48
2/18/2014 PHY 770 Spring 2014 -- Lecture 10-11 1 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth (Olin 300) Course Webpage: http://www.wfu.edu/~natalie/s14phy770 Lecture 10-11 -- Chapter 5 Equilibrium Statistical Mechanics Canonical ensemble Probability density matrix Canonical ensembles; comparison with microcanonical ensembles Ideal gas Lattice vibrations

2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

Embed Size (px)

DESCRIPTION

2/18/2014PHY 770 Spring Lecture

Citation preview

Page 1: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 12/18/2014

PHY 770 -- Statistical Mechanics11 AM – 12:15 & 12:30-1:45 PM TR Olin 107

Instructor: Natalie Holzwarth (Olin 300)Course Webpage: http://www.wfu.edu/~natalie/s14phy770

Lecture 10-11 -- Chapter 5Equilibrium Statistical Mechanics

Canonical ensemble

Probability density matrix Canonical ensembles; comparison with

microcanonical ensembles Ideal gas Lattice vibrations

Page 2: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 22/18/2014

Page 3: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 32/18/2014

Page 4: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 42/18/2014

Page 5: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 52/18/2014

Microscopic definition of entropy – due to Boltzmann

nEknENS NB ,ln),,( N

Consider a system with N particles having a total energy E and a macroscopic parameter n.

denotes the multiplicity of microscopic states having the same parameters. Each of these states are assumed to equally likely to occur.

nEN ,N

Alternative description of entropy in terms of probability density (attributed to Gibbs)

ˆTr ˆln( )BS k

Page 6: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 62/18/2014

Probability density -- continued

Normalization: Tr 1

Average value of : Tr

ˆ

ˆ X X X

2 2

3 3 3 3 3 32 2

Classical treatment (in 3 dimensions): , ,... , , ,... , )

Tr . . .

(

..

ˆ

.N N

N Nd d d d

t

d d

1 1

1 1

r r r p p p

r r r p p p

Page 7: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 72/18/2014

23 3

3

23 3

3

3 /23 /2

3 32

Classical microstate distribution:

1( , , ) ! 2

1 ! 2

2

!

1

N N iN

i

N N iN

i

N NN

N N

pE V N d r d p EN h m

pd r d p EN h m

V mEN h

N

Example of classical treatment of microstate analysis of N three dimensional particles in volume V with energy E

3 /2

3 32

21( , , )! 1

NN

N

mEVE V NN h

N

Page 8: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 82/18/2014

Example of classical treatment of microstate analysis of N three dimensional particles in volume V with energy E -- continued

Rough statement of equivalence of Boltzmann’s and Gibbs’ entropy analysis for this and similar cases:

Boltzmann: ( , , ) ln , ,

1Gibbs: , ,

1 1 ( , , ) Tr ln, , , ,

=

ˆ

n

l

ˆ ˆl

B

B B

B

i

S E V N k E V N

E V N

S E V N k kE V N E V N

k

N

N

N NN

n , ,E V NN

Page 9: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 92/18/2014

Quantum representation of density matrix

ˆ

Probability amplitude: | ( )| ( ) ˆSchroedinger equati

Hamil

on: | ( )

ˆDensity operator: ( ) | ( )

tonian operator

|

(

:

)

i

ii

i i ii

Ht

ti H t

tt t t

,

ˆ in terms of eigenstates | :ˆ ˆ ˆˆ ˆ

Evaluation of ave

Tr

rage value of op

( ) | ( ) |

erator

||i

i j j ii j

O a

O t O a t a a O a

Page 10: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 102/18/2014

Microcanonical ensemble:

Consider a closed, isolated system in equilibrium characterized by a time-independent Hamiltonian with energy eigenstates . This implies that the density matrix is constant in time and is diagonal in the energy eigenstates:

H| nE

2 3

Note that, in this case:

ˆ ˆ ˆˆ ˆ ˆ| ( ) | | | | |ˆ ˆ| ln | l

1 1Hint for | 1| 1: ln( ) 1 1 1 ..

n

..2 3

n n n n n n nn nn

n n nn

x

E t O E E E E O E

x x x x

O

E E

1

ˆ ˆln

ˆ ˆ= lnmax

B

N

B nn nnn

S k

k

Tr

Page 11: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 112/18/2014

Microcanonical ensemble -- continued

1

1

1

1

ln

General analysis of probability density matrix elements :

Find which maximizes

ˆ ˆ

ˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ

and satisfies 1

ln 0

ln

max

max

max

max

N

B nn nnn

nn

N

nn nnn

N

B nn nn nnn

N

nn B Bn

S k

S

k

k k

1

0

1exp 1 (constant)=

l

ˆ

ˆ

ˆ ˆn lnmax

nn

nnB max

N

B nn nn B maxn

k N

S k k N

Page 12: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 122/18/2014

Summary of results for microcanonical ensemble – Isolated and closed system in equilibrium with fixed energy E:

1

1

Equilibrium implies that ln is maximum

1Analysis

ˆ

finds = where

ln

ˆ

ˆ

max

max

N

B nn nnn

N

nn nnmax

B max

S k

E EN

S k N

Now consider a closed system which can exchange energy with surroundings – canonical ensemble

Two viewpoints• Optimization with additional constraints• Explicit treatment of effects of surroundings

Page 13: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 132/18/2014

Canonical ensemble – derivation from optimization

Find form of probability density which optimizes S with constraints

Maximize: Tr ln

Constrain: Tr 1 and

ˆ ˆ

ˆˆ ˆ

ˆˆ

Tr

Tr ln ˆ ˆ ˆ

ˆˆ

0

ˆ

1ˆ ˆˆ exp exp

ln 0

exp 1

B

B

B B

B B B

S k

E

k

k k

k k

H

H

H

H Hk Z

Tr 1 r xp ˆˆ eTB

Z Zk

H

Page 14: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 142/18/2014

Canonical ensemble from optimization – continued

Tr Tr

ˆexpˆ

ˆˆ ˆ ˆln ln

ln

l

=

n

B

B BB

BB

B

Hk

Z

S k k H Zk

k Zk

k

E

EZ S

Recall that for a closed system (fixed number of particles), the Helmholz f

ln for

ree energy is given by: 1 1T and B

A U TS

E S U TS T E Uk Z

Page 15: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 152/18/2014

Canonical ensemble from optimization – summary of results

ˆexp

ˆˆ where T

Tr

r exp

ln Z

ˆ ˆln

ˆˆTr

B

B

B

B

TT

Hk HZ T

Z T k

A k T T

S k

U H

Page 16: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 162/18/2014

Canonical ensemble -- explicit consideration of effects of “bath” Eb and “system” Es:

Eb

Es

Analogy (thanks to H. Callen, Thermodyanmics and introduction to thermostatistics)

bath: system:

Page 17: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 172/18/2014

Canonical ensemble -- explicit consideration of effects of “bath” Eb and “system” Es; analogy with 3 dice

bath: Eb

system: Es

For every toss of the 3 dice, record all outcomes with a sum of 12Etot as a function of the red dice representing Es.

Es Eb Ps

1 5+6,6+5 2/25

2 4+6,6+4,5+5 3/25

3 3+6,6+3,4+5,5+4 4/25

4 2+6,6+2,3+5,5+3,4+4 5/25

5 1+6,6+1,2+5,5+2,3+4,4+3 6/25

6 1+5,5+1,2+4,4+2,3+3 5/25

Page 18: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 182/18/2014

Canonical ensemble -- explicit consideration of effects of “bath” Eb and “system” Es:

Eb

Es

''

Estimation of probabilty function:

b tot ss

b tots

s

E EE E

NNP

Page 19: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 192/18/2014

Canonical ensemble (continued)

''

Probability that system is in microstate :

ln ln

ln ln

tot

tot s b s tot

b tot ss

b tot ss

s b tot s

bb tot s

E

E E E E Es

E EE E

C E E

EC E E

E

NP N

P NNN

Page 20: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 202/18/2014

Canonical ensemble (continued)

ln ln

ln ln

tot

s b tot s

bb tot s

E

C E E

EC E E

E

P NNN

,

ln ( ) 1Recall that: tot

B b b

V N bE

k E S EE E T

N

/

1ln ln

' s B

s b tot sB

E k Ts

C E Ek T

C e

P N

P

Page 21: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 212/18/2014

'

/

/

/

'

'1

where: "partition function"

s B

s B

s B

E k Ts

E k T

E k T

s

C e

eZ

Z e

PCanonical ensemble (continued):

' '/ 1

' '

Calculations using the partition function:

where s B s

B

E k T Ek T

s s

Z e e β

Page 22: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 222/18/2014

Canonical ensemble continued – average energy of system:' '/

' '' '

1 1

1 ln

s B sE k T Es s s

s s

E E e E eZ Z

Z ZZ

Heat capacity for canonical ensemble:

2

22 2

2 2 2 2

222

1

1 ln 1 1 1

1

s sV

B

B B

s sB

E EC

T k T

Z Z Zk T k T Z Z

E Ek T

Page 23: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 232/18/2014

First Law of Thermodynamics for canonical ensemble (T fixed)

' ''

' ' ' '' '

'' ' '

' '

(internal energy)

s s ss

s s s s ss s

ss s s

s s

E E U

d E E d dE

dEE d dVdV

P

P P

P P- Pressure associated with state s

' ''

s s ss

dU d E E d P dV P

Page 24: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 242/18/2014

' ''

First law of thermodynamics:

s ss

dU TdS PdV TdS E d P

''

' ' '

' ' ' ' '' ' '

1where

1 1note that: ln ln ln

ln ln

sEs

s s s

s s B s s ss s s

eZ

E Z Z

E d k T Z d d

P

P P

P P P P

=0

' ''

s s ss

dU d E E d P dV P

Page 25: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 252/18/2014

' '

' ' ' '' '

' ' ' '' '

0 ' ''

/'

ln

ln ln

ln

1 1where s s B

s s B s ss s

B s s B s ss s

B s ss

E E k Ts

TdS E d k T d

dS k d d k

S S k

e eZ Z

P P P

P P P P

P P

P

Page 26: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 262/18/2014

Canonical ensemble – summary and further results

' '/

' '

,,

Partition function:

( , ) ( , )

ln lnln ( , )

ln

ln

ln

s B sE k T E

s s

T NV N

s

s s

s

Z e e Z T V Z V

Z Zd Z V d dVV

d Z E d P dV

d Z E d E P dV

d Z E TdS

Note: Using first law: sd E dU TdS PdV

Page 27: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 27

( , , ) ln , ,i B iA T V N k T Z T V N

2/18/2014

ln

ln

ln

ln ( , ) Helmholz Free Energy

s

sB

sB

B s

d Z E TdS

Ed k Z d S

T

Ek Z S

Tk T Z E TS U TS A T V

Page 28: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 282/18/2014

, , ,

, ,

, , , ,

ln lnln

ln

ln

i i i

i i

j j

BB B

V N V N V N

BT N T N

Bi iT V N T V N

i

k T Z ZA S k Z k TT T T

ZA P k TV V

ZA k TN N

( , , ) ln , ,i B iA T V N k T Z T V N

Summary of relationship between canonical ensemble and its partition function and the Helmholz Free Energy:

Page 29: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 292/18/2014

Canonical ensemble in terms of probability density operator

ˆexp

ˆˆ where Tr exp

ˆ ˆˆln Z exp exp ( )

T ˆ ˆln

ˆˆTr

r

B

B

BB

B

Hk HZ T

Z T k

H AA k T T H Ak

S

U

TT

T

k

H

Page 30: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 302/18/2014

Example: Canonical distribution for free particles

2

2

0

Classical canonical distribution for free particles of mass moving in dimensions in box of length

1 i

i

i

pmdN dN

dNr L

dN

Nm d L

Z(T,V,N) d r d p e N!h

L

2

/2

2

2

21 !

dN /BdN

dNdN B

mk TN!h

mk TLN h

3

3 /2

2

3 /2

232

For 3,

2( , , )!

Compare with microcanonical ensemble:

2( , , )! 1

NNB

NN

N

d L V

mk TVZ T V N N h

V mEE V NN h

N

Page 31: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 312/18/2014

Example: Canonical distribution for free particles -- continued

3 /2

2

3/2

2

3 2

,

/

2

2( , , )!

2( , , ) ln ( , , ) 1 ln

25( , , ) ln2

NNB

BB B

B BV

B

N

mk TVZ T V N N h

mk TVA T V N k T Z T V N k TNN h

mk TVS T V N Nk NkN h

AT

Page 32: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 322/18/2014

Canonical ensemble of indistinguishable quantum particlesIndistinguishable quantum particles generally must obey specific symmetrization rules under the exchange of two particle labels (see Appendix D of your textbook)

, 1 2 1 2, ..... ... ... , ..... ... ...| |i j i j iN Njk k k k k kk k kP k Bose-Einstein particles Fermi-Dirac particles

1 2

General notation: denotes permutation operator

denotes 0 or 1 for even or odd permutations

, ... denotes sym

metrized (anti s

|

N

P

p

k k k

1 2 1 2

ymmetrized wavefunction)1, ... , ...|

!| p

N NP

k kk k k kN

P

Page 33: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 332/18/2014

Canonical ensemble of indistinguishable quantum particles

Example: 3-body ideal gas confined in large volume V with momenta k1, k2,and k3,

3 3 3 1 2 2 3 1

2 1 3 3 2 3 1

1 2 1 2

1 2

1, , , ,3!

| , | , | , | ,

, | , | , , | , ,

k k k k

k k

k k k k k k k k

k k k k k kk

/(2 )31 3

3/

2 3

2

ˆ( ) Tr[exp( / )] e

is the thermal wavel

Partition function for single particle:

2 where " "ength

Bmk TB

TT

B

VT H k T d ph

mk T

Z

VVh

2p

3 1 2 3 1 2 3ˆ( ) Tr[ , , | exp( / ) | , , ]

Partition function for three particles:

BT H k TZ k k k k k k

Page 34: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 342/18/2014

Canonical ensemble of indistinguishable quantum particles

Example: 3-body ideal gas confined in large volume V with momenta k1, k2,and k3,

3 3

3

3 1 1 1 1

3 23 3

3 3

semiclassic

/2 3/2

3

l 3a

2

1( ) 3 23! 2 3

1 =3!

Note that |

3 212 3

13!

T T

T

T

T TZ T Z T Z T Z Z

VV V

V

1 2 1 2k k k k

Page 35: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 352/18/2014

Reduced single particle density matrix and the Maxwell-Boltzmann distribution

2

1 2 1 2,..

1ˆ ˆ(

Reduced single particle density matrix:

) | | , ... , ...( 1)!

| |N

R N NnN

1 1 R 1

k kkk k k kkk k k

2

ˆexp

ˆ ˆˆˆ where Tr exp , 2

B i

iB

TH

k HZ TZ T k mT

H

p

3

3 2 21

We have previously shown in the semi-classical limit:

( , 1!

( ) ex

)

p2

T

TR

B

NV

N

NV mk

Z T N

nT

1kk

Page 36: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 362/18/2014

Reduced single particle density matrix and the Maxwell-Boltzmann distribution -- continued

3 2 2 21

33

3

( ) exp where 2 2

Note that ( ) ( )2

=

Maxwell-Boltzmann velocity distribution:

TR T

B B

R R

hNV mk T mk

V d k N

N d v

T

n n

F

n

1

1

1k

kk

k k

v

3/2 2

ex p 2 2

B B

mk

mFk T T

vv

Page 37: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 372/18/2014

Reduced single particle density matrix and the Maxwell-Boltzmann distribution -- continued

3/2 2

Maxwell-Boltzmann velocity distribution:

e 2

2

xpB B

mFk kT

mT

vv

T=100

T=500T=1000

v

24 v F v

Page 38: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 382/18/2014

Canonical ensemble example: Einstein solid revisitedConsider N independent harmonic oscillators (in generalN=3 x number of lattice sites) with frequency w

1 2

1

0

1

1 2 1 21

/2

1

0 0

10

1

Hamiltonian:

( , )

1ˆ ˆ2

1ˆ... | ...2

1ˆ = |

exp |

exp |12

( , )

Nn n n

N N

n

N

ii

N

N i Ni

Z T N

H n

n n n n n

ee

A

n

n

N

n

T

n

n w

w

w

w

w

( , )) 1ln( ln2

12 1

B B

N

k Z T N N k e

eU A TS A T

T T

A NeT

w

w

w

w

w

Consistent with result from microcanonial ensemble

Page 39: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 392/18/2014

Lattice vibrations for 3-dimensional latticeExample: diamond lattice

Ref: http://phycomp.technion.ac.il/~nika/diamond_structure.html

More realistic model of lattice vibrations

Page 40: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 402/18/2014

0

0

2

0 0 0,

Atoms located at the positions:

Potential energy function near equilibrium:

1 2 a

a a a

a a a a b ba b

a b

R

R R u

R R R R R RR R

0

2

0, , ,

2

0, , , ,

Define:

so that12

1 1Lagrangian: ,2 2

a

abjk a b

j k

a a ab bj jk k

a b j k

a a a a ab bj j a j j jk k

a j a b j k

D

u D u

L u u m u u D u

RR R

R

Page 41: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 412/18/2014

0

2

0, , , ,

,

0

1 1,2 2

Equations of motion:

Solution form:1

Details: where denotes

a

a a a a ab bj j a j j jk k

a j a b j k

a ab ba j jk k

b k

i t ia aj j

a

a a a

L u u m u u D u

m u D u

u t A em

w

q R

R τ T τ

unique sites and denotes replicas T

Page 42: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 422/18/2014

q

q

q Tq

T

ττq

w

w

curves" dispersion" Find sites. atomic unique

overonly issummation heequation t In this

:equations Eigenvalue

:Define

,

2

kb

bk

abjk

aj

i

ba

iabjkab

jk

AWA

emm

eDW

ba

Page 43: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 432/18/2014

B. P. Pandey andB. Dayal, J. Phys. C 6, 2943 (1973)

Page 44: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 442/18/2014

B. P. Pandey andB. Dayal, J. Phys. C 6, 2943 (1973)

Page 45: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 452/18/2014

Lattice vibrations – continuedClassical analysis determines the normal mode frequencies and their corresponding modes

In general, for a lattice with M atoms in a unit cell, there will be 3M normal modes for each q . While the normal mode analysis for and the normal mode geometries are well approximated by the classical treatment, the quantum effects of the vibrations are important. The corresponding quantum Hamiltonian is given by:

w q

w q

1 denotes number operator2

Eigenvalues of are 0, 1, 2, ..

ˆ ˆ

..

ˆ where

ˆ

H n n

n

w

q q qq

q

Page 46: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 462/18/2014

Lattice vibrations continued1 denotes number operator2

Eigenvalues of are 0, 1, 2, ..

ˆ ˆ

..

ˆ where

ˆ

H n n

n

w

q q qq

q

/2

ˆ

0

Partition function:

1( ) Tr exp2

1 =

n

H nZ T e

ee

w

w

w

q

q

q

q qq

q

Average energy associated with lattice vibrations

1 1 11

ln(2

)2

ZE ne w

w w

qq q qq q

Page 47: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 472/18/2014

Lattice vibrations continued

3

3

Average energy associated with lattice vibrations1 12 1

1 1 2

(

=2 1

1 1 = 2 1

)

E

V d q

e

e

de

g

w

w

w

w

w

w w w

q

q

qq

q

3

3

Phonon density of states

( =

Note tha

) ( )2

  ( ) 3t:

V d q

g M

g

d

w w w

w w

q

Page 48: 2/18/2014PHY 770 Spring 2014 -- Lecture 10-111 PHY 770 -- Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth

PHY 770 Spring 2014 -- Lecture 10-11 482/18/2014

Lattice vibrations continued

Debye model for g(w

2 2

2 3 3 3

0

3

30

/ 4

3 20

9)

( )

1 =9M 8

Heat capacity

9 where 1

2 1 for ( = 2

0 otherwise

1 1 2 1

1

D

D

D

DD t D

DD

D

D

T T xB

D xD

l

M

E g

Mk x e

Vg c c

de

de

C dx Te

w

w

w

w

w w w ww w

w w w

w www

w

/D D Bkw