7
HWAHAK KONGHAK Vol. 39, No. 1, February, 2001, pp. 123-129 (Journal of the Korean Institute of Chemical Engineers) 123 - (2000 9 22 , 2000 12 13 ) A Study on the Nitrification and Denitrification of an Anoxic-Oxic Upflow Biological Aerated Filter Soo-Choul Lee and Dong-Jin Kim Department of Environmental Science, Hallym University, 1 Okchon, Chunchon, Kangwon 200-702, Korea (Received 22 September 2000; accepted 13 December 2000) , C/N , . - . C/N 0.26-1.76 kg NH 4 + - N/m 3 d 90% C/N 1 65% . (EBCT) 1.1 , ( 35%) 0.38 . . . . Abstract - This study was carried out to investigate the effects of influent NH 4 + - N load, C/N ratio, and superficial air veloc- ity on the biological nitrogen removal efficiencies of a biological aerated filter. The laboratory scale upflow anoxic-oxic bio- logical aerated filter(AO-BAF) with porous ceramic media was continuously operated for nitrification and denitrification with synthetic wastewater. Various influent C/N ratios and superficial air velocity had been applied to investigate their effects on nitrogen removal. The AO-BAF showed more than 90% NH 4 + - N removal efficiencies in the ranges of 0.26-1.76 kg NH 4 + - N/ m 3 d and an average 65% of T-N removal efficiencies at the C/N ratio of 1. The reactor is very compact in size when con- sidering the empty bed contact time(EBCT) of 1.1 h and the hydraulic retention time(void fraction: 35%) of 0.38 h. The aver- age T-N removal efficiencies were increased with the superficial air velocity because of the enhanced nitrification efficiencies. Some parts of the denitrification occurred in aerobic nitrification zone where organic carbons are rarely available. It is likely that the denitrification without organic carbon may be the anaerobic ammonium oxidation due to the oxygen mass transfer resistance within the biofilms even though the mechanism is still unclear. Key words: Anoxic-Oxic, Biological Aerated Filter, Denitrification, Nitrification, Nitrogen Removal E-mail: [email protected] 1. , . . [1]. . . 2 , , [2-5]. .

A Study on the Nitrification and Denitrification of an Anoxic-Oxic Upflow Biological ... · 2001-03-03 · Abstract −This study was carried out to investigate the effects of influent

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Study on the Nitrification and Denitrification of an Anoxic-Oxic Upflow Biological ... · 2001-03-03 · Abstract −This study was carried out to investigate the effects of influent

HWAHAK KONGHAK Vol. 39, No. 1, February, 2001, pp. 123-129(Journal of the Korean Institute of Chemical Engineers)

���-�� ��� �� ����� ��� � �� ��

�������†

����� ����(2000 9 22� � , 2000 12 13� ��)

A Study on the Nitrification and Denitrification of an Anoxic-Oxic Upflow Biological Aerated Filter

Soo-Choul Lee and Dong-Jin Kim†

Department of Environmental Science, Hallym University, 1 Okchon, Chunchon, Kangwon 200-702, Korea(Received 22 September 2000; accepted 13 December 2000)

� �

� ����� �� �� �� ���� ��, C/N �, ��� � �� ���� ���� !"# $%� &'�

()* +,�-.. /01 23� 456 787 9�: ;)< =>!->! �� ���� ���?@ ABC DE�

>FG H * BI�-.. .JK LM: C/N �G �� ���G ���� �� 0.26-1.76 kg NH4+ - N/m3Nd LM�

� �� ���� 90% O;: >F%* P-Q C/N � 1�� RS 65%: T !"# $%* P-.. � ��� ,

U6 �� ���: �VW XY��� Z[ \] ��� �^3<�_(EBCT) 1.1 �_, BY�� 3<�_(�`a 35%)

0.38 �_��� \b "#$%* Pc.. T ! "#%b �� ���� d0 e���f O� >F%O );6 ghO

.. i� !� j� k!lO #: m� n�o >F pq�� H rQ s.. O� ��t: >!uv wx?@ cy �

z ��t ��: =>! pq�� {�o ���] >F� :K |O ]}� ,~6..

Abstract − This study was carried out to investigate the effects of influent NH4+ - N load, C/N ratio, and superficial air veloc-

ity on the biological nitrogen removal efficiencies of a biological aerated filter. The laboratory scale upflow anoxic-oxic bio-

logical aerated filter(AO-BAF) with porous ceramic media was continuously operated for nitrification and denitrification with

synthetic wastewater. Various influent C/N ratios and superficial air velocity had been applied to investigate their effects on

nitrogen removal. The AO-BAF showed more than 90% NH4+ - N removal efficiencies in the ranges of 0.26-1.76 kg NH4

+ - N/

m3Nd and an average 65% of T-N removal efficiencies at the C/N ratio of 1. The reactor is very compact in size when con-

sidering the empty bed contact time(EBCT) of 1.1 h and the hydraulic retention time(void fraction: 35%) of 0.38 h. The aver-

age T-N removal efficiencies were increased with the superficial air velocity because of the enhanced nitrification efficiencies.

Some parts of the denitrification occurred in aerobic nitrification zone where organic carbons are rarely available. It is likely

that the denitrification without organic carbon may be the anaerobic ammonium oxidation due to the oxygen mass transfer

resistance within the biofilms even though the mechanism is still unclear.

Key words: Anoxic-Oxic, Biological Aerated Filter, Denitrification, Nitrification, Nitrogen Removal

†E-mail: [email protected]

1. � �

��� ��� �� �� �� ����� ��� �� ��

��, ����� �� � ! "� #$%& '() *+, �-.

! /0 �1) 23� 45 678!9 :� ;<) =>? @A

� 4B. CD � E% ��FG HI J KL%MN O�P� 4 Q

(RSTUV "�W �� �:/ �+ � AX� Y%MN Z�P

5 �� (W� AX[\V ]^� _I:B. `� Q(RSTUV �

a� �TbG+c� dV �Te%) fgN h i, RSTj k

V lm: 4B[1]. :S� nA� Z6+ o� pU� /N � ,

�HI: kV bq) �M� 4B. � ,� Kr� � s HIM

N t7 ,D! �uv w� ! �� � E% ��-xLy� �

,Dz! �� G% ,�j {|! K5/ FGpU:B. :S�

� ,�HIV � Ly+ @�j }�T� 2~��^j fg �5 |

��j ]��, �g �Te%: %�, �{��: �� .A% :m

� �� FG��: ��� �m: 45 ��/ �� �aFG! k

: %�P� 4B[2-5].

KL%MN ��J ��(W� AX ��� w� ! �� ���

Ly� r��� w� ! �� �� LyMN ��P5 �B. �S/

��! ��FG�!9 K5� � 4 � E% ��AX +}MN

123

Page 2: A Study on the Nitrification and Denitrification of an Anoxic-Oxic Upflow Biological ... · 2001-03-03 · Abstract −This study was carried out to investigate the effects of influent

124 �������

heterotrophic nitrification� aerobic denitrification[6], anaerobic ammonium

oxidation[7, 8], '���� w� ! �� ��[9] �: ��P� 45

��AX� �j� �� ��� ���B. ̀ � ��;� | ¡& _

A ��FG | ¡!9 ��AX +}) w� E% "ON I¢?

£? ¤: �� ��T� ¥:( �MN &, ¦T §B[7, 9-10].

j� KL%& ��FG | ¡!9� ��AX +}V B¨� ©B.

w� ! �, ����( ��� ���|ª LyV Nitrosomonas

N "«P ammonia oxidizer¬ NitrobacterN "«P nitrite oxidizer

! �� 2l­ LyMN 7®vB. ��� w� � yield coefficient

0.17 g VSS/g NH3-N:h :¯ 1 g� ����( ��� ��! 4.3 g�

��, 7.14 g� alkalinity(CaCO3 +°)j ��vB. :S� ��� w�

V ±a¬ '( �! "² w� Q(aj ¦� ]²³� w�

�(��a¬ yieldj ´� �+ ) :� r� w� �� .µ!

9 �� ¶G� ^·! 4B. �� (W� �+ : �� �¸P K

L%& ��FG | ¡!9 ��� w� � wash-out: ¦� K5¥

B[11, 12]. �S¹N ���� ºI� �T+ o²9 ��� w

� : �u» � 4 � s | ¡) :� ¤: [�%:B[13].

��:±) ��(N2)N -x ��LyV ¼��(anoxic) ̂ ·!

9 �½% B�� r� w� ! �² 7®Ph ¾¿À� ©V Á� ¿

�x: ��H,ÂN9 fgB. ¾¿À) ø� �¸�� %IÄV

3.2-6 g COD/g NO3− -NMN ÅÆÇB[13-14]. ��l­!9 ����

w� � ��! ]²� Ã� vB. `� ���� È! �² ��

-xLy) o² HÉ� �+¿�� ���MNÊ ��H,Â� ��

[\) ]|ª nAj 4B. ËÌ9 [\%& ��) o²9 j

Í� ����j � ^·) ��5*�B. �S/ ��) o²9

Î] ��� l­� XÏ*� :� DÐ-, �¸�� �+¿�x

MN ��P¹N K� ÑÒ ����� �¸: ¶jÓB. :¬ ©V

:�N &² � s | ¡) ��! :�Ô .� ÕÖ� � s ×�

N� ��Ø ]Ù! �² ����� �� ]²� ÚK � 4 �m

: 4B.

Û ÜÝ!9 ���¬ ��) � Ly+!9 {|! 7® BH

( ÞÌß ,Dj t7v ¼��- +HI: ��v Ð-à � ,��

3� Z��� �B. Û _á! O�� �� �/ â�FG�!

²ã ��N9 ����( �� 50 mg/L, �+ N acetate� :ä

% ��gÝÄ(ThOD) +° 42¬ 133 mg/L åo!9 _áæB. ThOD

j 42 mg/L& .� 2~FG pÒ�� �aFG� Y«N � 133

mg/L� .� 1~��T� �<�� +°MN 2~FG¬ {|! �a

FG | ¡) Y«N _áæB.

� ,� Ly+� + Ýç! èà�aj ´V ���é) ,D

! �u|ê Ly+! �ëaN �T, ìV ����( ��� �

!9 ºI%MN ���j K5/aí �B. ¼�� Ýç!9 �u

v ��é! �² DÐ-v ��( :±� �¸v �+¿�x! �²

��: K5/aí �­P�B. Û ÜÝ� Y%V Z�v � ,� L

y+!9 ���¬ ��) Ü�%MN �®�! 45 �¸�� C/N�

¬ superficial air velocityN /îï H+HÉÄ: ���¬ ���! w

3 �1) ðñ� :N�Ö ìV FG[\) ò) � 4 ��A

X� � ,�+� �­ ó ��&�� a< ¤:B.

2. �� � �

2-1. ��� ���� � �� � � ��

Û ÜÝ! O�v Ð-à � ,� Ly+� �ô� _á�3 Zõa

� Fig. 1! /îöB. � ,� Ly+ ×. 3 cm, ì: 110 cm, �

[ì: 75 cm� �÷ø �D� xùbMN A}P�B. Ly+!9 |

ú� ûü ýV Ly+� �¸�W) +°MN 60 cm ì:þT

15 cm ÿ>MN o3� 85 cm� ì:! �<�j o3�B. /�T

��^¬ �<j � ��� head spaceN :�5ÇB. Ly+ ×�

! #.: 4-6 mm& BH(� ÞÌß ,D� t7æB(H��:

35%). ̀ � Ly+ �! �[�Ó� � 40% IaN ¼�� Ýç)

ù(æ� ��! + Ýç) ù(� æB. �� �1ÒàM

N HÉæ� ����( ��� ëa 50 mg-N/LN �TæB. �

290K� ��+ÿ {º �+ 0.26 kg-N/m3Nd� ����( �� �

!9 Ly+×� �GE% �� èj|ê 1.76 kg-N/m3NdþT ��

��( ��� �� èj|�B.

+( Ýç!9 ���v �� � :�, Ly+ �� �

�^N L�|ê ��) �aæB. ��:±� ��^N� L��(L

��Ä/x��Ä) �é 2N ^�, ��æB. H+ air flow

meter� :�, ^·! � KI� HÉæB.

_á^·V Table 1� ©B. ��! fg� �+¿�xV sodium

acetate� :�, C/N� 1þT m~%MN èj|ªh _áæ� I

Ä� :�, øæB. Û _áV � 4jT ^·MN ��|ª

h _®æB. �+ AÝÿ!9 �¸�! ��! fg� �+¿�x

) HÉT §� ����( ���) HÉæB. ��� �é �G

E% ÂÒ|ÿV 0.65 |ÿ:�B. :¯ H+ �é 132 m3/m2Nday�

superficial air velocityN Ly+! HÉP�B. BÝÿ!9 superficial

air velocity ��|ªT §� ���! fg� �+¿�x) HÉ

+ o, sodium acetate� �5Ã�Mh :¯ C/N� ¿�Ä� �

�Ä) +°MN �é 0.32(ThOD: 42.7 mg-O2/L)N ^IæMh �

�� �é �GE% ÂÒ|ÿV 0.47 |ÿ:�B. CÝÿ!9 C/N ratio

� 1(ThOD: 133 mg-O2/L)N ì, HÉæMh superficial air velocity

�é 132 m3/m2NdayN ­� �TæMh ��� �é �GE%

ÂÒ|ÿV 0.43 |ÿ:�B. �Ts Ýÿ& DÝÿ!9 C/N ratio�

1N �T� Le superficial air velocity� �é 305 m3/m2NdayN ì,

HÉæ� ��� �é �GE% ÂÒ|ÿV 0.30 |ÿ:�B.

2-2. ���� ��� �� ��

_áV � ,� Ly+! 4 �� w� ) :�æMh 1 g�

,D! 8.73�10−3 g VSSj �uP5 4�B. Û �W _á!9 C/N

! Ë� ���a� �¢? �½+ o, ¼��^! 4 w�

) 0.095 g VSS/L� �� ´V ëaN �5 Ã�B. ��xMN ��

( ��� 50 mg-N/L, �+¿�xV sodium acetateN C/N�� 0!9

Fig. 1. Schematic diagram of the anoxic-oxic upflow BAF experimentalset-up for biological nitrogen removal.

���� �39� �1� 2001� 2�

Page 3: A Study on the Nitrification and Denitrification of an Anoxic-Oxic Upflow Biological ... · 2001-03-03 · Abstract −This study was carried out to investigate the effects of influent

�� � �� ��� � �� �� 125

)

bic

2þT �Ä�NÊ ^�, �5Ã�B. � C/N�! "² 3 set� _á

) æMh �¼�Z� , DO� 0.5 mg/L :N �TæB. pH

7.5¬ 8 O:!9 ^�æ� ±a 25oC� �TæB.

2-3. �� � �� ����

Û _á!9 �(��� O�æMh _á+ÿ ����( ��

(NH4)2SO4� ù�N 50 mg-N/L, alkalinity g NH4+- Nã 7.13 g CaCO3

N �5Ã�B. `� ��! fg� �+ ¿�xV CH3COONa� ù�

N �5Ã�Mh C/N� � ¿�Ä� ��Ä� �NÊ 0!9 1N èj

|ªh _áæB. _á! O�� ��� ^(V Table 2! /îöB.

��� W�V Standard method� pU[15]! �² �®æMh |

ú 0.45µm� GF/C filterN ,�� � _áæB. ����( ��

Nesslerization method[15]! �² 425 nm!9 È�a� �IæB

(UV 1601, Shimadzu). ���( �� 543 nm!9 �a� �I

colorimetric method[15]� :�æMh ��( �� 220 nm!9

�a� �I ultraviolet spectrophotometric screening method[15]

� :�æB. ̀ � ���( ��¬ ��( �� 0.2µm� syringe

filterN �� ) X� � ion chromatography(DX 500, Dionex)N �®

, W�æB[15].

3. � � �

3-1. ���� � ! �"

� ,� Ly+! t7v ,D #.: 4-6 mm� BH(� ÞÌß

D�:B. SEM(scanning electron microscopy: Hitachi S-2500)) �²

��� ,D «e ��V Fig. 2(a), (b)!9¬ ©: 2-200µm Ia�

pore� � BH(� �:B. Fig. 2(b)!9¬ ©: ,D! é :

ù(P5 45 w� �u! �:� ����� ¢�) ]²Ô �

a 4B. ���^!9 ,D! �uv � s «eV +( ^·) ù

(� � s ×� ��� ¢� ]Ù! �² ¼�� ��j P5 ©

V Ly+!9 ���¬ ��) {|! �®Ô � 4B.

Fig. 2(c), (d) �� Û � ,� Ly+� ���^¬ ��^!9 (

� w� � SEM O7:B. ÞÌß ,D! kV w� : �uP

5 4¨) ¢&Ô � 4B. ���^� ,D «e! �uv w� V

0.8!9 1.2µm ÷+� s"ù�� � 45 Wolfe �[16]: WG�

Nitrosomonas r� ÷+¬ ù�j �O�) Å � 4B. ,D ×�!

«e� ØG kV rÒ� w� : �uP5 4 ¤MNÊ � s

×�! ��� A�! �² ¼�� ��� ù( K� ��) �®

w� : �D ¤) ¢&Ô � 4�B. +( Ýç!9 ,D! �

uv w� ÄV Ly+� çÞ! Ã+¬ ����( �� �! Ë

Ì ~:� �:T� KL%MN çÞ! �! 4.12�10−2 g VSS/g media

� /îö� çÞ! �! 8.73�10−3 g VSS/g media� /îöB.

Fig. 2(d)� ,D «e! +( Ýç!9 �"v w� � �O�

w� : W�æ� ,D º#MN B�� w� : �"P�B. :

,D «e!9 L��! ��v ����! �, +( '��� w

� : 9àh ,D º#MN ¼�� ��j P5 B�� rÒ�

�� w� : 9à ¤:B. ¼�� Ýç� r��� w� V ç

Þ! Ã+N �½² $ ¯ +( Ýç� ��� w� ! �² ©V

+ÿ � 5; :�� %� w� èà�a� /îöB.

Table 1. Experimental conditions and nitrogen removal efficiencies of the anoxic-oxic upflow biological aerated filter

A B C D Total

Operation period(day) 0-41 42-69 70-157 158-287 287NH4

+- N load(kg-N/m3� d) 0.73*(0.26-1.09) 0.93*(0.77-1.11) 0.99*(0.58-1.33) 1.39*(1.18-1.76) 1.07*(0.26-1.76

C/N ratio 0 0.32 1 1 -Superficial air velocity(m3/m2

� d) 132 132 132 305 -Hydraulic retention time‡(h) 0.65*(0.44-1.53) 0.47*(0.37-0.52) 0.43*(0.32-0.71) 0.3*(0.23-0.34) 0.38*(0.23-1.53)NH4

+ -N removal efficiency(%) 95.4*(80-100) 95.1*(66-100) 82.1*(48-100) 92.1*(62-100) 90.5*(48-100)T-N removal efficiency(%) 28.5*(7-60) 45.9*(16-66) 58.3*(26-78) 71.4*(43-97) 55.8*(7-99)

*average value, ‡total reactor volume basis(void fraction: 35%).

Table 2. Composition of the synthetic wastewater

Component Concentration Component Concentration

CaCl2 � 2H2O 7 mg/L NaHPO4 � 12H2O 29 mg/LFeCl3 � 6H2O 1 mg/L NaHCO3(as CaCO3) 7.13 g/g NH4

+-NKCl 7 mg/L (NH4)2SO4 50 mg-N/LKH2PO4 11 mg/L� CH3COONa 0, 16, 50 mg-C/LMgSO4 � H2O 5 mg/L

Fig. 2. Scanning electron microscopy of the surface of the ceramicmedia and biofilms.(a: surface of ceramic media; b: crevice of ceramic media; c: aerozone biofilm; d: anoxic zone biofilm)

HWAHAK KONGHAK Vol. 39, No. 1, February, 2001

Page 4: A Study on the Nitrification and Denitrification of an Anoxic-Oxic Upflow Biological ... · 2001-03-03 · Abstract −This study was carried out to investigate the effects of influent

126 �������

3-2. ���� �#$

Ü�à � ,�HI) :�� ��� _áV "�W �� 1~�

�T ó 2~��T� �<�� "�MN � 4Mh t7v ,D� r

Ò ó ��pà! ËÌ ���( ��� AX �%� 0.24-1.7 kg-

N/m3&d� åoN B�� ��P� 4B[3, 5, 17-18]. Û ÜÝ!9a

����( ��� �� �é 1.07(0.26-1.76) kg-N/m3&dayN HÉ

æB. �S/ ���^¬ ��^� � � ,� Ly+!9 ~T

�[�Ó �� 60%¬ 40%:¹N _A ��� ó ��^!9�

��� :�B ì� %�vB.

_á+ÿ J C/N�¬ superficial air velocity! Ë� ����( ��

� ëa¬ AX\) Fig. 3! /î×�B. Superficial air velocity� 132

m3/m2&dayN �T� A, B, C Ýÿ!9 �¸�� C/N�j èjÔ�í

����( ��� AX\V '� .1) �æB. :S� ��

C/N�� èj! ËÌ +( ̂ ·!9 ��� (�aj ìV +( r

��� w� !� �G� ^·) ù(, �"%MN ��� w�

� Q(a� )5*G ��� j+�+ ¯n:B[11, 19].

Û ÜÝ!9 superficial air velocity� �é 132 m3/m2&dayN �T�

��!9 C/N�� 0.32 :N �TÔ ¯ �é 95% :�� ���\

) �æB(Table 1). Superficial air velocity� �I|, ��!9 C/N�

� 1N èj|ª� ���\V 50!9 100% O:� -) �:h �é

���\V 82%N ´�ÇB. : C/N�j ì�Te9 �+ ��é

� ���é�� .µ! �² ���\: ´�7 ¤MN .lvB. �

S/ superficial air velocity� �é 132 m3/m2&day!9 305 m3/m2&

dayN èj|ª� ���\: �é 92%N èjh B| ºIv ��

) �æB. : /!9a ��01: ��� w� : �� (�aj

ìV +( r��� w� !� +�(��) .µ!9 ¶G� ^·!

4+ ¯n:B. Superficial air velocity� èj|ê ��HÉÄ) ì:�

����ëaj ì�Th ��� w� � Q(: ��v ¤:B[20].

Fig. 4 ����( �� �! Ë� ����( ��� AXÄ(�

��\)) /îïB. � Ly+ +° ����( ��� �� AXÄ

V � 1.5 kg-N/m3&dayN /î2B. �é C/N�� 1, superficial air

velocity� 132 m3/m2&dayN �T� _á C +ÿ!9 ����( �

�� AX �¸ �¬ b­�: � åo!9 ´V FG[\) �æ

B. H+� HÉÄ) èj|, D +ÿ! ����( ��� �j

èj�!a ¶Ý� ����( �� AXÄ: èjh ���\:

èj�) Fig. 5� m6!9 ¢&Ô � 4B. : C/N�j 3Te �

��[\: ]'T� H+HÉÄ: è"Pe ���[\V B| �

�P [�� ò) � 4�+ ¯n:B.

3-3. ���� ��$

Û _á!9 ���! fg� �+¿�xMN sodium acetate� :�

æB. ���! fg� �+¿�xV ��( �� 1 Mã 0.625 M�

acetateN ­�Ph pH� 7� 8O:!9 HNO2� ëa� ´� � �

%� ��^·MN �Te %I C/N�� �Ä�N 1.07þT ´< �

4B[14]. Û ÜÝ!9 ¿�Ä� ��Ä) �Ä� +°MN C/N��

0!9 1N ��|ªe9 HÉP�Mh Ly+ ��!9 �(v ��(

��� ��� �� ���� o, L�� 2N �¸�¬ �� L

Fig. 3. Time courses of the nitrogen concentration, C/N ratio, superficialair velocity and nitrogen removal efficiencies of the BAF.(�: C/N ratio; �: superficial air velocity; �: Influent NH4

+- Nconcentration; �: Effluent NH4

+-N concentration; �: NH4+-N removal

efficiency; �: Influent T-N concentration; �: Effluent T-N concen-tration; �: T-N removal efficiency)

Fig. 4. Applied and removed NH4+- N loads of the BAF.

(�: A; �: B; � : C; �: D).

Fig. 5. Effect of C/N ratio on nitrogen removal efficiency.(�, �: NH4

+-N removal efficiency; �, �: total nitrogen removalefficiency; solid lines: superficial air velocity=132 m3/m2Nd; dashedlines: superficial air velocity=305 m3/m2Nd; error bar representsstandard deviation)

���� �39� �1� 2001� 2�

Page 5: A Study on the Nitrification and Denitrification of an Anoxic-Oxic Upflow Biological ... · 2001-03-03 · Abstract −This study was carried out to investigate the effects of influent

�� � �� ��� � �� �� 127

y+ �N HÉvB.

Fig. 3(III)V _á+ÿJ� �� ��� �,°B. _á+ÿ J �+¿

�x) HÉT §V +ÿ!9a �é 28.5%� � �� AX\) �

æB. 4 HÉv ����( ��J � 28%j OÌ7 ¤:B. � J K

� w� N �-v ¤: 45M/ ���! �� !6T �(Ly

� w� �(Ly) �äàMN «|e B¨� ©B[12].

ËÌ9 �+ : � ��!9 ���! �² w� N �-P �

� 7¸ ��� � 2%! ¶�h /�T "�W� ����( ��

Þ��(� +î "O! fg� !6T� ò+ o² ��:±MN

�-vB. ËÌ9 � 26% :�� �� ��! �² AXv ¤MN .

lvB. �+¿�� :�� ��H,Â� Á� HÉ: � -.!9�

��V Ly+ × w� � W²�I!9 �(v �+�) :� p

U� /!9 ��� aerobic denitrification, anaerobic ammonium oxidation,

'���� w� ! �� �� �� pU: 4B. +( ��V T.

pantotropha � 8I w� ! �² K5/h � Q(V �BT ÷T §

V ¤MN ��P� 4B[6]. � Á� B� ��pUV ¼��/ 9+(

^·) fgN : Û ÜÝ!9 O�v BH( ,D! �uv �

s ×�N ����j ��P5 �W%MN ¼��/ 9+( ^·:

» jÍ() ;AÔ � �B. �S/ �Þ? 5; +}! �² ��

: K52T� £? ¤V CD� _ápUMN 5Æ<: 45 Û

=n!9 B�T §>B.

C/N�� èj � �� AX\) èj|�Mh :S� �� Fig. 5

!9 ¢&Ô � 4B. : ��!9 C/N�� èj ���) èj|ª

T� +^!9 r��� w� � W�� èj|ê �¸ ����(

��� ���\) ´? ��� j+�B. �S/ ���� �®

+^� superficial air velocity� ìK .� ���\ Á! � �� A

X\a èjæB.

Fig. 6V C/N� 1!9� � ��� AX\� +^!9 ����(

��� ���\�� � b­� �,°B. ���\: èj�! ËÌ

� �� AX\V KI� +@+N èj: ��v ����( �

� "� � 85%� � ��j AXP�B.

o� � �� AX\ èj 2jTN ��Ô � 4B. AB, H+ H

ÉÄ) ìC! ËÌ ���\: èj, ¼��^N L�P ��:

±: èj� ¯n:B. : /!9 Ýÿ C!9 �é ���\: 82%

!9 H+HÉÄ) DG� �é ���\: 92% :�: v ¤� bE

: 4B. FB, H+HÉÄ èj ���^ ;<�� ����� ì:

� P� :� ¼��^N L�e ¼��^ ×� ����j èjP

5 ��) ]²Ô � 4B. �S/ ,D «e! ù(v ÕÖ� � s

z! �� ��� ¢� ]Ù! �² � s ×�! ¼�� ��j P

5 ��) �®: �1) w3T §>B� OúvB. `� ���

^!9 �+¿�x) :� +( w� � W�� Ú:� ¼��

^!9 �� w� : �+¿�x) [�%MN :�Ô � 4� � ¤

a x&:B.

Fig. 7V Ly+� �� w� ! ", %I C/N�� � specific

denitrification activity� �I+ o� �W _á� ��:B. Û �W

_á!9 w� $rÄ) &H�� 1 Lã 0.095 g VSSN �� ́ � �

T, ��! GG |ÿ: H�B. C/N� 0!9 ��: X� K

5/T §>Mh C/N�j èj�! ËÌ ���: èjæB. ̀ � C/

N�� 2N _á� IÌ ÷!9 100% ��: K52Mh C/N�j 1�

2O:!9� specific denitrification activity � 1.5 g-N/g-VSS&dayN

J ~:� �:T §>B.

�W _á!9 C/N�� 1N �Tæ) ¯ ��( ��� AX\V

� 60%:B. : � ,� Ly+!9 � �� AX\: ©V C/N�

!9 �é 70%� �: ¤� �½Ô ¯ B� ´V -) �æB. � :

� �W ��_á!9 w� � $r ëaj � ,� Ly+! �

² �� ´� ���� �! �� ]j K ¤MN .lvB.

�W ��_á!9 C/N�j 0K ¯ ��: X� K5/T §V ¤V

$r� w� : ¼�^ ��^!9 �+¿�x) :�, �� r

��� w� : "�W& ¯n:B. ËÌ9 /!9 � ,� Ly+!

9 C/N�j 0MN ��» ¯ K� ��: K5¥ ¤V + ���^!

9 K52) jÍ(: ìB. :¯ +��� ��� � s!9� ��

C�V Helmer¬ Kunst[10]� ��¬ �Oh � s ×�!9� 9+

( {| ���/��(anaerobic ammonium oxidation)� jÍ(: ÷B.

3-4. ���� �� %&' () �#$ � ��

� ,� Ly+� ì:J �� (W� ëa¬ �� ��H,Â&

acetate ëa� Fig. 8! /îöB. Û _á!9 ����( ��� �

1.25 kg/m3&day, superficial air velocity 305 m3/m2&dayN HÉ

P�Mh C/N� 1N �TP�B. Ly+! ��j �¸P �W!

9 ëaj É>? )57 ¤V L�� 2N �<�� K�j Ly+�

�¸�W! HÉP�+ ¯n! �¸�¬ FGv L��j ��P5 ë

aj É>? )57 ��:B. : � ¼��Ýç) ù( � 30 cm

� ì:þT !9 ��� X� bLPT §>Mh acetate � 96%

1.02 NH4+ 1.89 O2 2.02 HCO3

– →+ +

0.021 C5H7NO2 1.06 H2O 1.92 H2CO3 1.00 NO3−+ + +

Fig. 6. Effect of NH4+- N removal efficiency on T-N removal efficiency.

(C/N ratio=1)

Fig. 7. Relationships between denitrification and C/N ratio in batchexperiment.(�: C/N ratio=0; �: C/N ratio=0.5; �: C/N ratio=1; �: C/N ratio=1.5; � : C/N ratio=2; error bar represents standard deviation)

HWAHAK KONGHAK Vol. 39, No. 1, February, 2001

Page 6: A Study on the Nitrification and Denitrification of an Anoxic-Oxic Upflow Biological ... · 2001-03-03 · Abstract −This study was carried out to investigate the effects of influent

128 �������

as-

te-

:�: AXP�B. :! ËÌ ���( ��¬ ��( ��� ëaa

´�T ¤) ¢&Ô � 4�B. `� : Ýÿ!9 ����ëaj

´� �TP�Mh ��P �I!9 alkalinityj èj, pHj èj

��) �,�B.

+( ���^!9 ����( ��� ëaj � 85 cm� ì:

!9 99% Ia� AX� �æMh ���( ��¬ ��( ��� ë

aj èj ¤) ¢&Ô � 4�B. : Ýÿ!9 pHj ]P�

Mh ����ëa '�Bj ���j X� 7®v �W!9 B|

èj .1) �æB.

� ��j acetatej X� � +( ���^!9 �ãÄ AXP

¤MN �� ��j �+¿�x! �� ��: �M B� +}! �²

AX» jÍ(: 4B. ��e w� ×�N acetatej È�v � ��

! :�P+þT� time lag ̄ nK jÍ(a 4B. �S/ KL%MN

��LyV �� %N� K5/+ ¯n! � jÍ(V OPB. :

/!9� C/N�j 0!9� �� ��¬ ��vB. Á� �+¿�x�

a<�: ��: K5/ C�V Q · ��v R 4B[7-10]. :! "

� "�W� ?äV 9+( {| ���/�� j�&: NH4+: NO2

−`

NO3−¬�� ��H,¬ ����ÂN }�, {|! ���P

� ��vB ¤:B. � {| ���/��� Ly �äàV B¨� ©B.

4 9+( ��!9 �� :±:/ ��� :±: ����¬ Ly

, ����� ��¬ (�)�� :±� ��: {|! K5¥B ¤:

B[7].

Û _á!9 O�� BH( ,D � s ×�! ����� ¢�

]Ù! �² ¼��Ýç) ù(h :¯ ��v ����¬ (�)��

( ��� K�j � s ×�N ¢�P5 9+��!9 {| ���/

�� C�) �&B� ?äÔ � 4B.

Û _á! :�v �1Ò ¼��- + � ,� Ly+ %�� �

�¬ �+¿�x: HÉ» .�(D) �é �GE% ÂÒ|ÿ 0.3 |ÿ!

9 �é ���\ 92%, �é ��� 71%� ìV [\) �&B. Ly

+� H�) �Æ� EBCT(empty bed contact time)N � 1.1 |ÿ!

²ã�B. : +�� Q(RST� Z^� A2O/ VIP HI� 6 ×

T 10 |ÿ! �² C]? 1�v ¤MN : HI� +c%, .A% �

�() S �,� 4B.

4. �

Û ÜÝ �¸ ����( ��� �, C/N�, H+ 6�a �: �

,� Ly+!9� � E% �� AX\! w3 �1) ^O+

o² �®P�B. _á_ @�� �1Òà � ,� Ly+ BH(�

ÞÌß ,D� t7|ê ¼��- + ÝçMN Ý(P�Mh �(��

� :�, ��� ó �� _á: 7®P�B. C/N�¬ H+ 6�a

! Ë� ��AX\: ðñP�B. ¼��- + � ,� Ly+ �

���( ��� �j 0.26-1.76 kg-N/m3&d� åo!9 �é 90%

:�� ����( ��� AX\) �æMh C/N�j 1K ¯ �é

65%� � �� AX\) �æB. :¯ ��� EBCT(empty bed contact

time) 1.1 |ÿ:� H�) �Æ� �é �GE% ÂÒ|ÿV 0.38 |

ÿMN B� FGHI! �, FG�aj �� %T) Å � 4B. H

+ 6�aj èj�! ËÌ �é � ��� AX\V èjæ: :

���\: èjæ+ ¯n:B. �ã �W� ��: �+¿�x:

X� � +( ���^!9 K52B. � x&V �¢� £UT

T §>M/ � s!9� ����� ¢�]Ù! �� 9+( {| �

��/��K jÍ(: ìB.

� �

Û ÜÝ �8Ec7VDl� 1999Wa 6aÜÝ� TxOX(�A

Y : KRF-99-041-E00383)! �² �®P�Mh ÜÝ� Tx! 'O

Z��B.

����

1. Yoo, I. K., Kim, K. H. and Kim, D. J.: HWAHAK KONGHAK, 36,

945(1998).

2. Frank, R.: JWPCF, 62, 169(1992).

3. Tschui, M.: Wat. Sci. Tech., 29(10-11), 53(1994).

4. Tom, S., Allan, M. and John, U.: Chemistry & Industry, 19, 533(1993).

5. Cecen, F. and Gonenc, I.: Wat. Sci. Tech., 29, 409(1994).

6. Gupta, A.: Enz. Microb. Tech., 21, 589(1997).

7. Astrid, A. and Van, D. G.: Appl. Environ. Microbiol., 61, 1246(1995).

8. Strous, M., Fuerst, J., Kramer, E., Logemann, S., Muyzer, G., P

Schoonen, K., Webb, R., Kuenen, J. and Jetten, M.: Nature, 400, 446

(1999).

9. Kuai, L. and Verstraete, W.: Appl. Environ. Microbiol., 64, 4500(1998).

10. Helmer, C. and Kunst, S.: Wat. Sci. Tech., 37, 183(1998).

11. Satoshi, O., Kikuko, H., Yuko, O. and Yoshimasa, W.: Biotechnol.

and Bioeng., 50, 24(1996).

12. U.S. EPA, Manual: Nitrogen Control, EPA/625/R-93/010(1993).

13. Suh, K., Kim, B., Cho, M., Cho, J., Kim, Y. and Kim, S.: Kor. J. Bio-

technol. Bioeng., 13, 238(1998).

14. Charles, G. and Joann, S.: Wat. Res., 32, 831(1998).

15. APHA, Standard Methods for the Examination of Water and Was

water, 18th ed., Washington DC(1992).

NO2− NH4

+ N2 2 H2O+→+

2 NO3− 3 NH4

+ 2.5 N2 6 H2O+→+

Fig. 8. Profiles of pH, dissolved oxygen, nitrogen compounds and acetateconcentration in the BAF.(� : pH; �: dissolved oxygen; � : acetate concentration; �: total nitrogen; �: NH4

+ - N; �: NO2− - N; � : NO3

− -N)

���� �39� �1� 2001� 2�

Page 7: A Study on the Nitrification and Denitrification of an Anoxic-Oxic Upflow Biological ... · 2001-03-03 · Abstract −This study was carried out to investigate the effects of influent

�� � �� ��� � �� �� 129

16. Wolfe, R., Lieu, N. I., Izaguirre, G. and Means, E. G.: Appl. Environ.

Microbiol., 56, 451(1990).

17. Joeseph, A.: Wat. Sci. Tech., 30(12), 297(1994).

18. Ryhiner, G.: Wat. Sci. Tech., 29(10-11), 111(1994).

19. Okabe, S., Ozawa, Y., Hirata, K. and Watanabe, Y.: Wat. Res., 30, 1563

(1996).

20. Joo, S. H., Kim, D. J., Yoo, I. K., Park, K. and Cha, G. C.: Biotech-

nol. Lett., 22, 937(2000).

HWAHAK KONGHAK Vol. 39, No. 1, February, 2001