59
Frey, F.A., Coffin, M.F., Wallace, P.J., and Quilty, P.G. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results Volume 183 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP LEG 183, KERGUELEN PLATEAU 1 James E. Arney 2 and Sherwood W. Wise Jr. 2 ABSTRACT Cores from Sites 1135, 1136, and 1138 of Ocean Drilling Program Leg 183 to the Kerguelen Plateau (KP) provide the most complete Paleocene and Eocene sections yet recovered from the southern Indian Ocean. These nannofossil-foraminifer oozes and chalks provide an opportunity to study southern high-latitude biostratigraphic and paleoceanographic events, which is the primary subject of this paper. In addition, a stable isotope profile was established across the Cretaceous/Tertiary (K/T) boundary at Site 1138. An apparently complete K/T boundary was recovered at Site 1138 in terms of assemblage succession, isotopic signature, and reworking of older (Cretaceous) nannofossil taxa. There is a significant color change, a negative carbon isotope shift, and nannofossil turnover. The place- ment of the boundary based on these criteria, however, is not in agree- ment with the available shipboard paleomagnetic stratigraphy. We await shore-based paleomagnetic study to confirm or deny those pre- liminary results. The Paleocene nannofossil assemblage is, in general, characteristic of the high latitudes with abundant Chiasmolithus, Prinsius, and Toweius. Placed in context with other Southern Ocean sites, the biogeography of Hornibrookina indicates the presence of some type of water mass bound- ary over the KP during the earliest Paleocene. This boundary disap- peared by the late Paleocene, however, when there was an influx of warm-water discoasters, sphenoliths, and fasciculiths. This not only in- dicates that during much of the late Paleocene water temperatures were relatively equable, but preliminary floral and stable isotope analyses 1 Arney, J.E., and Wise, S.W., Jr., 2003. Paleocene–Eocene nannofossil biostratigraphy of ODP Leg 183, Kerguelen Plateau. In Frey, F.A., Coffin, M.F., Wallace, P.J., and Quilty, P.G. (Eds.), Proc. ODP, Sci. Results, 183, 1–59 [Online]. Available from World Wide Web: <http:// www-odp.tamu.edu/publications/ 183_SR/VOLUME/CHAPTERS/ 014.PDF>. [Cited YYYY-MM-DD] 2 Florida State University, 108 Carraway, Tallahassee FL 32306, USA. Correspondence author: [email protected] Initial receipt: 18 March 2002 Acceptance: 21 October 2002 Web publication: 29 May 2003 Ms 183SR-014

4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

Frey, F.A., Coffin, M.F., Wallace, P.J., and Quilty, P.G. (Eds.)Proceedings of the Ocean Drilling Program, Scientific Results Volume 183

4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP LEG 183, KERGUELEN PLATEAU1

James E. Arney2 and Sherwood W. Wise Jr.2

ABSTRACT

Cores from Sites 1135, 1136, and 1138 of Ocean Drilling Program Leg183 to the Kerguelen Plateau (KP) provide the most complete Paleoceneand Eocene sections yet recovered from the southern Indian Ocean.These nannofossil-foraminifer oozes and chalks provide an opportunityto study southern high-latitude biostratigraphic and paleoceanographicevents, which is the primary subject of this paper. In addition, a stableisotope profile was established across the Cretaceous/Tertiary (K/T)boundary at Site 1138.

An apparently complete K/T boundary was recovered at Site 1138 interms of assemblage succession, isotopic signature, and reworking ofolder (Cretaceous) nannofossil taxa. There is a significant color change,a negative carbon isotope shift, and nannofossil turnover. The place-ment of the boundary based on these criteria, however, is not in agree-ment with the available shipboard paleomagnetic stratigraphy. Weawait shore-based paleomagnetic study to confirm or deny those pre-liminary results.

The Paleocene nannofossil assemblage is, in general, characteristic ofthe high latitudes with abundant Chiasmolithus, Prinsius, and Toweius.Placed in context with other Southern Ocean sites, the biogeography ofHornibrookina indicates the presence of some type of water mass bound-ary over the KP during the earliest Paleocene. This boundary disap-peared by the late Paleocene, however, when there was an influx ofwarm-water discoasters, sphenoliths, and fasciculiths. This not only in-dicates that during much of the late Paleocene water temperatures wererelatively equable, but preliminary floral and stable isotope analyses

1Arney, J.E., and Wise, S.W., Jr., 2003. Paleocene–Eocene nannofossil biostratigraphy of ODP Leg 183, Kerguelen Plateau. In Frey, F.A., Coffin, M.F., Wallace, P.J., and Quilty, P.G. (Eds.), Proc. ODP, Sci. Results, 183, 1–59 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/183_SR/VOLUME/CHAPTERS/014.PDF>. [Cited YYYY-MM-DD]2Florida State University, 108 Carraway, Tallahassee FL 32306, USA. Correspondence author: [email protected]

Initial receipt: 18 March 2002Acceptance: 21 October 2002Web publication: 29 May 2003Ms 183SR-014

Page 2: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 2

also indicate that a relatively complete record of the late PaleoceneThermal Maximum event was recovered at Site 1135. It was only at thebeginning of the middle Eocene that water temperatures began to de-cline and the nannofossil assemblage became dominated by cool-waterspecies while discoaster and sphenolith abundances and diversity weredramatically reduced.

One new taxonomic combination is proposed, Heliolithus robustusArney, Ladner, and Wise.

INTRODUCTION

Ocean Drilling Program (ODP) Leg 183 Sites 1135, 1136, and 1138are located on the Kerguelen Plateau (KP) in the southern Indian Ocean(Fig. F1). This feature, ~2500 km long and between 200 and 600 kmwide, rises ~2–4 km above the surrounding abyssal plain. The present-day latitude of the plateau ranges from 46° to 64°S latitude with corre-sponding paleolatitudes of ~50° to 65°S at 63.6 Ma (Fig. F2). The mainobjectives of this leg were to study the emplacement and subsequenttectonic and paleoenvironmental history of this large igneous province(Shipboard Scientific Party, 2000a).

The KP began to form during the mid-Cretaceous as a subaerial vol-canic edifice. It has since persisted as a major middepth oceanic topo-graphic high. Following subsidence (Coffin, 1992), most of it remainedabove the calcite compensation depth until about Pliocene time. Thishas resulted in a record of environmental, oceanographic, and bioticchanges from the Cretaceous to the Holocene along an 18° latitudinaltransect across the Southern Ocean.

This paper examines the Paleocene–Eocene nannofossil biostratigra-phy and some associated paleoceanographic events recorded in the sta-ble isotope records at Sites 1135, 1136, and 1138 (Fig F1). Calcareousnannofossils are abundant to very abundant and, in general, moder-ately well preserved in all samples examined from all three sites. Preser-vation and individual nannofossil species abundance are recorded inTables T1, T2, T3, and T4. All species considered in this report are listedin the “Appendix,” p. 22, and bibliographic references for most taxaare given in Perch-Nielsen (1985). Any taxa not cited therein are givenin the references.

METHODS

Smear slides of raw sediment were examined at 1000× using standardlight microscope techniques under crossed polarizers, transmitted light,phase-contrast light, and differential interference contrast light in orderto estimate relative calcareous nannofossil abundance and preservation.A JSM-5900 scanning electron microscope was employed to take digitalimages for more precise species identification.

Estimates of overall nannofossil abundance were given the followingletter codes:

V = very abundant (>10 nannofossils/field of view).A = abundant (1–10 nannofossils/field of view).C = common (1 nannofossil/2–10 fields of view).F = few (1 nannofossil/>10–100 fields of view).R = rare (1 nannofossil/>100 fields of view).

60°E 65° 70° 75° 80° 85°65°

60°

55°

50°

45°S

1137

1138

11361135

736

737

738

744

745

746

747

748749

750751

KerguelenIsles

Heard IslandMcDonald

Islands

2000

3000

1000

2000

3000

4000

3000

2000

3000 40

00

2000

3000

4000

4000

Elan Bank

BankBanzare

KohlerSeamount

Skiff Bank

LabuanBasin

EnderbyBasin

Princess Elizabeth Trough

Australia-Antarctic Basin

William's Ridge

SKP R

ift Zone

59 Rift

77 G

rab

en

Raggatt Basin

Kerguelen-Heard

1139

1140

ODP Leg 183 Sites1135, 1136, and 1138

Leg 119 & 120 Sitesthat recovered Paleogene sediments

F1. Bathymetry of the Kerguelen Plateau, p. 25.

60 110

BR

CKP

NER

NKP

KA

L

LSKP

ANT

L

130.9 Ma(M10 [o])

118.7 Ma(M0 [y])

110 Ma

100 Ma23.4 Ma

(C6cn.1n [y])

40.1 Ma(C18n.2n [o])

63.6 Ma(C28n [o])

83 Ma(C34n [y])

IND

AUS

BB

RAJ

-70

-60

-50

-40

-30

6070 80 90 100

110

60 110-70

-60

-50

-30

6070 80 90 100

110

60 110-70

-60

-50

-30

6070 80 90 100

110

60 110-70

-60

-50

-30

6070 80 90 100

110

60 110-70

-60

-50

-30

6070 80 90 100

110

60 110-70

-60

-50

-30

6070 80 90 100

110

60 110-70

-60

-50

-30

6070 80 90 100

110

-40

-40

-40

-40

-40

-40

60 110-70

-60

-50

-30

6070 80 90 100

110

-40

F2. Emplacement and evolution of the Kerguelen Plateau, p. 26.

T1. Calcareous nannofossil taxa, Hole 1135A, p. 41.

T2. Calcareous nannofossil taxa, Hole 1136A, p. 42.

T3. Calcareous nannofossil taxa, Hole 1138A, p. 46

T4. Nannofossil counts across the K/T boundary, Site 1138, p. 47.

Page 3: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 3

The average state of preservation of the nannofossil assemblage ineach sample is designated as follows:

VG = very good (no evidence of dissolution and/or overgrowth; noalteration of primary morphological characteristics, and speci-mens appear diaphanous; specimens are identifiable to thespecies level).

G = good (little or no evidence of dissolution and/or overgrowth;primary morphological characteristics only slightly altered;specimens are identifiable to the species level).

M = moderate (specimens exhibit some etching and/or over-growth; primary morphological characteristics sometimes al-tered; however, most specimens are identifiable to the specieslevel).

P = poor (specimens are severely etched or exhibit overgrowth; pri-mary morphological characteristics largely destroyed; frag-mentation has occurred; specimens cannot be identified at thespecies and/or generic level).

Relative individual species abundance estimations follow the proce-dure of Hay (1970) and are indicated in the following manner:

V = very abundant (>10–100 specimens per field of view),A = abundant (1–10 specimens per field of view).C = common (1 specimen per 2–10 fields of view).F = few (1 specimen per 11–100 fields of view).R = rare (1 specimen per 101–1000 fields of view).B = barren.

Oxygen and carbon isotopes were measured on bulk carbonate bygrinding dried sediment to a homogenous powder and reacting ~60 µgof untreated sample in orthophosphoric acid at 70°C using a Finnigan-MAT Kiel III carbonate preparation device. Evolved CO2 gas was mea-sured online with a Finnigan-MAT 252 mass spectrometer at the Univer-sity of Florida. All isotope results are reported in standard delta notationrelative to Vienna Peedee belmenite (Coplen, 1996). Analytical precisionfor isotope analyses was ±0.03‰ for δ13C and ±0.06‰ for δ18O.

RESULTS

Biostratigraphy

The lower Paleocene is zoned using the high-latitude Antarctic zonalscheme of Wei and Pospichal (1991) (Fig. F3). On the other hand, thenumber-coded coccolith zonations compiled by Okada and Bukry(1980) and Martini (1971) are used in this report for the mid-Paleoceneto Eocene sequences. Although the Okada and Bukry and Martini zona-tions were developed primarily for the low latitudes, the nannofossil as-semblages in the mid-Paleocene and Eocene are, in general, diverseenough to allow application of these schemes. Nevertheless, some ofthe subzones could not be distinguished and some zones had to becombined, resulting in reduced biostratigraphic resolution.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Bar

toni

anP

riabo

nian

Lute

tian

late

mid

dle

Eoc

ene

late

Olig

ocen

eea

rly

Cha

ttian

Rup

elia

nA

quita

nian

early

Burdigalian

Mio

cene

C6r

C6An 12n

C6AAn

C6AAr12

12nC6Bn

C6Br

C6Cn123n

C6CrC7n

12n

C7ArC7An

C8n1

2n

C8r

C9n

C9rC10n

C10r

1

C11n 12n

C11rC12n

C12r

C13n

C13r

C15nC15r

C16n1

2n

C18n1

2n

C17r

C17n1

3n

C16r

C20r

C20n

C19r

C19n

C18r

CN1

c

b

CP19

a

CP18

CP17

c

CP16 a

b

CP15

b

a

CP14

CP13 c

b

a - b

CN1

Reticulofenestra bisecta

Chiasmolithusaltus

Reticulofenestradaviesii

Blackitesspinosus

Reticulofenestraoamaruensis

a

b

b

aIsthmolithusrecurvus

CP15 a

CP14

b

a

CP13

2

2n

C7r

3r

C6Ar

Leg183

Epoch Age Biostratigraphicdatum

Nannofossil

Age

(M

a)

Lowlatitude

Chron Polarity

T Dictyococcites bisectus (23.9; 23.8-24.2)

T Chiasmolithus altus (26.1; 25.8-26.6)

T Reticulofenestra umbilicus(32.3; 30.5-31.3)

T Discoaster saipanensis (34.2; 35.3)

T Cribrocentrum reticulatum (35.0)

B Isthmolithus recurvus (36.0; 35.7-36.3)

B Chiasmolithus oamaruensis (37.0) T Chiasmolithus grandis (37.1)

T Chiasmolithus solitus (40.4; 37.9)

B Reticulofenestra bisecta (38.0)

B Cribrocentrum reticulatum (42.0)

T Nannotetrina fulgens (43.1)

B Reticulofenestra umblicus (43.7)

T Chiasmolithus gigas (44.5)

B Cyclicargolithus abisectus (30.5-31.3)

T Reticulofenestra oamaruensis (33.6)

T Isthmolithus recurvus (32.0-32.3)

B Reticulofenestra oamaruensis (35.4)

T Coccolithus formosus (32.8)

T Acme Clausicoccus fenestratus (33.3)

F3. Paleocene–Eocene nannofossil biostratigraphic scheme, p. 27.

Page 4: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 4

Site 1135

Site 1135 (59°42.0′S, 84°16.4′E), located on the southern KerguelenPlateau (Shipboard Scientific Party, 2000b), was rotary cored in a waterdepth of 1567 m. It penetrated 526 m of upper Pliocene to Upper Creta-ceous sediment composed almost entirely of pelagic calcareous oozeand chalk, including an expanded section (238 m thick) of mid-Paleo-cene to Eocene nannofossil ooze (Fig. F4). Such a section is not well rep-resented in previous coring of high southern latitude sites; in addition,it is remarkably free of the chert that impeded drilling of Paleocene–Eocene sections on the KP during previous ODP Legs 119 and 120(Schlich, Wise, et al., 1989; Barron, Larsen, et al., 1989). The Creta-ceous/Tertiary (K/T) boundary is marked by a hiatus. Preservation isgenerally poor to moderate (Table T1).

Eocene

Sediments in Samples 183-1135A-3R-1, 131–133 cm (19.70 metersbelow seafloor [mbsf]), through 7R-6, 100–101 cm (64.60 mbsf), areplaced in Subzone CP14a based on the overlap of Reticulofenestra umbil-ica and Chiasmolithus solitus. Diversity in this zone ranges from 20 to 25species with abundant to common Coccolithus pelagicus, C. solitus, Chi-asmolithus expansus, Chiasmolithus spp., Reticulofenestra spp., Reticu-lofenestra samodurovii, R. umbilica, Sphenolithus moriformis, andZygrhablithus bijugatus.

Samples 183-1135A-7R-7, 25–26 cm (65.35 mbsf), through 17R-1,25–26 cm (151.85 mbsf), are assigned to the combined Discoaster sublo-doensis–Nannotetrina quadrata Zones (CP12–CP13). The assemblage ischaracterized by C. pelagicus, C. solitus, C. expansus, Chiasmolithus spp.,Neococcolithes dubius, Neococcolithes minutus, Reticulofenestra spp., R.samodurovii, R. umbilica, S. moriformis, and Z. bijugatus throughout theinterval. Reticulofenestra onusta is common to abundant in the upperpart of this zone. Discoasters are few to rare in the upper part of thezone, but are few to common in the lower part. No attempt was madeto determine the first occurrence (FO) of Nannotetrina fulgens (whichseparates Zone CP12 from CP13) because it was found only in a fewsamples and is too rare to be considered a useful datum at this site.

Samples 183-1135A-17R-1, 100–101 cm (152.60 mbsf), through 23R-CC (212 mbsf) are assigned to the combined Discoaster lodoensis–Tribrachyatus orthostylus Zone (CP11–CP10). The interval is normally de-fined as the FO of D. lodoensis to the FO of D. sublodoensis. Because ofthe poor preservation, however, the top of the zone is placed at the firstcommon occurrence (FCO) of D. sublodoensis. D. sublodoensis was re-corded in Table T1 below its FCO in a few samples down to Sample 183-1135A-21R-5, 100–101 cm (197 mbsf), but those identifications arequestionable. The last occurrence (LO) of T. orthostylus is present inSample 183-1135A-21R-1, 25–26 cm (188.61 mbsf), which places it inthe middle of Zone CP11 (50.6 Ma). The assemblage contains abundantC. pelagicus, Coccolithus formosus, C. solitus, N. dubius, N. minutus, Reticu-lofenestra spp., R. samodurovii, S. moriformis, and Z. bijugatus.

Samples 183-1135A-25R-1, 25–26 cm (228.75 mbsf), through 25R-2,100–101 cm (231 mbsf), are placed in the Discoaster binodosus Subzone(CP9b) based on the co-occurrence of T. orthostylus and Tribrachyatuscontortus. This subzone marks the greatest diversification of sphenolithsat Site 1135; S. moriformis, Sphenolithus primus, Sphenolithus radians, andSphenolithus editus are all common to abundant. The FOs of C. expansusand Chiasmolithus grandis are present in this subzone as well as the LO

Lithologicdescription

Diatom ooze withsand and pebbles

Whiteforaminifer-bearingnannofossil ooze

50

100

150

200

250

300

350

400

450

500

Dep

th (

mbs

f)

1135A

1R2R3R4R5R6R7R8R9R

10R11R12R13R14R15R16R17R18R19R20R21R22R23R24R25R26R27R28R29R30R31R32R33R34R35R36R37R38R39R40R41R42R43R44R45R46R47R48R49R50R51R52R53R54R55R

I l. Plio.

IIA

IIB

early

to m

iddl

e E

ocen

ela

te P

aleo

cene

-

mid

dle

Eoc

ene

IIIA

Maa

stric

htia

n -

late

Pal

eoce

ne

IIIB

Cam

pani

an-

Maa

stric

htia

n

IIIC

~T

uron

ian-

Cam

pani

an

Whitenannofossil ooze

Whitenannofossil chalk

White to light graycalcareous chalk

Light greenish graycalcareous chalk

80 9075 85 95

Total carbonatecontents (wt%)

K/T boundary

Nannofossilooze

Diatomooze

Foraminiferooze

Chalk

Nannofossilchalk

Gravel

Cor

e

Rec

over

y

Graphiclithology

Unit Age

F4. Site 1135 core summary, p. 29.

Page 5: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 5

of Chiasmolithus bidens. The assemblage is characterized by abundant tocommon Chiasmolithus spp., Toweius spp., and Z. bijugatus. No Reticu-lofenestra spp. were observed in this zone.

Paleocene/Eocene Boundary

The Paleocene/Eocene boundary at Site 1135 is marked by an uncon-formity that is present between Samples 183-1135A-25R-3, 25–26 cm(231.75 mbsf), and 25R-2, 100–101 cm (231.0 mbsf), and spans SubzoneCP9a (NP10). This unconformity was identified by the absence of thebasal Eocene Tribrachiatus bramlettei and the presence of T. contortus andT. orthostylus as well as Fasciculithus spp. and Prinsius bisulcus in Sample183-1135A-25R-2, 100–101 cm (231.0 mbsf). The Fasciculithus and Prin-sius species are thought to be reworked. The FOs of T. contortus and T.orthostylus co-occur, indicating that the sample belongs to SubzoneCP9b. Sample 183-1135A-25R-2, 25–26 cm (230.25 mbsf), contains thelower Eocene species Discoaster barbadiensis and S. editus.

Paleocene

The uppermost Paleocene Discoaster multiradiatus Zone (CP8) encom-passes Samples 183-1135A-25R-3, 25–26 cm (231.75 mbsf), through26R-CC (241.61 mbsf), which extends down to the FO of the marker D.multiradiatus. The assemblage is characterized by abundant C. bidens, C.pelagicus, D. multiradiatus, Fasciculithus tympaniformis, P. bisulcus, S. pri-mus, Toweius eminens, and Z. bijugatus.

The Discoaster nobilis Zone (CP7) is missing. Either the marker is notpresent in this section or there is a hiatus that separates Sample 183-1135A-26R-CC (241.61 mbsf) from Sample 27R-1, 25–26 cm (247.95mbsf), or the zone is present in the 6-m gap between samples.

The Discoaster mohleri Zone (CP6) is recorded in Sample 183-1135A-27R-1, 25–26 cm (247.95 mbsf), where the FO of D. mohleri is noted.The assemblage is characterized by abundant to common Chiasmolithusdanicus, C. pelagicus, F. tympaniformis, Fasciculithus magnicordis, Fascicu-lithus clinatus, Neochiastozygus perfectus, Neochiastozygus junctus, P. bisul-cus, Prinsius martinii, S. primus, T. eminens, and Z. bijugatus.

Similarly, Sample 183-1135A-27R-1, 100–101 cm (248.70 mbsf), isthe only sample that contains the marker species Heliolithus kleinpellii;thus, it is assigned to the zone of that name (CP5). The assemblage ischaracterized by common to abundant C. pelagicus, C. danicus, F. tympa-niformis, and P. bisulcus.

The F. tympaniformis Zone (CP4) is assigned to Samples 183-1135A-27R-2, 25–26 cm (249.45 mbsf), through 27R-CC (252.45 mbsf). The as-semblage consists of abundant to common C. pelagicus, Prinsius dimor-phosus, Thoracosphaera spp., C. danicus, C. bidens, P. bisulcus, P. martinii,S. primus, and Toweius pertusus.

For the lower Paleocene we used the high-latitude Antarctic zonationscheme of Wei and Pospichal (1991) (Fig. F3). The bottom of Zone CP4,defined as the FO of F. tympaniformis, roughly correlates to the middleof the C. bidens Zone (NA6) of Wei and Pospichal. The lower portion ofthe C. bidens Zone (NA6) and all of the P. martinii Zone (NA5) is missing.This hiatus is marked by the apparent FOs of F. tympaniformis, P. marti-nii, and C. bidens all in the same sample (183-1135A-27R-CC [252.45mbsf]).

Sample 183-1135A-28R-1, 25–26 cm (257.55 mbsf), is assigned to theone-sample-long C. danicus Zone (NA4). The zone is based on the FO ofC. danicus through the FO of P. martinii. The assemblage consists of C.pelagicus, Cruciplacolithus tenuis, Placozygus sigmoides, P. dimorphosus,

Page 6: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 6

Thoracosphaera operculata, Thoracosphaera spp., Cruciplacolithus primus,and C. danicus.

The C. tenuis Subzone (NA3; CP1b) encompasses Samples 183-1135A-28R-1, 100–101 cm (258.30 mbsf), through 28R-2, 100–101 cm (259.80mbsf), and is based on the FO of C. tenuis through the FO of C. danicus.The assemblage consists of abundant to common C. pelagicus, C. tenuis,P. sigmoides, P. dimorphosus, T. operculata, and Thoracosphaera spp., plusHornibrookina teuriensis, which are few to common.

Site 1136

Site 1136 (59°39.1′S, 84°50.1′E), rotary cored in a water depth of 1931m, is located ~30 km east of Site 1135 on the Southern Kerguelen Pla-teau (Shipboard Scientific Party, 2000c). At Site 1136, a 128-m-thicksedimentary section of middle Eocene to upper Albian sediments wasrecovered (Fig. F5). There is an expanded upper–lower to lower–middleEocene section of calcareous ooze and chalk. Preservation is poor tomoderate (Table T2).

Eocene

The topmost Sample 183-1136A-2R-1, 58–59 cm (5.28 mbsf), isplaced in the Discoaster bifax Subzone (CP14a), as it contains the FO ofR. umbilica plus C. solitus, whose LO marks the Subzone CP14a/CP4bboundary. The assemblage is characterized by abundant to common C.solitus, C. pelagicus, N. dubius, N. minutus, Reticulofenestra spp., and Z. bi-jugatus.

Samples 183-1136A-2R-2, 25–26 cm (6.45 mbsf), to 3R-2, 100–101 cm(16.90 mbsf), are placed in the Chiasmolithus gigas Subzone (CP13b), de-fined by the total range of C. gigas. The assemblage consists of commonto abundant C. expansus, C. solitus, C. formosus, C. pelagicus, N. dubius,N. minutus, R. onusta, R. samodurovii, Reticulofenestra spp., S. moriformis,and Z. bijugatus.

The Discoaster strictus Subzone (CP13a) comprises Samples 183-1136A-3R-2, 100–101 cm (18.40 mbsf), through 4R-2, 100–101 cm(26.40 mbsf), and ranges from the FO of N. fulgens through the FO of C.gigas. The zone is characterized by common to abundant C. expansus, C.solitus, C. formosus, C. pelagicus, N. dubius, N. minutus, R. onusta, R.samodurovii, Reticulofenestra spp., S. moriformis, and Z. bijugatus. There isan increase in the abundance and diversity of discoasters overall ascompared to the zones above. This may indicate that the oceans at thistime were warmer than during the previous interval (Pospichal andWise, 1990b)

The D. sublodoensis Zone (CP12) is assigned to Samples 183-1136A-4R-3, 25–27 cm (27.15 mbsf), through 5R-4, 25–26 cm (38.15 mbsf).Discoaster abundance increases in the assemblage, indicating warmersurface ocean temperatures during the early middle Eocene as com-pared with the late middle Eocene. The assemblage is characterized bycommon to abundant C. expansus, C. grandis, C. solitus, C. formosus, C.pelagicus, Coronocyclus prionion, D. binodosus, Discoaster kuepperi, D. lo-doensis, Discoaster praebifax, N. dubius, N. minutus, R. samodurovii, Reticu-lofenestra spp., S. moriformis, and Z. bijugatus.

Zones D. lodoensis (CP11) and T. orthostylus (CP10) are combined herebecause the marker species that separates them, Toweius crassus, is re-ported here out of its reported range. This combined zone encompassesSamples 183-1136A-5R-4, 100–101 cm (38.90 mbsf), to 6R-7, 25–26 cm(52.05 mbsf). Defined by the FO of D. lodoensis at its base and the FO of

1R

2R

3R

4R

5R

6R

7R

8R

9R

10R

11R

12R

13R

14R

Dep

th (

mbs

f)

1136A

Cor

e

Rec

over

y

Graphiclithology

Unit Age

100

15R

16R

17R

18R

19R

150

50

I

II

III

IV

V

Foraminifer-bearing nannofossil ooze

Very light brown calcareous ooze

Brown zeoliticcalcareous

volcanicclayey sand

early

to m

iddl

e E

ocen

em

iddl

eC

am-

pani

anm

iddl

e to

late

Alb

ian

Basalt

Lithologic description

Carbonate(wt%)

No Recovery ?

No recovery ?

?

VI

Sand andpebbles with

foraminifer-bearingnannofossil ooze

Nannofossilooze

Calcareousooze

Foraminiferooze

Clayeysand

Siltyclay

Basalt

Gravel

20 40 60 80

F5. Site 1136 core summary, p. 30.

Page 7: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 7

D. sublodoensis at its top, this interval has common to abundant C.bidens, C. solitus, C. pelagicus, D. binodosus, D. kuepperi, N. dubius, N.minutus, Reticulofenestra spp., S. moriformis, S. radians, Thoracosphaeraspp., Toweius spp., and Z. bijugatus. Also noted in this zone was the LOof T. orthostylus between Samples 183-1136A-6R-1, 100–101 cm (43.80mbsf), and 6R-1, 25–26 cm (43.05 mbsf).

Samples 183-1136A-7R-1, 25–26 cm (52.35 mbsf), through 7R-2,100–101 cm (54.60 mbsf), are assigned to the D. binodosus Subzone(CP9b). Defined as the FO of T. orthostylus (base) through the FO of D.lodoensis (top), this zone is relatively short and is characterized by abun-dant to common C. bidens, C. consuetus, C. solitus, C. pelagicus, D. bino-dosus, D. kuepperi, N. dubius, S. moriformis, S. radians, T. crassus, Toweiusspp., and Z. bijugatus.

Site 1138

Site 1138 (53°33.1′S, 75°58.5′E), rotary cored in a water depth of 1141m, is located on the central Kerguelen Plateau (Shipboard ScientificParty, 2000d). About 698 m of sediment was recovered, and the ageranges from Pleistocene to Late Cretaceous (Fig. F6). Six lithologic unitsare recognized at this site, one of which, Unit 3 (265.9–601.9 mbsf), wasexamined in this study. It consists of upper Oligocene to mid-Campa-nian foraminifer-bearing chalk with scattered chert nodules in thelower section. There is a possibly complete K/T boundary section lo-cated in Core 183-1138A-52R (see “Isotopic Analysis,” p. 10). This siteprovides an excellent chance to investigate environmental and bioticchanges at high latitudes across this boundary (Table T3).

Eocene

The Isthmolithus recurvus Subzone (CP15b) encompasses Samples 183-1138A-36R-5, 25–26 cm (339.25 mbsf), through 37R-2, 25–26 cm(344.34 mbsf). The FO of I. recurvus provides a well-documented datumfor the base of the subzone (Wei and Wise, 1990; Wei, 1992). The top ofthe subzone is missing because of an unconformity between Samples183-1138A-36R-5, 25–26 cm (339.25 mbsf), and 36R-4, 100–101 cm(337.75 mbsf). Sample 183-1138A-36R-5, 25–26 cm (339.25 mbsf), is ofEocene age, whereas Sample 36R-4, 100–101 cm (337.75 mbsf), is ofearly Oligocene age, based on the large number of Chiasmolithus altusrelative to Chiasmolithus oamaruensis (Wei and Wise, 1990).

Subzone CP15b is characterized by abundant to common C. oama-ruensis, C. pelagicus, I. recurvus, Reticulofenestra spp., Reticulofenestra bi-secta, R. umbilica, and Thoracosphaera spp. The FO of Reticulofenestraoamaruensis is also noted in this subzone. Discoasters are almost com-pletely absent. The only discoasters present are overgrown six-rayedforms that cannot be identified to species level.

Samples 183-1138A-37R-2, 100–101 cm (345.1 mbsf), through 37R-3,100–101 cm (346.6 mbsf), are assigned to the C. oamaruensis Subzone,which extends from the LO of C. grandis to the FO of I. recurvus. The as-semblage consists of abundant to common C. oamaruensis, Coccolithusformosa, C. pelagicus, Reticulofenestra spp., R. bisecta, R. umbilica, andThoracosphaera spp. Other nannofossils include few to rare Blackites spi-nosus, Discoaster spp., R. onusta, R. samodurovii, S. moriformis, and Z. biju-gatus.

Samples 183-1138A-37R-4, 25–26 cm (347.35 mbsf), through 37R-6,100–101 cm (351.1 mbsf), belong to the Discoaster saipanensis Subzone(CP14b), defined by the LO of C. solitus at its base and the LO of C. gran-

45R

46R

47R

48R

49R

50R

51R

52R

450IIIA

late

Maa

stric

htia

n to

late

Olig

ocen

e Foraminifer-bearing

nannofossilchalk

Rec

over

y

1138A

Cor

e

Graphiclithology

Unit Age Lithologicdescription

Rec

over

y

1R2R3R

4R5R6R7R

8R9R

10R

11R

12R

13R

14R

Dep

th (

mbs

f)

1138A

Cor

e

Graphiclithology

Unit Age

100

15R

16R

17R18R

19R

150

50

200

20R

21R

22R

23R24R

250

25R

26R27R28R

29R

30R31R

32R30033R34R

35R

350

36R37R

38R39R

40R41R

42R43R

44R

400

I

IIA

IIB

IIIA

late

Mio

cene

to la

te P

leis

toce

neea

rly to

late

Mio

cene

late

Maa

stric

htia

n to

late

Olig

ocen

ela

te M

ioce

ne

Lithologicdescription

Foraminifer-bearing

diatom clay and foraminifer-

bearingdiatom ooze

Foraminifer-bearing

nannofossil clay

Foraminifer-bearing

nannofossil ooze

Foraminifer-bearing

nannofossil chalk

Dep

th (

mbs

f)

Nannofossilooze

Foraminiferooze

Siltyclay

Nannofossilchalk

Diatomooze

F6. Site 1138 core summary, p. 31.

Page 8: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 8

dis at the top. The FO of R. bisecta (38.0 Ma) is present within this sub-zone. The LO of C. solitus is reported above the FO of R. bisecta on theKP (this paper) and on the Falkland Plateau (Mostajo and Wise, 1983)(see “Discussion,” p. 11, for further detail). The assemblage consists ofcommon to abundant Chiasmolithus spp., C. formosus, C. pelagicus,Reticulofenestra spp., R. bisecta, R. samodurovii, R. umbilica, S. moriformis,and Thoracosphaera spp.

The D. bifax Subzone (CP14a) is assigned to sediments of Samples183-1138A-37R-CC (351.94 mbsf) through 43R-1, 100–101 cm (401.4mbsf), based on the first common occurrence (FCO) of R. umbilica andpresence of C. solitus. The top of the subzone is defined by the LO of C.solitus, and the base of the subzone is defined by the FO of R. umbilica.The base of this subzone is somewhat uncertain because of the natureof the species definition of R. umbilica (see “Discussion,” p. 11, for fur-ther details). The assemblage consists of abundant to common C. soli-tus, C. formosus, C. pelagicus, Discoaster spp., Discoaster deflandrei, five-and six-rayed Discoaster spp., Reticulofenestra spp., R. onusta, R. samo-durovii, R. umbilica, S. moriformis, Thoracosphaera spp., and Z. bijugatus.

The Coccolithus staurion Subzone (CP13c) encompasses Samples 183-1138A-43R-2, 25–26 cm (402.15 mbsf), through 43R-4, 100–101 cm(405.9 mbsf). This subzone ranges from the LO of C. gigas to the FO ofR. umbilica. The assemblage consists of abundant to common C. solitus,C. formosus, C. pelagicus, Discoaster spp., six-rayed Discoaster spp., D.praebifax, Reticulofenestra spp., R. onusta, R. samodurovii, R. umbilica, andZ. bijugatus.

Samples 183-1138A-43R-5, 25–26 cm (406.65 mbsf), through 45R-CC(422.8 mbsf) are assigned to the C. gigas Subzone (CP13b). This subzoneis defined by the total range of C. gigas. The assemblage is made up ofmostly abundant to common C. expansus, C. grandis, C. solitus, C. formo-sus, C. pelagicus, Discoaster spp., six-rayed Discoaster spp., N. fulgens, N.dubius, Reticulofenestra spp., R. onusta, R. samodurovii, and Z. bijugatus.

Sample 183-1138A-46R-1, 25–26 cm (429.55 mbsf), is assigned to theDiscoaster strictus Subzone (CP13a). This subzone is defined at its baseby the FO of N. fulgens and at its top by the FO of C. gigas. The assem-blage consists of C. solitus, C. formosus, C. pelagicus, N. dubius, Reticu-lofenestra spp., R. onusta, R. samodurovii, and Z. bijugatus.

Samples 183-1138A-46R-CC (430.38 mbsf) through 47R-CC (441.92mbsf) are assigned to the D. sublodoensis Zone (CP12). This zone ex-tends from the FO of D. sublodoensis (base) to the FO of N. fulgens (top).The assemblage is characterized by abundant to common C. solitus, C.formosus, C. pelagicus, Discoaster spp., D. binodosus, D. kuepperi, D. sublo-doensis, Reticulofenestra spp., and Z. bijugatus.

There is a hiatus between Samples 183-1138A-47R-CC (441.92 mbsf)and 48R-1, 25–26 cm (448.85 mbsf), that spans Zones CP10 and CP11.Samples 183-1138A-48R-1, 25–26 cm (448.85 mbsf), through 48R-1,100–101 cm (449.6 mbsf), are assigned to the D. binodosus Subzone(CP9b). The assemblage is composed mostly of abundant to commonChiasmolithus spp., C. pelagicus, D. kuepperi, Discoaster spp., Toweiusspp., T. crassus, and Z. bijugatus.

Paleocene/Eocene Boundary

The Paleocene/Eocene boundary is represented by a hiatus betweenSamples 183-1138A-48R-1, 100–101 cm (449.60 mbsf), and 48R-2, 25–26 cm (450.35 mbsf). The boundary is usually placed at the base of Sub-zone CP9a (NP10) based on the FO of T. bramlettei, which was not ob-served at this site. Sample 183-1138A-48R-1, 100–101 cm (449.60 mbsf),

Page 9: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 9

contains the early Eocene species T. orthostylus, whose FO marks thebase of Subzone CP9b (NP11). The next sample below, Sample 183-1138A-48R-2, 25–26 cm (450.35 mbsf), contains a Paleocene assem-blage with D. multiradiatus, F. tympaniformis, and P. bisulcus.

Paleocene

Samples 183-1138A-48R-2, 25–26 cm (450.35 mbsf), through 48R-CC(457.3 mbsf) are assigned to the D. multiradiatus Zone, CP8 (NP9). TheFO of D. multiradiatus, which is common throughout the zone, marksthe Zone CP7/CP8 boundary. Diversity is relatively high, with abun-dant to common C. bidens, C. pelagicus, Coccolithus spp., F. tympanifor-mis, P. bisulcus, S. primus, T. pertusus, Toweius tovae, Toweius spp., and Z.bijugatus.

Samples 183-1138A-49R-1, 25–26 cm (458.45 mbsf), through 49R-1,100–101 cm (459.20 mbsf), are assigned to the combined D. nobilis–D.mohleri Zone (CP7–CP6). This interval ranges from the FO of D. mohlerithrough the FO of D. multiradiatus. The FO of D. nobilis is normally usedto separate Zone CP6 from CP7, but was not observed in this interval.The assemblage consists of C. bidens, C. consuetus, Coccolithus spp., F.tympaniformis, Heliolithus spp., Heliolithus kleinpellii, P. bisulcus, T. emi-nens, and T. pertusus.

As at Site 1135, the H. kleinpellii Zone (CP5) is represented in onlyone sample, 183-1138A-49R-2, 25–26 cm (459.95 mbsf). The zone is de-fined by the FO of H. kleinpellii at the base and the FO of D. mohleri atthe top. The assemblage is similar to that at Site 1135, consisting ofabundant to common C. bidens, C. danicus, F. tympaniformis, H. kleinpel-lii, H. universus, P. sigmoides, P. bisulcus, and P. martinii. The only notice-able difference is that Site 1138 has more common Heliolithus than Site1135, perhaps a function of the lower latitude of Site 1135.

The F. tympaniformis Zone (CP4) spans Samples 183-1138A-49R-2,100–101 cm (460.70 mbsf), through 49R-CC (461.69 mbsf). Defined bythe FO of F. tympaniformis at the base and the FO of H. kleinpellii at thetop, the assemblage is similar to that of Site 1135, consisting of C.bidens, C. danicus, Coccolithus spp., F. magnicordis, F. tympaniformis, N.perfectus, P. sigmoides, P. bisulcus, P. martinii, Thoracosphaera spp., and T.pertusus.

Samples 183-1138A-50R-1, 25–26 cm (467.75 mbsf), through 50R-CC(470.43 mbsf) are assigned to the C. bidens Zone (NA6) of the high-lati-tude Antarctic zonation scheme of Wei and Pospichal (1991), definedby the FO of C. bidens through the LO of H. teuriensis. It also encom-passes the FO of T. pertusus, the FO of P. bisulcus, and the LO of P. dimor-phosus. The assemblage consists of abundant to common C. bidens, C.danicus, C. pelagicus, P. sigmoides, P. bisulcus, P. dimorphosus, P. martinii, T.operculata, Thoracosphaera spp., and T. pertusus.

The P. martinii Zone (NA5), which was not present at Site 1135, con-sists of one sample, 183-1138A-51R-1, 25–26 cm (477.35 mbsf). The as-semblage includes abundant to common C. danicus, C. pelagicus, P.dimorphosus, P. martinii, T. operculata, and Thoracosphaera spp.

The subjacent C. danicus Zone (NA4), represented by only one sam-ple at Site 1135, here encompasses Samples 183-1138A-51R-1, 100–101cm (478.10 mbsf), through 51R-4, 100–101 cm (482.60 mbsf). The as-semblage consists of abundant to common C. danicus, C. pelagicus, Cru-ciplacolithus edwardsii, P. dimorphosus, T. operculata, and Thoracosphaeraspp., with rare to few Markalius inversus, Biscutum constans, and re-worked Cretaceous taxa. Site 1138 contrasts with Site 1135 by having

Page 10: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 10

much fewer H. teuriensis and fewer Chiasmolithus and Cruciplacolithusthroughout this zone.

Samples 183-1138A-52R-1, 3 cm (486.72 mbsf), through 52R-3, 4 cm(489.73 mbsf), are assigned to the C. tenuis Zone (NA3). The assemblageconsists of abundant C. pelagicus, C. tenuis, P. sigmoides, P. dimorphosus,and reworked Cretaceous taxa. Few to rare B. constans, C. edwardsii, C.primus, Cyclagelosphaera reinhardti, M. inversus, Neocrepidolithus cruciatus,N. fossus, Neocrpidolithus neocrassus, and Thoracosphaera spp. are alsopresent in this zone. In contrasting the assemblages of Site 1135 andSite 1138, we find that H. teuriensis, along with species of Crucipla-colithus, P. sigmoides, and Thoracosphaera spp., are all more abundant atthe higher-latitude Site 1135.

The H. teuriensis Zone (NA2) is represented in Samples 183-1138A-52R-3, 10–11 cm (489.80 mbsf), through 52R-3, 29–29 cm (489.99mbsf). The FO of H. teuriensis marks the base of the zone, and the top isdefined by the FO of C. tenuis. The assemblage consists of common re-worked Cretaceous taxa, few P. sigmoides and Thoracosphaera spp., andrare B. constans, H. teuriensis, M. inversus, N. neocrassus, and Neocrepido-lithus spp.

The Biantholithus sparsus Zone (NA1) encompasses Samples 183-1138A-52R-3, 40–42 cm (490.11 mbsf), through 52R-3, 127 cm (490.95mbsf), which is unusually long for this zone (84 cm) relative to otherSouthern Ocean sites. The zone is defined as the FO of B. sparsus to theFO of H. teuriensis. The FO of B. sparsus is used to approximate the K/Tboundary. This boundary was placed at Section 183-1138A-52R-3, 127cm (490.95 mbsf), by the Shipboard Scientific Party (2000d) at a dra-matic color change in Core 52R from a white chalk to a greenish clayeychalk (Fig. F7). The FO of B. sparsus was observed in Sample 183-1138A-52R-3, 70 cm (490.41 mbsf), some 57 cm above the color change. A sta-ble isotopic analysis across this boundary supports this conclusion, al-though this is at odds with the conclusion from paleomagneticstratigraphy (see “Discussion,” p. 11). The assemblage is characterizedby abundant to common reworked Cretaceous taxa with rare to com-mon B. constans, M. inversus, N. neocrassus, P. sigmoides, and Thora-cosphaera spp.

Samples 183-1138A-52R-3, 129 cm (490.99 mbsf), through 52R-4,10–11 cm (491.31 mbsf), just below the K/T boundary are assigned alate Maastrichtian age. Preservation is poor at the boundary, but as onemoves down the section preservation improves significantly. The nan-nofossil assemblage is dominated by Prediscosphaera stoveri, whichmakes up ~30% of the assemblage (Table T4). Other taxa found wereArkhangelskiella cymbiformis, Eiffellithus turriseiffelii, Kamptnerius magnifi-cus, Nephrolithus frequens, Prediscosphaera cretacea, and Zygodiscus spira-lis.

Isotopic Analysis

A bulk carbonate isotopic analysis across the K/T boundary in Core183-1138A-52R is presented in Figure F8 along with some nannofossildatums. Samples 183-1138A-52R-4, 100–102 cm (492.21 mbsf), through52R-4, 25–27 cm (491.46 mbsf), show an average δ13C value of 2.25‰.The interpreted K/T boundary is placed at a color change at interval183-1138A-52R-3, 127–128 cm (490.97 mbsf) (Fig. F7) (see “Discus-sion,” p. 11). δ13C values decrease across the boundary to 1.75‰ andcontinue to decrease until a low of 1.20‰ in Sample 183-1138A-52R-2,127–128 cm (489.48 mbsf), is reached in Zone NA3 (CP1b, NP2). The

K/T Boundary

F7. Core photo showing the K/T boundary, p. 32.

1.2 1.4 1.6 1.8 2 2.2 2.4

Color Change

δ13C (‰)

Dep

th (

mbs

f)

NA2

NA1

NA3

Cre

tace

ous

488.5

489.0

489.5

490.0

490.5

491.0

491.5

492.0

492.5

F8. Stable isotopic analysis across the K/T boundary, p. 33.

Page 11: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 11

overall decrease in δ13C is ~1.05‰ through this interval. Samples aboveinterval 183-1138A-52R-2, 127–128 cm (489.48 mbsf), show a recoveryof δ13C back to previous values of >2‰ (see Table T5).

Linear Sedimentation Rates

Linear sedimentation rates, uncorrected for compaction, were calcu-lated for the Paleogene section of each site and plotted with best-fitlines. Sedimentation rates for Hole 1135A are based on 13 nannofossilage estimates (Table T6). Sedimentation rates vary from 1.7 to 15.7 m/m.y. (Fig. F9). Apparently, low sedimentation rates for the upper andlower Paleocene are a product of hiatuses spanning Zones NA5, NA6,and CP7 (see Table T1). Linear sedimentation rates for Hole 1136A arebased on seven nannofossil age estimates (Table T7). Sedimentationrates average 5.1 m/m.y. throughout the Eocene (Fig. F10). Linear sedi-mentation rates for Hole 1138A are based on 19 nannofossil age esti-mates (Table T8). Sedimentation rates vary from 1.7 to 9.2 m/m.y. (Fig.F11). Low sedimentation rates in the lower and upper Eocene can be at-tributed to hiatuses in those sections (Table T3).

At Sites 1135 and 1138, the lower Paleocene sedimentation rates areapproximately the same (1.7 m/m.y.). This shows that sedimentationon the KP was similar in the southern and central areas. Both sites alsoshow hiatuses in the lower upper Paleocene where marker species aremissing or exceedingly rare.

Sites 1135, 1136, and 1138 all exhibit an unconformity at the Paleo-cene/Eocene boundary. At Sites 1135 and 1136, only the topmost sec-tion of the upper Paleocene and the lowermost Eocene is missing. AtSite 1136, the unconformity below the Eocene spans the entire Paleo-cene and extends into the Cretaceous. Sediments of early to middleEocene age are characterized by high sedimentation rates at all threesites (between 9 and 15 m/m.y.). Unfortunately, only Site 1138 has anyupper Eocene sediment; therefore, we cannot compare the upperEocene here with any other sites in this study (Fig. F12).

DISCUSSION

The KP provides a unique opportunity to study environmental,oceanographic, and biotic changes from the Cretaceous to the Ho-locene along an extended (18°) latitudinal north–south transect acrossan elevated Southern Ocean bathymetric feature. This possibility is notavailable anywhere else in Antarctic waters. Leg 183 has added consid-erably to the sediment recovery along this feature. However, since allsites were rotary cored during the leg, they are less than ideal for high-resolution paleoceanographic studies, as would be the case if hydraulicpiston coring had been used. Nevertheless, the high sedimentationrates often recorded offset this handicap somewhat; therefore, it is use-ful to discuss some of the biostratigraphic and paleoenvironmentalproblems encountered. These are discussed in ascending stratigraphicorder, beginning with the K/T Boundary.

K/T Boundary Stable Isotopic Study

The K/T boundary at Site 1135 is represented by an unconformitythat spans Zones NA1 and NA2 of Wei and Pospichal (1991). On theother hand, a complete boundary appears to have been recovered at

T5. Bulk carbonate isotopic values, Site 1138, p. 49.

T6. Calcareous nannofossil events, Site 1135, p. 50.

40 45 50 55 60 65

Dep

th (

mbs

f)

Age (Ma)

5

1020

m/m.y.

50

100

150

200

250

300

F9. Age-depth plot, Hole 1135A, p. 34.

T7. Calcareous nannofossil events, Site 1136, p. 51.

42 44 46 48 50 52 54

Dep

th (

mbs

f)

Age (Ma)

2.5

510

m/m.y.

0

10

20

30

40

50

60

F10. Age-depth plot, Hole 1136A, p. 35.

T8. Calcareous nannofossil events, Site 1138, p. 52.

35 40 45 50 55 60 65

Dep

th (

mbs

f)

Age (Ma)

m/m.y.

4

2

8

340

360

380

400

420

440

460

480

500

F11. Age-depth plot, Hole 1138A, p. 36.

Page 12: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 12

Site 1138, although the FO of B. sparsus (Sample 183-1138A-52R-3, 70cm [490.4 mbsf]) occurs 57 cm above the dramatic color change (Sam-ple 183-1138A-52R-3, 127 cm [490.97 mbsf]) at which the ShipboardScientific Party placed the boundary. This is not surprising since B. spar-sus is usually rare at most sites at which it is encountered (Table T4).

The initial shipboard (whole-core “pass through”) paleomagneticstratigraphy, however, does not support this biostratigraphic placementof the K/T boundary at interval 183-1138A-52R-3, 127–128 cm (490.97mbsf). Instead, the interval from 489 to 492 mbsf is interpreted as a pa-leomagnetic normal (Fig. F8) rather than the expected reversed interval(Shipboard Scientific Party, 2000d).

In contrast, however, our stable isotopic analysis reveals a 0.5‰ de-crease in δ13C across the interval at which the K/T boundary was placed(Fig. F8). This decrease of δ13C is widely known to occur at the bound-ary (Pospichal, 1996a; Zachos et al., 1992; Stott and Kennett, 1990) andis similar to the amount measured at other Southern Ocean K/T sites.For example, at Site 750, a δ13C decrease of ~0.9‰ (whole-rock sample)across the boundary was reported by Zachos et al. (1992). Site 690 onMaud Rise shows a decrease in δ13C across the boundary in bothbenthic and planktonic foraminifers (Stott and Kennett, 1990). Site 527(Walvis Ridge) also shows a decrease in δ13C of ~1‰ across this bound-ary (Pospichal 1996a).

Some low-latitude sites, such as El Kef, Tunisia, show a greater shift inthe carbon isotope values. Keller and Lindinger (1989) reported an iso-topic shift of ~2‰ at the boundary. A 2‰ negative shift in the carbonisotopes is also reported at Agost, Spain (Smit, 1990) (Fig. F13) (seePospichal, 1996a, for a summary of these sites). ODP Leg 171B sites(Blake Nose), on the other hand, show a decrease of only 1‰ across theboundary (Norris et al., 2001).

The overall pattern of a negative carbon isotope shift at the bound-ary indicates a global productivity collapse (Shackleton and Hall, 1984).The differing magnitudes of the carbon isotope shift at widely separatedsites from around the world would seem to indicate different environ-mental responses to the crisis in different regions (Pospichal, 1996b). Ithas been suggested that the magnitude of the extinction may have var-ied significantly from the low to high latitudes (Keller, 1988), but thisseems not to have been the case. Pospichal (1996b) and Pospichal andWise (1990a) clearly demonstrated that the extinction event at the K/Tboundary was just as severe in the high latitudes as it was in the low lat-itudes. The different values for the carbon isotopic shift, therefore,could result from taxonomic variations among the assemblages (mainlycalcareous nannofossils) that contributed skeletal material to the fine-fraction carbonate used in isotopic analyses.

In addition, there is the problem of reworked Cretaceous taxa skew-ing the isotopic signal. This problem is especially acute at sites withheavy bioturbation. There, the more positive δ13C Cretaceous taxa mixwith the more negative δ13C Danian taxa, resulting in carbon isotopevalues for the fine fraction somewhere in between the two end-membervalues. This mixing of Cretaceous and Danian taxa could also explainwhy δ13C values reach their most negative values above the K/T bound-ary at approximately the Zone NA2/NA3 boundary at Sites 527, 738,690, and 1138. In contrast, at El Kef and Agost, Spain, sites with littlereworking of Cretaceous taxa, the δ13C negative shift is greatest at theK/T boundary (Pospichal, 1996a).

1138A

350

36R

37R

38R

39R

40R

41R

42R

43R

44R

400

45R

46R

47R

48R

49R

50R

51R

52R

450

Pal

eoce

neea

rly to

late

Eoc

ene

495

CP

13C

P14

CP

15C

P12

CP

9

CP8

NA1NA2

NA3NA4

NA5

CP4CP5CP6

2R

3R

4R

5R

6R

7R

8R

1136A

Cor

e

Rec

over

y

50

1R

25

CP14

CP

13C

P12

CP

10/1

1

CP9

Dep

th (

mbs

f)

Cor

e

Rec

over

y

1135A

Age

1R2R3R4R5R6R7R8R9R

10R11R12R13R14R15R16R17R18R19R20R21R22R23R24R25R26R

l. Plio.

early

to m

iddl

e E

ocen

ela

te P

aleo

cene

-m

iddl

e E

ocen

e

CP

14C

P12

/13

CP

10/1

1

CP9 CP6

CP5

CP4

Zone

50

100

150

200CP8

Age Zone

early

to m

iddl

e E

ocen

e

NA6

Cor

e

Rec

over

y

Age Zone

F12. Graphic correlation of sites, p. 37.

1.2 1.4 1.6 1.8 2 2.2 2.4

Color Change

δ13C

Dep

th (

mbs

f)

NA2

NA1

NA3

Cre

tace

ous

488.5

489.5

490.5

491.5

492.5

1 2 3 0.0 1.0-0.5 0.5δ13CPDB δ13OPDB

Site 750 (KP)

1 2 3 -0.5 0.54 0.0δ13CPDB δ13OPDB

Site 527 (Walvis Ridge)

2 3δ13C

Site 690 (Maud Rise)

F13. Carbon isotope curves, p. 38.

Page 13: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 13

It could also be argued that the location of the most negative δ13Cvalues indicate the location of the K/T boundary. This assumes that theoriginal carbon isotope event occurred at this point, but that it hasbeen “smeared out” by subsequent bioturbation.

Berger and Heath (1968) proposed a vertical mixing model that sug-gests that the signal of an event would not be moved up or down as aresult of bioturbation and reworking. If this was the case at Site 1138,we would expect that the isotope excursion would have to coincidewith the sedimentation change that occurred, indicated by the colorchange.

According to the model, the darkest part of the core would representthe sediment change, and the lightening of the sediment color awayfrom that level (both above and below) would be due to vertical mix-ing. In other words, the darkest sediment color in the sequence wouldcoincide with the most negative point in the δ13C excursion. This isclearly not the case, however, as we find that the more negative valuesof the isotope excursion are present well above this dark zone, almost atthe point where sediment is returning to the background color. The off-set between the darkest color and the minimum value in the isotope ex-cursion is 0.65 m. The pattern is best explained by assuming aninstantaneous event at the K/T boundary (490.97 mbsf) that producedboth a maximum color change plus a maximum change in the δ13C val-ues. The latter does not coincide with the former, however, because re-working of Cretaceous sediment has diluted the isotope signal.

In short, we believe our placement of the K/T boundary is supportedby the isotopic and nannofossil data. Not only is B. sparsus found inseveral samples within Zone NA1, but there is a greater relative numberof M. inversus within that interval in contrast to the underlying Maas-trichtian, as is characteristic of the earliest Danian in other boundarysections (e.g., Southern Ocean Site 690; see Pospichal and Wise, 1990a).

We cannot resolve at present, however, the discrepancy between thenannofossil and isotopic data on the one hand and the paleomagneticresults on the other. One can formulate several multiple working hy-potheses, such as

1. The preliminary shipboard paleomagnetic measurements forSection 183-1138A-52R-3 provided a false reading.

2. Paleomagnetic Chron C29r is missing because of a hiatus; hence,the interval present where we place the boundary is actuallyChron C30 or even C31n, as implied by Petrizzo (2001).

3. B. sparsus may actually range into the Maastrichtian, and there-fore cannot be used to distinguish Cenozoic from Cretaceousstrata.

4. The dark sediment color in Section 183-1138A-52R-3 may actu-ally be unrelated to the K/T boundary event but rather related tothe influx of clay minerals from tectonic activity and subaerialbasement exposure at this time to the south at ODP Site 747(Shipboard Scientific Party, 1989).

The first and most logical test to make relative to these hypotheseswould be to confirm or deny the shipboard paleomagnetic data for Sec-tion 183-1138A-52R-3. This would require shore-based measurementson discrete samples from that section that have been subjected to moreintense demagnetization than is done onboard ship. Such samples werenot taken during the cruise because of routine curatorial restrictionsplaced on any sections suspected to have a complete K/T boundary. We

Page 14: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 14

note that shore-based measurements have considerably altered the ship-board magnetic reversal stratigraphy originally suggested for the subja-cent core, 183-1138A-53R (Antretter et al., this volume). Until suchmeasurements are made on Section 183-1138A-52R-3, however, we canonly speculate about the various hypotheses given above.

Lower Paleocene Biogeography

In the lower Paleocene, the high-latitude Antarctic zonation schemedeveloped by Wei and Pospichal (1991) was employed to achieve betterbiostratigraphic resolution in the study than that offered by either theOkada and Bukry or Martini zonations. Nevertheless, some zones arenot present, notably NA4, NA5, and NA6 at Site 1135 and NA5 at Site1138. Zoning the Paleocene proved difficult because of the absence orrarity of zonal index species. In particular, D. nobilis, D. mohleri, and H.kleinpellii are rare or absent; therefore, zonal boundaries using these da-tums are marked by uncertainties.

The lower Paleocene samples from Sites 1135 and 1138 do not showa Hornibrookina acme at the Zone NA2/NA3 boundary as reported byPospichal and Wise (1990a) from Site 690 (Maud Rise) (see alsoPospichal, 1996a). The abundance and distribution of the genus Horni-brookina, which evolved in the early Paleocene, can potentially be usedto indicate a change in surface water conditions between Site 1135 at59°S and Site 690 at 65°S at ~64.5 Ma.

Hornibrookina edwardsii constitutes 45% of the assemblage at Site 690(Pospichal and Wise, 1990a), indicating ideal living conditions for thattaxon. The ocean conditions were similar at Site 738 (62°S) at the south-ern tip of the KP, where Hornibrookina is “abundant” (Wei andPospichal, 1991). These ocean conditions change, however, going to-ward the lower latitudes at Site 1135 (59°S), where Hornibrookina doesnot make up a significant portion of the assemblage. The highest abun-dance reached is “common” in one sample. Conditions continued todeteriorate for Hornibrookina at Site 1138 (53°S), where it is only “rare”in the assemblage. Even farther north at Site 752, Broken Ridge (thenstill part of the KP) (Fig. F2), Pospichal (1991) noted only one specimenof Hornibrookina just below Zone NA4. The distribution and abundanceof Hornibrookina indicate oceanographic changes between Sites 738 andSite 1135 (Fig. F14). We interpret the data to indicate a water massboundary or oceanographic front between those sites. The difference inthe water masses could be due to temperature or possibly the amount ofavailable nutrients. Further work needs to be done to better define theserelationships.

Paleocene Sedimentation Rates and Core Recovery

The Paleocene section is marked by unconformities and/or con-densed sections (Figs. F9, F10, F11). These condensed sections could re-flect in part the moderate core recovery at Sites 1135 and 1138 (averagerecovery = 62.6% and 58.5%, respectively), which is similar to previousODP legs to the KP. During Legs 119 and 120, condensed Paleocene sec-tions were also recovered at Sites 738, 747, 748, and 750 (Wei andThierstein, 1991; Aubry, 1992) and the core recovery was also poor (av-erage = <50%) (Barron, Larsen, et al., 1989). It is likely, however, thatseveral marker species used to define zonal boundaries in the Paleoceneare not present or are sporadic in the section. This has hampered Paleo-cene biostratigraphic resolution on the KP. Nevertheless, Sites 1135 and

˚

˚

˚

1137

1138

11361135

736

737

738

744

745

746

747

748749

750751

KerguelenIsles

Heard IslandMcDonaldIslands

2000

3000

1000

2000

3000

4000

3000

2000

3000 40

00

2000

3000

4000

4000

Elan Bank

BankBanzare

KohlerSeamount

Skiff Bank

LabuanBasin

EnderbyBasin

Princess Elizabeth Trough

Australia-Antarctic Basin

William's Ridge

SKP R

ift Zone

59 Rift

77 G

rab

en

Raggatt Basin

Kerguelen-Heard

1139

1140

Abundant

Common to Few

Rare

752

60°E 65° 70° 75° 80° 85°65°

60°

55°

50°

45°S

ODP Leg 183 Sites1135, 1136, and 1138

Leg 119 & 120 Sitesthat recovered Paleogene sediments

F14. Biogeography of genus Horni-brookina, p. 40.

Page 15: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 15

1138 significantly increase the amount of biostratigraphic data avail-able for the southern Indian Ocean through the Paleocene.

Late Paleocene Thermal Maximum

In the upper Paleocene Zone CP8 at Site 1135, the nannofossil datashow an abundance switch from cool water–tolerant Chiasmolithus spe-cies to warm water–loving discoasters. This could indicate the presenceof the late Paleocene Thermal Maximum in Core 183-1135A-25R. Thispossibility is currently being investigated using stable isotopic analysis,and those results will be reported elsewhere.

Eocene Core Recovery, Sedimentation Rates,and Hiatuses

The Eocene section is marked by variable core recovery. Some coreshave >100% core recovery, whereas adjacent cores recovered <5%. Thisis due to chert stringers blocking the core barrel opening. Still, recoverywas improved over previous ODP legs to the KP. During Legs 119 and120, recovery averaged 55% and 40%, respectively, in the Eocene sec-tion (Barron, Larsen, et al., 1989; Schlich, Wise, et al., 1989), whereasduring Leg 183 recovery averaged ~60% (Shipboard Scientific Party,2000a) through thicker sections that contained less chert.

Sites 1135, 1136, and 1138 all have an unconformity at the Paleo-cene/Eocene boundary. The first unambiguously Eocene nannofossil re-corded at each site was T. orthostylus, whose FO indicates the boundarybetween Subzones CP9a and CP9b (53.6 Ma). Overgrowth of Tribrachia-tus made identification at the species level difficult, but not impossible.No T. bramlettei was observed below the FO of T. orthostylus, thus indi-cating the unconformity at all three sites.

Generally, the lower Eocene to lower middle Eocene sections of Holes1135A, 1136A, and 1138A have abundant and diverse assemblages ofdiscoasters that include D. barbadiensis, D. lodoensis, D. kuepperi, and D.sublodoensis. The sphenolith group also reached its maximum diversityand abundance in the lower Eocene with S. moriformis, S. primus, S. radi-ans, and S. editus. Nevertheless, for this report it was necessary to com-bine Zones CP10 and CP11 at all sites because of the sporadic nature ofT. crassus (the FO of which marks the base of Zone CP11) and to com-bine Zones CP12 and CP13 at Site 1135 because o f the sporadic pres-ence of N. fulgens (whose FO marks the boundary between Zones CP12and CP13).

There is an apparent change in the middle Eocene, where discoastersbecome few or absent and discoaster diversity becomes very low. In themiddle Eocene, sphenoliths are represented by only one species, S. mori-formis. At the same time that discoasters and sphenoliths were declin-ing in overall abundance, Chiasmolithus and Reticulofenestra began todominate the assemblage. This was especially true for the small reticu-lofenestrids during the early middle Eocene. This trend continued intothe late middle Eocene, with the development of R. onusta, R. samo-durovii, and R. umbilica. These changes in the nannofossil assemblagereflect the cooling trend in the middle Eocene reported by many otherauthors (Shackleton and Kennett, 1975; Shackleton and Hall, 1984;Oberhänsli et al., 1984; Pospichal and Wise, 1990b; Barrera and Huber,1991; Aubry, 1992; Wei et al., 1992; Wise et al., 1992).

One of the biostratigraphic problems encountered in the middleEocene was the Subzone CP13c/CP14a boundary. The FO of R. umbilica

Page 16: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 16

is the datum used to define this boundary (Okada and Bukry, 1980).The Okada and Bukry zonation scheme was originally defined usinglow-latitude material. As drilling in higher latitudes progressed, it wasnoted that the Okada and Bukry zonal scheme, particularly the sub-zones, did not always readily apply. For instance, Applegate and Wise(1987) reported for offshore New Jersey that R. umbilica and C. gigas arepresent in the same samples and that their co-occurrence was not a re-sult of contamination. Subzones CP13b and CP13c, therefore, couldnot be recognized in that region.

The present paper also reports R. umbilica and C. gigas in the samesamples at Site 1138, but not at Sites 1136 and 1135 to the south. Thiscould be due to the rarity of C. gigas at those sites. The co-occurrence ofR. umbilica and C. gigas indicates that in higher latitudinal sections theFO of R. umbilica may be older than previously reported or that the LOof C. gigas is present later in the lower latitudes. For this reason theZone CP13/CP14 boundary was approximated by the FCO of R. umbil-ica.

One other biostratigraphic question considered here is the extinctionof C. solitus. In the lower latitudes, the LO of C. solitus is reported to oc-cur below the FO of R. bisecta (Berggren et al., 1995). The LO of C. solitusat Site 1138, however, clearly occurs above the FO of R. bisecta. Thesame relationship was noted at Site 512 by Wise (1983) on the FalklandPlateau where R. bisecta was small, indicating the first evolutionary oc-currence within a long section dominated by C. solitus. As that site waspiston cored, there was no probability of contamination by caving of C.solitus.

Once again we have the problem of a marker species’ range appar-ently being extended in the high latitudes. The alternative is that R. bi-secta originated in the low/mid latitudes and subsequently migratedinto the high latitudes after the appearance of C. solitus. This is consid-ered less likely as both are cool-water taxa; hence, it is feasible that C.solitus might have persisted in the high latitudes after its disappearanceat low latitudes.

The Leg 183 Shipboard Scientific Party placed the LO of C. solitus at37.9 Ma for the high latitudes (see Wei and Wise, 1990) (Fig. F3), whichis used in this paper. Berggren et al. (1995) assigned an age of 40.4 Mato the LO C. solitus at low latitudes. This discrepancy in the age of theLO of C. solitus needs to be noted for the development of any chronol-ogy of events using the FO of C. solitus as a datum.

The upper Eocene was recovered on the KP only in Hole 1138A (Ta-ble T3). The overall assemblage reflects the trends of the late middleEocene in that Reticulofenestra continues to dominate the assemblagealong with cool-water Chiasmolithus species and C. pelagicus. The warm-water discoaster group declined in abundance to simple five- and six-rayed forms, now strongly overgrown. Sphenoliths continued to be rep-resented by few to common S. moriformis, sometimes heavily over-grown.

CONCLUSIONS

The primary objective of this paper has been to summarize Paleoceneto Eocene nannofossil biostratigraphy of Sites 1135, 1136, and 1138 onthe KP and to compare the data with those from other sites on the KP.

Page 17: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 17

1. The K/T boundary at Site 1138 appears to be complete in termsof assemblage succession, isotopic signature, and reworking ofolder (Cretaceous) nannofossil taxa. There is a significant colorchange, a negative carbon isotope shift, and nannofossil turn-over. These three lines of evidence indicate that the boundaryshould be placed at Sample 183-1138A-52R-3, 127–128 cm(490.95 mbsf). These data compare favorably with other high-latitude sites, but this placement of the boundary is not in agree-ment with the current paleomagnetostratigraphy, which showsa paleomagnetic normal rather than reversed signature for thisinterval.

2. The biogeography of the genus Hornibrookina in the SouthernOcean indicates the presence of some type of water mass bound-ary over the KP during the very early Paleocene.

3. The application of an upper Paleocene–Eocene nannofossil bio-stratigraphy based on the Martini (1971) and Okada and Bukry(1980) zonal schemes is possible in the high latitudes, but signif-icant problems arise in determining the absolute age of the FOand LO of some index taxa when comparing low-latitude tohigh-latitude sites. The Wei and Pospichal (1991) high-latitudescheme is more applicable for the lower Paleocene.

4. Discoasters and sphenoliths declined in abundance and diversityfrom the late Paleocene–early Eocene to the middle Eocene. Thisreflects the global cooling of the oceans during the middleEocene.

SYSTEMATIC PALEONTOLOGY(by J.E. Arney, B. Ladner, and S.W. Wise Jr.)

Genus Heliolithus Bramlette and Sullivan, 1961Heliolithus robustus, n. comb.

Basionym: Cyclothlithus? robustus Bramlette & Sullivan, 1961, p. 141, pl. 2,fig. 7a–7c.

Remarks: Wei (1998) has provided an excellent and thorough discussion(with synonymy) of this taxon, which he assigns to the genus Ericsonia Black,1961, following the example of Perch-Nielsen (1977). The species consists ofthree cycles of elements, not unlike those in some species of Heliolithus (e.g., H.universus Wind and Wise, 1977). In H. robustus, however, the three cycles aretightly appressed. One could argue that the middle cycle corresponds to theouter distal shield in the genus Coccolithus (= Ericsonia of authors) and thereforeshould not birefringe in cross-polarized light. Because each cycle in a givenspecimen of H. robustus reaches about the same outer diameter, however, wehave not been able to demonstrate such an optical effect under crossed nicols.Instead, each cycle appears to be entirely birefringent, a characteristic that fitsthe definition of Heliolithus rather than Coccolithus or Ericsonia.

ACKNOWLEDGMENTS

This paper is an excerpt from a thesis by James E. Arney, submitted in2002, in partial fulfillment of the Master of Science degree at FloridaState University. Some results have been presented in abstract by Arneyand Wise (2001). We wish to thank all the participants of ODP Leg 183for their contributions relevant to this paper. Special thanks go to Dr. Ja-son Curtis and the Stable Isotope Geochemistry Laboratory at the Uni-

Page 18: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 18

versity of Florida under the direction of Professor David Hoddell.Without their help we would have been able to tell only half the story.We would like to thank the members of the Calcareous NannofossilLaboratory at Florida State University for their helpful comments andassistance. Finally, we are indebted to Dr. James Pospichal, whose helphas been invaluable to our understanding of the Southern Ocean. Thisresearch used samples and/or data provided by the Ocean Drilling Pro-gram (ODP). ODP is sponsored by the U.S. National Science Foundation(NSF) and participating countries under management of Joint Oceano-graphic Institutions (JOI), Inc. Funding for this research was providedby a USSAC grant to Dr. Sherwood W. Wise Jr.

Page 19: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 19

REFERENCES

Applegate, J.L., and Wise, S.W., Jr., 1987. Eocene calcareous nannofossils, Deep SeaDrilling Project Site 605, upper continental rise off New Jersey U.S.A. In van Hinte,J.E., Wise, S.W., Jr., et al., Init. Repts. DSDP, 93: Washington (U.S. Govt. PrintingOffice), 685–698.

Arney, J., and Wise, S.W., Jr., 2001. Cretaceous/Tertiary boundary at ODP Site 1138and paleobiogeography of calcareous nannofossil genus Hornibrookina in the earlyPaleocene. Eos Trans. AGU, 82:47S, Fall Meet. Suppl.

Aubry, M.-P., 1992. Paleogene calcareous nannofossils from the Kerguelen Plateau,Leg 120. In Wise, S.W., Jr., Schlich, R., et al., Proc. ODP, Sci. Results, 120: College Sta-tion, TX (Ocean Drilling Program), 471–491.

Barrera, E., and Huber, B.T., 1991. Paleogene and early Neogene oceanography of thesouthern Indian Ocean: Leg 119 foraminifer stable isotope results. In Barron, J.,Larsen, B., et al., Proc. ODP, Sci. Results, 119: College Station, TX (Ocean DrillingProgram), 693–717.

Barron, J., Larsen, B., et al., 1989. Proc. ODP, Init. Repts., 119: College Station, TX(Ocean Drilling Program).

Berger, W.H., and Heath, G.R., 1968. Vertical mixing in pelagic sediments. J. Mar. Res.,26:134–143.

Berggren, W.A., Kent, D.V., Swisher, C.C., III, and Aubry, M.-P., 1995. A revised Ceno-zoic geochronology and chronostratigraphy. In Berggren, W.A., Kent, D.V., Aubry,M.-P., and Hardenbol, J. (Eds.), Geochronology, Time Scales and Global StratigraphicCorrelation. Spec. Publ.—SEPM (Soc. Sediment. Geol.), 54:129–212.

Bramlette, M.N., and Sullivan, F.R., 1961. Coccolithophorids and related nanno-plankton of the early Tertiary in California. Micropaleontology, 7:129–188.

Coffin, M.F., 1992. Emplacement and subsidence of Indian Ocean plateaus and sub-marine ridges: synthesis of results from scientific drilling in the Indian Ocean. Geo-phys. Monogr., Am. Geophys. Union, 70:115–125.

Coplen, T.B., 1996. Editorial: more uncertainty than necessary. Paleoceanography,11:369–370.

Hay, W.W., 1970. Calcareous nannofossils from cores recovered on Leg 4. In Bader,R.G., Gerard, R.D., et al., Init. Repts. DSDP, 4: Washington (U.S. Govt. PrintingOffice), 455–501.

Keller, G., 1988. Extinction, survivorship and evolution of planktic foraminifersacross the Cretaceous/Tertiary Boundary at El Kef, Tunisia. Mar. Micropaleontol.,13:239–263.

Keller, G., and Lindinger, M., 1989. Stable isotope, TOC and CaCO3 record across theCretaceous/Tertiary boundary at El Kef, Tunisia. Palaeogeogr., Palaeoclimatol.,Palaeoecol., 73:243–265.

Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zona-tion. In Farinacci, A. (Ed.), Proc. 2nd Int. Conf. Planktonic Microfossils Roma: Rome(Ed. Tecnosci.), 2:739–785.

Mostajo, E.L., and Wise, S.W., Jr., 1983. Correlation of Eocene–Oligocene calcareousnannofossil assemblages from piston cores taken near Deep Sea Drilling Sites 511and 512, southwest Atlantic Ocean. In Ludwig, W.J., Krasheninnikov, V.A., et al.,Init. Repts. DSDP, 71: Washington (U.S. Govt. Printing Office), 1171–1182.

Norris, R.D., Kroon, D., Huber, B., and Erbacher, J., 2001. Cretaceous–Paleogeneocean and climate change in the subtropical North Atlantic. In Kroon, D., Norris,R.D., and Klaus, A. (Eds), Proc. ODP, Sci. Results, 171B [CD-ROM]. Available from:Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547,USA, 1–22.

Oberhänsli, H., McKenzie, J., Toumarkine, M., and Weissert, H., 1984. A paleoclimaticand paleoceanographic record of the Paleogene in the central South Atlantic (Leg

Page 20: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 20

73, Sites 522, 523, and 524). In Hsü, K.J., LaBrecque, J.L., et al., Init. Repts. DSDP, 73:Washington (U.S. Govt. Printing Office), 737–747.

Okada, H., and Bukry, D., 1980. Supplementary modification and introduction ofcode numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973;1975). Mar. Micropaleontol., 5:321–325.

Perch-Nielsen, K., 1977. Albian to Pleistocene calcareous nannofossils from the west-ern South Atlantic, DSDP Leg 39. In Supko, P.R., Perch-Nielsen, K., et al., Init. Repts.DSDP, 39: Washington (U.S. Govt. Printing Office), 699–823.

————, 1985. Cenozoic calcareous nannofossils. In Bolli, H.M., Saunders, J.B., andPerch-Nielsen, K. (Eds.), Plankton Stratigraphy: Cambridge (Cambridge Univ. Press),427–554.

Petrizzo, M.R., 2001. Late Cretaceous planktonic foraminifera from the KerguelenPlateau (ODP Leg 183): new data to improve the Southern Oceans biozonation.Cretaceous Res., 22:829–855.

Pospichal, J.J., 1991. Calcareous nannofossils across Cretaceous/Tertiary boundary atSite 752, eastern Indian Ocean. In Weissel, J., Peirce, J., Taylor, E., Alt, J., et al., Proc.ODP, Sci. Results, 121: College Station, TX (Ocean Drilling Program), 395–414.

————, 1996a. Calcareous nannoplankton mass extinction at the Cretaceous/Ter-tiary boundary: an update. Spec. Pap.—Geol. Soc. Am., 307:335–360.

————, 1996b. High latitude calcareous nannofossil changes at the Cretaceous/Ter-tiary boundary in the southern Indian Ocean. In Moguilevsky, A., and Whatley, R.(Eds.), Microfossils and Oceanic Environments: Aberystwyth, UK (Univ. of Wales,Aberystwyth Press), 205–229.

Pospichal, J.J., and Wise, S.W., Jr., 1990a. Calcareous nannofossils across the K/Tboundary, ODP Hole 690C, Maud Rise, Weddell Sea. In Barker, P.F., Kennett, J.P., etal., Proc. ODP, Sci. Results, 113: College Station, TX (Ocean Drilling Program), 515–532.

————, 1990b. Paleocene to middle Eocene calcareous nannofossils of ODP Sites689 and 690, Maud Rise, Weddell Sea. In Barker, P.F., Kennett, J.P., et al., Proc. ODP.Sci. Results, 113: College Station, TX (Ocean Drilling Program), 613–638.

Schlich, R., Wise, S.W., Jr., et al., 1989. Proc. ODP, Init. Repts., 120: College Station, TX(Ocean Drilling Program).

Shackleton, N.J., and Hall, M.A., 1984. Carbon isotope data from Leg 74 sediments. InMoore, T.C., Jr., Rabinowitz, P.D., et al., Init. Repts. DSDP, 74: Washington (U.S.Govt. Printing Office), 613–619.

Shackleton, N.J., and Kennett, J.P., 1975. Paleotemperature history of the Cenozoicand the initiation of Antarctic glaciation: oxygen and carbon isotope analyses inDSDP Sites 277, 279, and 281. In Kennett, J.P., Houtz, R.E., et al., Init. Repts. DSDP,29: Washington (U.S. Govt. Printing Office), 743–755.

Shipboard Scientific Party, 1989. Site 747. In Schlich, R., Wise, S.W., Jr., et al., Proc.ODP, Init. Repts., 120: College Station, TX (Ocean Drilling Program), 89–156.

————, 2000a. Leg 183 summary: Kerguelen Plateau–Broken Ridge—a large igneousprovince. In Coffin, M.F., Frey, F.A., Wallace, P.J., et al., Proc. ODP, Init. Repts., 183:College Station, TX (Ocean Drilling Program), 1–101.

————, 2000b. Site 1135. In Coffin, M.F., Frey, F.A., Wallace, P.J., et al., Proc. ODP,Init. Repts., 183, 1–59 [CD-ROM]. Available from: Ocean Drilling Program, TexasA&M University, College Station, TX 77845-9547, U.S.A.

————, 2000c. Site 1136. In Coffin, M.F., Frey, F.A., Wallace, P.J., et al., Proc. ODP,Init. Repts., 183, 1–96 [CD-ROM]. Available from: Ocean Drilling Program, TexasA&M University, College Station, TX 77845-9547, U.S.A.

————, 2000d. Site 1138. In Coffin, M.F., Frey, F.A., Wallace, P.J., et al., Proc. ODP,Init. Repts., 183, 1–205 [CD-ROM]. Available from: Ocean Drilling Program, TexasA&M University, College Station, TX 77845-9547, U.S.A.

Smit, J., 1990. Meteorite impact, extinctions and the Cretaceous–Tertiary boundary.Geol. Mijnbouw, 69:187–204.

Page 21: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 21

Stott, L.D., and Kennett, J.P., 1990. The paleoceanographic and paleoclimatic signa-ture of the Cretaceous/Paleogene boundary in the Antarctic: stable isotopic resultsfrom ODP Leg 113. In Barker, P.F., Kennett, J.P., et al., Proc. ODP, Sci. Results, 113:College Station, TX (Ocean Drilling Program), 829–848.

Varol, O., 1989. Eocene calcareous nannofossils from Sile (Northwest Turkey). Rev.Esp. Micropaleontol., 21:273–320.

Wei, W., 1992. Paleogene chronology of Southern Ocean drill holes: an update. InKennett, J.P., and Warnke, D.A. (Eds.), The Antarctic Paleoenvironment: A Perspectiveon Global Change. Antarct. Res. Ser., 56:75–96.

————, 1998. New calcareous nannofossil species and stratigraphic markers fromthe upper Paleocene. J. Nannoplankton Res., 20:107–115.

Wei, W., and Pospichal, J.J., 1991. Danian calcareous nannofossil succession at Site738 in the southern Indian Ocean. In Barron, J., Larsen, B., et al., Proc. ODP, Sci.Results, 119: College Station, TX (Ocean Drilling Program), 495–512.

Wei, W., and Thierstein, H.R., 1991. Upper Cretaceous and Cenozoic calcareous nan-nofossils of the Kerguelen Plateau (southern Indian Ocean) and Prydz Bay (EastAntarctica). In Barron, J., Larsen, B., et al., Proc. ODP, Sci. Results, 119: College Sta-tion, TX (Ocean Drilling Program), 467–494.

Wei, W., Villa, G., and Wise, S.W., Jr., 1992. Paleoceanographic implications ofEocene–Oligocene calcareous nannofossils from Sites 711 and 748 in the IndianOcean. In Wise, S.W., Jr., Schlich, R., et al., Proc. ODP, Sci. Results, 120: College Sta-tion, TX (Ocean Drilling Program), 979–999.

Wei, W., and Wise, S.W., 1989. Discoaster praebifax n. sp.—a possible ancestor of Dis-coaster bifax Bukry (Coccolithophoridae). J. Paleontol., 63:10–14.

Wei, W., and Wise, S.W., Jr., 1990. Biogeographic gradients of middle Eocene–Oligocene calcareous nannoplankton in the South Atlantic Ocean. Palaeogeogr.,Palaeoclimatol., Palaeoecol., 79:29–61.

Wise, S.W., Jr., 1983. Mesozoic and Cenozoic calcareous nannofossils recovered byDeep Sea Drilling Project Leg 71 in the Falkland Plateau region, Southwest AtlanticOcean. In Ludwig, W.J., Krasheninnikov, V.A., et al., Init. Repts. DSDP, 71 (Pt. 2):Washington (U.S. Govt. Printing Office), 481–550.

Wise, S.W., Jr., Breza, J.R., Harwood, D.M., Wei, W., and Zachos, J.C., 1992. Paleogeneglacial history of Antarctica in light of Leg 120 drilling results. In Wise, S.W., Jr.,Schlich, R., et al., Proc. ODP, Sci. Results, 120: College Station, TX (Ocean DrillingProgram), 1001–1030.

Zachos, J.C., Aubry, M.-P., Berggren, W.A., Ehrendorfer, T., Heider, F., and Lohmann,K.C., 1992. Chemobiostratigraphy of the Cretaceous/Paleocene boundary at Site750, southern Kerguelen Plateau. In Wise, S.W., Jr., Schlich, R., et al., Proc. ODP, Sci.Results, 120: College Station, TX (Ocean Drilling Program), 961–977.

Page 22: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 22

APPENDIX

Calcareous Nannofossils Considered in This Paper(In alphabetical order of generic epithets)

Examples of taxa are shown in Plates P1, P2, P3, P4, P5, P6, and P7.

Cenozoic Taxa

Amithalithina sigmundii Pospichal and Wise, 1990Biscutum constans (Gorka, 1957) Black in Black and Barnes, 1959Biscutum spp.Blackites spinosus (Deflandre and Fert, 1954) Hay and Towe, 1962Braarudosphaera bigelowii (Gran and Braarud, 1935) Deflandre, 1947Chiasmolithus bidens (Bramlette and Sullivan) Hay and Mohler, 1967Chiasmolithus californicus (Sullivan, 1964) Hay and Mohler, 1967Chiasmolithus consuetus (Bramlette and Sullivan) Hay and Mohler, 1967Chiasmolithus danicus (Brotzen) Hay and Mohler, 1967Chiasmolithus eograndis Perch-Nielsen, 1971Chiasmolithus expansus (Bramlette and Sullivan) Gartner, 1970Chiasmolithus grandis (Bramlette and Riedel) Radomski, 1968Chiasmolithus oamaruensis (Deflandre, 1954) Hay, Mohler, and Wade, 1966Chiasmolithus solitus (Bramlette and Sullivan) Locker, 1968Chiasmolithus spp. Chiasmolithus titus Gartner, 1970Chiphragmalithus spp. Coccolithus formosus (Kamptner) Wise, 1973Coccolithus pelagicus (Wallich) Schiller, 1930Coccolithus spp. Coccolithus subpertusa Hay and Mohler, 1967Coronocyclus nitescens (Kamptner, 1963) Bramlette and Wilcoxon, 1967Cruciplacolithus edwardsii Romein, 1979Cruciplacolithus frequens (Perch-Nielsen, 1977) Romein, 1979Cruciplacolithus primus Perch-Nielsen, 1977Cruciplacolithus spp. Cruciplacolithus tenuis (Stradner) Hay and Mohler, 1967Cyclicargolithus lumina Sullivan, 1965Discoaster barbadiensis Tan, 1927Discoaster bifax Bukry, 1971Discoaster binodosus Martini, 1958Discoaster deflandrei Bramlette and Riedel, 1954Discoaster diastypus Bramlette and Sullivan, 1961Discoaster kuepperi Stradner, 1959Discoaster lenticularis Bramlette and Sullivan, 1961Discoaster lodoensis Bramlette and Riedel, 1954Discoaster megastypus Bramlette and Sullivan, 1961Discoaster mohleri Bukry and Percival, 1971Discoaster multiradiatus Bramlette and Riedel, 1954Discoaster nobilis Martini, 1961Discoaster nonaradiatus Martini, 1961Discoaster nonradiatus Klumpp, 1953Discoaster praebifax Wei and Wise, 1989Discoaster saipanensis Bramlette and Riedel, 1954Discoaster spp. Discoaster spp. (five ray) Discoaster spp. (six ray) Discoaster spp. (six ray) large Discoaster sublodoensis Bramlette and Sullivan, 1961Discoaster tani nodifer Bramlette and Riedel, 1954Discoaster wemmelensis Achuthan and Stradner, 1969

1A

3B2A 3A

1B 1C

3D2B 3C

P1. Cores 183-1135A-25R and 26R, p. 53.

1A

2B3A 3B

4A 4B 4C

1B 2A

5C5B5A

P2. Cores 183-1135A-25R and 26R and 183-1138A-44R, p. 54.

1A 1B 1C

2A 2B 2C

43A

3B

P3. Cores 183-1135A-27R and 183-1138A-44R, p. 55.

1A 1B 1C

2A 2B 2C

3A 3B 4

5A 5B 5C

P4. Section 183-1138A-37R-1, p. 56.

Page 23: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 23

Ellipsolithus distichus (Bramlette and Sullivan) Sullivan, 1964Ellipsolithus lajollaensis Bukry and Percival, 1971Ellipsolithus macellus (Bramlette and Sullivan, 1961) Sullivan, 1964Ellipsolithus spp. Fasciculithus bobii Perch-Nielsen, 1971Fasciculithus clinatus Bukry, 1971Fasciculithus lillianae Perch-Nielsen, 1971Fasciculithus magnicordis Romein, 1979Fasciculithus magnus Bukry and Percival, 1971Fasciculithus small (<4 µm) Fasciculithus spp. Fasciculithus thomasii Perch-Nielsen, 1971Fasciculithus tympaniformis Hay and Mohler, 1967Fasciculithus ulii Perch-Nielsen, 1971Girgisia gammation Varol, 1989Helicosphaera seminulum Bramlette and Sullivan, 1961Helicosphaera spp. Heliolithus cantabriae Perch-Nielsen, 1971Heliolithus kleinpellii Sullivan, 1964Heliolithus robustus (Bramlette and Sullivan, 1961) Arney, Ladner, and Wise in

Arney and Wise, this paperHornibrookina teuriensis Edwards, 1973Lapideacassis spp.Markalius apertus Perch-Nielsen, 1979Markalius astroporous (Stradner, 1963) Mohler and Hay in Hay et al., 1967Markalius inversus (Deflandre) Bramlette and Martini, 1964Nannotetrina fulgens Stradner, 1969Neochiastozygus chiastus (Bramlette and Sullivan, 1961) Perch-Nielsen, 1971Neochiastozygus concinnus (Martini, 1961) Perch-Nielsen, 1971Neochiastozygus distentus (Bramlette and Sullivan, 1961) Perch-Nielsen, 1971Neochiastozygus junctus (Bramlette and Sullivan, 1961) Perch-Nielsen, 1971Neochiastozygus modestus Perch-Nielsen, 1971Neochiastozygus perfectus Perch-Nielsen, 1971Neochiastozygus saepes Perch-Nielsen, 1971Neochiastozygus spp. Neococcolithes dubius (Deflandre, 1954) Black, 1967Neococcolithes minutus (Perch-Nielsen, 1967) Perch-Nielsen, 1971Neococcolithes pediculatus (Perch-Nielsen, 1967) Perch-Nielsen, 1971Neococcolithes spp. Neocrepidolithus fossus (Romein, 1977) Romein, 1979Placozygus sigmoides (Bramlette and Sullivan, 1961) Romein, 1979Pontosphaera spp. Lohmann, 1902Prinsius bisulcus (Stradner, 1963) Hay and Mohler, 1967Prinsius dimorphosus (Perch-Nielsen, 1969) Perch-Nielsen, 1977Prinsius martinii (Perch-Nielsen, 1969) Haq, 1971Prinsius spp. Pseudotriquetrorhabdulus inversus (Bukry and Bramlette, 1969) Wise in Wise and

Constans, 1976Reticulofenestra daviesii Haq, 1971Reticulofenestra dictyoda (Deflandre in Deflandre and Fert, 1954) Stradner in

Stradner and Edwards, 1968Reticulofenestra onusta (Perch-Nielsen) Wise, 1983Reticulofenestra samodurovi (Hay, Mohler, and Wade, 1966) Roth, 1970Reticulofenestra spp. Reticulofenestra umbilica (Levin, 1965) Martini and Ritzkowski, 1968Sphenolithus anarrhopus Bukry and Bramlette, 1969Sphenolithus editus Perch-Nielsen in Perch-Nielsen et al., 1978Sphenolithus moriformis (Bronnimann and Stradner, 1960) Bramlette and Wil-

coxon, 1967Sphenolithus primus Perch-Nielsen, 1971Sphenolithus radians Deflandre in Grasse, 1952

1A 1B 2A

1C 1D 2B

3A 3B 4

P5. Cores 183-1135A-20R, 22R, and 25R, p. 57.

1A 1B 1C

2A 3A 4A

2B 3B 4B

P6. Sample 183-1138A-52R-3, 4 cm, p. 58.

1A 1B 1C

2A 2B 2C

3A 3B 4

P7. Sample 183-1138A-52R-3, 140–141 cm, p. 59.

Page 24: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 24

Sphenolithus spiniger Bukry, 1971Sphenolithus spp. Thoracosphaera operculata Bramlette and Martini, 1964Thoracosphaera spp. Toweius? crassus (Bramlette and Sullivan, 1961) Perch-Nielsen, 1984Toweius callosus Perch-Nielsen, 1971Toweius craticulus Hay and Mohler, 1967Toweius eminens (Bramlette and Sullivan, 1961) Romein, 1979Toweius magnacrassus (Bukry, 1971) Romein, 1979Toweius pertusus (Sullivan, 1965) Romein, 1979Toweius spp. Toweius tovae Perch-Nielsen, 1971Tribrachiatus bramlettei (Bronnimann and Stradner, 1960) Proto Decima et al.,

1975Tribrachiatus orthostylus Shamrai, 1963Zygodiscus spp. Zygrhablithus bijugatus (Deflandre in Deflandre and Fert, 1954) Deflandre, 1959

Cretaceous Taxa

Acuturris scotus (Risatti, 1973) Wind and Wise in Wise and Wind, 1977Ahmuellerella octoradiata (Gorka, 1957) Reinhardt, 1964Arkhangelskiella cymbiformis Vekshina, 1959Biscutum dissimilis Wind and Wise in Wise and Wind, 1977Biscutum spp. Chiastozygus amphipods (Bramlette and Martini, 1964) Gartner, 1968Chiastozygus garrisonii Bukry, 1969Chiastozygus spp.Cribrocentrum daniae Perch-Nielsen, 1973Cribrosphaerella ehrenbergii (Arkhangelsky) Deflandre in Piveteau, 1952Eiffellithus spp.Eiffellithus turriseiffelii (Deflandre in Deflandre and Fert) Reinhardt, 1965Gartnerago spp.Kamptnerius magnificus Deflandre, 1959Lucianorhabdus cayeuxii Deflandre, 1959Microrhabdulus decoratus Deflandre, 1959Micula decussata Vekshina, 1959Misceomarginatus pleniporus Wind and Wise in Wise and Wind, 1977Monomarginatus quaternarius Wind and Wise in Wise and Wind, 1977Nephrolithus frequens Gorka, 1957Nephrolithus miniporus Gorka, 1957Nephrolithus spp. Prediscosphaera cretacea (Arkhangelsky) Gartner, 1968Prediscosphaera spinosa (Bramlette and Martini, 1964) Gartner, 1968Prediscosphaera spp. Prediscosphaera stoveri (Perch-Nielsen) Shafik and Stradner, 1971Reinhardtites anthophorus (Deflandre) Perch-Nielsen, 1968Retacapsa crenulata Roth, 1970Watznaueria barnesae (Black) Perch-Nielsen, 1968Zygodiscus compactus Bukry, 1969Zygodiscus spiralis Bramlette and Martini, 1964

Page 25: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 25

Figure F1. Bathymetry of the Kerguelen Plateau. Leg 119, 120, and 183 drill sites that recovered igneousbasement are indicated by solid stars; sites that bottomed in sediment are shown as open stars. Contourinterval = 500 m (after Shipboard Scientific Party, 2000a, fig. F3).

60°E 65° 70° 75° 80° 85°65°

60°

55°

50°

45°S

1137

1138

11361135

736

737

738

744

745

746

747

748749

750751

KerguelenIsles

Heard IslandMcDonald

Islands20

00

3000

1000

2000

3000

4000

3000

2000

3000 40

00

2000

3000

4000

4000

Elan Bank

BankBanzare

KohlerSeamount

Skiff Bank

LabuanBasin

EnderbyBasin

Princess Elizabeth Trough

Australia-Antarctic Basin

William's Ridge

SKP R

ift Zone

59 Rift

77 G

rab

en

Raggatt Basin

Kerguelen-Heard

1139

1140

ODP Leg 183 Sites1135, 1136, and 1138

Leg 119 & 120 Sitesthat recovered Paleogene sediments

Page 26: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 26

Figure F2. Emplacement and evolution of the Kerguelen Plateau from 130 Ma to present (after ShipboardScientific Party, 2000a, fig. F2). CKP = central Kerguelen Plateau, BR = Broken Ridge, IND = India, ANT =Antarctica, AUS = Australia, BB = Bunbury Basalt, NER = Ninetyeast Ridge, RAJ = Rajmahal volcanic rocks,SKP = southern Kerguelen Plateau, NKP = northern Kerguelen Plateau, KA = Kerguelen archipelago.

60 110

BR

CKP

NER

NKP

KA

L

LSKP

ANT

L

130.9 Ma(M10 [o])

118.7 Ma(M0 [y])

110 Ma

100 Ma23.4 Ma

(C6cn.1n [y])

40.1 Ma(C18n.2n [o])

63.6 Ma(C28n [o])

83 Ma(C34n [y])

INDAU

S

BB

RAJ

-70

-60

-50

-40

-30

6070 80 90 100

110

60 110-70

-60

-50

-30

6070 80 90 100

110

60 110-70

-60

-50

-30

6070 80 90 100

110

60 110-70

-60

-50

-30

6070 80 90 100

110

60 110-70

-60

-50

-30

6070 80 90 100

110

60 110-70

-60

-50

-30

6070 80 90 100

110

60 110-70

-60

-50

-30

6070 80 90 100

110

-40

-40

-40

-40

-40

-40

60 110-70

-60

-50

-30

6070 80 90 100

110

-40

Page 27: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 27

Figure F3. Paleocene–Eocene nannofossil biostratigraphic scheme of Okada and Bukry (1980) and thescheme of Wei and Pospichal (1991). Datum levels used in this report are in bold face (after Shipboard Sci-entific Party, 2000b, fig. F4). (Continued on next page.)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Bar

toni

anP

riabo

nian

Lute

tian

late

mid

dle

Eoc

ene

late

Olig

ocen

eea

rly

Cha

ttian

Rup

elia

nA

quita

nian

early

Burdigalian

Mio

cene

C6r

C6An 12n

C6AAn

C6AAr12

12nC6Bn

C6Br

C6Cn123n

C6CrC7n

12n

C7ArC7An

C8n1

2n

C8r

C9n

C9rC10n

C10r

1

C11n 12n

C11rC12n

C12r

C13n

C13r

C15nC15r

C16n1

2n

C18n1

2n

C17r

C17n1

3n

C16r

C20r

C20n

C19r

C19n

C18r

CN1

c

b

CP19

a

CP18

CP17

c

CP16 a

b

CP15

b

a

CP14

CP13 c

b

a - b

CN1

Reticulofenestra bisecta

Chiasmolithusaltus

Reticulofenestradaviesii

Blackitesspinosus

Reticulofenestraoamaruensis

a

b

b

aIsthmolithusrecurvus

CP15 a

CP14

b

a

CP13

2

2n

C7r

3r

C6Ar

Leg183

Epoch Age Biostratigraphicdatum

Nannofossil

Age

(M

a)

Lowlatitude

Chron Polarity

T Dictyococcites bisectus (23.9; 23.8-24.2)

T Chiasmolithus altus (26.1; 25.8-26.6)

T Reticulofenestra umbilicus(32.3; 30.5-31.3)

T Discoaster saipanensis (34.2; 35.3)

T Cribrocentrum reticulatum (35.0)

B Isthmolithus recurvus (36.0; 35.7-36.3)

B Chiasmolithus oamaruensis (37.0) T Chiasmolithus grandis (37.1)

T Chiasmolithus solitus (40.4; 37.9)

B Reticulofenestra bisecta (38.0)

B Cribrocentrum reticulatum (42.0)

T Nannotetrina fulgens (43.1)

B Reticulofenestra umblicus (43.7)

T Chiasmolithus gigas (44.5)

B Cyclicargolithus abisectus (30.5-31.3)

T Reticulofenestra oamaruensis (33.6)

T Isthmolithus recurvus (32.0-32.3)

B Reticulofenestra oamaruensis (35.4)

T Coccolithus formosus (32.8)

T Acme Clausicoccus fenestratus (33.3)

Page 28: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 28

Figure F3 (continued).

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Ypr

esia

n

Eoc

ene

mid

dle

Lute

tian

Bar

toni

anT

hane

tian

Dan

ian

Sel

andi

an

late

early

Pal

eoce

neea

rly

C20r

C20n

C19r

C19n

C18r

C21n

C21r

C22n

C22r

C23n1

2n

C23r

C24n1

3n

C24r

C25n

C25r

C26n

C26r

C27n

C27r

C28n

C28r

C29nC29r

H. teuriensisa

bCP1

CP2

CP3

CP4

CP5

CP6

CP8

CP7

CP10

CP12

CP13

a

b

c

b

aCP14

CP9

CP11

b

a

a

b

CP14 a

Ess

entia

lly th

e sa

me

as th

e lo

w-la

titud

e na

nnof

ossi

l zon

atio

n (s

ee a

djac

ent c

olum

n)

NA1NA2

NA3Chiasmolithus

tenuis

NA4Chiasmolithus

danicus

NA5Prinsius martinii

NA6Chiasmolithus

bidens

B.s.

2

Leg183

Epoch Age Biostratigraphicdatum

NannofossilA

ge (

Ma)

Lowlatitude

Chron Polarity

B Cruciplacolithus tenuis (64.5)B Chiasmolithus danicus (63.8)

B Cruciplacolithus primus (64.8)

T Fasciculithus tympaniformis (55.3)B Rhomboaster bramlettei (55.16)

B Discoaster multiradiatus (56.2)

B Discoaster okadai (56.8) B Discoaster nobilis (56.9)B Heliolithus riedelii (57.3) B Discoaster mohleri (57.5)

B Chiasmolithus consuetus (59.7) B Fasciculithus tympaniformis (59.7) B Fasciculithus ulii (59.9)B Sphenolithus primus (60.6)

B Chiasmolithus bidens (60.7)

T Ericsonia robusta (54.0)

B Tribrachiatus orthostylus (53.6)

B Discoaster lodoensis (52.8)

T Tribrachiatus orthostylus (50.6)

B Discoaster sublodoensis (49.7)

B Blackites inflatus (48.5)

B Nannotetrina fulgens (47.3)

T Chiasmolithus gigas (44.5)

B Reticulofenestra umbilicus (43.7)

B Chiasmolithus gigas (46.1)

T Chiasmolithus solitus (40.4; 37.9)

B Reticulofenestra reticulata (42.0)

T Nannotetrina fulgens (43.1)

B Coccolithus crassus (51.5)

B Discoaster diastypus (55.0)

T Tribrachiatus contortus (53.6)

B Sphenolithus anarrhopus (58.4)B Heliolithus kleinpellii (58.4)

B Tribrachiatus contortus (54.3)

T Cretaceous spp. (65.0), B Biantholithus sparsus (65.0)

B Hornibrookina (64.83)

B Prinsius martinii (62.4)

T Hornibrookina teuriensis (~58.7)

Page 29: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 29

Figure F4. Site 1135 core summary (from Shipboard Scientific Party, 2000a, fig. F18).

Lithologicdescription

Diatom ooze withsand and pebbles

Whiteforaminifer-bearingnannofossil ooze

50

100

150

200

250

300

350

400

450

500

Dep

th (

mbs

f)1135A

1R2R3R4R5R6R7R8R9R

10R11R12R13R14R15R16R17R18R19R20R21R22R23R24R25R26R27R28R29R30R31R32R33R34R35R36R37R38R39R40R41R42R43R44R45R46R47R48R49R50R51R52R53R54R55R

I l. Plio.

IIA

IIB

early

to m

iddl

e E

ocen

ela

te P

aleo

cene

-

mid

dle

Eoc

ene

IIIA

Maa

stric

htia

n -

late

Pal

eoce

ne

IIIB

Cam

pani

an-

Maa

stric

htia

n

IIIC

~T

uron

ian-

Cam

pani

an

Whitenannofossil ooze

Whitenannofossil chalk

White to light graycalcareous chalk

Light greenish graycalcareous chalk

80 9075 85 95

Total carbonatecontents (wt%)

K/T boundary

Nannofossilooze

Diatomooze

Foraminiferooze

Chalk

Nannofossilchalk

Gravel

Cor

e

Rec

over

y

Graphiclithology

Unit Age

Page 30: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 30

Figure F5. Site 1136 core summary (from Shipboard Scientific Party, 2000a, fig. F19).

1R

2R

3R

4R

5R

6R

7R

8R

9R

10R

11R

12R

13R

14R

Dep

th (

mbs

f)1136A

Cor

e

Rec

over

y

Graphiclithology

Unit Age

100

15R

16R

17R

18R

19R

150

50

I

II

III

IV

V

Foraminifer-bearing nannofossil ooze

Very light brown calcareous ooze

Brown zeoliticcalcareous

volcanicclayey sand

early

to m

iddl

e E

ocen

em

iddl

eC

am-

pani

anm

iddl

e to

late

Alb

ian

Basalt

Lithologic description

Carbonate(wt%)

No Recovery ?

No recovery ?

?

VI

Sand andpebbles with

foraminifer-bearingnannofossil ooze

Nannofossilooze

Calcareousooze

Foraminiferooze

Clayeysand

Siltyclay

Basalt

Gravel

20 40 60 80

Page 31: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 31

Figure F6. Site 1138 core summary (from Shipboard Scientific Party, 2000a, fig. F28).

45R

46R

47R

48R

49R

50R

51R

52R

450IIIA

late

Maa

stric

htia

n to

late

Olig

ocen

e Foraminifer-bearing

nannofossilchalk

Rec

over

y

1138A

Cor

e

Graphiclithology

Unit Age Lithologicdescription

Rec

over

y1R2R3R

4R5R6R7R

8R9R

10R

11R

12R

13R

14R

Dep

th (

mbs

f)1138A

Cor

e

Graphiclithology

Unit Age

100

15R

16R

17R18R

19R

150

50

200

20R

21R

22R

23R24R

250

25R

26R27R28R

29R

30R31R

32R30033R34R

35R

350

36R37R

38R39R

40R41R

42R43R

44R

400

I

IIA

IIB

IIIA

late

Mio

cene

to la

te P

leis

toce

neea

rly to

late

Mio

cene

late

Maa

stric

htia

n to

late

Olig

ocen

ela

te M

ioce

ne

Lithologicdescription

Foraminifer-bearing

diatom clay and foraminifer-

bearingdiatom ooze

Foraminifer-bearing

nannofossil clay

Foraminifer-bearing

nannofossil ooze

Foraminifer-bearing

nannofossil chalk

Dep

th (

mbs

f)

Nannofossilooze

Foraminiferooze

Siltyclay

Nannofossilchalk

Diatomooze

Page 32: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 32

Figure F7. Core photo showing the position of the K/T boundary.

K/T Boundary

Page 33: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 33

Figure F8. δ13C stable isotopic analysis from ODP Site 1138 across the K/T boundary.

1.2 1.4 1.6 1.8 2 2.2 2.4

Color Change

δ13C (‰)

Dep

th (

mbs

f)

NA2

NA1

NA3C

reta

ceou

s

488.5

489.0

489.5

490.0

490.5

491.0

491.5

492.0

492.5

Page 34: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 34

Figure F9. Age-depth plot for Hole 1135A. Comparison slopes are given in the inset box. Pairs of opposedtriangles indicate the error bars each nannofossil datum used (see Table T4, p. 47).

40 45 50 55 60 65

Dep

th (

mbs

f)

Age (Ma)

5

1020

m/m.y.

50

100

150

200

250

300

Page 35: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 35

Figure F10. Age-depth plot for Hole 1136A. Comparison slopes are given in the inset box. Pairs of opposedtriangles indicate error bars for each nannofossil datum used (see Table T5, p. 49).

42 44 46 48 50 52 54

Dep

th (

mbs

f)

Age (Ma)

2.5

510

m/m.y.

0

10

20

30

40

50

60

Page 36: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 36

Figure F11. Age-depth plot for Hole 1138A. Comparison slopes are given in the inset box. Pairs of opposedtriangles indicate the error bar for each nannofossil datum used (see Table T6, p. 50).

35 40 45 50 55 60 65

Dep

th (

mbs

f)

Age (Ma)

m/m.y.

4

2

8

340

360

380

400

420

440

460

480

500

Page 37: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 37

Figure F12. Graphic correlation of ODP Sites 1135, 1136, and 1138.

1138A

350

36R

37R

38R

39R

40R

41R

42R

43R

44R

400

45R

46R

47R

48R

49R

50R

51R

52R

450

Pal

eoce

neea

rly to

late

Eoc

ene

495

CP

13C

P14

CP

15C

P12

CP

9

CP8

NA1NA2

NA3NA4

NA5

CP4CP5CP6

2R

3R

4R

5R

6R

7R

8R

1136A

Cor

e

Rec

over

y50

1R

25

CP14

CP

13C

P12

CP

10/1

1

CP9

Dep

th (

mbs

f)

Cor

e

Rec

over

y

1135A

Age

1R2R3R4R5R6R7R8R9R

10R11R12R13R14R15R16R17R18R19R20R21R22R23R24R25R26R

l. Plio.ea

rly to

mid

dle

Eoc

ene

late

Pal

eoce

ne -

mid

dle

Eoc

ene

CP

14C

P12

/13

CP

10/1

1

CP9 CP6

CP5

CP4

Zone

50

100

150

200CP8

Age Zone

early

to m

iddl

e E

ocen

e

NA6

Cor

e

Rec

over

y

Age Zone

Page 38: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 38

Figure F13. Summary of various carbon isotope curves from around the world compared to Site 1138, (afterPospichal 1996a; Keller and Lindinger, 1989; Shackleton and Hall, 1984; Zachos et al. 1992; Stott and Ken-nett, 1990). CKP = central Kerguelen Plateau, KP = Kerguelen Plateau, PDB = Peedee belmenite. (Continuedon next page.)

1.2 1.4 1.6 1.8 2 2.2 2.4

Color Change

δ13C (‰)

Dep

th (

mbs

f) NA2

NA1

NA3

Cre

tace

ous

488.5

489.5

490.5

491.5

492.5

1 2 3 0.0 1.0-0.5 0.5

δ13CPDB

(‰) δ18OPDB

(‰)

Site 750 (KP)

1 2 3 -0.5 0.54 0.0

δ13CPDB

(‰) δ18OPDB

(‰)

Site 527 (Walvis Ridge)

2 3

δ13C (‰)

Site 690 (Maud Rise)

Site 1138 (CKP)

750A

Age

Pla

nk. z

one

NP

zon

e

Dep

th (

mbs

f)

Age

Zon

e

Dep

th (

mbs

f)

15R

-115

R-2

15R

-316

-1

Dan

ian

Maa

s.

?

P1a

A.

may

aroe

nsis

NP

-3N

P-2

NP

1N

.fr

eque

ns

No record No record

Whole rock

Reworkedfrom Maas.

Dan

ian

Maa

stric

htia

nM

. prin

sii

NP

- 2

NP

-1 Lowproductivity

Cooling

Dan

ian

Maa

stric

htia

nA

geN

anno

foss

ilzo

ne

Dep

th (

mbs

f)

P. s

tove

ri ac

me

NP

-2N

A-3

NP

-1N

A-2

NA-1

246.8

247.0

247.2

247.4

247.6

247.8

248.0

248.2

248.4

248.6

248.8

346

347

349

350

350.3356

356.4

348

276

277

278

279

280

281

282

283

Page 39: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 39

Figure F13 (continued).

0 1 2 0.0 1.0-0.5 0.5

δ13CPDB

(‰) δ18OPDB

(‰)

Agost, Spain

-1 0 1 -3 -1-4 -2

δ13CPDB

(‰) δ18OPDB

(‰)

El Kef, Tunisia

Age

Zon

e

Ltho

logy

Dep

th (

cm)

Age

Zon

e

Sam

ple

dept

h (m

)

Lith

olog

y

Dan

ian

Maa

stric

htia

nN

P1

M. p

rinsi

i

Dan

ian

Maa

stric

htia

n

NP

1M

. prin

sii

N. r

omei

niiN

. par

vulu

mC

. ulti

mus

F. p

etal

osa 9.5

8.5

7.5

6.5

5.5

4.5

3.5

2.5

1.5

0.5

-1.5

-2.5

-3.5

-0.5

7

5

3

1

-1

-3

-5

-7

-9

Page 40: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 40

Figure F14. Biogeography of genus Hornibrookina in the early Paleocene. (Note: position of Site 752 is at itsapproximate paleolatitude for this time).

˚

˚

˚

1137

1138

11361135

736

737

738

744

745

746

747

748749

750751

KerguelenIsles

Heard IslandMcDonaldIslands

2000

3000

1000

2000

300040

00

3000

2000

3000 40

00

2000

3000

4000

4000

Elan Bank

BankBanzare

KohlerSeamount

Skiff Bank

LabuanBasin

EnderbyBasin

Princess Elizabeth Trough

Australia-Antarctic Basin

William's Ridge

SKP R

ift Zone

59 Rift

77 G

rab

en

Raggatt Basin

Kerguelen-Heard

1139

1140

Abundant

Common to Few

Rare

752

60°E 65° 70° 75° 80° 85°65°

60°

55°

50°

45°S

ODP Leg 183 Sites1135, 1136, and 1138

Leg 119 & 120 Sitesthat recovered Paleogene sediments

Page 41: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 41

Table T1. Stratigraphic distribution of calcareous nannofossil taxa, Hole 1135A. (This table is available inan oversized format.)

Page 42: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. A

RN

EY A

ND

S.W. W

ISE JR.

PA

LE

OC

EN

E–EO

CE

NE N

AN

NO

FOSSIL B

IOST

RA

TIG

RA

PH

Y4

2

Table t three pages.)

Age Dis

coas

ter

spp

.

Dis

coas

ter

spp

. (5

ray)

Dis

coas

ter

spp

. (6

ray)

Dis

coas

ter

subl

odoe

nsis

Ellip

solit

hus

dist

ichu

s

Ellip

solit

hus

lajo

llaen

sis

Ellip

solit

hus

spp

.

Hel

icos

phae

ra s

pp.

Mar

kaliu

s in

vers

us

Nan

note

trin

a fu

lgen

s

Neo

cocc

olith

es d

ubiu

s

middleEocene

F F AF R A

F R AF F R R AF F R AF AF A

R AF A

R AR R R AR R AR AR R AF R F F AF R F AF R F AF F AF F F F F AF F R R R AF F R AF F R AF F AC F C R R AF F F CF F F A

early Eocene

F F AF F F AF F CC F CF F CF F R C

C F AC R F F CF F F R R CF R C AF R C R CC F A R R CF R F R R CC F R C

T2. Stratigraphic distribution of calcareous nannofossil taxa, Hole 1136A. (See table notes. Continued on nex

Zonation (Okada and Bukry, 1980/

Wei and Pospichal,

1991)Core, section, interval (cm)

Depth (mbsf) A

bun

dan

ce

Pres

erva

tion

Amith

alith

ina

sigm

undi

i

Blac

kite

s sp

inos

us

Braa

rudo

spha

era

bige

low

ii

Chi

asm

olith

us b

iden

s

Chi

asm

olith

us c

onsu

etus

Chi

asm

olith

us e

ogra

ndis

Chi

asm

olith

us e

xpan

sus

Chi

asm

olith

us g

igas

Chi

asm

olith

us g

rand

is

Chi

asm

olith

us s

olitu

s

Chi

asm

olith

us s

pp

.

Chi

phra

gmal

ithus

cal

athu

s

Coc

colit

hus

form

osa

Coc

colit

hus

pela

gicu

s

Coc

colit

hus

spp

.

Cor

onoc

yclu

s pr

ioni

on

Cyc

licar

golit

hus

lum

iniis

Dis

coas

ter

barb

adie

nsis

Dis

coas

ter

bino

dosu

s

Dis

coas

ter

cruc

iform

is

Dis

coas

ter

defla

ndre

i

Dis

coas

ter

dias

typu

s

Dis

coas

ter

kuep

peri

Dis

coas

ter

lodo

ensi

s

Dis

coas

ter

mul

tirad

iatu

s

Dis

coas

ter

nona

radi

atus

Dis

coas

ter

prae

bifa

x

Dis

coas

ter

robu

stus

Dis

coas

ter

saip

anen

sis

183-1136A-CP14 2R-1, 58–59 5.28 A M F F F C C A F

CP13b

2R-2, 25–26 6.45 A M C F C C A F F R2R-6, 35–36 12.55 A M C R C C C A F F R2R-6, 100–101 13.2 A M F F F C A A F R R2R-7, 26–27 13.96 A M F R C A A C F R R R2R-CC 14.28 A M F C A F A C3R-1, 25–26 14.65 A M F C A C A C F3R-1, 100–101 15.4 A M C A A F A F3R-2, 25–26 16.15 A M C F A A F A C F R3R-2, 100–101 16.9 A M C R A A A C

CP13a

3R-3, 100–101 18.4 A M F F C R A A F A C F R R R3R-4, 25–26 19.15 A M F C A A F A C R3R-4, 100–101 19.9 A M F C A A F A C F3R-5, 25–26 20.65 A M C A A F A C3R-5, 100–101 21.40 A M C A A F A C R F3R-6, 25–26 22.15 A M C A A F A C R R3R-6, 100–101 22.9 A M C A A A C R F R3R-CC 23.14 A M F A A R A C R R R4R-1, 25–27 24.15 A M F F F C A R A C F C R R4R-1, 100–101 24.9 A M C R A A C A C F4R-2, 25–27 25.65 A M C R A A F A C F R4R-2, 100–101 26.4 A M F F A A A C R F R F

CP12

4R-3, 25–27 27.15 A M F F A A A C F F4R-CC 27.67 A M F F A A F F A F F C C C C5R-1, 100–101 34.4 A M F F F C A A C A C C F C F5R-3, 25–26 36.65 A M F C C A C F A C F C F C5R-3, 100–101 37.40 A M F F A C A C R C R F5R-4, 25–26 38.15 A M R F A A A C R C C F

CP10/CP11

5R-4, 100–101 38.90 A M F F A A A C C C F5R-5, 25–26 39.65 A M F F A A C A C C C R R5R-CC 39.99 A M R R A A F A C C C R6R-1, 25–26 43.05 A M F R A A F A C C C F6R-1, 100–101 43.80 A M C A F A C F A R6R-2, 33–034 44.63 A M C F C A F A C R F C F6R-2, 115–116 45.45 A M C F C A A A C A F6R-3, 25–26 46.05 A M C F C A A A R F A F6R-3, 100–101 46.80 A M C F R C A A C R F C F6R-4, 25–26 47.55 A M F F A A A C C F F6R-4, 100–101 48.30 A M F A F F C C A C F R F F R R6R-5, 25–026 49.05 A M A F F A A C F C A F

Page 43: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. A

RN

EY A

ND

S.W. W

ISE JR.

PA

LE

OC

EN

E–EO

CE

NE N

AN

NO

FOSSIL B

IOST

RA

TIG

RA

PH

Y4

3

Table T2 (continued).

Age

Zonation (Okada and Bukry, 1980/

Wei and Pospichal,

1991)Core, section, interval (cm)

Depth (mbsf) A

bun

dan

ce

Pres

erva

tion

Neo

cocc

olith

es m

inut

us

Pont

osph

aera

sp

p.

Pseu

dotr

ique

tro

inve

rsus

Retic

ulof

enes

tra

onus

ta

Retic

ulof

enes

tra

sam

odur

ovi

Retic

ulof

enes

tra

spp

.

Retic

ulof

enes

tra

umbi

lica

Rew

orke

d C

reta

ceou

s

Sphe

nolit

hus

mor

iform

is

Sphe

nolit

hus

radi

ans

Thor

acos

phae

ra s

pp

.

Tow

eius

? cr

assu

s

Tow

eius

mag

nacr

assu

s

Tow

eius

sp

p.

Trib

rach

iatu

s or

thos

tylu

s

Zygr

ablit

hus

biju

gatu

s

middle Eocene

183-1136A-CP14 2R-1, 58–59 5.28 A M C F F A F F C

CP13b

2R-2, 25–26 6.45 A M F F F A F F C2R-6, 35–36 12.55 A M F C C A C C2R-6, 100–101 13.2 A M F C F A A2R-7, 26–27 13.96 A M F C A F F A2R-CC 14.28 A M F F C A R F A3R-1, 25–26 14.65 A M C F C A F A3R-1, 100–101 15.4 A M C R A A F C3R-2, 25–26 16.15 A M C A C A3R-2, 100–101 16.9 A M C C A F R C

CP13a

3R-3, 100–101 18.4 A M C F A F A3R-4, 25–26 19.15 A M C F A F A3R-4, 100–101 19.9 A M C F F A C A3R-5, 25–26 20.65 A M F F A C A3R-5, 100–101 21.40 A M F C A C A3R-6, 25–26 22.15 A M C A F A

early Eocene

3R-6, 100–101 22.9 A M F C C A A3R-CC 23.14 A M F C C A F A4R-1, 25–27 24.15 A M C R C F A C F A4R-1, 100–101 24.9 A M F C F C F A4R-2, 25–27 25.65 A M F F F C F A4R-2, 100–101 26.4 A M F F C A

CP12

4R-3, 25–27 27.15 A M F C R A4R-CC 27.67 A M F C A F R C5R-1, 100–101 34.4 A M F F A C C5R-3, 25–26 36.65 A M C C C C F F F F A5R-3, 100–101 37.40 A M F F C C R F F A5R-4, 25–26 38.15 A M F F C C R F F A

CP10/CP11

5R-4, 100–101 38.90 A M F C F F F F A5R-5, 25–26 39.65 A M F R A F F C C A5R-CC 39.99 A M F C C F F F A6R-1, 25–26 43.05 A M F C A C F F A6R-1, 100–101 43.80 A M C F A C C F C C R A6R-2, 33–034 44.63 A M F C C C F A C6R-2, 115–116 45.45 A M F F A C F F C A6R-3, 25–26 46.05 A M C F A C F C A6R-3, 100–101 46.80 A M F C C F C A6R-4, 25–26 47.55 A M F C F F C C6R-4, 100–101 48.30 A M C R F C A6R-5, 25–026 49.05 A M C C R R A

Page 44: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. A

RN

EY A

ND

S.W. W

ISE JR.

PA

LE

OC

EN

E–EO

CE

NE N

AN

NO

FOSSIL B

IOST

RA

TIG

RA

PH

Y4

4

Table

Notes: P abundant, C = common, F = few, R = rare, B = barren.

Age Chi

asm

olith

us e

ogra

ndis

Chi

asm

olith

us e

xpan

sus

Chi

asm

olith

us g

igas

Chi

asm

olith

us g

rand

is

Chi

asm

olith

us s

olitu

s

Chi

asm

olith

us s

pp

.

Chi

phra

gmal

ithus

cal

athu

s

Coc

colit

hus

form

osa

Coc

colit

hus

pela

gicu

s

Coc

colit

hus

spp

.

Cor

onoc

yclu

s pr

ioni

on

Cyc

licar

golit

hus

lum

iniis

Dis

coas

ter

barb

adie

nsis

Dis

coas

ter

bino

dosu

s

Dis

coas

ter

cruc

iform

is

Dis

coas

ter

defla

ndre

i

Dis

coas

ter

dias

typu

s

Dis

coas

ter

kuep

peri

Dis

coas

ter

lodo

ensi

s

Dis

coas

ter

mul

tirad

iatu

s

Dis

coas

ter

nona

radi

atus

Dis

coas

ter

prae

bifa

x

Dis

coas

ter

robu

stus

Dis

coas

ter

saip

anen

sis

Dis

coas

ter

spp

.

Dis

coas

ter

spp

. (5

ray)

Dis

coas

ter

spp

. (6

ray)

Dis

coas

ter

subl

oden

sis

Ellip

solit

hus

dist

ichu

s

Ellip

solit

hus

lajo

llaen

sis

Ellip

solit

hus

spp

.

Hel

icos

phae

ra s

pp.

Mar

kaliu

s in

vers

us

Nan

note

trin

a fu

lgen

s

Neo

cocc

olith

es d

ubiu

s

early Eocene

F A A C F C C F F R F R CC A F A A F C C F C C R C

F F A A C C C F F C R CF R A A C C C R C R FF A A A C C C F R FF F A A C C C C R F F C

F F F C A A A R C C CF F F A A A R C R C

T2 (continued).

reservation: M = moderate. Abundance: V = very abundant, A =

Zonation (Okada and Bukry, 1980/

Wei and Pospichal,

1991)Core, section, interval (cm)

Depth (mbsf) A

bun

dan

ce

Pres

erva

tion

Amith

alith

ina

sigm

undi

i

Blac

kite

s sp

inos

us

Braa

rudo

spha

era

bige

low

ii

Chi

asm

olith

us b

iden

s

Chi

asm

olith

us c

onsu

etus

CP10/CP11

6R-5, 100–101 49.80 A M C6R-6, 100–101 51.30 A M C F6R-7, 25–026 52.05 A M F C6R-CC 52.26 A M C F

CP9b

7R-1, 25–026 52.35 A M C F7R-1, 100–101 53.10 A M C F7R-2, 25–26 53.85 A M C C7R-2, 100–101 54.60 A M C

Page 45: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. A

RN

EY A

ND

S.W. W

ISE JR.

PA

LE

OC

EN

E–EO

CE

NE N

AN

NO

FOSSIL B

IOST

RA

TIG

RA

PH

Y4

5

Table T2 (continued).

Age

Zonation (Okada and Bukry, 1980/

Wei and Pospichal,

1991)Core, section, interval (cm)

Depth (mbsf) A

bun

dan

ce

Pres

erva

tion

Neo

cocc

olith

es m

inut

us

Pont

osph

aera

sp

p.

Pseu

dotr

ique

tro

inve

rsus

Retic

ulof

enes

tra

onus

ta

Retic

ulof

enes

tra

sam

odur

ovi

Retic

ulof

enes

tra

spp

.

Retic

ulof

enes

tra

umbi

lica

Rew

orke

d C

reta

ceou

s

Sphe

nolit

hus

mor

iform

is

Sphe

nolit

hus

radi

ans

Thor

acos

phae

ra s

pp

.

Tow

eius

? cr

assu

s

Tow

eius

mag

nacr

assu

s

Tow

eius

sp

p.

Trib

rach

iatu

s or

thos

tylu

s

Zygr

ablit

hus

biju

gatu

s

early Eocene

CP10/CP11

6R-5, 100–101 49.80 A M F A R R A6R-6, 100–101 51.30 A M F C C C F F A6R-7, 25–026 52.05 A M C C C F R A6R-CC 52.26 A M F C F C R A

CP9b

7R-1, 25–026 52.35 A M C C A C F A7R-1, 100–101 53.10 A M C C F A C F A7R-2, 25–26 53.85 A M C F C F A7R-2, 100–101 54.60 A M F F F F C F A

Page 46: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 46

Table T3. Stratigraphic distribution of calcareous nannofossil taxa, Hole 1138A. (This table is available inan oversized format.)

Page 47: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. A

RN

EY A

ND

S.W. W

ISE JR.

PA

LE

OC

EN

E–EO

CE

NE N

AN

NO

FOSSIL B

IOST

RA

TIG

RA

PH

Y4

7

Table next page.)

Notes: P

Age Gar

tner

ago

sp.

Kam

ptne

rius

mag

nific

us

Luci

anor

habd

us c

ayeu

xii

Mic

rorh

abdu

lus

deco

ratu

s

Mic

ula

decu

ssat

a

Mis

ceom

argi

natu

s pl

enip

orus

Mon

omar

gina

tus

quat

erna

rius

Nep

hrol

ithus

min

ipor

us

Nep

hrol

ithus

freq

uens

Nep

hrol

ithus

sp

.

Pred

isco

spha

era

cret

acea

Pred

isco

spha

era

spp

.

Pred

isco

spha

era

spin

osa

Pred

isco

spha

era

stov

eri

Reta

caps

a cr

enul

ata

Rein

hard

tites

ant

hoph

orus

Wat

znau

eria

bar

nesa

e

Zyg

odis

cus

com

pact

us

Zyg

odis

cus

spira

lis

Bisc

utum

con

stan

s

Cyc

lage

losp

haer

a re

inha

rdtii

Lapi

deac

assi

s sp

.

earlyPaleoce

46 1 3 4 11 1 3 3 1 16 3 1 3 11 11 26 3 1 7 7 5 7 6 35 2 3 13

40 3 12 4 9 6 4 6 39 1 1 16 11 46 2 3 4 10 5 6 6 3 30 2 1 2 9 2

41 2 12 1 5 8 8 7 12 1 41 3 1 3 9 1 136 2 16 5 8 7 7 6 1 56 1 1 938 1 1 9 7 4 6 4 10 44 3 2 1 1164 2 3 25 1 3 3 2 9 12 21 2 1 544 1 4 17 4 8 7 6 6 39 6 1 13 145 4 10 5 10 6 11 9 38 1 1 6 351 2 2 21 3 6 8 9 3 1 65 1 1 13

52 3 2 29 2 1 6 7 14 8 47 4 2 121 39 3 2 32 4 7 15 12 5 58 2 2 1 7 11 46 4 2 33 2 6 11 6 12 45 1 2 14

48 5 47 8 9 24 23 1 9 2

lateMaastric

5 52 1 13 2 6 12 17 15 64 6 2 1 12 32 2 5 5 18 16 17 4 113 8 32 21 7 2 11 15 19 14 5 121 7 1 3 1

24 7 14 5 49 1 14 1 93 2 5 4

T4. Nannofossil counts across the K/T boundary, Site 1138. (Continued on

reservation: G = good, M = moderate, P = poor. Abundance: A = abundant.

Nannofossil zonation (Wei and Pospichal,

1991)Core, section, interval (cm)

Depth (mbsf) A

bund

ance

Pres

erva

tion

Acut

urris

sco

tus

Ahm

uelle

rella

oct

orad

iata

Arkh

ange

lski

ella

cym

bifo

rmis

Braa

rudo

spha

era

bige

low

ii

Bisc

utum

dis

sim

ilis

Bisc

utum

sp

p.

Chi

asto

zygu

s am

phip

ons

Chi

asto

zygu

s ga

rris

onii

Chi

asto

zygu

s sp

.

Crib

roce

ntru

m d

ania

e

Crib

rosp

haer

ella

ehr

enbe

rgii

Eiffe

llith

us t

urris

eiffe

lii

Eiffe

llith

us s

p.

ne

183-1138A-NA3 52R-3, 4–4 489.74 A M 23 1 6 4 4 1

NA252R-3, 10–011 489.80 A M 27 7 1 2 5 2 452R-3, 20R–22 489.91 A M 19 4 11 2 2 3 252R-3,29–29 489.99 A M 29 4 8 2 5 2

NA1

52R-3,40–42 490.11 A M 34 9 1 2 3 1 2 252R-3,50–51 490.20 A M 30 2 10 3 2 6 1 252R-3, 60–60 490.30 A M 43 3 20 2 452R-3,64–65 490.35 A M 59 19 3 1 452R-3,70–070 490.40 A M 41 1 17 1 1 152R-3, 75–76 490.45 A M 43 1 10 2 4 1 652R-3, 80–80 490.50 A M 21 2 13 1 2 1 1 452R-3, 90–91 490.6052R-3, 99–99 490.69 A M 53 1 17 1 3 2 152R-3, 109–109 490.79 A M 45 9 15 2 252R-3, 120–120 490.90 A M 57 2 15 1 1 2 452R-3, 127–127 490.97 A P 55 1 28 2 4 1

htian NC23

52R-3, 129–129 490.99 A P 28 50 2 4 2 352R-3, 130–131 491.01 A M 15 8 26 6 6 8 1 352R-3, 140–141 491.11 A G 13 10 21 1 8 6 6 2 152R-4, 10–11 491.31 A G 13 11 38 2 5 2 6 2

Page 48: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. A

RN

EY A

ND

S.W. W

ISE JR.

PA

LE

OC

EN

E–EO

CE

NE N

AN

NO

FOSSIL B

IOST

RA

TIG

RA

PH

Y4

8

Table T4 (continued).

Age

Nannofossil zonation (Wei and Pospichal,

1991)Core, section, interval (cm)

Depth (mbsf) A

bun

dan

ce

Pres

erva

tion

Mar

kaliu

s in

vers

us

Neo

crep

idol

ithus

coh

enii

Neo

crep

idol

ithus

cru

ciat

us

Neo

crep

idol

ithus

neo

cras

sus

Neo

crep

idol

ithus

spp

.

Plac

ozyg

us s

igm

oide

s

Thor

acos

phae

ra s

p.

Bian

thol

ithus

spa

rsus

Cru

cipl

acol

ithus

prim

us

Cru

cipl

acol

ithus

ten

uis

Cru

cipl

acol

ithus

sp

.

Hor

nibr

ooki

na s

p.

Neo

crep

idol

ithus

foss

us

Thor

acos

phae

ra o

perc

ulat

a

early Paleocene

183-1138A-NA3 52R-3, 4–4 489.74 A M 3 2 1 4 56 65 2 7 10 3 1

NA252R-3, 10–011 489.80 A M 4 2 4 42 70 13 1 2 152R-3, 20R–22 489.91 A M 10 1 1 1 51 43 6 2 152R-3,29–29 489.99 A M 7 2 3 48 46 1 6 1 1 4

NA1

52R-3,40–42 490.11 A M 7 2 1 34 40 6 152R-3,50–51 490.20 A M 7 2 1 35 39 4 152R-3, 60–60 490.30 A M 6 5 2 5 45 2452R-3,64–65 490.35 A M 2 6 1 3 14 28 852R-3,70–070 490.40 A M 2 3 3 3 5 37 27 2 152R-3, 75–76 490.45 A M 3 4 1 1 32 42 ?52R-3, 80–80 490.50 A M 2 7 3 2 22 33 ?52R-3, 90–91 490.6052R-3, 99–99 490.69 A M 1 5 1 10 1652R-3, 109–109 490.79 A M 3 4 3 1 9 12 1

lateMaastric

52R-3, 120–120 490.90 A M 2 2 1 9 1952R-3, 127–127 490.97 A P 6 3 1 2 6 15

htian NC23

52R-3, 129–129 490.99 A P 7 1 552R-3, 130–131 491.01 A M 152R-3, 140–141 491.11 A G 2 152R-4, 10–11 491.31 A G

Page 49: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 49

Table T5. Summary of bulk carbonate isotopic val-ues, Site 1138.

Note: * = bulk sample.

Core, section, interval (cm)

Depth (mbsf)

δ13C(‰)

183-1138A-52R-2, 30–31* 488.51 2.1652R-2, 50–51* 488.71 2.1552R-2, 70–71* 488.91 2.0052R-2, 81–82* 489.01 1.6752R-2, 127–128* 489.47 1.2252R-3, 10–11* 489.81 1.4252R-3, 20–22* 489.91 1.3052R-3, 25–27* 489.96 1.4252R-3, 40–42* 490.11 1.4352R-3, 50–51* 490.21 1.5252R-3, 64–65* 490.35 1.6552R-3, 75–76* 490.45 1.6652R-3, 90–91* 490.60 1.8252R-3, 100–102* 490.70 1.7752R-3 491.00 2.0152R-3, 140* 491.10 2.1352R-4, 10* 491.30 2.1152R-4, 25–27* 491.45 2.2252R-4, 35* 491.55 2.0352R-4, 55* 491.75 2.0452R-4, 75* 491.95 2.0752R-4, 95* 492.15 2.2952R-4, 100–102* 492.20 2.32

Page 50: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 50

Table T6. Calcareous nannofossil events, Site 1135.

Notes: Depth is the midpoint between two samples. FO = first occurrence,FCO = first common occurrence, LO = last occurrence.

Event

Core, section, interval (cm) Depth (mbsf)

Age (Ma)Top Bottom

183-1135A- 183-1135A-FCO Reticulofenestra umbilica 7R-6, 100–101 7R-7, 25–26 64.98 43.7FO Discoaster sublodoensis 17R-1, 25–26 17R-1, 100–101 152.22 49.7LO Tribrachiatus orthostylus 20R-CC 21R-1, 25–26 188.61 50.6FO Discoaster lodoensis 23R-CC 25R-1, 25–26 220.37 52.8FO Tribrachiatus orthostylus 25R-2, 100–101 25R-3, 25–26 231.38 53.6FO Tribrachiatus contortus 25R-2, 100–101 25R-3, 25–26 231.38 54.3FO Discoaster multiradiatus 26R-CC 27R-1, 25–26 244.73 56.2FO Discoaster mohleri 27R-1, 25–26 27R-1, 100–101 248.33 57.5FO Heliolithus kleinpellii 27R-1, 100–101 27R-2, 25–26 249.08 58.4FO Fasciculithus tympaniformis 27R-CC 28R-1, 25–26 254.95 59.7FO Chiasmolithus bidens 27R-CC 28R-1, 25–26 254.95 60.7FO Prinsius martinii 27R-CC 28R-1, 25–26 254.95 62.4FO Chiasmolithus danicus 28R-1, 25–26 28R-1, 100–101 257.93 63.8

Page 51: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 51

Table T7. Calcareous nannofossil events, Site 1136.

Notes: Depth is the midpoint between two samples. FO = First occur-rence, LO = Last occurrence.

Event

Core, section, interval (cm) Depth (mbsf)

Age (Ma)Top Bottom

183-1136A- 183-1136A-FO Reticulofenestra umbilica 2R-1, 58–59 2R-2, 25–26 5.87 43.7LO Chiasmolithus gigas 2R-2, 25–26 2R-1, 58–59 5.87 44.5FO Chiasmolithus gigas 3R-2, 100–101 3R-3, 100–101 17.65 46.1FO Nannotetrina fulgens 4R-2, 100–101 4R-3, 25–27 26.78 47.3FO Discoaster sublodoensis 5R-4, 25–26 5R-4, 100–101 38.53 49.7LO Tribrachiatus orthostylus 6R-1, 25–26 6R-1, 100–101 43.43 50.6FO Discoaster lodoensis 6R-CC 7R-1, 25–26 52.3 52.8

Page 52: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 52

Table T8. Calcareous nannofossil events, Site 1138.

Notes: Depth is the midpoint between two samples. FO = first occurrence, FCO =first common occurrence, LO = last occurrence.

Events

Core, section, interval (cm) Depth (mbsf)

Age (Ma)Top Bottom

183-1138A- 183-1138A-FO Isthmolithus recurvus 37R-2, 25–26 37R-2, 100–101 344.73 36FO Chiasmolithus oamaruensis 37R-3, 25–26 37R-3, 100–101 346.23 37LO Chiasmolithus grandis 37R-3, 100–101 37R-4, 25–026 346.98 37.1LO Chiasmolithus solitus 37R-6, 100–101 37R-CC 351.52 37.9FCO Reticulofenestra umbilica 43R-1, 100–101 43R-2, 25–26 401.78 43.7LO Chiasmolithus gigas 43R-4, 100–101 43R-5, 25–26 406.28 44.5FO Chiasmolithus gigas 45R-CC 46R-1, 25–26 425.82 46.1FO Nannotetrina fulgens 46R-1, 25–26 46R-CC 429.96 47.3FO Discoaster sublodoensis 47R-CC 48R-1, 25–26 445.38 49.7FO Tribrachiatus orthostylus 48R-1, 100–101 48R-2, 25–26 449.96 53.6FO Discoaster multiradiatus 49R-1, 25–26 49R-1, 100–101 458.83 56.2FO Discoaster mohleri 49R-1, 100–101 49R-2, 25–26 459.58 57.5FO Heliolithus kleinpellii 49R-2, 25–26 49R-2, 100–101 460.33 58.4FO Fasciculithus tympaniformis 49R-CC 50R-1, 25–26 464.72 59.7FO Chiasmolithus bidens 50R-CC 51R-1, 25–26 473.89 60.7FO Prinsius martinii 51R-1, 25–26 51R-1, 100–101 477.73 62.4FO Chiasmolithus danicus 51R-4, 100–101 52R-1, 3–3 484.29 63.8FO Cruciplacolithus tenuis 52R-3, 4–4 52R-3, 10–11 489.76 64.5FO Hornibrookina sp. 52R-3, 29–29 52R-3, 40–42 490.05 64.83

Page 53: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 53

Plate P1. Scale bar = 10 µm. 1A–1B. Discoaster multiradiatus (Sample 183-1135A-26R-2, 25–26 cm); (1A) dif-ferential interference contrast light (DIC), (1B) transmitted light. 1C. Sample 183-1135A-25R-1, 25–26(scanning electron microscope [SEM]). 2A, 2B. Fasciculithus magnicordis (Sample 183-1135A-26R-2, 25–26cm); (2A) DIC, (2B) crossed polarizers. 3A–3C. Neochiastozygus junctus (Sample 183-1135A-26R-2, 25–26 cm;(3A) DIC, (3B) transmitted light, (3C) crossed polarizers. 3D. Neochiastozygus junctus (Sample 183-1135A-25R-1, 25–26 cm; SEM).

1A

3B2A 3A

1B 1C

3D2B 3C

Page 54: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 54

Plate P2. Scale bar = 10 µm. 1A, 1B. Fasciculithus sp. (Sample 183-1135A-26R-2, 25–26 cm); (1A) crossedpolarizers, (1B) differential interference contrast light (DIC). 2A, 2B. Ellipsolithus distichus (Sample 183-1135A-26R-2, 25–26 cm); (1A) crossed polarizers, (1B) DIC. 3A, 3B. Fasciculithus tympaniformis (Sample 183-1135A-26R-2, 25–26 cm); (3A) crossed polarizers, (3B) DIC. 4A–4C. Toweius pertusus (Sample 183-1135A-26R-2, 25–26 cm); (4A) DIC, (4B) transmitted light, (4C) crossed polarizers. 5A, 5B. Neococcolithes dubius(Sample 183-1138A-44R-4, 25–26 cm); (5A) crossed polarizers, (5B) transmitted light. 5C. Neococcolithes du-bius (Sample 183-1135A-25R-1, 25–26 cm; scanning electron microscope).

1A

2B3A 3B

4A 4B 4C

1B 2A

5C5B5A

Page 55: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 55

Plate P3. Scale bar = 10 µm. 1A–1C. Chiasmolithus danicus (Sample 183-1135A-27R-3, 96–97 cm); (1A) dif-ferential interference contrast light (DIC), (1B) transmitted light, (1C) crossed polarizers. 2A–2C. Prinsiusbisulcus (Sample 183-1135A-27R-3, 96–97 cm); (2A) DIC, (2B) transmitted light, (2C) crossed polarizers.3A, 3B. Prinsius martinii (Sample 183-1135A-27R-3, 96–97 cm; crossed polarizers). 4. Nannotetrina fulgens(Sample 183-1138A-44R-4, 25–26 cm; transmitted light).

1A 1B 1C

2A 2B 2C

43A

3B

Page 56: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 56

Plate P4. Scale bar = 10 µm. 1A–AC. Chiasmolithus oamaruensis (Sample 183-1138A-37R-1, 25–26 cm); (1A)crossed polarizers, (1B) differential interference contrast light (DIC), (1C) transmitted light. 2A–2C. Isthm-olithus recurvus (Sample 183-1138A-37R-1, 25–26 cm); (2A) crossed polarizers, (2B) DIC, (2C) transmittedlight. 3A, 3B. Isthmolithus recurvus (side view) (Sample 183-1138A-37R-1, 25–26 cm); (3A) crossed polarizers,(3B) DIC. 4. Reticulofenestra umbilica (Sample 183-1138A-37R-1, 25–26; crossed polarizers). 5A–5C. Reticu-lofenestra bisecta (Sample 183-1138A-37R-1, 25–26 cm); (5A) crossed polarizers, (5B) DIC, (5C) transmittedlight.

1A 1B 1C

2A 2B 2C

3A 3B 4

5A 5B 5C

Page 57: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 57

Plate P5. Scale bar = 10 µm. 1A, 1B. Sphenolithus radians (Sample 183-1135A-22R-CC; crossed polarizers).1C, 1D. Sphenolithus radians (Sample 183-1135A-20R-4, 100–101 cm; crossed polarizers). 2A, 2B. Spheno-lithus moriformis (Sample 183-1135A-20R-4, 100–101 cm; crossed polarizers). 3A, 3B. Tribrachiatus orthosty-lus (Section 183-1135A-22R-CC; transmitted light). 4. Sphenolithus primus (Sample 183-1135A-25R-1, 25–26cm; scanning electron microscope).

1A 1B 2A

1C 1D 2B

3A 3B 4

Page 58: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 58

Plate P6. Scale bar = 10 µm. Sample 183-1138A-52R-3, 4 cm. 1A–1C. Biantholithus sparsus; (1A) crossed po-larizers, (1B) transmitted light, (1C) differential interference contrast light (DIC). 2A, 2B. Markalius inversus;(2A) crossed polarizers, (2B) DIC. 3A, 3B. Placozygus sigmoides; (3A) crossed polarizers, (3B) DIC.4A, 4B. Cruciplacolithus tenuis; (4A) crossed polarizers, (4B) DIC.

1A 1B 1C

2A 3A 4A

2B 3B 4B

Page 59: 4. PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY OF ODP …

J.E. ARNEY AND S.W. WISE JR.PALEOCENE–EOCENE NANNOFOSSIL BIOSTRATIGRAPHY 59

Plate P7. Scale bar = 10 µm. Sample 183-1138A-52R-3, 140–141 cm. 1A–1C. Kamptnerius magnificus; (1A)crossed polarizers, (1B) transmitted light, (1C) differential interference contrast light (DIC). 2A–2C. Neph-rolithus frequens; (2A) crossed polarizers, (2B) transmitted light, (2C) DIC. 3A, 3B. Arkhangelskiella cymbifor-mis; (3A) crossed polarizers, (3B) DIC. 4. Prediscosphaera cretacea (crossed polarizers).

1A 1B 1C

2A 2B 2C

3A 3B 4