4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

Embed Size (px)

Citation preview

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    1/110

    Topics

    1. Introduction

    2.Energy and thermodynamics

    3.Feeding and digestion

    4. Ionic gradient, electrical potential

    5.Electrical signals and neurons

    6.Cytoskeletons, motor proteins and muscle

    7.Heat production and body temperature

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    2/110

    Learning

    Doing (experience)

    Thinking

    (reflection)

    Information

    Changes in

    knowledge, skills,

    attitude, value,

    belief, etc.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    3/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    4/110

    Transport

    Diffusion

    http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.html

    http://highered.mcgraw-

    hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion

    _works.html

    Facilitated diffusionhttp://highered.mcgraw-

    hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitate

    d_diffusion_works.html

    Transport across cell membrane (active transport)

    http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/D/Diffusion.html

    Active transport animation

    http://www.northland.cc.mn.us/biology/BIOLOGY1111/animations/active1.swf

    http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://users.rcn.com/jkimball.ma.ultranet/BiologyPages/D/Diffusion.htmlhttp://www.northland.cc.mn.us/biology/BIOLOGY1111/animations/active1.swfhttp://www.northland.cc.mn.us/biology/BIOLOGY1111/animations/active1.swfhttp://users.rcn.com/jkimball.ma.ultranet/BiologyPages/D/Diffusion.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.html
  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    5/110

    http://highered.mcgraw-

    hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion

    _works.html

    http://highered.mcgraw-

    hill.com/sites/0072495855/student_view0/chapter2/animation__how_osmosis

    _works.html

    http://highered.mcgraw-

    hill.com/sites/0072495855/student_view0/chapter2/animation__how_the_sodi

    um_potassium_pump_works.html

    http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.html

    http://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_osmosis_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_osmosis_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_osmosis_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_the_sodium_potassium_pump_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_the_sodium_potassium_pump_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_the_sodium_potassium_pump_works.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_the_sodium_potassium_pump_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_the_sodium_potassium_pump_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_the_sodium_potassium_pump_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_the_sodium_potassium_pump_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_the_sodium_potassium_pump_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_osmosis_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_osmosis_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_osmosis_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_osmosis_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_osmosis_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.html
  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    6/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    7/110

    http://www.youtube.com/watch?v=ULR79TiUj80

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    8/110

    Chemical composition of some purified membranes

    (in percentages)

    Membrane Protein Lipid Carbohydrate

    Myelin 18 79 3

    Plasma membrane

    Human erythrocyte 49 43 8

    Mouse liver 44 52 4Amoeba 54 42 4

    Halobacterium

    purple membrane 75 25 0

    Mitochondrial

    inner membrane 76 24 0

    Chloroplast

    Spinach lamellae 70 30 0

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    9/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    10/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    11/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    12/110

    Why was phospholipids chosen as the basic

    component of biomembranes during

    evolution?

    A) Water has very high surface tension (70

    dynes/cm).Therefore it is impossible to use pure water to

    form closed structures.

    Phospholipid can lower the surface tension ofwater to 1-2 dynes/cm so that it can be spread

    out naturally.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    13/110

    http://www2.hawaii.edu/~yzuo/research1-surfactant.html

    http://www2.hawaii.edu/~yzuo/research1-surfactant.htmlhttp://www2.hawaii.edu/~yzuo/research1-surfactant.htmlhttp://www2.hawaii.edu/~yzuo/research1-surfactant.htmlhttp://www2.hawaii.edu/~yzuo/research1-surfactant.html
  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    14/110

    B) A lipid bilayer sheet would be an unstable

    structure if it had a free edge at which the

    hydrophobic region of the bilayer were in

    contact with water.

    Hence, phospholipid membranes

    spontaneously seal to form closed structures.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    15/110

    Learning

    Doing (experience)

    Thinking

    (reflection)

    Information

    Changes in

    knowledge, skills,

    attitude, value,

    belief, etc.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    16/110

    Learning = new information + new

    skills + new experience

    Learning =making new connections

    between information, skills andexperience

    Learning = un-learn + re-learn

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    17/110

    Topics

    1. Introduction

    2.Energy and thermodynamics

    3.Feeding and digestion

    4. Ionic gradient, electrical potential

    5.Electrical signals and neurons

    6.Cytoskeletons, motor proteins and muscle

    7.Heat production and body temperature

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    18/110

    K+ K+

    Na+ Na+

    Cl-Cl-P-

    1.Selective permeable to various ions and solutes

    2.Thin and can separate charge (behaves as a

    capacitor)

    Mg++

    +

    ++

    ++

    +

    +

    _

    _

    _

    _

    _

    _

    _

    _ +

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    19/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    20/110

    Diffusion is the movement of

    molecules from a region of

    higher concentration to a

    region oflower

    concentration.

    Prior knowledge:

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    21/110

    Diffusion is the movement ofmolecules from a region of

    higher concentration to a

    region oflower

    concentration = No diffusion

    when there isnoconcentration gradient

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    22/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    23/110

    Rate of movement of

    individual molecules(distance/time)

    Slow

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    24/110

    Rate of movement of

    individual molecules(distance/time)

    The same

    Slow

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    25/110

    Rate of movement of

    individual molecules(distance/time)

    Not so slow

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    26/110

    What is the meaning of Diffusion?

    Diffusion is a kinetic property of molecules

    related to temperature

    i.e., a type ofthermal motion.

    Diffusion velocity of individual moleculesdistance

    timedisregarding the direction

    is m (Grahams law)

    Temp (oK)

    XXX not concentration

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    27/110

    Rate of movement of

    individual molecules(distance/time)

    Effects of

    concentration

    gradient

    (no change)

    But, how about #molecules/time through

    the imaginary barrier? (Low flux )

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    28/110

    Rate of movement of

    individual molecules(distance/time)

    Effects of

    concentration

    gradient

    (no change)

    But, how about #molecules/time through

    the imaginary barrier? (Higher flux)

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    29/110

    1)Why is there the movement of individual

    molecules at a certain temperature?

    Because of heat - kinetic theory

    2)Why is there the net movement of moleculesin bulk across an imaginary or physical barrier?

    Because of the presence of a chemical

    potential gradient.

    (Flux = moleArea Time)

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    30/110

    Rate of movement of

    individual molecules(distance/time)

    In equilibrium

    with the

    surroundings

    (Will moleculesstop moving?)

    NO!!! But, net flux =0 Net flux would stop

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    31/110

    Will there be movement ofsolute molecule from a

    region of high concentrationto low concentration in

    waterat -80oC, at -200oC?

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    32/110

    Diffusion is themovement of

    molecules from aregion of higherconcentration to aregion of lower

    concentration.

    This definition of diffusion conveys a wrongmeaning of diffusion!!!

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    33/110

    So, what do you think aboutthe definition below?

    Molecules move from a regionofhigher concentration to a

    region oflower concentration

    by diffusion.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    34/110

    Learning

    Doing (experience)

    Thinking

    (reflection)

    Information

    Changes in

    knowledge, skills,

    attitude, value,

    belief, etc.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    35/110

    Todays task:

    Can you define diffusion

    using your own words?

    A Question for thought:

    Is it a good idea to useperfume to explain

    diffusion?

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    36/110

    Can living systems survive by depending

    on only diffusion of substances across

    their biomembranes?

    NO !!

    But why?

    1) Not all substances can dissolve in lipids.

    2) Diffusion cannot maintain the gradients

    required for the living system to function

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    37/110

    Solution??

    Facilitated diffusion

    Active Transport

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    38/110

    Transport

    Diffusion

    http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.html

    http://highered.mcgraw-

    hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion

    _works.html

    Facilitated diffusion

    http://highered.mcgraw-

    hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitate

    d_diffusion_works.html

    Transport across cell membrane (active transport)

    http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/D/Diffusion.html

    Active transport animation

    http://www.northland.cc.mn.us/biology/BIOLOGY1111/animations/active1.swf

    http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://users.rcn.com/jkimball.ma.ultranet/BiologyPages/D/Diffusion.htmlhttp://www.northland.cc.mn.us/biology/BIOLOGY1111/animations/active1.swfhttp://www.northland.cc.mn.us/biology/BIOLOGY1111/animations/active1.swfhttp://users.rcn.com/jkimball.ma.ultranet/BiologyPages/D/Diffusion.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_facilitated_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation__how_diffusion_works.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/diffus.html
  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    39/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    40/110

    Active Transport :

    a process in which the system gains free

    energy (cellular energy is involved)

    C1C2G RT In C2

    C1

    0.01M1mole

    0.1M

    G = RT In0.1

    0.01

    = 1.98 x 293 x 2.303 x log 10

    = 1340 cal

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    41/110

    downhill

    uphill

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    42/110

    Active Transport process :

    Final stateHigh electrochemical

    potential

    Initial state

    Low electrochemical

    potential

    G = +

    The mechanism involved does not define the process!!!

    Heres where the confusion comes in !!!

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    43/110

    Solar energy/light

    Chemical potential energy e.g. Na+ or K+ gradient

    Chemical energy, ATP

    Chemical energy, e.g. carbohydrate

    Electrical energy, e.g. membrane potential

    Heat

    Heat

    Heat

    Heat

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    44/110

    Solar energy/light

    Chemical potential energy e.g. Na+ or K+ gradient

    Chemical energy, ATP

    Chemical energy, e.g. carbohydrate

    Heat

    Heat

    Heat

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    45/110

    Is it true that only

    processes which involve

    the movement of a

    substance against its

    chemical and/or electrical

    potential gradient(s) are

    regarded as active

    transport processes?

    Yes.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    46/110

    K+ K+

    Na+ Na+

    Cl-Cl-P-

    An important function of the plasma membrane is to

    maintain an ionic composition in the cytosol very different

    from that of the surrounding fluid.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    47/110

    small subunit(55,000)

    2 sites for K+ and one for ouabain

    3 sites for Na+

    ADP + PiATP

    Catalytic site of ATP

    large subunit

    (120,000)

    oligosaccharideK+ Na

    +

    K+ Na+

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    48/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    49/110

    NKA in action

    http://www.youtube.com/watch?v=bGJIvEb6x6w&NR=1

    http://www.youtube.com/watch?v=bGJIvEb6x6w&NR=1http://www.youtube.com/watch?v=bGJIvEb6x6w&NR=1
  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    50/110

    Intracellular Extracellular

    Na+ 15 mM

    K+ 150 mM

    Na+ 140 mM

    K+ 4 mM

    ATP

    ADP + Pi

    3 Na+

    2 K+

    The primary active transport of sodium and potassium ions

    in opposite directions by the Na,K-ATPase in plasmamembranes is responsible for the low sodium and high

    potassium intracellular concentrations. For each ATP

    hydrolysed, 3 sodium ions are moved out of a cell and 2

    potassium ions are moved in.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    51/110

    Active Transport

    1) Active Transport process

    2) Active Transport mechanisms

    e.g. i) 10 active pump

    (Na+, K+- ATPase, Ca2+ - ATPase)ii) 20 active pump

    (Glucose, Na+ - Cotransport Mechanism)

    Here four thermodynamic processes are involved.

    a) K+ transport

    b) Na+ transport

    c) ATP hydrolysis

    d) Overall coupled transport

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    52/110

    Other ATPase pumps

    e.g.1)Ca2+- ATPase pumps calcium ions out of the

    cytoplasm, maintaining a low intracellular

    concentration.2) A proton pump causes acidification of the

    stomach contents.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    53/110

    Solar energy/light

    Chemical potential energy e.g. Na+ or K+ gradient

    Chemical energy, ATP

    Chemical energy, e.g. carbohydrate

    Electrical energy, e.g. membrane potential

    Heat

    Heat

    Heat

    Heat

    pure artificial phospholipid bilayer

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    54/110

    pure artificial phospholipid bilayerWater H2O

    Gases

    CO2

    N2

    O2

    Small uncharged

    polar molecules

    Large uncharged

    polar molecules

    Urea

    Ethanol

    Glucose

    Ions

    K+, Na+

    Mg++, Ca++

    CI-, HCO3-, HPO4

    2-

    Charged

    polar

    molecules

    Amino

    acids

    ATP4-

    G6-P2-

    X

    X

    X

    I f ilit t d diff i f

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    55/110

    Is facilitated diffusion of

    charged ions or molecules

    (e.g. K+, Na+ etc.) through the

    biomembrane the same asfacilitated diffusion of

    uncharged molecules (e.g.

    glucose) or simple diffusion

    of lipid soluble molecules

    through the lipid bilayer?

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    56/110

    A measure ofhydrophobicity is the partition coefficient,

    the equilibrium constant for partition of the moleculebetween oil and water.

    In relation to this, biomembrane can be described asdifferentially or selectively permeable.

    Partition coefficient

    amount dissolving in oil

    amount dissolving in water

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    57/110

    Certain membrane proteins speed up the

    movement ofspecific ions or molecules

    across the membrane - facilitateddiffusion - without using cellular energy

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    58/110

    1. The flux is far greater than would beexpected from a simple diffusion model

    based on hydrophobicity and Ficks law.

    2. The process is substrate specific;

    each protein transport only a single species

    of ion or molecule, of a single group of closelyrelate molecules.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    59/110

    3. There exists a maximal rate of transport.

    4. There exists the pH and temperature optima.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    60/110

    Solar energy/light

    Chemical potential energy e.g. Na+ or K+ gradient

    Chemical energy, ATP

    Chemical energy, e.g. carbohydrate

    Electrical energy, e.g. membrane potential

    Heat

    Heat

    Heat

    Heat

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    61/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    62/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    63/110

    Aquaporin

    Is facilitated diffusion of

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    64/110

    Is facilitated diffusion of

    charged ions or molecules

    (e.g. K+, Na+ etc.) through the

    biomembrane the same asfacilitated diffusion of

    uncharged molecules (e.g.

    glucose) or simple diffusion

    of lipid soluble molecules

    through the lipid bilayer?

    No,

    they are not quite

    the same.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    65/110

    1. Foruncharged molecules or lipid

    soluble molecules, the only 2 types of

    energy involved are heat and chemical

    potential.

    Forcharged molecules, electrical

    potential is also involved.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    66/110

    Na+

    Cl-

    What is the speed of ions in motion?

    Can you call it diffusion? No!!

    A

    Na+

    Cl-+ -

    Current

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    67/110

    2. Foruncharged molecules, C1 = C2 at

    equilibrium,i.e. C = 0.However, forcharged molecules,

    C = 0 at equilibrium.Also, V1 = 0.

    Now equilibrium is achieved between

    Chemical potential difference = Electricalpotential difference.

    X X

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    68/110

    3 F h d l l th t

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    69/110

    3. Foruncharged molecules, the movement

    of individual molecules is due to thermal

    motion, or heat.

    Such diffusion velocity (distance / time) is

    relatively slow.

    Forcharged molecules, the movement of

    individual molecules can be affected by

    an electrical potential and the velocity canbe very fast.

    Such a movement = diffusion.X

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    70/110

    Na+

    Cl-

    What is the speed of ions in motion?

    Can you call it diffusion? No!!

    A

    Na+

    Cl-+ -

    Current

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    71/110

    Topics

    1. Introduction

    2.Energy and thermodynamics

    3.Feeding and digestion4. Ionic gradient, electrical potential

    5.Electrical signals and neurons

    6.Cytoskeletons, motor proteins and muscle

    7.Heat production and body temperature

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    72/110

    V

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    73/110

    + + + + +

    +

    +

    +

    +

    +

    +

    +

    + + + + +

    +

    +

    +

    +

    +

    +

    +

    -

    -

    -

    -

    -

    -

    -

    K+ 140 7 (mM)

    Na+ 12 110 (mM)

    Cl-

    10 117 (mM)

    P-

    -

    -

    -

    -

    -

    -

    -

    Cell

    -

    +

    Anion

    Cation

    Vmi-o = -60 mV- - - - -

    - - - - -

    The separation of electric charge across a plasma membrane

    (membrane potential) provides the electric force that drives

    positive ions into a cell and negative ions out of a cell.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    74/110

    Na+

    Cl-

    What is the speed of ions in motion?

    Can you call it diffusion? No!!

    A

    Na+

    Cl-+ -

    Current

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    75/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    76/110

    Membrane voltage

    Membrane potential

    http://www.cvphysiology.com/Arrhythmias/A007.htm

    Membrane potential concept-Rice U

    http://www.ruf.rice.edu/~bioslabs/bios415/mempot1.htm

    http://www.cvphysiology.com/Arrhythmias/A007.htmhttp://www.ruf.rice.edu/~bioslabs/bios415/mempot1.htmhttp://www.ruf.rice.edu/~bioslabs/bios415/mempot1.htmhttp://www.cvphysiology.com/Arrhythmias/A007.htm
  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    77/110

    M b i t

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    78/110

    Membrane resistance

    Membranes act as barriers to the free diffusion

    of ions.

    Lipid bilayers would have very high resistance

    (low conductance) to ions.

    But, resistance to a specific ion can be lowered

    by the opening ofprotein channels which

    facilitate the movement of this specific ion.

    Resistance =1

    conductance

    Variable resistor

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    79/110

    Variable resistor

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    80/110

    Outside Inside

    [Cl-] [K+]

    [K+

    ] [Cl-

    ]

    Variable resistor

    (K+ channel)

    K+

    K+K+

    K+

    K+

    K+

    capacitor

    Cl-

    Cl-

    Cl-

    Membrane capacitance

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    81/110

    Membrane capacitance

    Because they are very thin (100 ) and are

    virtually impermeable to ions over most of

    their surface areas,

    biomembranes are able to violate the

    principle of electroneutrality at the

    microscopic level.

    The ability of membranes to accumulate and

    separate charges gives rise to the electrical

    property of membrane capacitance.

    ( 1 -3 farad / cm2)

    Different types of capacitors

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    82/110

    Different types of capacitors

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    83/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    84/110

    Outside Inside

    [Cl-] [K+]

    [K+

    ] [Cl-

    ]

    Variable resistor

    (K+ channel)

    K+

    K+K+

    K+

    K+

    K+

    capacitor

    Cl-

    Cl-

    Cl-

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    85/110

    Outside Inside

    [Cl-] [K+]

    [K+

    ] [Cl-

    ]

    Variable resistor

    (K+ channel)

    K+

    K+K+

    K+

    K+

    K+

    capacitor

    Cl-

    Cl-

    Cl-

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    86/110

    Ck < Ck (Chemical potential)

    Vout > Vin (Electrical potential)

    Charges (K+ and Cl-) are separated across

    biomembranes at microscopic level.

    V C

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    87/110

    You have learned from physics that you

    can equate gravitational potentialenergy and kinetic energy through :

    mgh = mv2.

    Similarly, you can equate chemicalpotential energy and electrical energy

    through the Nernst Equation:

    Ei-o =RTZF

    ln C0C

    i

    RT

    [7]

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    88/110

    EKi-o=

    RTZF

    ln [7][140]

    = - 75 mV

    At equilibrium, when there is no net flow of K+

    across the membrane,

    Vm = EK

    After the movement of K+ across themembrane through the K+ channels, the

    changes in K+ concentrations in both sides are

    negligible.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    89/110

    Solar energy/light

    Chemical potential energy e.g. Na+ or K+ gradient

    Chemical energy, ATP

    Chemical energy, e.g. carbohydrate

    Electrical energy, e.g. membrane potential

    Heat

    Heat

    Heat

    Heat

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    90/110

    Summary on relationship between NKA and membrane potential

    http://www.youtube.com/watch?v=iA-Gdkje6pg

    Recall from Physics:

    http://www.youtube.com/watch?v=iA-Gdkje6pghttp://www.youtube.com/watch?v=iA-Gdkje6pghttp://www.youtube.com/watch?v=iA-Gdkje6pghttp://www.youtube.com/watch?v=iA-Gdkje6pg
  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    91/110

    q = C.V

    If you have an air compressor with the tank pressure at100PSI it will be filled with twice as many air molecules thanif its pressure was at 50PSI.

    Looking at it another way, if you have an air compressor witha 5 gallon tank and another one with a 10 gallon tank andthey're both filled to 100PSI, the 10 gallon tank will havetwice as much air in it as the 5 gallon one.

    C is analogous to the capacity of the tank,q is analogous to the quantity of air molecules it's

    holding,

    V is analogous to the tank pressure.

    Recall from Physics:

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    92/110

    q = C.V

    where q = charges need to be separated andaccumulated across the capacitor.

    C = capacitance

    V = voltage built up across the capacitor

    For a biomembrane of1 f / cm2 capacitance to buildup a voltage of 60 mV across it, the amount of ions tobe separated is:

    q = C.V

    = (1 x 10 6 F / cm2) . (6 x 10-2V)

    = 6 x 10-8 coulombs / cm2

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    93/110

    There are 96,500 coulombs of charge (1

    faraday) in mole of a monovalent ion.

    Hence,

    = 6 x 10-8 coulombs /cm2

    96,500 coulombs / mole ion

    = 6 x 10 13 mole ion / cm2

    Does it mean that Na+ and Cl- are

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    94/110

    Does it mean that Na+ and Cl- are

    perfectly impermeable and do not

    contribute to Vm?

    Note that75mV (EK) is close to60mV

    (Vm) but not exactly the same.

    The relative permeabilities of K+, Na+

    and Cl- through biomembranes are

    1 : 0.04 : 0.45

    Aft k i th D G ld d i d

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    95/110

    After knowing these. DrGoldman derived

    another equation:

    Vm =RT

    (+1)Fln

    Pk[K]0 + PNa[Na]0 + PC1[Cl]i

    Pk[K]i + PNa[Na]i + PC1[Cl]0

    Substituting all the values into the

    equation:

    Vmi-o = 58 log10 60654

    = -60.1 mV

    +55 ENa

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    96/110

    -60-75

    (Vm-ENa)Vm(i-o)

    0

    (mV)

    (Vm-Ek)

    EK

    Resting memb. potential

    Difference is small.Hence,e.m.f.k is

    small. Though K+ channels are open,

    net flux of K+ is small as it is close to

    equilibrium.

    Difference is large. Hence, e.m.f.Na is

    large. Though e.m.f.Na is large, net

    flux of Na+ is small because most Na+

    channels are closed.

    Formation of action potential

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    97/110

    Formation of action potential

    Can the movement of Na+ in this case beregarded as diffusion?

    No!!!

    + + + + + + + + + + + + +- - - - - - - - - - - - -

    -

    +

    Transmission of

    impulse

    Na+

    Na+

    Axon

    facilitated diffusion

    Conclusion

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    98/110

    Conclusion

    1. Protein channels in biomembranes behave asvariable resistors

    (e.g. to K+, Na+).

    2. Phospholipid regions of biomembranes act as

    capacitors.

    Usually capacitance is small (13 f / cm2).

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    99/110

    3. The concentration gradients of various ions(Na+, K+, Cl-) existing across the membrane

    behaves as ionic batteries.

    Energy is stored in the gradient as chemicalpotential.

    4. At rest, biomembranes are selectively

    permeable to K+.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    100/110

    5. Movement of K+ down its chemical potential ( i

    to o) gradient leads to a separation of charge

    and an electrical potential gradient is built up

    across the biomembrane.

    6. Chemical potential can be equated to electrical

    potential by the Nernst Equation.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    101/110

    7. After the movement of K+, the concentrations

    of K+ in the 2 compartments are insignificantly

    affected.

    8. At equilibrium, Vm = Ek.

    9. At resting, Vm is slightly more positive than Ek.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    102/110

    10. The polarity of Vm existing across a

    membrane can be reverted by a change in the

    selective permeability of the membrane.

    11. At resting, although K+ channels are open,

    e.m.f. is small as Vm Ek.

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    103/110

    12. However, at resting, e.m.f. Na+ is large as Vm is

    very different from ENa.

    Though e.m.f.Na is large, movement of Na+ is

    negligible because most Na+ channels are

    closed.

    How does the movement of charged molecules differ from

    uncharged molecules across an ion-selective membrane?

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    104/110

    g

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    105/110

    +

    +

    Mind Maps

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    106/110

    Mind Maps

    Summarize information, act as mnemonicsQuickly identify and understand the structure of a

    subject

    Appreciate how pieces of information fit together

    Provide a structure and encourages creative

    problem solving

    Hold information in a format that the human mindwill find easy to remember and quick to review

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    107/110

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    108/110

    1.Use single words or simple phrases.

    2.Position the main idea/problem in the center.

    3.Use lot of space so that things can be added

    on later.

    4.Use color to separate different ideas;personalize the map.

    5.Look for relationships; cross-link with lines

    and arrows; label the lines where applicable.

    6.Create sub-center for sub-themes.

    Pl b it i d t IVLE if

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    109/110

    Please submit your mind map to IVLE, if your

    wish (not compulsory, no marking/grading),

    so that you can learn from each other.

    Please submit in Word format, and state your

    name and email address.

    GENERAL PHYSIOLOGY General

    information and submission folder AY12-13(I)

  • 7/28/2019 4 Membrane_ Ionic Gradient and Memb Potential Jan 2013

    110/110

    End