highly irritable  Respond to adequate stimulus by generating an action 

potential (nerve impulse)   Two types of signals 

Graded potentials   Incoming short‐distance signals 

Action potentials   Long‐distance signals of axons 

Potential difference across the membrane of a resting cell  Approximately –70 mV in neurons (cytoplasmic 

side of membrane is negatively charged relative to outside) 

Generated by the differences in ionic makeup of intracellular fluid and the extracellular fluid 

              

 

        

Page 2: Action Potentials and Synapses Handouts

©2007 Thomson Higher Education

Na+

Na+

Na+

K+

K+

K+

At the next patch of membrane, another group of gated sodium channels open. In the previous patch, some K+ moves out through other gated channels. That region becomes negative again.

©2007 Thomson Higher Education

Na+Na+

K+ K+K+

Na+

K+

After each action potential, the sodium and potassium concentration gradients in a patch of membrane are not yet fully restored. Active transport at sodium–potassium pumps restores them.

Na+/K+ pump

propagating action potential

©2007 Thomson Higher Education©2007 Thomson Higher Education

Na+Na+

K+ K+K+

Na+

K+

After each action potential, the sodium and potassium concentration gradients in a patch of membrane are not yet fully restored. Active transport at sodium–potassium pumps restores them.

Na+/K+ pump

propagating action potential

 

  Action Potential Propagation  Action potentials spread by themselves. 

The action potential is self‐propagating and moves away from the stimulation site  Potentials can self‐propagate because the changes to the membrane potential don’t lose strength 

A neuron can’t “fire” again until ion pumps restore its resting potential.  By diffusion, some potassium ions will always leak out of the cell and some sodium will always leak in  The sodium‐potassium pumps use ATP to actively pump potassium ions in and sodium ions out of the neuron   Necessary to keep the concentration of sodium ions higher outside, ready for another action potential to form. 

 Action Potential  Resting state 

Only leakage channels for Na+ and K+ are open 

All gated Na+ and K+ channels are closed  Depolarization 

A reduction in membrane potential (toward zero) 

Inside of the membrane becomes less negative than the resting potential 

Increases the probability of producing a nerve impulse 

Hyperpolarization  An increase in membrane potential (away 

from zero)  Inside of the membrane becomes more negative 

than the resting potential  Reduces the probability of producing a nerve 

impulse  Action Potential Propagation  Threshold  At threshold: 

Membrane is depolarized by 15 to 20 mV   Na+ permeability increases  Na influx exceeds K+ efflux  The positive feedback cycle begins 

Page 3: Action Potentials and Synapses Handouts

Threshold  Subthreshold stimulus—weak local 

depolarization that does not reach threshold  Threshold stimulus—strong enough to push the 

membrane potential toward and beyond threshold  

 Threshold  All action potentials are alike and are 

independent of stimulus intensity  Strong stimuli can generate action potentials 

more often than weaker stimuli  The CNS determines stimulus intensity by the 

frequency of impulses  Action Potentials  Action potentials spread by themselves. 

The action potential is self‐propagating and moves away from the stimulation site.  Potentials can self‐propagate because the changes to the membrane potential don’t lose strength 

Occurs in muscle cells and axons of neurons  Does not decrease in magnitude over distance  Principal means of long‐distance neural communication  An action potential is an all‐or‐none phenomenon—action potentials either happen completely, or not at all  Graded Potentials  Short‐lived, localized changes in membrane potential  Graded potential spreads as local currents change the membrane potential of adjacent regions  Occur when a stimulus causes gated ion channels to open 

E.g., receptor potentials, generator potentials, postsynaptic potentials  Magnitude varies directly (graded) with stimulus strength   Decrease in magnitude with distance as ions flow and diffuse through leakage channels  Short‐distance signals  Graded Potential vs. Action Potential  Conduction Velocity  Conduction velocities of neurons vary 

widely   Effect of axon diameter 

Larger diameter fibers have less resistance to local current flow and have faster impulse conduction 

Effect of myelination  Continuous conduction in 

unmyelinated axons is slower than saltatory conduction in myelinated axons 

       

Page 4: Action Potentials and Synapses Handouts

Conduction Velocity  Effects of myelination: 

Myelin sheaths insulate and prevent leakage of charge  Saltatory conduction in myelinated axons is about 30 times faster  Voltage‐gated Na+ channels are located at the nodes  APs appear to jump rapidly from node to node 

 Conduction Velocity  Multiple Sclerosis  An autoimmune disease that mainly affects young adults  Symptoms: visual disturbances, weakness, loss of muscular control, speech disturbances, and urinary incontinence  Myelin sheaths in the CNS become nonfunctional scleroses  Shunting and short‐circuiting of nerve impulses occurs  Impulse conduction slows and eventually ceases  Action Potentials and Synapses ‐ Part II   The Synapse  A junction that mediates information transfer from one neuron:  

To another neuron  To an effector cell 

Presynaptic neuron—conducts impulses toward the synapse  Postsynaptic neuron—transmits impulses away from the synapse  Synaptic Cleft  Fluid‐filled space separating the presynaptic and postsynaptic 

neurons  Prevents nerve impulses from directly passing from one neuron to 

the next  Transmission across the synaptic cleft:  

Is a chemical event (as opposed to an electrical one)  Involves release, diffusion, and binding of neurotransmitters  Ensures unidirectional communication between neurons 

                  

Page 5: Action Potentials and Synapses Handouts

                            

 Types of Synapses  Axodendritic—between the axon of one neuron and the 

dendrite of another  Axosomatic—between the axon of one neuron and the soma of 

another  Less common types:  

Axoaxonic (axon to axon)  Dendrodendritic (dendrite to dendrite)  Dendrosomatic (dendrite to soma) 

 Synapse  Neurotransmitter must be released, diffuse across the synapse, 

and bind to receptors  Within a few milliseconds, the neurotransmitter effect is 

terminated  Degradation by enzymes  Reuptake by astrocytes or axon terminal   Diffusion away from the synaptic cleft 

Synaptic delay—time needed to do this (0.3–5.0 ms)   Synaptic delay is the rate‐limiting step of neural 

transmission  Excitatory Synapse  Neurotransmitter binds to and opens chemically 

gated channels that allow simultaneous flow of Na+ and K+ in opposite directions  Na+ influx is greater that K+ efflux, causing a net depolarization  If impulse is of threshold strength voltage‐gated channels open and start new action potential  Inhibitory Synapse 

Neurotransmitter binds to and opens channels for K+ or Cl– 

Causes a hyperpolarization (the inner surface of membrane becomes more negative) 

Reduces the postsynaptic neuron’s ability to produce an action potential      

Page 6: Action Potentials and Synapses Handouts

Summation  Temporal summation 

One or more presynaptic neurons transmit impulses in rapid‐fire order  Spatial summation 

Postsynaptic neuron is stimulated by a large number of terminals at the same time     

Neurotransmitters  50 or more neurotransmitters have been identified  Classified by chemical structure and by function 

Acetylcholine  Biogenic Amines 

Norepinephrine, Dopamine, Serotonin, Histamine  Amino Acids 

GABA, Glutamate, Glycine, Peptides  Peptides 

Endorphins, Somatostatin, Cholecystokinin (CCK)  Purines 

ATP, Adenosine  Gases and Lipids 

NO2, CO2, Endocannabinoids  Chemical Classes of Neurotransmitters  Acetylcholine (ACh) 

Released at neuromuscular junctions and some ANS neurons  Synthesized by enzyme choline acetyltransferase  Degraded by the enzyme acetylcholinesterase (AChE) 

 Functional Classification of Neurotransmitters  Neurotransmitter effects may be excitatory (depolarizing) and/or inhibitory (hyperpolarizing)  Determined by the receptor type of the postsynaptic neuron  

GABA and glycine are usually inhibitory  Glutamate is usually excitatory  Acetylcholine 

Excitatory at neuromuscular junctions in skeletal muscle  Inhibitory in cardiac muscle