10
讲 讲 讲 讲 1 什什什什什什什 2 什什什什 3 什什什什什什 4 什什什什什 5 什什什什什 6 什什什什什 (etyping) 7 什什 - 什什什什什什 8 什什什什什什 9 什什什什什10 什什

讲 座 提 纲

  • Upload
    ciro

  • View
    64

  • Download
    0

Embed Size (px)

DESCRIPTION

讲 座 提 纲. 1 什么是分子育种 2 历史回顾 3 全基因组策略 4 基因型鉴定 5 表现型鉴定 6 环境 型鉴定 ( etyping ) 7 标记 - 性状关联分析 8 标记 辅助 选择 9 决策支撑系统 10 展望. 什么是分子育种?. 传统育种(玉米): 一把尺子一杆秤,用牙咬,用眼瞪 现代育种 : 利用标记提高选择效率 利用双单倍体加快育种进程 利用转基因实现基因的跨物种转移和性状的定向改造 - PowerPoint PPT Presentation

Citation preview

Page 1: 讲 座 提  纲

讲 座 提 纲

1 什么是分子育种 2 历史回顾 3 全基因组策略 4 基因型鉴定 5 表现型鉴定 6 环境型鉴定 (etyping) 7 标记 - 性状关联分析 8 标记辅助选择 9 决策支撑系统 10 展望

Page 2: 讲 座 提  纲

什么是分子育种?传统育种(玉米): 一把尺子一杆秤,用牙咬,用眼瞪

现代育种:利用标记提高选择效率利用双单倍体加快育种进程利用转基因实现基因的跨物种转移和性状的定向改造

分子育种就是利用分子生物学和生物技术改进新品种的培育,以提高选择效率,加快育种进程,实现有目标的设计育种。

分子育种包括分子标记辅助育种和基因工程育种 ( 转基因 等 ) 。 本报告仅涉及分子标记辅助育种。

Page 3: 讲 座 提  纲

Goff and Salmeron 2004 Scientific American 291(2) 42-49

Maize

Challenges in Crop Improvement

Page 4: 讲 座 提  纲

Yield Gap to Be Filled by Plant Breeding

ExperimentalStationyield

PotentialFarmyield

Theoreticalpotential

ActualFarmyield

Yield gap 0

Yield gap I

Yield gap II

For scientists to conceiveand breed potential varieties

Nontransferable technologyEnvironmental differences

Biological• Variety• Weeds• Pests• Problem soils• Water• Soil fertilitySocioeconomic• Costs• Credit• Tradition• Knowledge• Input• Instructions

17.1

5

G A P

t/ha

(Modified from Chaudhary 2000) Rice

Page 5: 讲 座 提  纲

产量潜力的提高和产量差的缩小依赖于各种现代育种方法和综合的农艺措施。

分子标记辅助育种将发挥重要的作用。

Page 6: 讲 座 提  纲

Marker-Assisted Plant Breeding

MarkersSingle markersMarker intervalsHaplotypesHeterotic blocks/patternsLD/IBD blocks Association profiles

Marker propertiesGenic/functional markersNeutral (background) markersSignificant markers

MethodsMarker-assisted gene pyramiding (MAGP)Marker-assisted backcrossing(gene introgression) (MABC)Marker-assisted recurrent selection (MARS)Genomic selection (GS)

Page 7: 讲 座 提  纲

Selection without testcrossing Restorability/maintainability, wide compatibility, heterosis

Selection independent of environments TGMS/PGMS, insect/disease resistance, stress tolerance Lodging resistance, herbicide response

Selection without intensive lab work Grain chemical and physical properties

Selection at early breeding stage Grain quality, heterosis, yield potential

Whole genome selection

Selection for multiple traits

Why Marker-Assisted Molecular Breeding

Selection for complex traits

Xu, 2003. Plant Breeding Reviews 23:73-174.

Page 8: 讲 座 提  纲

Marker-Assisted Plant Breeding Platform

Genotyping of Core MaterialsChip-based array

Genotyping by sequencingTranscriptome and proteome

analysis

Large-Scale Multi-Location Phenotyping

Yield and qualityBiotic and abiotic stresses

Input use efficiency

Natural and Artificial Crop Populations

Information Collection, Management and Data Analysis

Genetic diversity analysisGene function analysisGWAS/GS/MARS/MAS

Generation Advancement + GS/MARS/MAS

Multi-Environmental Trials

Novel Germplasm

Marker Developmentand Gene Discovery

Phenotyping Platform

Breeding Informatics Platform

Genotyping PlatformE-typing

WaterLight

TemperatureFertilizer

Soil

Decision SupportSystem

DS

DS

DS

DS DS DS

DS

DS

DS

DS

Revised from Xu et al 2012Mol Breed 29:833–854

Page 9: 讲 座 提  纲

Genetic gains achieved for oil and protein content in 100 generations of selection

(Dudley and Lambert 2004)

QUESTION Can we achieve the same result in less years with marker-assisted plant breeding?

Page 10: 讲 座 提  纲

A plot of the inbred scores on the first two principal components from analysis of SSR marker profiles of the parents of the maize hybrids (SS, Stiff Stalk Synthetic inbred line; NSS, Non Stiff Stalk Synthetic inbred line). (Cooper et al. 2004)

Heterotic groups generated through breeding in 8 decades

QUESTIONCan we diversify the heterotic groups much further and more quickly ?