32

Mean structure, Transport, and Seas

Embed Size (px)

Citation preview

Introduction Data and Methods Results Conclusion

New insights of the Northern Currentin the Western Mediterranean Sea from Gliders data:Mean structure, Transport, and Seasonal Variability

A. Bosse(1), P. Testor(1), L. Mortier(2), L. Beguery(3), K. Bernardet(3), V. Taillandier(4),

F. d'Ortenzio(4), Louis Prieur(4), L. Coppola(4), and F. Bourrin(5)

(1) CNRS-Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France,(2) École National Supérieure des Techniques Avancées, Paris, France,

(3) CNRS-DT INSU, La Seyne sur Mer, France,(4) CNRS-Université Pierre et Marie Curie, LOV, Villefranche-sur-mer, France,

(5) CNRS-Université de Perpignan, CEFREM, Perpignan, France

EGU General Assembly � April 10th, 2013

Introduction Data and Methods Results Conclusion

Introduction Data and Methods Results Conclusion

Introduction Data and Methods Results Conclusion

Northwestern Mediterranean mean circulation

1 2 3 4 5 6 7 8 9 10

39

40

41

42

43

44

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 7500

50

100

150

200

250

300

350

400

450

500

550

x [km]

y[k

m]

500

500

500

500500

500

500

500

500

500

500

50050

0

500

500

500

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1500

1500

1500

1500

1500

1500

15001500

1500

1500

1500

2000

20002000

2000

2000

2000

2000

2000

2000

2500

2500

2500

2500

2500

2500

2500

Wes

t Cor

sica

Cur

rent

Northern Current

North Balearic front

Introduction Data and Methods Results Conclusion

Northwestern Mediterranean mean circulation

1 2 3 4 5 6 7 8 9 10

39

40

41

42

43

44

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 7500

50

100

150

200

250

300

350

400

450

500

550

x [km]

y[k

m]

500

500

500

500500

500

500

500

500

500

500

50050

0

500

500

500

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1500

1500

1500

1500

1500

1500

15001500

1500

1500

1500

2000

20002000

2000

2000

2000

2000

2000

2000

2500

2500

2500

2500

2500

2500

2500

Wes

t Cor

sica

Cur

rent

Northern Current

North Balearic front

shelf-sea exchange?

Introduction Data and Methods Results Conclusion

Northwestern Mediterranean mean circulation

1 2 3 4 5 6 7 8 9 10

39

40

41

42

43

44

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 7500

50

100

150

200

250

300

350

400

450

500

550

x [km]

y[k

m]

500

500

500

500500

500

500

500

500

500

500

50050

0

500

500

500

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1500

1500

1500

1500

1500

1500

15001500

1500

1500

1500

2000

20002000

2000

2000

2000

2000

2000

2000

2500

2500

2500

2500

2500

2500

2500

Wes

t Cor

sica

Cur

rent

Northern Current

North Balearic front

shelf-sea exchange?

Introduction Data and Methods Results Conclusion

Northwestern Mediterranean mean circulation + Gliders Observations

1 2 3 4 5 6 7 8 9 10

39

40

41

42

43

44

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 7500

50

100

150

200

250

300

350

400

450

500

550

x [km]

y[k

m]

500

500

500

500500

500

500

500

500

500

500

500

500

500

500

500

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

2000

20002000

2000

2000

2000

2000

2000

2000

2500

2500

2500

2500

2500

2500

2500

Wes

t Cor

sica

Cur

rent

Northern Current

North Balearic front

Glider: AutonomousUnderwater Vehicle(AUV), which sam-ples the ocean (downto 1000m) along asawtooth path andcan stay up severalmonths into thewater.

I a total of >30 000 pro�les (deep to 1000m) within the basin;

I collected in the framework of European (MERSEA, PERSEUS, GROOM,TOSCA) and national projects (DOCONUG (UK), LIVINGSTONE (ANR, Fr),PABO (ANR, Fr), REI glider (DGA, France), IMEDIA (Fr), MOOSE - NW MedObservatory, INSU, Fr since 2010)

Introduction Data and Methods Results Conclusion

Gliders deployments since 2007 in the NW Med Sea: Space coverage

2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

41.5

42.5

43.5

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 6000

50

100

150

200

250

x [km]

y[k

m]

500

500

500

500 500

500

500

500

500

500

500

500

500

1000

1000

1000

1000

1000

1000

1000 10

00

1000

1000

1000

1500

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000

2000

200025

00 2500

2500

2500

2500

2500

2500

2500

Interest of the gliders database

I a total of >30 000 pro�les (deep to 1000m) within the basin and highlyconcentrated along the Northern shelf;

I

Introduction Data and Methods Results Conclusion

Gliders deployments since 2007 in the NW Med Sea: Space coverage

2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

41.5

42.5

43.5

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 6000

50

100

150

200

250

x [km]

y[k

m]

500

500

500

500 500

500

500

500

500

500

500

500

500

1000

1000

1000

1000

1000

1000

1000 10

00

1000

1000

1000

1500

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000

2000

200025

00 2500

2500

2500

2500

2500

2500

2500

Northern Current path

Interest of the gliders database

I a total of >30 000 pro�les (deep to 1000m) within the basin and highlyconcentrated along the Northern shelf;

I Question: How can we use all these data to describe the NC?

Introduction Data and Methods Results Conclusion

Gliders deployments since 2007 in the NW Med Sea: Space coverage

2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

41.5

42.5

43.5

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 6000

50

100

150

200

250

x [km]

y[k

m]

500

500

500

500 500

500

500

500

500

500

500

500

500

1000

1000

1000

1000

1000

1000

1000 10

00

1000

1000

1000

1500

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000

2000

200025

00 2500

2500

2500

2500

2500

2500

2500

LION

DYFAMED

Section 1: 9516 profilesSection 2: 4022 profilesSection 3: 2623 profilesSection 4: 2399 profiles

43

2Northern Current path1

Interest of the gliders database

I 4 repeated sections with & 3000 pro�les down to 1000m;

I T/S intercalibration with 2 moorings (+ CTD, Argo, ...).

Introduction Data and Methods Results Conclusion

Gliders deployments since 2007 in the NW Med Sea: Time coverage20

1320

1220

1120

1020

0920

08

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2007

500

500

500

500 500

500

500

500

500

500

500

500

500

1000

1000

1000

1000

1000

1000

1000 10

00

1000

1000

1000

1500

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000

2000

2000

2500 2500

2500

2500

2500

2500

2500

2500

LION

DYFAMED

Section 1: 9516 profilesSection 2: 4022 profilesSection 3: 2623 profilesSection 4: 2399 profiles

43

2Northern Current path1

EG

U 2

013!

Introduction Data and Methods Results Conclusion

Method used to compute the mean sections of the NC:

6.5 7.5 8.5

43

Longitude

Latit

ude

0 50 100 1500

50

100

x [km]

y[k

m] dive

Profiles

predefined section

glider path

data: T, S sections+dive-averagedvelocity

⇓shear + ref= absolutegeostrophicvelocity sections.

The methodology used is the following:

1 collect all the data (pro�les + velocity estimations) in 25km-width box aroundeach section (cf slide 1);

2 project the data by following the f/h contours;

3 bin the data along the section in 1km boxes, average the data (gaussian weightfunction of the distance to the section + removing of outliers);

4 �lter the high frequencies (cut-o� wavelength of 10km ' Rd).

Introduction Data and Methods Results Conclusion

Method used to compute the mean sections of the NC:

6.5 7.5 8.5

43

Longitude

Latit

ude

0 50 100 1500

50

100

x [km]

y[k

m] dive

Profiles

predefined section

glider path

data: T, S sections+dive-averagedvelocity

⇓shear + ref= absolutegeostrophicvelocity sections.

The methodology used is the following:

1 collect all the data (pro�les + velocity estimations) in 25km-width box aroundeach section (cf slide 1);

2 project the data by following the f/h contours;

3 bin the data along the section in 1km boxes, average the data (gaussian weightfunction of the distance to the section + removing of outliers);

4 �lter the high frequencies (cut-o� wavelength of 10km ' Rd).

Introduction Data and Methods Results Conclusion

Seasonal cycle illustrated by radial 1:

5

510203040

50

−20 0 20 401000

900

800

700

600

500

400

300

200

100

0

Distance from isobath 1000m [km]

Pre

ssur

e[d

b]

13

13.2

13.4

13.6

13.8

14

14.2

WinterTemperature [°C]Velocity contours [cm/s]

5510203040

−20 0 20 401000

900

800

700

600

500

400

300

200

100

0

Distance from isobath 1000m [km]

Pre

ssur

e[d

b]

13

13.2

13.4

13.6

13.8

14

14.2

SummerTemperature [°C]Velocity contours [cm/s]

5

510203040

50

−20 0 20 401000

900

800

700

600

500

400

300

200

100

0

Distance from isobath 1000m [km]

Pre

ssur

e[d

b]

0

0.05

0.1

0.15

0.2

0.25

WinterStd deviation [°C]

Velocity contours [cm/s]

5510203040

−20 0 20 401000

900

800

700

600

500

400

300

200

100

0

Distance from isobath 1000m [km]

Pre

ssur

e[d

b]

0

0.05

0.1

0.15

0.2

0.25

SummerStd deviation [°C]

Velocity contours [cm/s]

I Equivalent-barotropic structure with barotropic component up to 5cm/s in winter;I more con�ned to the continental slope and deeper surface currents in winter than

during the rest of the year ⇒

Enhancement of the mesoscale activity

.

Introduction Data and Methods Results Conclusion

Seasonal cycle illustrated by radial 1:

5

510203040

50

−20 0 20 401000

900

800

700

600

500

400

300

200

100

0

Distance from isobath 1000m [km]

Pre

ssur

e[d

b]

13

13.2

13.4

13.6

13.8

14

14.2

WinterTemperature [°C]Velocity contours [cm/s]

5510203040

−20 0 20 401000

900

800

700

600

500

400

300

200

100

0

Distance from isobath 1000m [km]

Pre

ssur

e[d

b]

13

13.2

13.4

13.6

13.8

14

14.2

SummerTemperature [°C]Velocity contours [cm/s]

5

510203040

50

−20 0 20 401000

900

800

700

600

500

400

300

200

100

0

Distance from isobath 1000m [km]

Pre

ssur

e[d

b]

0

0.05

0.1

0.15

0.2

0.25

WinterStd deviation [°C]

Velocity contours [cm/s]

5510203040

−20 0 20 401000

900

800

700

600

500

400

300

200

100

0

Distance from isobath 1000m [km]

Pre

ssur

e[d

b]

0

0.05

0.1

0.15

0.2

0.25

SummerStd deviation [°C]

Velocity contours [cm/s]

I Equivalent-barotropic structure with barotropic component up to 5cm/s in winter;I more con�ned to the continental slope and deeper surface currents in winter than

during the rest of the year ⇒ Enhancement of the mesoscale activity.

Introduction Data and Methods Results Conclusion

Evolution of the Transport (AW, LIW and total):

Fall (OND) Winter (JFM) Spring (AMJ) Summer (JAS)0

0.5

1

1.5

2

2.5

3

Season

Tran

spor

tofA

W[S

v]

Section 1Section 2Section 3Section 4

annual mean ~ 1.1Sv

AW transport (σ<29kg/m3)

Fall (OND) Winter (JFM) Spring (AMJ) Summer (JAS)0

0.5

1

1.5

2

2.5

3

Season

Tran

spor

tofL

IWto

700m

[Sv]

Section 1Section 2Section 3Section 4

annual mean ~0.5Sv

LIW transport (σ>29kg/m3)

Fall (OND) Winter (JFM) Spring (AMJ) Summer (JAS)0

0.5

1

1.5

2

2.5

3

Season

TotalTranspo

rtto

700m

[Sv]

Section 1Section 2Section 3Section 4

annual mean ~ 1.6Sv

Total transport (AW+LIW)

I Strong seasonal signal: ± 30% of theannual mean transport;

I consistent for all sections and watermasses (maximum in winter,minimum in summer);

I mean transport of AW (1.1Sv) +LIW (0.5Sv) ' 1.6Sv (consistent withprevious estimate of Sammari 95);

I (complex bathy of the shelf in theGoL → method could be less robust).

Introduction Data and Methods Results Conclusion

Evolution of the Transport (AW, LIW and total):

Fall (OND) Winter (JFM) Spring (AMJ) Summer (JAS)0

0.5

1

1.5

2

2.5

3

Season

Tran

spor

tofA

W[S

v]

Section 1Section 2Section 3Section 4

annual mean ~ 1.1Sv

AW transport (σ<29kg/m3)

Fall (OND) Winter (JFM) Spring (AMJ) Summer (JAS)0

0.5

1

1.5

2

2.5

3

Season

Tran

spor

tofL

IWto

700m

[Sv]

Section 1Section 2Section 3Section 4

annual mean ~0.5Sv

LIW transport (σ>29kg/m3)

Fall (OND) Winter (JFM) Spring (AMJ) Summer (JAS)0

0.5

1

1.5

2

2.5

3

Season

TotalTranspo

rtto

700m

[Sv]

Section 1Section 2Section 3Section 4

annual mean ~ 1.6Sv

Total transport (AW+LIW)

I Strong seasonal signal: ± 30% of theannual mean transport;

I consistent for all sections and watermasses (maximum in winter,minimum in summer);

I mean transport of AW (1.1Sv) +LIW (0.5Sv) ' 1.6Sv (consistent withprevious estimate of Sammari 95);

I (complex bathy of the shelf in theGoL → method could be less robust).

Introduction Data and Methods Results Conclusion

Evolution of the Transport (AW, LIW and total):

Fall (OND) Winter (JFM) Spring (AMJ) Summer (JAS)0

0.5

1

1.5

2

2.5

3

Season

Tran

spor

tofA

W[S

v]

Section 1Section 2Section 3Section 4

annual mean ~ 1.1Sv

AW transport (σ<29kg/m3)

Fall (OND) Winter (JFM) Spring (AMJ) Summer (JAS)0

0.5

1

1.5

2

2.5

3

Season

Tran

spor

tofL

IWto

700m

[Sv]

Section 1Section 2Section 3Section 4

annual mean ~0.5Sv

LIW transport (σ>29kg/m3)

Fall (OND) Winter (JFM) Spring (AMJ) Summer (JAS)0

0.5

1

1.5

2

2.5

3

Season

TotalTranspo

rtto

700m

[Sv]

Section 1Section 2Section 3Section 4

annual mean ~ 1.6Sv

Total transport (AW+LIW)

I Strong seasonal signal: ± 30% of theannual mean transport;

I consistent for all sections and watermasses (maximum in winter,minimum in summer);

I mean transport of AW (1.1Sv) +LIW (0.5Sv) ' 1.6Sv (consistent withprevious estimate of Sammari 95);

I (complex bathy of the shelf in theGoL → method could be less robust).

Introduction Data and Methods Results Conclusion

Evolution of the Transport (AW, LIW and total):

Fall (OND) Winter (JFM) Spring (AMJ) Summer (JAS)0

0.5

1

1.5

2

2.5

3

Season

Tran

spor

tofA

W[S

v]

Section 1Section 2Section 3Section 4

annual mean ~ 1.1Sv

AW transport (σ<29kg/m3)

Fall (OND) Winter (JFM) Spring (AMJ) Summer (JAS)0

0.5

1

1.5

2

2.5

3

Season

Tran

spor

tofL

IWto

700m

[Sv]

Section 1Section 2Section 3Section 4

annual mean ~0.5Sv

LIW transport (σ>29kg/m3)

Fall (OND) Winter (JFM) Spring (AMJ) Summer (JAS)0

0.5

1

1.5

2

2.5

3

Season

TotalTranspo

rtto

700m

[Sv]

Section 1Section 2Section 3Section 4

annual mean ~ 1.6Sv

Total transport (AW+LIW)

I Strong seasonal signal: ± 30% of theannual mean transport;

I consistent for all sections and watermasses (maximum in winter,minimum in summer);

I mean transport of AW (1.1Sv) +LIW (0.5Sv) ' 1.6Sv (consistent withprevious estimate of Sammari 95);

I (complex bathy of the shelf in theGoL → method could be less robust).

Introduction Data and Methods Results Conclusion

Annual Mean Temperature/Velocity along each section:

2

2

510203040

1000

900

800

700

600

500

400

300

200

100

0P

ress

ure

[db]

251020304050

2

2

2

5

5

51020

3040

−20 0 20 401000

900

800

700

600

500

400

300

200

100

Distance from isobath 1000m [km]

Pre

ssur

e[d

b]

2

2

2

5

5

51020

3040

−20 0 20 401000

900

800

700

600

500

400

300

200

100

Distance from isobath 1000m [km]

Pre

ssur

e[d

b]

13

13.2

13.4

13.6

13.8

14

14.2

2

2

5

510

1020

30 30

0 20 40Distance from isobath 1000m [km]

Section 1 Section 2

Section 3 Section 4

Temperature of the LIW from East to West ↘

⇒ Heat Transport at mid-depths ↘through shelf-sea exchange.

Introduction Data and Methods Results Conclusion

Annual Mean Temperature/Velocity along each section:

2

2

510203040

1000

900

800

700

600

500

400

300

200

100

0P

ress

ure

[db]

251020304050

2

2

2

5

5

51020

3040

−20 0 20 401000

900

800

700

600

500

400

300

200

100

Distance from isobath 1000m [km]

Pre

ssur

e[d

b]

2

2

2

5

5

51020

3040

−20 0 20 401000

900

800

700

600

500

400

300

200

100

Distance from isobath 1000m [km]

Pre

ssur

e[d

b]

13

13.2

13.4

13.6

13.8

14

14.2

2

2

5

510

1020

30 30

0 20 40Distance from isobath 1000m [km]

Section 1 Section 2

Section 3 Section 4

Temperature of the LIW from East to West ↘ ⇒ Heat Transport at mid-depths ↘through shelf-sea exchange.

Introduction Data and Methods Results Conclusion

Shef-sea exchange along the NC path

Winter (JFM) Spring (AMJ) Summer (JAS) Fall (OND)13.15

13.2

13.25

13.3

13.35

13.4

13.45

13.5

13.55

13.6

Season

TemperatureoftheLIW[degC]

Section 1Section 2Section 3Section 4

Mean temperature ofthe LIW within the NC

I TLIW ↘ from East to West foreach season ⇒ the LIW �ow islosing heat;

I TLIW ↘ in Winter as aconsequence of surface coolingand vertical mixing + mesoscaleactivity which drives lateralexchange;

I TLIW ↗ during the rest of theyear (maximum in Fall).

section i

section i+1

shelf-sea flux= ΦTi+1 - ΦTi ΦTi

=f(Ti,ULIW,S)

ΦTi+1=f(Ti+1,ULIW,S)

V = ULIW

V = ULIW

landsea

~0

Heat Transport: a simple model

We will assume that for each section:

I Ti = annual mean LIWtemperature at each section;

I ULIW = 2cm/s;

I S = 10km × 200m.

Introduction Data and Methods Results Conclusion

Shef-sea exchange along the NC path for the LIW layer

2 3 4 5 6 7 8 9 10

41

42

43

44

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 600 6500

50

100

150

200

250

300

x [km]

y[k

m]

500

500

500

500500

500

500

500

500

500

500

500

1000

1000

1000

1000 1000

10001000

1000

100015

00

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000

2000

2000

2000

2500

2500

2500

2500

2500

2500

2500

What do we learn from this heat budget?

I Shelf-sea heat �ux/km o� Toulon is 2.5 × greater than o� the GoL and 1.5 ×than in the Ligurian Sea

⇒ the corner shape of the coastline o� Toulon seems to be a major spot for theformation of eddies;

Introduction Data and Methods Results Conclusion

Shef-sea exchange along the NC path for the LIW layer

2 3 4 5 6 7 8 9 10

41

42

43

44

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 600 6500

50

100

150

200

250

300

x [km]

y[k

m]

500

500

500

500500

500

500

500

500

500

500

500

1000

1000

1000

1000 1000

10001000

1000

100015

00

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000

2000

2000

2000

2500

2500

2500

2500

2500

2500

2500

2.218 TW

2.209 TW2.199 TW

2.193 TW

What do we learn from this heat budget?

I Shelf-sea heat �ux/km o� Toulon is 2.5 × greater than o� the GoL and 1.5 ×than in the Ligurian Sea

⇒ the corner shape of the coastline o� Toulon seems to be a major spot for theformation of eddies;

Introduction Data and Methods Results Conclusion

Shef-sea exchange along the NC path for the LIW layer

2 3 4 5 6 7 8 9 10

41

42

43

44

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 600 6500

50

100

150

200

250

300

x [km]

y[k

m]

500

500

500

500500

500

500

500

500

500

500

500

1000

1000

1000

1000 1000

10001000

1000

100015

00

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000

2000

2000

2000

2500

2500

2500

2500

2500

2500

2500

326 W/m2

527 W/m2

207 W/m2

What do we learn from this heat budget?

I Shelf-sea heat �ux/km o� Toulon is 2.5 × greater than o� the GoL and 1.5 ×than in the Ligurian Sea

⇒ the corner shape of the coastline o� Toulon seems to be a major spot for theformation of eddies;

Introduction Data and Methods Results Conclusion

Shef-sea exchange along the NC path for the LIW layer

2 3 4 5 6 7 8 9 10

41

42

43

44

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 600 6500

50

100

150

200

250

300

x [km]

y[k

m]

500

500

500

500500

500

500

500

500

500

500

500

1000

1000

1000

1000 1000

10001000

1000

100015

00

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000

2000

2000

2000

2500

2500

2500

2500

2500

2500

2500

326 W/m2

527 W/m2

207 W/m2

Hot spot for Eddiesdetachment

What do we learn from this heat budget?

I Shelf-sea heat �ux/km o� Toulon is 2.5 × greater than o� the GoL and 1.5 ×than in the Ligurian Sea⇒ the corner shape of the coastline o� Toulon seems to be a major spot for theformation of eddies;

Introduction Data and Methods Results Conclusion

Shef-sea exchange along the NC path for the LIW layer

2 3 4 5 6 7 8 9 10

41

42

43

44

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 600 6500

50

100

150

200

250

300

x [km]

y[k

m]

500

500

500

500500

500

500

500

500

500

500

500

1000

1000

1000

1000 1000

10001000

1000

100015

00

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000

2000

2000

2000

2500

2500

2500

2500

2500

2500

2500

326 W/m2

527 W/m2

207 W/m2

Hot spot for Eddiesdetachment

What do we learn from this heat budget?

I Shelf-sea heat �ux/km o� Toulon is 2.5 × greater than o� the GoL and 1.5 ×than in the Ligurian Sea⇒ the corner shape of the coastline o� Toulon seems to be a major spot for theformation of eddies;

Introduction Data and Methods Results Conclusion

Shef-sea exchange along the NC path for the LIW layer

2 3 4 5 6 7 8 9 10

41

42

43

44

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 600 6500

50

100

150

200

250

300

x [km]

y[k

m]

500

500

500

500500

500

500

500

500

500

500

500

1000

1000

1000

1000 1000

10001000

1000

100015

00

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000

2000

2000

2000

2500

2500

2500

2500

2500

2500

2500

326 W/m2

527 W/m2

207 W/m2

Hot spot for Eddiesdetachment

What do we learn from this heat budget?

I Lets take an Eddy of 10km radius with temperature anomaly of 0.1◦C within alayer of 200m depicted the LIW in its core ⇒ heat content of 2.6× 1016J

Introduction Data and Methods Results Conclusion

Shef-sea exchange along the NC path for the LIW layer

2 3 4 5 6 7 8 9 10

41

42

43

44

Longitude

Latit

ude

0 50 100 150 200 250 300 350 400 450 500 550 600 6500

50

100

150

200

250

300

x [km]

y[k

m]

500

500

500

500500

500

500

500

500

500

500

500

1000

1000

1000

1000 1000

10001000

1000

100015

00

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000

2000

2000

2000

2500

2500

2500

2500

2500

2500

2500

11 eddies/yr12 eddies/yr

6 eddies/yr

What do we learn from this heat budget?

I Lets take an Eddy of 10km radius with temperature anomaly of 0.1◦C within alayer of 200m depicted the LIW in its core ⇒ heat content of 2.6× 1016J

Introduction Data and Methods Results Conclusion

Conclusion

Contribution of the glider to the understanding of the NW Med Sea:

Repeated sections enable to:

I better characterize the mean and seasonal variation of the NC at di�erent points(in good agreement with previous studies);

I estimate shelf-sea exchange in term of heat �ux (or corresponding number ofeddies);

I identify a major spot for the formation of eddies directly impacting the deepconvection zone (a key-region for the thermohaline circulation).

But this dataset is also a goldmine for other studies (physical processes, eddies, ...)

Other communications about gliders in the Med Sea!(Tomorrow afternoon)

Poster: [B613: 15h30-17h] session 0S4.5: Bosse A., et al, Survey of submesoscalestructures at the margin of the Northern Current in the North WesternMediterranean Sea using Gliders: observations and diagnostics;

PICO: [Spot 3: 14h45] session 0S5.4: Bosse A., et al, Characteristics of GeostrophicEddies in the North Western Mediterranean as observed by Gliders andsimulated by a high-resolution Model: formation, behaviour and dissipation.

Thank you for your attention!

Introduction Data and Methods Results Conclusion

Conclusion

Contribution of the glider to the understanding of the NW Med Sea:

Repeated sections enable to:

I better characterize the mean and seasonal variation of the NC at di�erent points(in good agreement with previous studies);

I estimate shelf-sea exchange in term of heat �ux (or corresponding number ofeddies);

I identify a major spot for the formation of eddies directly impacting the deepconvection zone (a key-region for the thermohaline circulation).

But this dataset is also a goldmine for other studies (physical processes, eddies, ...)

Other communications about gliders in the Med Sea!(Tomorrow afternoon)

Poster: [B613: 15h30-17h] session 0S4.5: Bosse A., et al, Survey of submesoscalestructures at the margin of the Northern Current in the North WesternMediterranean Sea using Gliders: observations and diagnostics;

PICO: [Spot 3: 14h45] session 0S5.4: Bosse A., et al, Characteristics of GeostrophicEddies in the North Western Mediterranean as observed by Gliders andsimulated by a high-resolution Model: formation, behaviour and dissipation.

Thank you for your attention!

Introduction Data and Methods Results Conclusion

Conclusion

Contribution of the glider to the understanding of the NW Med Sea:

Repeated sections enable to:

I better characterize the mean and seasonal variation of the NC at di�erent points(in good agreement with previous studies);

I estimate shelf-sea exchange in term of heat �ux (or corresponding number ofeddies);

I identify a major spot for the formation of eddies directly impacting the deepconvection zone (a key-region for the thermohaline circulation).

But this dataset is also a goldmine for other studies (physical processes, eddies, ...)

Other communications about gliders in the Med Sea!(Tomorrow afternoon)

Poster: [B613: 15h30-17h] session 0S4.5: Bosse A., et al, Survey of submesoscalestructures at the margin of the Northern Current in the North WesternMediterranean Sea using Gliders: observations and diagnostics;

PICO: [Spot 3: 14h45] session 0S5.4: Bosse A., et al, Characteristics of GeostrophicEddies in the North Western Mediterranean as observed by Gliders andsimulated by a high-resolution Model: formation, behaviour and dissipation.

Thank you for your attention!