10
Anggi Ika Satri 1201125107 GEOMETRY TRANSFORMATION 1 HALF ROTATION Definition: A half round on a point A is a equivalent SA that defined for every point on field as follows: 1) If P β‰  A then SP(A) = A’ so that P midpoint segment AA’ 2) SP(P) = P Half rotation is a transformation Proof: Wll be proven bijective. To proving bijective then must be proved first surjective and injective. (1) Will be proved surjective To showing surjective, will be shown βˆƒ β€² βˆˆβˆ‹ () = β€² Take any β€² ∈ β€² βˆˆβˆ‹ β€² = () = , β„Ž () = β€² = So, βˆ€ β€² ∈ βˆƒ β€² == () If β‰  then A be axis line segmentβ€² , Its means () = β€² So, surjective (2) Will be proved injective Suppose 1 β‰  2 Case I 1 = 2 = To 1 = then ( 1 )= 1 = 1 ′………………..1*) To 2 = then ( 2 )= 2 = 2 ′…………………2*) From 1*) and 2*) then obtained ( 1 )β‰  ( 2 ) A A’ = Sp(A) 180Β° P fulcru m

Section 6. Half Rotation

Embed Size (px)

Citation preview

Anggi Ika Satri

1201125107

GEOMETRY TRANSFORMATION

1

HALF ROTATION

Definition:

A half round on a point A is a equivalent SA that defined for every point on field as

follows:

1) If P β‰  A then SP(A) = A’ so that P midpoint segment AA’

2) SP(P) = P

Half rotation is a transformation

Proof:

Wll be proven 𝑆𝐴 bijective.

To proving 𝑆𝐴 bijective then must be proved first 𝑆𝐴 surjective and injective.

(1) Will be proved 𝑆𝐴 surjective

To showing 𝑆𝐴 surjective, will be shown βˆƒπ‘ƒβ€² ∈ 𝑉 βˆ‹ 𝑆𝐴(𝑃) = 𝑃′

Take any 𝑃′ ∈ 𝑉

𝑃′ ∈ 𝑉 βˆ‹ 𝑃′ = 𝑆𝐴(𝑃)

𝑖𝑓 𝑃 = 𝐴, π‘‘β„Žπ‘’π‘› 𝑆𝐴(𝐴) = 𝐴′ = 𝐴

So, βˆ€ 𝑃′ ∈ 𝑉 βˆƒ 𝑃′ = 𝑃 = 𝑆𝐴(𝑃)

If 𝑃 β‰  𝐴 then A be axis line segmentβ€² , Its means 𝑆𝐴(𝑃) = 𝑃′

So, 𝑆𝐴 surjective

(2) Will be proved 𝑆𝐴 injective

Suppose 𝐡1 β‰  𝐡2

Case I

𝐡1 = 𝐡2 = 𝐴

To 𝐡1 = 𝐴 then 𝑆𝐴(𝐡1) = 𝐡1 = 𝐡1′………………..1*)

To 𝐡2 = 𝐴 then 𝑆𝐴(𝐡2) = 𝐡2 = 𝐡2′…………………2*)

From 1*) and 2*) then obtained 𝑆𝐴(𝐡1) β‰  𝑆𝐴(𝐡2)

A A’ =

Sp(A)

180Β°

P

fulcru

m

Anggi Ika Satri

1201125107

GEOMETRY TRANSFORMATION

2

Case II

𝐡1 β‰  𝐡2 β‰  𝐴

Take any 𝐡1, 𝐡2 ∈ 𝑉 π‘€π‘–π‘‘β„Ž 𝐡1 β‰  𝐡2

𝐡1 β‰  𝐴, 𝐡2 β‰  𝐴, 𝐡2, 𝐡2, 𝐴 π‘π‘œπ‘™π‘–π‘›π‘’π‘Žπ‘Ÿ

So that 𝑆𝐴(𝐡1) = 𝐡1β€² and 𝑆𝐴(𝐡2) = 𝐡2β€²

Suppose that 𝑆𝐴(𝐡1) = 𝑆𝐴(𝐡2)

Because 𝑆𝐴(𝐡1) = 𝑆𝐴(𝐡2)

Then 𝐡1β€² = 𝑆𝐴(𝐡1) = 𝑆𝐴(𝐡2) = 𝐡2β€²

So that obtained 𝐡1β€² = 𝐡2β€² and 𝐡1 = 𝐡2

Based on theorem, β€œThrough two point scan only be made one line”

Its contradiction with the statement that 𝐡1 β‰  𝐡2

Supposition 𝐡1 β‰  𝐡2 π‘‘β„Žπ‘’π‘› 𝑆𝐴(𝐡1) = 𝑆𝐴(𝐡2) must be canceled.

So, 𝑆𝐴(𝐡1) β‰  𝑆𝐴(𝐡2) then,𝑆𝐴 injective

From (1) and (2) then obtained 𝑆𝐴 surjective and 𝑆𝐴 injective

Because 𝑆𝐴 surjective and 𝑆𝐴 injective, then 𝑆𝐴 bijective

Because 𝑆𝐴 bijective, then 𝑆𝐴 is a transformation.

So, proven that a half round is a transformation.

Example :

1. Known three points A, B, P were colinear and different. Draw SASB(P)!

Answer:

SASB(P) = SA(SB(P))

Draw SB(P) first

B

P’ = SB(P)

P

A

Anggi Ika Satri

1201125107

GEOMETRY TRANSFORMATION

3

Transformationed P’ to point A

2. Known coordinates of the point A and B is (1,1) and (2,3). If SB(A) = A’,

determine coordinates of the point A’!

Answer :

Point B as a fulcrum

Point B is the middle point of the line segment

AA’

To determine the coordinates A’ using

the pattern looking for a midpoint.

(x,y) = (π‘₯1+π‘₯2

2,

𝑦1+𝑦2

2)

(2,3) = (1+π‘₯2

2,

1+𝑦2

2)

x = π‘₯1+π‘₯2

2 y =

𝑦1+𝑦2

2

2 = 1+π‘₯2

2 3 =

1+π‘₯2

2

4 = 1 + π‘₯2 6 = 1 + 𝑦2

π‘₯2 = 4 βˆ’ 1 𝑦2 = 6 βˆ’ 1

π‘₯2 = 3 𝑦2 = 5

So, the coordinate point A’ is (3,5).

B

P’ = SB(P)

P

A

P’’ = SASB(P)

1

2

3

4

2

5

Y

3 4

A

’

B

A

1 X

Anggi Ika Satri

1201125107

GEOMETRY TRANSFORMATION

4

Theorem 1.1

Suppose 𝑨 a point, π’ˆ and 𝒉 two perpendicular lines that intersect in 𝑨. Then 𝑺𝑨 =

π‘΄π’ˆπ‘΄π’‰.

Proof :

Known 𝐴 a point, 𝑔 and β„Ž two perpendicular lines that intersect in 𝐴.

a) Case I : 𝑃 β‰  𝐴

Because 𝑔 βŠ₯ β„Ž then can be formed an axis system orthogonal with 𝑔 as X axis and

β„Ž as Y axis. 𝐴 as central point.

Take point 𝑃 ∈ 𝑉

Look at picture 7.2

Show that to every 𝑃 obtain 𝑆𝐴(𝑃) = π‘€π‘”π‘€β„Ž(𝑃)

Suppose 𝑃(π‘₯, 𝑦) β‰  𝐴 and 𝑆𝐴(𝑃) = 𝑃′′(π‘₯1, 𝑦1)

Because 𝑆𝐴(𝑃) = 𝑃′′ then 𝐴 midpoint 𝑃𝑃′ so that

(0,0) = (π‘₯1 + π‘₯

2,𝑦1 + 𝑦

2)

Obtained π‘₯1 + π‘₯ = 0 ⟺ π‘₯1 = βˆ’π‘₯ and 𝑦1 + 𝑦 = 0 ⟺ 𝑦1 = βˆ’π‘¦

It means 𝑆𝐴(𝑃) = (βˆ’π‘₯, βˆ’π‘¦)………………………………………………(1)

Reflection composition

π‘€π‘”π‘€β„Ž(𝑃) = 𝑀𝑔[π‘€β„Ž(𝑃)]

= 𝑀𝑔(βˆ’π‘₯, 𝑦)

= (βˆ’π‘₯, βˆ’π‘¦)

It means π‘€π‘”π‘€β„Ž(𝑃) = (βˆ’π‘₯, βˆ’π‘¦)……………………………………………(2)

𝑃′′(βˆ’π‘₯, βˆ’π‘¦)

β„Ž

𝑔 𝐴

P(x,y)

𝑋

𝑃′(βˆ’π‘₯, 𝑦)

Anggi Ika Satri

1201125107

GEOMETRY TRANSFORMATION

5

From equation (1) and (2) obtained 𝑆𝐴(𝑃) = π‘€π‘”π‘€β„Ž(𝑃).

So , 𝑆𝐴 = π‘€π‘”π‘€β„Ž

b) Case II : 𝑃 = 𝐴

Based on definition, 𝑆𝐴(𝐴) = 𝐴……………………………………………(1*)

π‘€π‘”π‘€β„Ž(𝐴) = 𝑀𝑔(𝐴) = 𝐴……………………………………………….(2*)

From equation (1*) and (2*) obtained 𝑆𝐴(𝐴) = π‘€π‘”π‘€β„Ž(𝐴).

So , 𝑆𝐴 = π‘€π‘”π‘€β„Ž.

Theorem 1.2

If π’ˆ and 𝒉 two lines that perpendicular then π‘΄π’ˆπ‘΄π’‰ = π‘΄π’‰π‘΄π’ˆ

Proof :

a) Case I : 𝑃 β‰  𝐴

Because 𝑃 β‰  𝐴, then π‘€π‘”π‘€β„Ž(𝑃) = 𝑆𝐴(𝑃).

π‘€β„Žπ‘€π‘”(𝑃) = π‘€β„Ž (𝑀𝑔(𝑃)) = π‘€β„Ž((π‘₯, βˆ’π‘¦)) = (βˆ’π·, βˆ’π‘¦) = 𝑆𝐴(𝑃).

Obtained π‘€π‘”π‘€β„Ž(𝑃) = 𝑆𝐴(𝑃) = π‘€β„Žπ‘€π‘”(𝑃)

So, π‘€π‘”π‘€β„Ž = π‘€β„Žπ‘€π‘”

b) Case II : 𝑃 = 𝐴

Because 𝑃 = 𝐴, then π‘€π‘”π‘€β„Ž(𝐴) = 𝑀𝑔(𝐴) = 𝐴

π‘€β„Žπ‘€π‘”(𝐴) = π‘€β„Ž(𝐴) = 𝐴

So that obtained π‘€π‘”π‘€β„Ž(𝐴) = π‘€β„Žπ‘€π‘”(𝐴).

So, π‘€π‘”π‘€β„Ž = π‘€β„Žπ‘€π‘”.

Theorem 1.3

If 𝑺𝑨 half round, then π‘Ίβˆ’πŸπ‘¨ = 𝑺𝑨.

Proof :

Suppose 𝑔 and β„Ž two lines that perpendicular then π‘€π‘”π‘€β„Ž = 𝑆𝐴 with 𝐴 intersection

between 𝑔 and β„Ž.

(π‘€π‘”π‘€β„Ž)βˆ’1 = π‘€βˆ’1β„Žπ‘€βˆ’1

𝑔 = π‘†βˆ’1𝐴.

Because π‘€βˆ’1β„Ž = π‘€β„Ž and π‘€βˆ’1

𝑔 = 𝑀𝑔 then π‘€β„Žπ‘€π‘” = π‘†βˆ’1𝐴.

Because 𝑔 βŠ₯ β„Ž, then based theorem 7.2, π‘€π‘”π‘€β„Ž = π‘€β„Žπ‘€π‘”.

Anggi Ika Satri

1201125107

GEOMETRY TRANSFORMATION

6

So that obtained π‘†βˆ’1𝐴 = π‘€β„Žπ‘€π‘” = π‘€π‘”π‘€β„Ž = 𝑆𝐴.

So, π‘†βˆ’1𝐴 = 𝑆𝐴.

Theorem 1.4

If 𝑨 = (𝒂, 𝒃) and 𝑷 = (𝒙, π’š) then 𝑺𝑨(𝑷) = (πŸπ’‚ βˆ’ 𝒙, πŸπ’ƒ βˆ’ π’š).

Proof

a) Case I : 𝑃 β‰  𝐴

Suppose 𝑃" = (π‘₯1, 𝑦1) and 𝑆𝐴(𝑃) = 𝑃" then 𝐴 midpoint 𝑃𝑃" so that obtained

(π‘Ž, 𝑏) = ((π‘₯1 + π‘₯

2) , (

𝑦1 + 𝑦

2))

Then π‘₯1+π‘₯

2= π‘Ž and

𝑦1+𝑦

2= 𝑏 so that obtained

π‘₯1+π‘₯

2= π‘Ž ⟺ π‘₯1 + π‘₯ = 2π‘Ž ⟺ π‘₯1 = 2π‘Ž βˆ’ π‘₯……………………………..(1*)

𝑦1+𝑦

2= 𝑏 ⟺ 𝑦1 + 𝑦 = 2𝑏 ⟺ 𝑦1 = 2𝑏 βˆ’ 𝑦………………………………(2*)

From equation (1*) and (2*) then (π‘₯1, 𝑦1) = ( 2π‘Ž βˆ’ π‘₯), (2𝑏 βˆ’ 𝑦)

Because 𝑆𝐴(𝑃) = 𝑃", then 𝑆𝐴(𝑃) = (π‘₯1, 𝑦1) = ( 2π‘Ž βˆ’ π‘₯), (2𝑏 βˆ’ 𝑦)

So, 𝑆𝐴(𝑃) = (2π‘Ž βˆ’ π‘₯, 2𝑏 βˆ’ 𝑦).

b) Case II : 𝑃 = 𝐴

Because 𝑃 = 𝐴, then(π‘₯, 𝑦) = (π‘Ž, 𝑏) it means π‘Ž = π‘₯ and 𝑏 = 𝑦.

𝑆𝐴(𝐴) = 𝐴 = (π‘Ž, 𝑏)

(π‘Ž, 𝑏) = ((2π‘Ž βˆ’ π‘Ž), (2𝑏 βˆ’ 𝑏))

= ((2π‘Ž βˆ’ π‘₯), (2𝑏 βˆ’ 𝑦))

So, 𝑆𝐴(𝑃) = (2π‘Ž βˆ’ π‘₯, 2𝑏 βˆ’ 𝑦).

Task:

Anggi Ika Satri

1201125107

GEOMETRY TRANSFORMATION

7

1. Known : line 𝑔 and point 𝐴, 𝐴 βˆ‰ 𝑔

Asked :

a) Draw line 𝑔1 = 𝑆𝐴(𝑔) and why 𝑔 is a line?

b) Prove that 𝑔′//𝑔.

Answer :

a. 𝑔′ = 𝑆𝐴(𝑔)

Because 𝑔 is a line, then 𝑆𝐴(𝑔) is a line too. (isometry).

b. 𝑔′ βˆ•βˆ• 𝑔

proof :

𝑃 ∈ 𝑔, 𝑄 ∈ 𝑔

Because 𝑃 ∈ 𝑔 then A midpoint 𝑃𝑃′ with 𝑃′ = 𝑆𝐴(𝑃)

Because 𝑄 ∈ 𝑔 then A midpoint 𝑄𝑄′ with 𝑄′ = 𝑆𝐴(𝑄)

Look at βˆ†π΄π‘ƒπ‘„β€² π‘Žπ‘›π‘‘ βˆ†π΄π‘„π‘ƒβ€²

To prove that 𝑔′ βˆ•βˆ• 𝑔 then must be shown that βˆ†π΄π‘ƒπ‘„β€² π‘Žπ‘›π‘‘ βˆ†π΄π‘„π‘ƒβ€² are

congruent.

π‘š(< 𝑃𝐴𝑄′) = π‘š(< 𝑄𝐴𝑃′) (opposite angel)

𝑃𝐴 = 𝐴𝑃′ (because A midpoint 𝑃𝑃′ )

𝑄′𝐴 = 𝐴𝑄 (because A midpoint 𝑄𝑄′ )

According to the definition of congruence (Side Angle Side)

So βˆ†π΄π‘ƒπ‘„β€² β‰… βˆ†π΄π‘„π‘ƒβ€²

Because βˆ†π΄π‘ƒπ‘„β€² β‰… βˆ†π΄π‘„π‘ƒβ€² then 𝑃𝑄′ = 𝑄𝑃′

Because 𝑃𝑄′ = 𝑄𝑃′ then 𝑔′ βˆ•βˆ• 𝑔

2. Known : points A, B, C colinear

Draw :

P Q

𝑆𝐴(𝑃) = 𝑃′

𝑔′ = 𝑆𝐴(𝑔)

A

𝑆𝐴(𝑄) = 𝑄′

𝑔

Anggi Ika Satri

1201125107

GEOMETRY TRANSFORMATION

8

a) Line 𝑔 and β„Ž such as 𝑀𝑔(𝐡) = 𝐡 and 𝑆𝐴 = π‘€π‘”π‘€β„Ž

b) Line π‘˜ and π‘š such as π‘€βˆ’1π‘˜(𝐢) = 𝐢 and 𝑆𝐴 = π‘€π‘˜π‘€π‘š

Drawing :

a) 𝑀𝑔(𝐡) = 𝐡 and 𝑆𝐴 = π‘€π‘”π‘€β„Ž

b) π‘€βˆ’1π‘˜(𝐢) = 𝐢 and 𝑆𝐴 = π‘€π‘˜π‘€π‘š

3. Known: A = (2,3)

Asked:

a. SA( C ) if C = (2,3)

b. SA( D ) if D = (-2,7)

c. SA( E ) if E= (4,-1)

d. SA( P ) if P = (x,y)

Answer:

a. C = (2,3)

SA( C ) = (2.2 - 2, 2.3 - 3)

= (2,3)

b. D = (-2,7)

SA( D ) = (2.2-(-2), 2.3-7)

= (6,-1)

c. E = (4,-1)

SA( E ) = (2.2-4, 2.3-(-1))

= (0,7)

d. P = (x,y)

SA( P ) = (2.2-x, 2.3-y)

= (4-x, 6-y)

4. Known : B = (1, -3)

𝑔

𝐴 β„Ž

𝐡

Anggi Ika Satri

1201125107

GEOMETRY TRANSFORMATION

9

Determine :

a. SB(D) if D (-3, 4)

b. E if SB(E) = (-2, 5)

c. SB(P) if P= (x, y)

Answer:

a. D (-3, 4)

SB(D) = (2.1-(-3), 2.(-3)-4)

= (5, -10)

b. SB(E) = (-2, 5)

Suppose E = (x, y)

Then, 2.1- x = -2 2.(-3)-y = 5

⇔2 – x = -2 ⇔-6-y = 5

⇔x = 4 ⇔y = -11

so, E= (4, -11)

c. P = (x, y)

SB(P) = (2.1-x, 2.(-3)-y)

= (2-x, -6 - y)

5. Known : D = (0, -3) and B = (2, 6)

a. SB(B) = (2.2-2, 2.6-6)

= (2, 6)

SDSB(B) = SD(2,6)

= (2.0-2, 2.(-3) – 6)

= (-2, -12)

b. K = (1, -4)

SB(K) = (2.2-1, 2.6-(-4)

= (3, 16)

SDSB(K) = SD(3,16)

=(2.0- 3, 2.(-3)-16)

= (-3, -22)

c. SD(K) = (2.0-1, 2.(-3)-(-4))

= (-1, -2)

Anggi Ika Satri

1201125107

GEOMETRY TRANSFORMATION

10

SBSD(K) = SB(-1, -2)

= (2.2-(-1),2.6-(-2))

= (5, 14)

d. According to the theorem 1.3

if SA is a half round then S-1A = SA

then, SD-1 (K) = SD(K) = (-1,-2)

and, SB-1(K) = SB(K)

so, (SDSB)-1 (K) = SB-1SD

-1 (K)

= SB-1(-1, -2)

= SB(-1, -2)

= (2.2 - (-1), 2.6 - (-2))

= (5, 14)

e. P = (x, y)

SB(P) = (2.2 – x, 2.6 – y)

= (4 – x, 12 – y)

SDSB(P) = SD(4 – x, 12 – y)

= (2.0 – (4 – x), 2.(-3) – (12 – y))

= ( - 4 + x, - 6 – 12 + y)

= (x - 4, y - 18)