A Microphone Array Tutorial

Embed Size (px)

Citation preview

  • 5/25/2018 A Microphone Array Tutorial

    1/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    A Microphone Array Tutorial

    Iain McCowan

    August 20, 2004

    Iain McCowan Microphone Array Tutorial 1

    http://find/http://goback/
  • 5/25/2018 A Microphone Array Tutorial

    2/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    What is a Microphone Array?

    What is a Microphone Array?

    A microphone array is anarray of microphones:

    Multiple microphones combined to act as a single device.

    A microphone array can be used to:Discriminatebetween sounds based on direction.

    e.g. Input,Speaker 1,Speaker 2.Locatesound sources.

    A microphone array provideshands-free/distantacquisition.Less constraining on users.Can be used for surveillance.

    Iain McCowan Microphone Array Tutorial 2

    http://localhost/Users/imccowan/Downloads/s2_in.wavhttp://localhost/Users/imccowan/Downloads/s2_sp1.wavhttp://localhost/Users/imccowan/Downloads/s2_sp2.wavhttp://localhost/Users/imccowan/Downloads/s2_sp2.wavhttp://localhost/Users/imccowan/Downloads/s2_sp1.wavhttp://localhost/Users/imccowan/Downloads/s2_in.wavhttp://find/http://goback/
  • 5/25/2018 A Microphone Array Tutorial

    3/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    Our ModelSound PropagationContinuous AperturesAperture DirectivityDiscrete Apertures

    Our Model

    The Wave Equation

    2s(t, r) =

    1

    c22

    t2s(t, r)

    where:

    2 is the Laplacian operator(For Cartesian coordinates, 2f =

    2fx2

    + 2f

    y2+

    2fz2

    )

    cis the speed of propagation, which depends on the type andtemperature of the fluid.

    r is the position vector, r=

    x y zT

    .

    sis the amplitude of the wave (e.g. sound pressure level).

    Iain McCowan Microphone Array Tutorial 3

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    4/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    Our ModelSound PropagationContinuous AperturesAperture DirectivityDiscrete Apertures

    Sound Propagation

    Sound propagates through a fluid (e.g. air) as a longitudinalpressure wave, with speed c 340ms1 in air at 20oC.

    x

    y

    z

    k

    Plane Waves

    For a plane wave, the solution to the waveequation takes the form:

    s(f, r) =s(f)ejkr

    where:

    k= 2fc

    sin cos sin sin cos

    (,) is the direction of propagation, and ris a position vector relative to the sound

    source location.Iain McCowan Microphone Array Tutorial 4

    O M d l

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    5/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    Our ModelSound PropagationContinuous AperturesAperture DirectivityDiscrete Apertures

    Continuous Apertures

    Anapertureis a spatial region that transmits or receivespropagating waves,

    e.g. an antenna for EM waves, a hole in an opaque screenfor optics, a microphone for acoustics.

    The aperturesensitivity function w(f, r) gives the response asa function of position on the aperture.

    Sources(f)

    s(f)e-jk r

    w(f,r)

    .

    r

    k

    Aperture

    Iain McCowan Microphone Array Tutorial 5

    O M d l

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    6/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    Our ModelSound PropagationContinuous AperturesAperture DirectivityDiscrete Apertures

    Aperture Directivity

    The received signal at a given point on the aperture is:

    s(f)w(f, r)ejkr

    Aperture ResponseThe total response of the aperture to signal s(f) is thus:

    D(f, k) =

    V

    w(f, r)ejkrdr

    The aperture response is also known as thedirectivityfunction, as it gives the response as a function of the directionof arrivalof the plane wave (recalling that k= g(f, ,)).

    Iain McCowan Microphone Array Tutorial 6

    Our Model

    http://goforward/http://find/
  • 5/25/2018 A Microphone Array Tutorial

    7/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    Our ModelSound PropagationContinuous AperturesAperture DirectivityDiscrete Apertures

    Fourier Transform Relationship

    From Time to Frequency Domain

    The Fourier Transform operationtransforms domain from t :

    X() =

    x(t)ejtdt,

    commonly denoted as:

    X() =Ft{x(t)}.

    note = 2f

    Iain McCowan Microphone Array Tutorial 7

    Our Model

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    8/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    Our ModelSound PropagationContinuous AperturesAperture DirectivityDiscrete Apertures

    Fourier Transform Relationship

    From Time to Frequency Domain

    The Fourier Transform operationtransforms domain from t :

    X() =

    x(t)ejtdt,

    commonly denoted as:

    X() =Ft{x(t)}.

    note = 2f

    From Sensitivity to Directivity

    At a fixed frequency, thedirectivity is:

    D(k) =V

    w(r)ejkrdr

    which can be denoted:

    D(k) =Fr{w(r)}.

    Iain McCowan Microphone Array Tutorial 7

    Our Model

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    9/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    Our ModelSound PropagationContinuous AperturesAperture DirectivityDiscrete Apertures

    Directivity of a Linear Aperture

    For a linear aperture r=xof length L, having uniformsensitivity,w(f, r) = rect(x/L) D(f, r) =L sinc(kxL).

    s(f)

    w(f,r)

    L

    0

    1

    02/L3/L /L/L 2/L 3/L

    |D(f,k)|

    -L/2 L/2

    w(f,r)

    L

    x

    xk

    Iain McCowan Microphone Array Tutorial 8

    I d iOur Model

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    10/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    Our ModelSound PropagationContinuous AperturesAperture DirectivityDiscrete Apertures

    Directivity of a Discrete Linear Aperture

    This directivity can be approximated by a discrete aperture,which spatially samples the continuous aperture.

    s(f)

    w (f,r )

    Ln n

    0

    1

    02/L3/L /L/L 2/L 3/L

    |D(f,k)|

    -L/2 L/2

    w (f,r )

    L

    x

    xk

    n n

    n

    Iain McCowan Microphone Array Tutorial 9

    I t d tiMicrophone Array Directivity Pattern

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    11/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    p y yVarying the Number of MicrophonesVarying the Length of the ArrayVariation with FrequencyAliasing and Symmetry

    Microphone Array Directivity Pattern

    A microphone array is adiscrete receiving aperture.

    A plot of the directivity function over different angles ofarrival is known as thedirectivity pattern.

    Directivity of Continuous Aperture

    D(f, k) =

    V

    w(f, r)ejkrdr

    Iain McCowan Microphone Array Tutorial 10

    IntroductionMicrophone Array Directivity Pattern

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    12/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    p y yVarying the Number of MicrophonesVarying the Length of the ArrayVariation with FrequencyAliasing and Symmetry

    Microphone Array Directivity Pattern

    A microphone array is adiscrete receiving aperture.

    A plot of the directivity function over different angles ofarrival is known as thedirectivity pattern.

    Directivity of Linear Array

    D(f, k) =N1n=0

    wn(f)ejkrn ,

    where thereareNmicrophones andrnis the location of then

    th microphone.

    Iain McCowan Microphone Array Tutorial 10

    IntroductionMicrophone Array Directivity Pattern

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    13/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    Varying the Number of MicrophonesVarying the Length of the ArrayVariation with FrequencyAliasing and Symmetry

    Microphone Array Directivity Pattern

    A microphone array is adiscrete receiving aperture.

    A plot of the directivity function over different angles ofarrival is known as thedirectivity pattern.

    Horizontal Directivity of Uniform Linear Array

    D(f,) =N1n=0

    wn(f)ej2f

    c ndcos ,

    where there are N microphones, d is the uniforminter-element spacing, and =/2.

    Iain McCowan Microphone Array Tutorial 10

    IntroductionMicrophone Array Directivity Pattern

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    14/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    Varying the Number of MicrophonesVarying the Length of the ArrayVariation with FrequencyAliasing and Symmetry

    Varying the Number of Microphones

    Varying the number of sensors, N, for a given array lengthdecreases the sidelobe level (f=1 kHz,L=0.5 m,wn(f) =

    1N

    ):

    Directivity Pattern for Varying N

    0 20 40 60 80 100 120 140 160 180

    N = 3

    N = 5

    N = 10

    |D(f,)|

    Iain McCowan Microphone Array Tutorial 11

    Introduction Microphone Array Directivity PatternV i h N b f Mi h

    http://find/http://goback/
  • 5/25/2018 A Microphone Array Tutorial

    15/22

    IntroductionFundamentals

    Analysis of Directivity PatternBeamforming

    Varying the Number of MicrophonesVarying the Length of the ArrayVariation with FrequencyAliasing and Symmetry

    Varying the Length of the Array

    Varying the array length, L=Nd, for fixed Ndecreases themain lobe width (f=1 kHz,N=5,wn(f) =

    1N

    ):

    Directivity Pattern for Varying L

    0 20 40 60 80 100 120 140 160 180

    d = 0.1 m

    d = 0.2 m

    d = 0.15 m

    |D(f,)|

    Iain McCowan Microphone Array Tutorial 12

    Introduction Microphone Array Directivity PatternV i th N b f Mi h

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    16/22

    FundamentalsAnalysis of Directivity Pattern

    Beamforming

    Varying the Number of MicrophonesVarying the Length of the ArrayVariation with FrequencyAliasing and Symmetry

    Variation with Frequency

    Varying the frequency of interest 400Hz f 3000Hz(N=5,d=0.1 m,wn(f) =

    1N

    ):

    Directivity Pattern for Varying f

    0 20 40 60 80 100 120 140 160 180 0

    500

    1000

    1500

    2000

    2500

    3000

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    f

    |D(f,)|

    Iain McCowan Microphone Array Tutorial 13

    Introduction Microphone Array Directivity PatternVarying the Number of Microphones

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    17/22

    FundamentalsAnalysis of Directivity Pattern

    Beamforming

    Varying the Number of MicrophonesVarying the Length of the ArrayVariation with FrequencyAliasing and Symmetry

    Aliasing and Symmetry

    Spatial Aliasing: Analogous to the Nyquist frequency in temporalsampling, we have a restriction on minimum spatialsampling rate. Linear arrays require inter-element spacingd< min2 to avoid copies of the main lobe appearing in thedirectivity pattern, where min is the smallest wavelength

    of interest (corresponding to highest frequency).Symmetry of Directivity Pattern: For a linear array, the directivity

    pattern is symmetrical about the array axis.

    0.2

    0.4

    0.6

    0.8

    1

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    Iain McCowan Microphone Array Tutorial 14

    IntroductionDefinition

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    18/22

    FundamentalsAnalysis of Directivity Pattern

    Beamforming

    DefinitionDelay-Sum BeamformerBeyond the Delay-Sum Beamformer

    Beamforming

    Horizontal Directivity of Uniform Linear Array

    D(f,) =

    N1n=0

    wn(f)ej2f

    c ndcos ,

    The term wn(f) represents a filter applied to microphone n.

    The analysis so far has assumed uniform, frequency invariant,

    microphone filters wn(f) = 1N.

    In general, we can design filters to give a desiredsteeringandshapingof the directivity pattern.

    This is referred to as microphone array beamforming.

    Iain McCowan Microphone Array Tutorial 15

    IntroductionF d l

    Definition

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    19/22

    FundamentalsAnalysis of Directivity Pattern

    Beamforming

    DefinitionDelay-Sum BeamformerBeyond the Delay-Sum Beamformer

    Beamforming

    Microphone Array Beamformer Output

    y(f) =

    N1n=0

    wn(f)sn(f)

    The term wn(f) represents a filter applied to microphone n.

    The analysis so far has assumed uniform, frequency invariant,

    microphone filters wn(f) = 1N.

    In general, we can design filters to give a desiredsteeringandshapingof the directivity pattern.

    This is referred to as microphone array beamforming.

    Iain McCowan Microphone Array Tutorial 15

    IntroductionF d t l

    Definition

    http://find/
  • 5/25/2018 A Microphone Array Tutorial

    20/22

    FundamentalsAnalysis of Directivity Pattern

    Beamforming

    DefinitionDelay-Sum BeamformerBeyond the Delay-Sum Beamformer

    Delay-Sum Beamformer

    For the uniform linear array, using a simple time-delay filter:

    wn(f) = 1

    Nej

    2fc ndcos s

    will lead to a horizontal directivity function:

    D(f,) = 1

    N

    N1n=0

    ej2fc nd(coscoss),

    steering the main lobe of the directivity pattern to the sourcedirection s.

    This is the well-knowndelay-sum beamformer.

    Iain McCowan Microphone Array Tutorial 16

    IntroductionF ndamentals

    Definition

    http://find/http://goback/
  • 5/25/2018 A Microphone Array Tutorial

    21/22

    FundamentalsAnalysis of Directivity Pattern

    Beamforming

    Delay-Sum BeamformerBeyond the Delay-Sum Beamformer

    Beyond the Delay-Sum Beamformer

    Delay-sum is the simplest beamformer: it just ensures that theresponse maximum occurs for a given direction.

    Many more sophisticated beamforming techniques exist, whichdiffer in the design criteria for the beamforming filters wn(f).

    Examples include:

    thesuperdirectivebeamformer, which maximises the gain inthe desired direction while minimising average gain over all

    other directions.adaptivebeamformers, which dynamically update filters tominimise the power from localised noise sources.

    Iain McCowan Microphone Array Tutorial 17

    IntroductionFundamentals

    Definition

    http://find/http://goback/
  • 5/25/2018 A Microphone Array Tutorial

    22/22

    FundamentalsAnalysis of Directivity Pattern

    Beamforming

    Delay-Sum BeamformerBeyond the Delay-Sum Beamformer

    Delay-Sum vs Superdirective Beamforming

    For a circular array (N=8, radius = 10 cm)

    Delay-sum Beamformer

    0.5

    1

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    250 Hz

    0.5

    1

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    500 Hz

    0.5

    1

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    1000 Hz

    0.5

    1

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    2000 Hz

    Superdirective Beamformer

    0.5

    1

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    250 Hz

    0.5

    1

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    500 Hz

    0.5

    1

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    1000 Hz

    0.5

    1

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    2000 Hz

    Iain McCowan Microphone Array Tutorial 18

    http://find/http://goback/