11
Stream 2A - Smartphone diagnostics, wearable biosensors and mobile health 10:15 - 11:45 Tuesday, 27th July, 2021 Presentation type Oral Mun'delanji C. Vestergaard, Dae-Hyeong Kim 10:15 - 10:30 O2A.01 Lubricin (PRG4): A versatile protein for electrochemical sensing Saimon M. Silva 1 , M. Russo 2 , A. F. Quigley 3 , R. M. I. Kapsa 4 , G. W. Greene 2 , S. E. Moulton 1 1 Swinburne University of Technology, Australia. 2 Deakin University, Australia. 3 Royal Melbourne Institute of Technology, Australia. 4 University of Wollongong, Australia Abstract Lubricin (LUB; a.k.a. PRG4) is a cytoprotective glycoprotein existing in the synovial fluids and coating cartilage surfaces in mammalian articular joints. LUB presents a distinctive chemistry, molecular and conformational structure, as well as the capability of self-assembling in a well-organized manner on practically any substrate, which makes it an interesting surface coating for biological applications [1]. When tethered to a conductive surface, LUB can prevent biofouling and enable good electrochemistry with the advantage of a simple and one- step coating preparation [2]. This work aims to investigate the antifouling properties of LUB immobilized onto different substrates (i.e. metals and carbon-based electrodes) as well as its versatility for electrochemical sensing. The analytical performance of LUB coatings towards direct detection of barbiturate drugs in saliva samples and relevant biological molecules in whole blood is also investigated. It has been shown that the size selectivity of LUB coatings inhibit the non-specific adsorption of large biomolecules while simultaneously allowing smaller redox active molecules such as ferricyanide to reach the electrode surface (Figure 1). Our studies showed that the LUB coatings could prevent non-specific adsorption of larger proteins such as bovine and human serum albumins even when the prepared surfaces (LUB tethered to gold, platinum, carbon-based, or ITO electrodes) are challenged in high-concentration protein solutions. Next, we show the versatility of lubricin for performing direct analytical quantification of barbiturates drugs in unprocessed complex biological matrices such as saliva using square-wave voltammetry as excitation technique. The findings presented here, shows the great potential of using LUB coatings in protein-based electrochemical for monitoring of drugs levels in a point-of-care setting.

Smartphone diagnostics, wearable biosensors and mobile

Embed Size (px)

Citation preview

Stream2A-Smartphonediagnostics,wearablebiosensorsandmobilehealth10:15-11:45Tuesday,27thJuly,2021PresentationtypeOralMun'delanjiC.Vestergaard,Dae-HyeongKim

10:15-10:30

O2A.01 Lubricin(PRG4):Aversatileproteinforelectrochemicalsensing

SaimonM.Silva1,M.Russo2,A.F.Quigley3,R.M.I.Kapsa4,G.W.Greene2,S.E.Moulton11SwinburneUniversityofTechnology,Australia.2DeakinUniversity,Australia.3RoyalMelbourneInstituteofTechnology,Australia.4UniversityofWollongong,Australia

Abstract

Lubricin(LUB;a.k.a.PRG4)isacytoprotectiveglycoproteinexistinginthesynovialfluidsandcoatingcartilagesurfacesinmammalianarticularjoints.LUBpresentsadistinctivechemistry,molecularandconformationalstructure,aswellasthecapabilityofself-assemblinginawell-organizedmanneronpracticallyanysubstrate,whichmakesitaninterestingsurfacecoatingforbiologicalapplications[1].Whentetheredtoaconductivesurface,LUBcanpreventbiofoulingandenablegoodelectrochemistrywiththeadvantageofasimpleandone-stepcoatingpreparation[2].ThisworkaimstoinvestigatetheantifoulingpropertiesofLUBimmobilizedontodifferentsubstrates(i.e.metalsandcarbon-basedelectrodes)aswellasitsversatilityforelectrochemicalsensing.TheanalyticalperformanceofLUBcoatingstowardsdirectdetectionofbarbituratedrugsinsalivasamplesandrelevantbiologicalmoleculesinwholebloodisalsoinvestigated.IthasbeenshownthatthesizeselectivityofLUBcoatingsinhibitthenon-specificadsorptionoflargebiomoleculeswhilesimultaneouslyallowingsmallerredoxactivemoleculessuchasferricyanidetoreachtheelectrodesurface(Figure1).OurstudiesshowedthattheLUBcoatingscouldpreventnon-specificadsorptionoflargerproteinssuchasbovineandhumanserumalbuminsevenwhenthepreparedsurfaces(LUBtetheredtogold,platinum,carbon-based,orITOelectrodes)arechallengedinhigh-concentrationproteinsolutions.Next,weshowtheversatilityoflubricinforperformingdirectanalyticalquantificationofbarbituratesdrugsinunprocessedcomplexbiologicalmatricessuchassalivausingsquare-wavevoltammetryasexcitationtechnique.Thefindingspresentedhere,showsthegreatpotentialofusingLUBcoatingsinprotein-basedelectrochemicalformonitoringofdrugslevelsinapoint-of-caresetting.

Figure1-Schematicillustratingthesize-selectivetransportpropertiesoftheLUBself-assembledmonolayer.[1]M.Han,S.M.Silva,W.Lei,A.F.Quigley,R.M.Kapsa,S.E.Moulton,G.W.Greene,AdhesionandSelf-AssemblyofLubricin(PRG4)BrushLayersonDifferentSubstrateSurfaces.Langmuir(2019)Inpress.[2]S.M.Silva,A.F.Quigley,R.M.Kapsa,G.W.Greene,S.E.Moulton,LubricinonPlatinumElectrodes:ALow‐ImpedanceProtein‐ResistantSurfaceTowardsBiomedicalImplantation,6(2019)1939-1943.

10:30-10:45

O2A.02 Instrument-freevoltammetryusingamobilephone

C.F.Hogan,D.Elton,P.O'ConghaileLaTrobeUniversity,Australia

Abstract

Recenttrendsinthefieldofchemicalsensorsandbiosensorshavehighlightedtheimportanceofsimplicityandlowcostindeterminingwhetherasensingtechnologyhasthecapacitytobeinanywaytransformativetothelivesofordinarypeople,particularlythoseinresource-poororremoteenvironments.Anapproachwhichisgrowinginimportanceislinkingthesensingstrategytomobilephones,whichhavereachedmarketsaturationinthedevelopedworldandarerapidlyreachingthesamelevelofubiquityinthedevelopingworld.Electrochemicalmethodsaretotheforefrontofthistrend,andanumberofminiaturizedpotentiostats,whichhavetheabilitytointerfacewithamobiledevice,havebeendescribed.

Voltammetryisthecornerstonetechniqueofelectrochemicalsensing.Theabilitytoprovidenotonlysensitivequantitativeinformationfromthemagnitudeofthecurrentpeak,butalsoadegreeofselectivityofferedbythepotentialaxisofthevoltammogram,isthereasonvoltammetricmethodshaveenjoyedsuchenduringpopularity.Inthisworkwedemonstratehowelectrochemicalanalysis,specifically2ndharmonicFourierTransformedACvoltammetry,maybecarriedoutusingamobilesmartphoneortablet.Importantly,unlikeexistingapproaches,whereanelectronicmodule(suchasaminiaturisedpotentiostat),isconnectedtothephone,wehaveachievedthisusingonlythebuilt-inelectronicfeaturesofthephoneitselfandasoftwareapplication.Byusingtheaudiooutputoftheheadsetporttoapplyavoltageexcitationsignalandthemicrophoneinputlineofthesameporttomeasurethecurrent,avoltammogramcanbeproducedwhichremarkablycloselyresemblesthatproducedusingacommercialpotentiostat.Usingthisapproach,whichwecallAndroidvoltammetry,wedemonstrateseveralapplicationsintheareasofwinetesting,waterqualityanalysisandhealthtesting.

10:45-11:00

O2A.03 DirectelectrontransfertypeL-lactatesensorforwearablemultiplexedbiosensorsystemtowardcontinuousmonitoringofmetabolitesinsweat

K.Hiraka1,S.Motohashi1,W.Tsugawa1,R.Asano1,M.A.Yokus2,K.Ikebukuro1,M.A.Daniele2,3,K.Sode3,21TokyoUniversityofAgricultureandTechnology,Japan.2NorthCarolinaStateUniversity,USA.3UniversityofNorthCarolinaatChapelHill,USA

Abstract

Introduction:Inthisstudy,wereportdirectelectrontransfer(DET)typeL-lactatesensoremployingengineeredDETtypeL-lactatedehydrogenase(DET-LDH)tobeintegratedintowearablemultiplexedbiosensorsystemforcontinuousmonitoringofmetabolitesinsweat.Intherecentdecade,non-invasivemetaboliteandelectrolytesensors,basedonsweatanalysis,hasbeenpaidgreatattention.Theauthorshavebeenengagedinthedevelopmentofanelectrodearray-basedflexiblesensorplatformintegratedwithalow-costmultiplexingsystemforsimultaneousdetectionofglucose,L-lactate,pH,andtemperature.Thewearablehardwareisaminiaturizedandinexpensivestand-alonesystem.Forthefurtherimprovementoftheenzymaticsensorperformance,theemploymentofDETprincipleisideal.AlthoughDETtypeglucosedehydrogenaseisreadytobecombinedintothisplatform,thelactatesensorisstillsufferingfromtheavailabilityofDETtypeLDH.Here,wepresentourefforttorealizeDET-basedL-lactatemonitoring,bythedevelopmentofanengineeredLDH,whichiscapableofDET,anditsorientationontheelectrodeiscontrollable.Methods:TheengineeredDET-LDH,harbouringHemebastheelectrontransferdomain,wasfurtherengineeredbyfusingcarbonnanotubebindingpeptide(CNTBP)toregulateitsorientationontheelectrode.ToevaluatetheabilityforDET,chronoamperometryinvestigationwascarriedout(Ag/AgClasareferenceandexternalPtasacounterelectrode),andcurrentincreasewasmonitoredbyapplying+150mVvs.Ag/AgClwithsuccessiveadditionofL-lactate.ResultsandDiscussion:CatalyticcurrentwasobservedaftertheadditionofL-lactate,andtheresponsecurrentincreaseddependingonlactateconcentrationatengineeredLDH,whichwasmuchhigherthantheonewithoutCNTBP.TheseresultssuggestedthatthusdevelopedDETtypeL-lactatesensorcouldbeintegratedintothewearableflexibleelectrodeplatformtoachievenon-invasiveandcontinuousmonitoringofsweatL-lactatewithoutanyartificialelectronmediator.

11:00-11:15

O2A.04 MouthguardglucosesensorwithPrussianblueasanelectron-transfermediatorforreductionofinfluenceofsalivarycontaminants

T.Arakawa,Z.Zhang,K.Tomoto,K.Toma,K.MitsubayashiTokyoMedicalandDentalUniversity,Japan

Abstract

Wehavedevelopedamouthguardbiosensorfornon-invasivemonitoringofsalivaryglucose.AsalivarybiosensorbasedontheintegrationofPtandAg/AgClelectrodeswithanenzymemembraneonamouthguardwasfabricatedanddemonstrated.ThismouthguardbiosensorwasintegratedwithaglucosebiosensorwithPrussianblueasanelectron-transfermediatorandwirelessmeasurementsystem(Bluetooth4.0module).Intheinvestigationofin-vitrocharacterization,thebiosensorshowedexcellentrelationshipbetweentheoutputcurrentandtheglucoseconcentration.Inartificialsalivaconsistingofsaltsandproteins,theglucosesensorexhibitshigh-sensitiveandhigh-selectivedetectioninarangeof1-5000µmol/Lglucose.Stableandlong-termmonitoring(morethan2hours)usingtelemetrysystemwasestablished.Themouthguardbiosensorcouldbeusefulandconvenientmonitoringasanovelmanagementofglucose.Fig.1showsfabricatedmouthguardglucosesensorwithtelemetrysystemondentalmodelbasedonMEMSfabricationtechnique.Theglucosesensorresponsewasdependentonglucoseconcentration.Outputcurrentimmediatelyincreasedwheneachglucosesolutioninjectedandreachedsteady-statevaluessoonafterthestartofeach180secondinterval.Glucoseconcentration(dynamicrange1-5000µM)wasstronglycorrelatedwithmeanΔoutputcurrentincludingconcentrationofsalivaryglucoseinhuman(Fig.2left).Whenglucosewasmeasuredinartificialsalivausinganappliedpotentialof+100mV,aclearincreaseinoutputduetoglucosewasnotconfirmed.Prussianblue(PB)-Ptelectrodeasanelectronmediator,wasexaminedinordertomeasureglucoseatalowpotential.CVcharacteristicsofhydrogenperoxideinartificialsalivawereinvestigatedusingPB-Ptelectrodespreparedbyelectroplating.ComparedwiththePtelectrode,thePB-Ptelectrodeobtainedthepeakvalueofthereductioncurrentattheappliedlowpotentialvolatageof+5mV.ItwaspossibletomeasureGlucoseatalowappliedpotentialwithoutinfluenceofascorbicacidanduricacid(Fig.2right).Wealsodemonstratedthecapabilityofthesensorandwirelesscommunicationmoduletomonitorsalivaglucoseinaphantommandiblereplicatingtheenvironmentofthehumanoralcavity.Stableresponseswithinapproximately60secondswereobtainedwhenchangingfrom0.05to1.0mmol/L.

Fig.1SchematicimageandphotoofmouthguardglucosesensorwithBluetoothlowenergytelemetrysystemondentalmodel.Fig.2(Left)Calibrationcurveforglucosesensor(n=5).(Insetgraph)Responseofglucosesensorto1–5000µmol/Lglucosesolution.(Right)Responsetoglucose,ascorbicacidanduricacidusingglucosesensor.

11:15-11:30

O2A.05 Aflexiblepolyanilinebiosensorarrayformulti-channelcardiovascularhealthmonitoring

V.P.Rachim,S.Kang,J.H.Baek,S.M.ParkPohangUniversityofScienceandTechnology,RepublicofKorea

Abstract

Continuousmonitoringofthekeycardiovascularparameterssuchaspulserate(PR),bodytemperature,andbloodpressure(BP)playanimportantroleinawiderangeofhealthcareapplicationsfromthelifestylerecommendation,tothepreventionofdiseases.Amongmanyparameters,pulsewavehasbeenidentifiedasaversatiledigitalphenotypeandavarietyofdeviceshavebeendevelopedforaccuratemeasurementofthepulsewave.Recentadvancementsinflexibleelectronicshaveenabledthedevelopmentofhighlysensitiveandstretchablewearablesensorsthatcansupporttheneedsofunobstructive,mobilehealthmonitoringsystem.However,mostoftheestablishedstudiesonlyfocusonasinglewavemonitoringwhichisnotenoughforthecompletecardiovascularanalysis,yetadditionalsensorusuallyneededwhichmakestheoverallsystempower-hungry.Therefore,wedevelopaflexible,low-power,patch-typebiosensorarrayusingaconductivepolymer,polyaniline(PANI)materialtomeasurepulsewavebydetectingthedeformationoftheskinscausedbythebloodvesselvolumechange.Inparticular,weenableamulti-channelcardiovascularmonitoringfromonlyasinglemeasurementsite,subjectwrist,bydesigninga3x2arrayofPANIsensor(multiPANI).Inthisstudy,theproposedmultiPANIconfigurationisutilizedforsignalqualityassessmentandcuff-lessBPestimation.Firstly,amultiplepulsewavesarecollectedfromthemultiPANI,thusthisredundantsignalsareusedasmotionartifactsreductionforhigh-qualitypulsewaveandbetterPRdetection.Secondly,thepulsetransittime(PTT)methodisappliedtocalculatetheBPfromthetimeintervalbetweenthespecificreferencepointsofthetwosignalsofthemultiPANI.ThemultiplePTTdelaybetweendifferenttwo-channelconfigurationisobservedconcerningthechangeofBPvalue.Inconclusion,ourstudysuggeststhattheproposedmultiPANIisapromisingsolutionforafullynon-obstructive,low-power,andcontinuousmulti-cardiovascularparametermonitoring.

Figure1.FlexibleMultiPANIbiosensorforfullynon-obstructive,low-power,andcontinuousmulti-

cardiovascularparametermonitoring.a)PhotographofMultiPANIattachedtoawrist.b)Illustrationoftheusageofmulti-channelpulsewavesignalforsignalqualityassessmentandcuff-lessBPestimation.

11:30-11:45

O2A.06 SurfaceresonancebasedRFsensorforglucosemappinginaqueoussolutions

J.Malik1,2,F.Bien1,21SB-SolutionsInc.,RepublicofKorea.2UlsanNationalInstituteofScienceandTechnology,RepublicofKorea

Abstract

Introduction:Earlier,surfaceplasmonresonance(SPP)basedbiosensorsarewellrecognizedfortheiraccuracyandhighsensitivitytowardsbio-moleculedetection[1].However,theSPPbasedsensorsrequiresophisticatedexperimentalsetupoperatingatsubterahertztoTHzfrequencyregime.Radiofrequency(RF)basedbiosensorsarenowadaysubiquitousinbiomedicaldiagnosisaswellasawiderangeofapplicationssuchaspoint-of-caremonitoring,biomedicalsensing(e.g.heartrate),invivotrackingetc.Inthiswork,wepresentasurfaceresonancebasedRFsensorfordetectionandmappingofglucosecontentinaqueousglucosesolution.Thesensorisintendedtobeusedasbodyimplantsensorforbloodglucosemonitoringfrominterstitialfluid.Thesensoroperatesatindustrialscientificmedical(ISM)band,andcanbeintegratedwithminiaturestate-of-theartintegratedcircuittechnology.Sensorwithultra-highQfactorresonanceyieldshighersensitivityduetoitssharpresonance,withsignificantfrequencyshiftaccordingtoaminutechangeofanalytepermittivity.ThehighQvalueresonancemodescanbeobtainedintrappedmodesorsub-radiativemodeswithFanolikeresonance.Theseresonancessupporthigherordermodes,whichispossibleinapreciseelectromagnetictailoredmetamaterial[2].Methods:BioTissuehasbeenmodelasDebyedielectricmodelwithdispersivecharacteristics.Theresonancefrequencydoesnotaffectedbythethicknessofthesurroundingbiotissuethickness.Thismodelisconsideredfortheactualscenariothatmimicsbodydielectricconstantsincewateroccupiesalargestportionofblood.Results:CalculatedweightofD-glucose(GR1009-500-00)wasmixedin100mlofdeionizedwatertoproducetheaqueousglucosesolutionswithdifferentconcentrations.Thesolutionswerestirredusingmagneticstirrertoachieveahomogeneousglucosesolution.Thetemperatureofthesolutionwastrackedusingathermometer(CASFT-500).

(a)(b)Fig.1(a)sensormodellingandfabricatedprototype(b)measuredsensitivitywithglucosesolutionThesensorwastestedwithglucosesolutionwithdifferentconcentration.Thesurfaceofthesensorissensitivetowardsdielectricchangearoundthesensor.Thesensitivityintermsofresonanceminimumwasprecisely

trackedwithavectornetworkanalyser.Theresonancefrequencyshiftobservedaninverserelationwithincreasingglucoselevel.Discussion:ThepresentsurfaceresonancebasedRFsensorcanmonitorbloodglucosefrominterstitialfluid.Fortheproofofconcept,experimentalmeasurementswithaqueousglucosesolutionshowsgoodsensitivitytowardsglucoselevelchange.Thesensorissupercompact(4mmdiameter,17mmlength,0.071gramweight)tobeusedasanimplantsensorcapableofcontinuousbloodglucosemonitoring.References:[1]SabineSzuneritsandRabahBoukherroub,SensingusinglocalisedsurfaceplasmonresonancesensorsChem.Commun.,2012,48,8999–9010.[2]JagannathMaliketal.,Electromagneticallyinducedtransparencyinsinusoidalmodulatedringresonator,Appl.Phys.Lett.112,234102,2018.