29
10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe TELOS – LuFO V Dr. Martin Boll & Dr. Lars Kühn - Rolls Royce Deutschland Ziehl VII Workshop- Berlin, 06. März 2020 Non-confidential | © 2020 Rolls-Royce | Not Subject to Export Control 1

10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

10 MW HTS Generator für hybrid-elektrischeFlugzeugantriebeTELOS – LuFO V

Dr. Martin Boll & Dr. Lars Kühn - Rolls Royce Deutschland

Ziehl VII Workshop- Berlin, 06. März 2020Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 1

Page 2: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Air traffic2010 and 2030

Source: ICAO, 2016 [1]

Airbus Global Market Forcecast 2019 (> 100 PAX):

• 2038: Doubling # ofpassengers

• ~ 4 % increase/year

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 2

Page 3: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

2000 2010 2020 2030 2040 2050

Trent 500 (Airbus A340)

Trent 800 (Boeing 777)

Trent XWB (Airbus A350XWB)Working towards our FP2050 goals

CO2 (Engine) NOx (Engine) Noise (Aircraft)

Trent family

Technology demonstrator engine targets

ACARE (Advisory Council for Aviation Research and Innovation in Europe) Flightpath 2050 target

% C

O2

or

fuel

bu

rn

% m

argi

n r

elat

ive

CA

EP6

dB

2000 2010 2020 2030 2040 2050

-30

-25

-20

-15

-10

-5

Trent 500

Trent 800

Trent 900

Trent 1000

Trent XWB

Advance

UltraFan®

2000 2010 2020 2030 2040 2050

-75

-60

-45

-30

-15

0

Trent 500

Trent 800

Trent 900Trent 1000

Trent XWB

Advance

UltraFan®

-50

-40

-30

-20

-10

0

10

Trent 900 (Airbus A380)

Trent 1000 (Boeing 787)

Advance

UltraFan®

75% 90% 65%

ACARE Flightpath 2050 targets

Continuing to deliver competitive, efficient, environmentally friendly aircraftNon-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 3

Page 4: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Public| © 2019 Rolls-Royce | Not Subject to

Export Control 4 We need to evaluate disruptive approaches!

Source: IATA Technology Roadmap, 2013 [3]

Page 5: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Public | © 2019 Rolls-Royce | Not Subject to

Export Control 5

Urban RangeAircraft

CommuterAircraft

RegionalAircraft

Short RangeAircraft

Long RangeAircraft

1-4

10-20

40-80

100-200

250-600

PAX

501

1502-3

5004-8

100020-40

500060-120

Range [km]Power [MW]

Sources: Discussion with Airbus in TELOS, [4]: Epstein, JOURNAL OF PROPULSION AND POWER Vol. 35, No. 3, May–June 2019

Page 6: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

I. Feasibility StudyII. 10 MW HTS Generator

Source: Airbus: https://www.airbus.com/aircraft/passenger-aircraft/a320-family/a321ceo.html [5]

TELOS AirbusRolls Royce (Siemens)KITTU MünchenNeue Materialien Bayreuth

Page 7: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Feasability Study

Re-equipped aircraft:

• Serial turboelectric

• 220 passengers

• Electric propulsion units at wings

• Liquid hydrogen tanks replace center tanks

• Kerosene in wing tanks

Source [5]: Boll et al, SuST Special Issue 2019, under review

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 7

Page 8: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Methodology

Analytical model for system optimisation

• Components are sized with respect to requirements

• Global parameters as voltage level, electric frequency

or topology are varied

• Internal component parameters/materials are scanned

• System KPIs as mass, efficiency, installation space

are computed

Requirements

CS 25 Certification

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 8

Page 9: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Cryogenic Electric Propulsion System (CEPS)

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 9

Sources: Boll et al., A holistic system approach for short range passenger aircraft with cryogenic propulsion system, SUST, 2020 (accepted)Corduan et al., Topology comparison of superconducting AC machines for hybrid-electric aircraft, IEEE Trans On Appl SC 30 (2), 1-10, 2020

10 MW SC MachineFan: 3500 rpm

Cryo PE

Cryo PECryo PE

Cryo PE

Page 10: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Cryogenic Electric Propulsion System (CEPS)

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 10

Sources: Boll et al., A holistic system approach for short range passenger aircraft with cryogenic propulsion system, SUST, 2020 (DOI:10.1088/1361-6668/ab7779)Corduan et al., Topology comparison of superconducting AC machines for hybrid-electric aircraft, IEEE Trans On Appl SC 30 (2), 1-10, 2020

20 MW EPU incl. cooling for mission profile 10 MW SC Machine

Page 11: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

• Actual AC loss and cryogenic power electronics

favours direct drive solutions (due to lower electric

frequencies)

• Better SC will require higher saturation field of the

iron yoke

• Research focus on cryo PE will be required

(temperature reliability, cosmic radiation)

• Feasability propulsion system only if cryogenic

cooling liquid acts as energy source

Cryogenic Electric Propulsion System (CEPS)

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 11

Page 12: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

I. Feasibility StudyII. 10 MW HTS Generator

Source: Airbus: https://www.airbus.com/aircraft/passenger-aircraft/a320-family/a321ceo.html [5]

TELOS AirbusRolls Royce (Siemens)KITTU MünchenNeue Materialien Bayreuth

Page 13: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 13

Goal

Develop a 10 MW generator using DC coils made of 2G HTS to provide a new technology for motors and generators with high power densities.

Target parameters

• Power: 10 MW

• Power density: >20 kW/kg

• Speed: 7000 rpm

• Voltage: 3 kV

• Efficiency: 97 %

Requirements and boundary conditions

• Prototype with the essential feature Proof-of-concept (TRL 3)

• 3 h Operation / 0.5 h Care

• Generator provides continuous Power of 10 MW within the 3 hours (peaks

are compensated by an onboard energy storage)

• (Constant) Operation speed is 7000 rpm (→ compromise between

generator, transmission and gas turbine)

• Power density > 20 kW/kg → < 500 kg total weight

• Lifetime 2000 h

• Load cases to be considered: torque, electromagnetic forces, thermal

expansion, gravity, pressure and centrifugal loads

• Load-free coupling to turbine

Page 14: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 14

Stator

• Air gap winding made of Cu

litz wire

• Operated at 370 K

• Liquid cooled

• Yoke to guide the magnetic

flux and for shielding

Rotor

• 4 Pole pairs

• DC coils made of 2G HTS

tapes

• Operated at 20 to 28 K

• Cooled with LNe or LH2Basic design

Rotor coils

Yoke

Air gap stator winding

Mechanical air gap

LNe or LH2

Ambient temperature

Synchronous machine with HTS DC coilsRequirements: 10 MW | 7000 rpm | 20 kW/kg | > 97%

Page 15: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 15

Challenges

p = 6…40 bar

M = 13,000 Nm

ΔT = 300 K

n = 7000 rpm → 500 km/hF ~ 400 kN → 40 t (10.000 g)

per HTS pole

p corresponds to about 400 m

water depth → diving depth of

military submarines

10.000 g corresponds to

maximum piston acceleration of

Formula One engines

ΔT corresponds to temperature

difference day/night on the Moon

Loads on rotor

Strain from bandage to

coil carrierPress-fit

Thermal contraction Operating @ 20 K

High centrifugal load Rotational speed

Torque transmission20 K to RT over 40

mm (7.5 K/mm)

High magnetomotive force Pole MMF > 200 kA

7.5 K/mm corresponds to

temperature gradient in fusion

power plants (15.000 K / 2 m)

MMF > 200 kA corresponds to

plasma confinement coils in

fusion power plants

Page 16: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Turns high

Option Turns I [A] M [kNm] B┴ max [T]

Turns high 250 530 15,6 2,97

Current high 150 685 15,8 3,33

Current high

Turns Current

Turns high

Current high

Design space HTS poles

Tape F (12mm)

Margin to

superconducting limits

Margin to

mechanical stress limits

Max 11,5 MPa Max 9,1 MPa

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 16

Page 17: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 17

HTS tapes → Coils → Single poles → Multi Poles for high speed rotating machines

Page 18: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 18

New materials and manufacturing methods were needed

Identified materials for all

components

• Developed electron beam welding

process and validated the quality with

tensile tests at 77 K

Developed and validated processing

and assembling of the generator

Demonstrated efficient manufacturing

of the generator

• 3D printing of large structural

components with required tolerances

90% of the components require materials that are unusual in electrical machines.

„Battle of material“

Example: Al2219 for coil carrier

Printed Al-alloy

Printed Inconel

Sleeve (Inconel)

Processing 300 h

Shrinkage test

Sleeve on coil carrier

Scale 1:1

burst speed 25500 rpm

Page 19: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 19

Cryogenic cooling

Aircraft cooling concept: LH2 tank Lab cooling concept: Cryo cooler

200 W

Page 20: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Simulation cooling

Tmax coils: 155°C

Tmax support structure: 130 °C

Pressure drop: 1 bar

Tinlet: 90°C

Manufacturing (Scale 1:1)

• Manufacturing of helical and flat coil

• Filling factor > 75% (both concepts)

• Dimensionally stable geometry

• Successfully connected

• No insulation damages

Helical

Flat coil

T distribution helical

90°C

150°C

T distribution flat coils

90°C 155°C

Measured values below simulation but

within the CFD accuracy

Mass flow in kg/s

0.7 0.8 0.9 1.0 1.1

1

0

5

0

1

5

2

0

ΔT

(coil_

avera

ge

–in

let)

in K

Cooling Test

• All parameters adjustable

• Original sized cooling channels

• Flow rate: 42 l/min (Coolant FC3283)

• Cooling concept confirmed up to 6 kW (5.8 kW per coil in HTS-Geno expected)

Stator winding

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 20

Page 21: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

• Developed a resilient design of a 10 MW HTS Generator

• Achieved a gravimetric power density above 20 kW/kg

• Set up digital twins for all relevant disciplines

• Validated the relevant mechanical material characteristics

• Verified hydrogen compatibility

• Multiple manufacturing and mounting tests

• Finalized a multi-physics model of the HTS Generator (integration of HTS tape pending)

Rated load operation parameters

Effective power 10 MW

Apparent power 11.3 MVA

Power factor -0.89

(under-excited)

Torque 13.9 kNm

Speed 7000 rpm

Pole pair 4

Rated effective coil current stator 384 A

Stator effective current density 27.5 A/mm2

Rated rotor current 500 A

Line-line peak voltage 3 kV

Power density (for active parts only) 43 kW/kg

Torque density (for active parts only) 58.6 Nm/kg

Weight 476 kg

Power density total 21 kW/kg

No-load peak magnetic flux density at

rotor surface / middle of stator winding

1.82 T / 1.11 T

At a glance

Source: M. Filipenko, L. Kuehn, et al., Concept Design of a High Power Superconducting Generator for Future Hybrid-Electric Aircraft, SUST, 2020 (DOI:10.1088/1361-6668/ab695a).

Page 22: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 22

Learnings

Combination of superconductors and hydrogen show potential for decarbonization of passenger aircrafts (> 100 PAX)

i. As early as possibleii. Functional proof iii. Manufacturing proofiv. Test infrastructure

i. Generic mission profile ii. System architecture iii. Safety and Reliabilityiv. Modelling of all components

i. Low AC-lossii. Cryo compatibility (H2)iii. High mechanical strengthiv. Tailored thermal conductivityv. Cryo databasevi. Availability and traceabilityvii. Cryogenic power electronics

Holistic system approach

Demonstrators

Material and design

TELOS AirbusRolls Royce (Siemens)KITTU MünchenNeue Materialien Bayreuth

Page 23: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Team

Martin Boll1), Lars Kühn1), Matthias Corduan2), Stefan Biser1), Marijn Oomen2), Sonja Schlachter3), Bernhard Holzapfel3), Matthias Noe3), Andreas

Westenberger4), Peter Rostek4), Marc Lessmann1), Thomas Gleixner1), Stefan Moldenhauer1), Jörn Grundmann2), Matthias Böhm1), Markus Wilke2), Peter

Gröppel1), Martin Thummet1), Sunil Sreedharan2), Johannes Richter2), Christian Weidermann2), Vladimir Danov3), Manfred Wohlfart3), Klaus Dennerlein2),

Christian Triebel2), Peter van Haßelt2), Peter Kummeth2), Joachim Hubmann2), Michael Frank2), Dirk Möller1), Andreas Schröter1), Otto Batz2), Dietmar

Bayer2), Mykhaylo Filipenko1), Kerstin Häse1)

This work was partly funded by the German Federal

Ministry of Economic Affairs and Energy, in the Federal

Aeronautical Research Program, under Nr 20Y1516E. We

acknowledge valuable contributions by other colleagues of

the Siemens AG and all partners.

1) Rolls-Royce RRE Bavaria

2) Siemens AG

3) Karlsruhe Institut für Technologie KIT

4) Airbus Operations & Electric Aircraft Systems

Acknowledgments

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 23

Page 24: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Thank you.

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 24

Page 25: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Business sensitivity classification | © 2018 Rolls-Royce Business proprietary classification Export Control classification

Innovation in aircraft design: The role of hybrid-electric propulsionNot subject to Export Control | © 2019 Rolls-Royce

25

2000 2010 2020 2030 2040 2050

Trent 500 (Airbus A340)

Trent 800 (Boeing 777)

Trent XWB (Airbus A350XWB)Working towards our FP2050 goals

CO2 (Engine) NOx (Engine) Noise (Aircraft)

Trent family

Technology demonstrator engine targets

ACARE (Advisory Council for Aviation Research and Innovation in Europe) Flightpath 2050 target

% C

O2

or

fuel

bu

rn

% m

argi

n r

elat

ive

CA

EP6

dB

2000 2010 2020 2030 2040 2050

-30

-25

-20

-15

-10

-5

Trent 500

Trent 800

Trent 900

Trent 1000

Trent XWB

Advance

UltraFan®

2000 2010 2020 2030 2040 2050

-75

-60

-45

-30

-15

0

Trent 500

Trent 800

Trent 900Trent 1000

Trent XWB

Advance

UltraFan®

-50

-40

-30

-20

-10

0

10

Trent 900 (Airbus A380)

Trent 1000 (Boeing 787)

Advance

UltraFan®

75% 90% 65%

ACARE Flightpath 2050 targets

Continuing to deliver competitive, efficient, environmentally friendly aircraft

Page 26: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Airbus Forcecast

-

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

Africa Asia-Pacific CIS Europe LatinAmerica

Middle East NorthAmerica

World

Passenger Aircraft Forecast 2019-2038

Start Fleet 2019 End Fleet 2038

26

• Aircraft (>100 PAX)

• > Doubling # of passengers

• ~ 4 % increase/year

Source: Airbus Global Market Forcecast, 2019 [2]

Page 27: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 27

Stator:

• Air gap winding made of Cu

litz wire

• Operated at 370 K

• Liquid cooled

• Yoke to guide the magnetic

flux and for shielding

Rotor:

• 4 Pole pairs

• DC coils made of 2G HTS

tapes

• Operated at 20 to 28 K

• Cooled with LNe or LH2

Basic design Air gap stator winding options

Rotor coils

Yoke

Air gap stator winding

Mechanical air gap

LNe or LH2

Ambient temperatureFlat coilHelical

• Manufacturing with high

filling factor and exact

shape is challenging

• Less unpredictable losses

• Successful manufactured

bar shaped elements with

filling factor >75 %

• Loop current losses due to

crimped litz wire hard to

predict

Synchronous machine with HTS DC coilsRequirements: 10 MW | 7000 rpm | 20 kW/kg | > 97%

Page 28: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

Cryogenic Electric Propulsion System (CEPS)

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 28

Sources: Boll et al., A holistic system approach for short range passenger aircraft with cryogenic propulsion system, SUST, 2020 (accepted)Corduan et al., Topology comparison of superconducting AC machines for hybrid-electric aircraft, IEEE Trans On Appl SC 30 (2), 1-10, 2020

Page 29: 10 MW HTS Generator für hybrid-elektrische Flugzeugantriebe · 2020. 3. 27. · Trent family Technology demonstrator engine targets ACARE (Advisory Council for Aviation Research

• Not the lightest component leads to the best

system

• In re-equiped aircraft only 14.000l of LH2 fit

• The combined mass of inverter and its required

cooling system has the highest influence.

• Low electric frequencies still favoured.

• Operational fields of the machine‘s stator/rotor are

moderate

Cryogenic Electric Propulsion System (CEPS)

Non-confidential | © 2020 Rolls-Royce | Not

Subject to Export Control 29