Click here to load reader
View
2
Download
0
Embed Size (px)
Neural networks Feedforward neural network - artificial neuron
ARTIFICIAL NEURON 2
Topics: connection weights, bias, activation function • Neuron pre-activation (or input activation):
• Neuron (output) activation
• are the connection weights • is the neuron bias • is called the activation function
... 1
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b+ P
i wixi = b+w > x
• h(x) = g(a(x)) = g(b+ P
i wixi)
• x 1
xd
• w
• {
• g(·) b
• h(x) = g(a(x))
• a(x) = b(1) +W(1)x ⇣ a(x)i = b
(1)
i
P j W
(1)
i,j xj
⌘
• o(x) = g(out)(b(2) +w(2)>x)
1
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b+ P
i wixi = b+w > x
• h(x) = g(a(x)) = g(b+ P
i wixi)
• x 1
xd
• w
• {
• g(·) b
• h(x) = g(a(x))
• a(x) = b(1) +W(1)x ⇣ a(x)i = b
(1)
i
P j W
(1)
i,j xj
⌘
• o(x) = g(out)(b(2) +w(2)>x)
1
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b+ P
i wixi = b+w > x
• h(x) = g(a(x)) = g(b+ P
i wixi)
• x 1
xd b w1 wd
• w
• {
• g(·) b
• h(x) = g(a(x))
• a(x) = b(1) +W(1)x ⇣ a(x)i = b
(1)
i
P j W
(1)
i,j xj
⌘
• o(x) = g(out)(b(2) +w(2)>x)
1
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b+ P
i wixi = b+w > x
• h(x) = g(a(x)) = g(b+ P
i wixi)
• x 1
xd b w1 wd
• w
• {
• g(·) b
• h(x) = g(a(x))
• a(x) = b(1) +W(1)x ⇣ a(x)i = b
(1)
i
P j W
(1)
i,j xj
⌘
• o(x) = g(out)(b(2) +w(2)>x)
1
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b+ P
i wixi = b+w > x
• h(x) = g(a(x)) = g(b+ P
i wixi)
• x 1
xd b w1 wd
• w
• {
• g(·) b
• h(x) = g(a(x))
• a(x) = b(1) +W(1)x ⇣ a(x)i = b
(1)
i
P j W
(1)
i,j xj
⌘
• o(x) = g(out)(b(2) +w(2)>x)
1
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b+ P
i wixi = b+w > x
• h(x) = g(a(x)) = g(b+ P
i wixi)
• x 1
xd b w1 wd
• w
• {
• g(·) b
• h(x) = g(a(x))
• a(x) = b(1) +W(1)x ⇣ a(x)i = b
(1)
i
P j W
(1)
i,j xj
⌘
• o(x) = g(out)(b(2) +w(2)>x)
1
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b+ P
i wixi = b+w > x
• h(x) = g(a(x)) = g(b+ P
i wixi)
• x 1
xd b w1 wd
• w
• {
• g(·) b
• h(x) = g(a(x))
• a(x) = b(1) +W(1)x ⇣ a(x)i = b
(1)
i
P j W
(1)
i,j xj
⌘
• o(x) = g(out)(b(2) +w(2)>x)
1
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b+ P
i wixi = b+w > x
• h(x) = g(a(x)) = g(b+ P
i wixi)
• x 1
xd b w1 wd
• w
• {
• g(·) b
• h(x) = g(a(x))
• a(x) = b(1) +W(1)x ⇣ a(x)i = b
(1)
i
P j W
(1)
i,j xj
⌘
• o(x) = g(out)(b(2) +w(2)>x)
1
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b+ P
i wixi = b+w > x
• h(x) = g(a(x)) = g(b+ P
i wixi)
• x 1
xd b w1 wd
• w
• {
• g(·) b
• h(x) = g(a(x))
• a(x) = b(1) +W(1)x ⇣ a(x)i = b
(1)
i
P j W
(1)
i,j xj
⌘
• o(x) = g(out)(b(2) +w(2)>x)
1
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b+ P
i wixi = b+w > x
• h(x) = g(a(x)) = g(b+ P
i wixi)
• x 1
xd b w1 wd
• w
• {
• g(·) b
• h(x) = g(a(x))
• a(x) = b(1) +W(1)x ⇣ a(x)i = b
(1)
i
P j W
(1)
i,j xj
⌘
• o(x) = g(out)(b(2) +w(2)>x)
1
ARTIFICIAL NEURON 3
Topics: connection weights, bias, activation function
2Réseaux de neurones
-1 1
-1
1
1 1
1 1
.5
-1.5
.7 -.4-1
x1 x2
x1
x2
z=+1
z=-1
z=-1
0
1 -1
0
1
-1
0
1
-1
0
1 -1
0
1
-1
0
1
-1
0
1 -1
0
1
-1
0
1
-1
R2
R2
R1
y1 y2
z
zk
wkj
wji
x1
x2
x1
x2
x1
x2 y1 y2
sortie k
entrée i
cachée j biais
(from Pascal Vincent’s slides)
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = bi P
i wixi = bi +w > x
• h(x) = g(a(x)) = g(bi P
i wixi)
• w
1
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = bi P
i wixi = bi +w > x
• h(x) = g(a(x)) = g(bi P
i wixi)
• w
• {
1
range determined by
bias only changes the position of the riff
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b+ P
i wixi = b+w > x
• h(x) = g(a(x)) = g(b+ P
i wixi)
• w
• {
• g(·) b
1
Feedforward neural network
Hugo Larochelle D
´
epartement d’informatique
Universit
´
e de Sherbrooke
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b+ P
i wixi = b+w > x
• h(x) = g(a(x)) = g(b+ P
i wixi)
• w