27
Engineered Masonry Design Course Saturday April 28, 2018 © 2018 Canada Masonry Design Centre 1 Lateral Load Distribution: Walls with Openings, Shearlines and Buildings 8:30 AM – 10:30 AM Bennett Banting Lecture Outline 1. Wall Deflections and Rigidity a) Solid Shear Walls (15) b) Shear Walls with Openings and Shearlines (45) 2. Distribution of Lateral Loads a) Rigid diaphragm structures (40) b) Flexible diaphragm structures (20)

11 - Lateral Load Distribution - Walls Shearlines Buildings · 2020. 10. 13. · Lateral Load Distribution: Walls with Openings, Shearlines and Buildings 8:30 AM –10:30 AM Bennett

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 1

    Lateral Load Distribution: Walls with Openings, Shearlines and

    Buildings8:30 AM – 10:30 AM

    Bennett Banting

    Lecture Outline1. Wall Deflections and Rigidity

    a) Solid Shear Walls (15)b) Shear Walls with Openings and

    Shearlines (45)2. Distribution of Lateral Loads

    a) Rigid diaphragm structures (40)b) Flexible diaphragm structures

    (20)

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 2

    Deflections of Solid Shear Walls(Pages 469-479)

    Flexural Deflection

    • Shear Wall as Cantilever with Point Load at End

    • From Mechanics

    ∆3

    3

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 3

    Shear Deflection

    • Normally neglected for flexural members

    • Significant for squat walls

    ∆ 1.20

    0.4

    Total Wall Deflection ∆

    Vh33EI

    1.20Vh0.4EAA tℓwI tℓ12

    0.0%

    20.0%

    40.0%

    60.0%

    80.0%

    100.0%

    0 2 4 6 8 10

    % C

    ontri

    butio

    n to

    Tot

    al

    Def

    lect

    ion

    Aspect Ratio (Height / Length)

    Shear

    Flexure

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 4

    Connected Shear Walls in a

    “Shearline”

    • Earthquake loads and Wind loads act on the entire structure

    • Whole building loads are resisted by shear walls

    • Forces carried to foundation

    • Walls connected • Displace the same

    Vshearline

    V1 V2 V3 V40.03950.343 11.5%

    0.0950.343 27.7%

    0.1690.343 49.3%

    0.03950.343 11.5%

    Masonry Shearline Analysis

    • Incorporates walls with openings

    • Use with multiple shearlines in a building plan

    • Determine whole building elastic force distribution

    • Estimate torsional sensitivity

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 5

    Validity of

    Analysis

    Deflections of Solid Shear Walls with Openings(Pages 469-479)

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 6

    Stiffness Reduction

    from Openings

    • Define shear wall behavior as a composite of smaller wall segments and piers

    • Cantilever/Fixed-Fixed boundary conditions

    • Account for changes to stiffness of height• Piers aligned vertically vs. horizontally

    Detailing around

    Openings

    • Presence of movement joints

    • Continuity of reinforcement

    • Size and Span

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 7

    Fixed-Fixed Boundary Conditions• Some elements are restricted

    against rotation at top and bottom

    • Typically termed ‘piers’• Often shear critical

    0%

    20%

    40%

    60%

    80%

    100%

    0 2 4 6 8 10

    % C

    ontri

    butio

    n to

    Tot

    al D

    efle

    ctio

    n

    Aspect Ratio (Height / Length)

    Total Wall Deflection

    ∆ VEthℓw 3

    hℓw

    Shear

    Flexure

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 8

    Discretizing a Wall with Openings

    V

    Discretizing a Wall with Openings• Top Slab

    • Link member• Free Rotations • Lateral Displacements

    • Consistent Wall Properties• Block Strength, Grouting,

    Unit Size

    1

    2

    34 5

    6

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 9

    Solid Wall 1

    • Cantilever behaviour• Determine unit rigidity• Factor out E, t, normalized

    by Vℓ ℓ

    Solid Walls 2-6

    • The behavior of the wall with openings would not be the same as if it were a solid wall

    • R is Reduced• Δ is Increased

    • 3, 4, 5 Assume fixed against rotation

    • Engineering judgement

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 10

    Vertical and Horizontal Alignment • Horizontally Aligned

    • Wall Segments Act in “Parallel”• Share Equal Displacement

    • Vertically Aligned• Wall Segments Act in “Series”• Displacement is algebraic sum of

    each

    , ,1∆, ,

    1∆1 ∆2 ∆3

    , ,1

    11

    12

    13

    ∆1 ∆2 ∆3∆ 11

    ∆11∆2

    1∆3

    ∆ ∆1 ∆2 ∆3

    , , 1 2 3

    Segment Addition and Subtraction

    Includes Rotation

    Neglects Rotation ∆ ∆1 ∆2 ∆3

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 11

    Assumptions• We are considering an idealized analysis of the

    wall to estimate lateral load distribution• Elastic conditions Equally at the same time• Aligned openings• Single storey• Point loading• Neglect Axial Load Effects on Stiffness

    Assumptions• Once we deviate away from

    these parameters this approach will become less valid

    • Push-over analysis• Finite element• Strut and tie

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 12

    Solution Strategy

    • Determine deflection of wall with opening:

    1. Start with deflection an equivalent solid wall• Defined as Solid2,3,4,5,6

    2. Subtract the deflection of an equivalent solid base• Defined as Solid3,4,5,6

    3. Add back the deflection of the lower segments 3,4,5,6

    2

    34 5

    6

    Solid2,3,4,5,6

    Solid3,4,5,6 34 5

    6

    Solution Strategy

    • Determine displacement of 4,5,6

    • Same process1. Start with Solid4,5,62. Subtract Solid4,53. Add Piers 4 and 5

    4 5

    6Solid4,5,6

    Solid4,5 4 5

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 13

    “Parallel” or “Series”

    Cantilever or Fixed-Fixed

    Piers 3,4,5,6 Fixed-Fixed

    Solid3,4,5,6 Cantilever

    Solid2,3,4,5,6 Cantilever

    Act as Series

    Top Displacements algebraically added/subtracted

    Act in Parallel

    • Piers 3,4,5,6• Fixed-Fixed

    • Pier 3• Fixed-Fixed

    • Pier4,5,6• Fixed-Fixed

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 14

    Act in Series

    • Act in Series• Solid4,5,6

    • Fixed-Fixed• Solid4,5

    • Fixed-Fixed• Piers 4, 5

    • Fixed-Fixed

    • Act in Parallel• Pier 4• Pier 5

    ∆ , , , , ∆ , , , , ∆ , , , ∆ , , ,

    ∆ , , , 11∆

    1∆ , ,

    ∆ , , ∆ , , ∆ , ∆ ,

    ∆ , 11∆

    1∆

    Review

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 15

    Boundary Conditions

    • Strong Beam – Weak Column• Strong Column – Weak Beam

    Solution:Start with

    Solid Sections

    Rf 1hℓw 3

    hℓw

    Rc 14 hℓw 3

    hℓw

    Wall Segment

    h (m) ℓ (m) R Δ

    1c 8 4 0.026 38.5Solid2,3,4,5,6c 8 9 0.18 5.56Solid3,4,5,6c 4 9 0.59 1.693f 4 2 0.071 14.1Solid4,5,6f 4 5 0.343 2.92Solid4,5f 2 5 0.791 1.264f 2 2 0.25 4.05f 2 1 0.071 14.1

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 16

    Distribution of Lateral and Axial Load in a Shearline

    V

    16.0%V 84.0%V

    21.2%V 48.9%V 13.9%V

    Vi VRi∑Ri

    Review

    • Approximate method• Distributes loads based on relative stiffness of

    elastic sections• Limitations to analysis

    • Distribute shear• To walls within a shear line• Within a wall with openings to individual piers

    • Solution• Relate section back to equivalent solid sections

    adding and subtracting as required• Boundary conditions by judgement

    • Would this member be restrained by rotations?

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 17

    Rigid Diaphragm Behaviour(Pages 469-479)

    Distributing Loads to Many Walls

    • Walls within a shearline• Share the same top displacement• Move via linked members

    • Walls within a building• Rigid diaphragm action• Relative position on diaphragm does

    not change

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 18

    Wind Forces vs. Seismic Forces• “Lateral Force Resisting System”

    • A general term for the structural system of a building which resists lateral loads

    • “Seismic Force Resisting System”• SFRS is a specific term designated by

    the national building code to resist seismic loads

    • SFRS are defined by the NBCC

    Wind Forces vs. Seismic Forces

    R1

    R2

    V

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 19

    Resultant Loads in Buildings• Wind Forces

    • Act on exterior face• Half of the Resultant acts at centroid of

    windward face• Other half goes to foundation

    • Seismic Forces• Generated as an acceleration acting on

    building mass• Resultant acts at centroid of building mass

    Diaphragm Action

    • “Rigid Diaphragm” Behavior• Floor/roof diaphragms are unlikely to

    deform in-plane significantly under design loads relative to shear walls

    • Shear walls are effectively linked together in their movement

    • “Flexible Diaphragm” Behavior• Floor/roof diaphragms are likely to

    deform in-plane under design loads relative to shear walls

    • Shear walls effectively move independently outside of a shearline

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 20

    Rigid Diaphragm Behaviour• The diaphragm remains stiff under lateral

    loading • Most concrete floor systems can be

    considered as rigid systems• Rigid Diaphragms = Rigid Motion, i.e.

    the diaphragm is assumed not to deform under loading

    • Translation + Rotation

    Resultant Resistance in Buildings

    Net resistance acts at centre of rigidity

    VrxVry

    VfyVfx

    C.M.

    C.R.x

    C.R.y

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 21

    Centre of Rigidity

    • Consider a simple single-storey building• 10 m × 10 m Plan• C.M. = 5.0 m, 5.0 m• hw = 4.0 m• Cantilever boundary conditions, solid walls• Neglect out-of-plane stiffness

    • ‘Goes along for ride’

    C.M.

    Vfx

    #1

    #3#2

    Elastic Wall Rigidities

    • R1 = 0.5• R2 = 0.143• R3 = 0.143ℓ ℓ

    • V1x = 63.6% Vfx• V2x = 18.2% Vfx• V3x = 18.2% Vfx

    “Direct Shear”

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 22

    Centre of Rigidity

    C.M.Vfx

    #1

    #3#2

    C.R.x Vrx

    ey

    #1

    #3#2

    #4

    #6

    #5

    0,0

    Wall # xref yref Rx Ry

    1 5.0 9.905 0.5

    2 2.0 0.095 0.143

    3 8.0 0.095 0.143

    4 0.095 5.0 0.314

    5 9.905 2.5 0.074

    6 9.905 7.5 0.074

    Centre of Rigidity• Unique x,y coordinates

    • Torsional Shear Based on Relative distance

    • Relative Coordinates

    xCR ∑ Ryi xrefi∑ Ryi

    yCR ∑ Rxi yrefi∑ Rxi

    ey yCM yCRWall # xref yref xi yi

    1 5.0 9.905 3.572 2.0 0.095 6.253 8.0 0.095 6.254 0.095 5.0 3.155 9.905 2.5 6.676 9.905 7.5 6.67

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 23

    Torsional Shear

    VyTi Ryi xi∑ Ryi xi2 Rxi yi2

    Vxey

    VxTi Rxi yi∑ Ryi xi2 Rxi yi2

    Vxey

    Distribution of Shear

    Wall #

    Direct% of V

    Torsion% of V

    1 63.6% -8.8%2 18.2% 4.4%3 18.2% 4.4%4 - 4.9%5 - 2.4%6 - 2.5%

    #1

    #3#2

    #4

    #6

    #5

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 24

    Additional Considerations

    • Seismic Forces along other axes• Minimum eccentricities (NBCC)• Combined Loads

    Review

    • Distribute loads to numerous walls• Within a shearline and elsewhere

    • Seismic Forces• Generated by seismic weight• Act at centre of mass

    • Wind Forces• Generated by windward surface• Reaction loads carried into roof diaphragm and

    foundation• Act at centroid of windward surface edge

    • Direct and Torsional Shear

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 25

    Flexible Diaphragm Behaviour

    Flexible Diaphragms

    • The flexural and shear stiffness of the diaphragm

    • The span between resisting supports• The rigidity of supports• Special Considerations in NBCC• No Resultant

    • Loads distributed by tributary area

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 26

    Tributary Loads in Buildings• Wind Forces

    • Act on exterior face• Seismic Forces

    • Generated as an acceleration acting on building mass

    • Distributed by tributary area• To in-plane members

    Seismic Forces

    • Direct Shear only• Proportionate to tributary

    seismic weight (tributary area)

    • V1x = Vfx × A1/A

    A1

    A2 A3

    Vfx

  • Engineered Masonry Design Course Saturday April 28, 2018

    © 2018 Canada Masonry Design Centre 27

    Review

    • Diaphragm flexible relative to walls• Relative displacement between walls is not

    preserved• Depends on materials, spans, stiffness

    • No resultant forces• Torsional effects are negated as independent

    action of walls is assumed• Real World

    • There is some component of rigidity• Walls in the same shearline often consider to be

    linked at top still• Flexibility may not exist over entire structure