17
Thief River Watershed Hydrological Simulation Program – FORTRAN (HSPF) Modeling Stephanie Johnson, Ph.D., P.E. Thief River Watershed WRPP Stakeholder Meeting February 20, 2013

20130220 HEI Modeling Presentation HSPF

Embed Size (px)

Citation preview

Page 1: 20130220 HEI Modeling Presentation HSPF

Thief River WatershedHydrological Simulation Program – FORTRAN (HSPF) Modeling

Stephanie Johnson, Ph.D., P.E.

Thief River Watershed WRPP Stakeholder Meeting

February 20, 2013

Page 2: 20130220 HEI Modeling Presentation HSPF

Scope of Work• Develop a model of the Thief River watershed

– Address: hydrology, sediment, and conventional pollutants

• Use local data as much as possible; supplement with state/federal data

• Model outcomes used to inform Phase II of WRPP work

Work with RLWD to fully integrate model into WRPP project

Page 3: 20130220 HEI Modeling Presentation HSPF

Why Model?• Simulate current conditions

– Extend understanding of water quality (spatially/temporally)

– Estimate loads at un‐gauged 

locations

• Predict future conditions– Estimate impacts of “what if” scenarios on water quality 

throughout the study area

• Bridge Phase I of the WRPP work with Phase II– i.e., bridge data collection with developing restoration/ 

protection strategies

Page 4: 20130220 HEI Modeling Presentation HSPF

Hydrological Simulation Program –FORTRAN (HSPF)

• Developed and supported by USGS/EPA

• Commonly used in TMDL/water quality analyses

• Basin‐scale, continuous‐time model

• Runs at an hourly time step; though interpreted on longer‐scale

• Can simulate existing and future conditions

• Data intensive/complex model with multiple components

Page 5: 20130220 HEI Modeling Presentation HSPF

Basic Model InputsInputs:

• Hydrography• Digital elevation model• Weather data• Soil properties• Land cover

Page 6: 20130220 HEI Modeling Presentation HSPF

Modeling Base

• 87 sub‐basins

• 7 weather stations– precipitation, solar 

radiation, wind speed, air temperature, cloud cover, evaporation, dew point temperature 

• 6 major reservoirs

• 2 wastewater treatment plants

• Model timeframe: 1/1/1995 – 12/31/2006– Warm‐up period: 1995

– Calibration: 1996‐2000

– Validation: 2001‐2006

Page 7: 20130220 HEI Modeling Presentation HSPF

Model Outputs

• For each sub‐basin– Yield of water, sediment, nutrients

• For each reach– In: flow, sediment load, nutrient load, etc.

– Out: flow, sediment load, nutrient load, etc.

• For each waterbody/reservoir– In: flow, sediment load, nutrient load, etc.

– Out: flow, sediment load, nutrient load, etc.

– Internal: volume

Page 8: 20130220 HEI Modeling Presentation HSPF

CalibrationCalibration ‐ the process of modifying the input parameters to a model until theoutput from the model matches an observed set of data (i.e., the model reflects“real world” conditions).

USGS Station: 05076000

Thief River near Thief River Falls, MN

Page 9: 20130220 HEI Modeling Presentation HSPF

Calibrating HydrologyThief River Falls USGS Gauge Station

Early attempt

Calibrated

Page 10: 20130220 HEI Modeling Presentation HSPF

Validating HydrologyValidation ‐ the process of verifying the model by comparing its output to observeddata during a time period other than that used for calibration.

Page 11: 20130220 HEI Modeling Presentation HSPF

Water Quality• Sediment calibration: Spring 2013

• Water quality calibration: Early summer 2013– Temperature, nutrients, BOD, dissolved oxygen, and algae

Dissolved Oxygen, Turbidity

Dissolved Oxygen

Dissolved Oxygen

E.coli, Ammonia

Calibrate at 6 water quality 

stations

Page 12: 20130220 HEI Modeling Presentation HSPF

Example Output: Avg Sediment Yields

Page 13: 20130220 HEI Modeling Presentation HSPF

Example Application: BMP Effectiveness

Base Conditions

50’ Filter Strips

Page 14: 20130220 HEI Modeling Presentation HSPF

Example Application:Impacts of BMPs 

at Watershed Outlet

ScenarioAvg

Streamflow(acre‐feet/yr)

AvgSediment 

Load (tons/yr)

Avg TPLoad 

(pounds/yr)

Baseline: Existing conditions (2003‐2008) 175,000 7,640 71,200

1a: 50’ filter strips 175,000 5,510 41,600

1b: 100’ filter strips 175,000 4,820 35,300

2min: Minimum ag land to permanent cover 175,400 7,350 67,500

2max: Maximum ag land to permanent cover 180,000 4,280 59,700

3a: Partially implemented side‐inlet control 180,000 5,530 58,500

3b: Fully implemented side‐inlet control 180,000 5,400 57,200

Page 15: 20130220 HEI Modeling Presentation HSPF

Example Application:Impacts of BMPs at Thief River entering ANWR from North

ScenarioAvg

Streamflow(acre‐feet/yr)

AvgSediment 

Load (tons/yr)

Avg TPLoad 

(pounds/yr)

Baseline: Existing conditions (2003‐2008) 69,055 2,133 20,545

1a: 50’ filter strips 69,055 1,353 7,637

1b: 100’ filter strips 69,055 678 4,872

2min: Minimum ag land to permanent cover 69,123 2,116 19,813

2max: Maximum ag land to permanent cover 70,688 1,018 11,555

3a: Partially implemented side‐inlet control 70,848 858 11,251

3b: Fully implemented side‐inlet control 71,006 759 10,948

Page 16: 20130220 HEI Modeling Presentation HSPF

Summary• Using HSPF to model the Thief River Watershed

• Finished with hydrology calibration

• Sediment and water quality to be completed by mid‐summer

• Use in Phase II of WRPP to:– Identify priority sub‐basins for management

– Run BMP scenarios

– Design effective restoration / protection strategies