36
Augusto SAGNOTTI Scuola Normale Superiore and INFN Istanbul, August 2011 Dario FRANCIA (Czech Acad. Sci, Prague) Andrea CAMPOLEONI (AEI, Potsdam) Massimo TARONNA (Scuola Normale) Mirian TSULAIA (U. Liverpool) Jihad MOURAD (U. Paris VII)

Lectures at Erice, Instanbul, Prague 2011

  • Upload
    sns

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Augusto SAGNOTTI

Scuola Normale Superiore and INFN

Istanbul, August 2011

• Dario FRANCIA (Czech Acad. Sci, Prague) • Andrea CAMPOLEONI (AEI, Potsdam) • Massimo TARONNA (Scuola Normale)

• Mirian TSULAIA (U. Liverpool) • Jihad MOURAD (U. Paris VII)

• Originally: an S-matrix with(planar) duality

• Rests crucially on the presence of ∞ massive modes

• Massive modes: mostly Higher Spins (HS)

A. SAGNOTTI - Istanbul, 2011

A¹ ¡! Á¹1:::¹s4D:

[D>4: ] A¹ ¡! Á¹

(1)1 :::¹

(1)s1

;:::;¹(N)1 :::¹

(N)sN

[Symmetric]

[Mixed (multi-symmetric)]

(Dirac, Fierz, Pauli, 1936 - 39)

Dirac-Fierz-Pauli (DFP) conditions:

• [ Vacuum stability: OK with SUSY ] • Key addition: low-energy effective SUGRA (2D data translated via RG into space-time notions)

• Deep conceptual problems are inherited from (SU)GRA.

• String Field Theory: field theory combinatorics for amplitudes. Massive modes included. Background (in)dependence?

S2 =Z p

°°ab@ax¹@bX

ºG¹º(X)+Z²ab@ax

¹@bXºB¹º(X)+

Z®0p°R(2)©(X)+::

SD =1

2k2D

ZdDX

p¡Ge¡©

µR¡

1

12H2 + 4(@©)2

¶+::

A. SAGNOTTI - Istanbul, 2011

• [ Vacuum stability: OK with SUSY ] • Key addition: low-energy effective SUGRA (2D data translated via RG into space-time notions)

• Deep conceptual problems are inherited from (SU)GRA.

• String Field Theory: field theory combinatorics for amplitudes. Massive modes included. Background (in)dependence?

S2 =Z p

°°ab@ax¹@bX

ºG¹º(X)+Z²ab@ax

¹@bXºB¹º(X)+

Z®0p°R(2)©(X)+::

SD =1

2k2D

ZdDX

p¡Ge¡©

µR¡

1

12H2 + 4(@©)2

¶+::

Are strings really at the heart of String Theory?

Lessons from (and for) (massive) HS?

A. SAGNOTTI - Istanbul, 2011

• Key properties of HS fields:

– Symmetric HS fields, triplets and HS geometry;

• HS interactions: – External currents and the vDVZ discontinuity;

– Limiting string 3-pt functions and gauge symmetry;

– Conserved HS currents & exchanges;

– 4-point functions and beyond.

A. SAGNOTTI - Istanbul, 2011

Fronsdal (1978): natural extension of s=1,2 cases (BUT with CONSTRAINTS)

Can simplify notation (and algebra) hiding space-time indices:

(“primes” = traces)

1st Fronsdal constraint

Bianchi identity :

Natural to try and forego these “trace” constraints:

• BRST (non minimal) (Buchbinder, Burdik, Pashnev, Tsulaia, , 1998-)

• Minimal compensator form (Francia, AS, Mourad, 2002 -)

Unconstrained Lagrangian

2nd Fronsdal constraint

[2-derivative : ] (Buchbinder et al, 2007; Francia, 2007)

Bianchi identity :

Natural to try and forego these “trace” constraints:

• BRST (non minimal) (Buchbinder, Burdik, Pashnev, Tsulaia, , 1998-)

• Minimal compensator form (Francia, AS, Mourad, 2002 -)

Unconstrained Lagrangian S=3 (Schwinger)

2nd Fronsdal constraint

[2-derivative : ] (Buchbinder et al, 2007; Francia, 2007)

What are we gaining ?

s = 2:

s > 2: Hierarchy of connections and curvatures (de Wit and Freedman, 1980)

After some iterations: NON-LOCAL gauge invariant equation for ϕ ONLY

A. SAGNOTTI - Istanbul, 2011

What are we gaining ?

s = 2:

s > 2: Hierarchy of connections and curvatures

NON LOCAL geometric equations :

(de Wit and Freedman, 1980)

After some iterations: NON-LOCAL gauge invariant equation for ϕ ONLY

(Francia and AS, 2002)

A. SAGNOTTI - Istanbul, 2011

BRST equations for “contracted” Virasoro:

α’ ∞

First open bosonic Regge trajectory TRIPLETS Propagate: s,s-2,s-4, …

On-shell truncation :

(A. Bengtsson, 1986; Henneaux, Teitelboim, 1987) (Pashnev, Tsulaia, 1998; Francia, AS, 2002; Bonelli, 2003; AS, Tsulaia, 2003)

(Kato and Ogawa, 1982; Witten; Neveu, West et al, 1985,,…)

Off-shell truncation : ( Buchbinder, Krykhtin, Reshetnyak 2007 )

(Francia, AS, 2002)

A. SAGNOTTI - Istanbul, 2011

BRST equations for “contracted” Virasoro:

α’ ∞

First open bosonic Regge trajectory TRIPLETS Propagate: s,s-2,s-4, …

On-shell truncation :

(A. Bengtsson, 1986; Henneaux, Teitelboim, 1987) (Pashnev, Tsulaia, 1998; Francia, AS, 2002; Bonelli, 2003; AS, Tsulaia, 2003)

(Kato and Ogawa, 1982; Witten; Neveu, West et al, 1985,,…)

Off-shell truncation : ( Buchbinder, Krykhtin, Reshetnyak 2007 )

(Francia, AS, 2002)

(Francia, 2010)

Geometric form: L » R¹1:::¹s;º1:::ºs1

¤s¡1R¹1:::¹s;º1:::ºs

A. SAGNOTTI - Istanbul, 2011

Independent fields for D > 5 Index “families” Non-Abelian gl(N) algebra mixing them Labastida constraints (1987):

NOT all (double) traces vanish Higher traces in Lagrangians !

Constrained bosonic Lagrangians and fermionic field equations Key tool: self-adjointness of kinetic operator

More recently:

Unconstrained bosonic Lagrangians

(Un)constrained fermionic Lagrangians Key tool: Bianchi (Noether) identities

(Campoleoni, Francia, Mourad, AS, 2008, and 2009)

13 A. SAGNOTTI - Istanbul, 2011

Problems :

Aragone – Deser problem (with “minimal” gravity coupling)

Weinberg – Witten Coleman - Mandula Velo - Zwanziger problem Weinberg’s 1964 S-matrix argument ............................... (see Porrati, 2008)

A. SAGNOTTI - Istanbul, 2011

Problems :

Aragone – Deser problem (with “minimal” gravity coupling)

Weinberg – Witten Coleman - Mandula Velo - Zwanziger problem Weinberg’s 1964 S-matrix argument ............................... (see Porrati, 2008)

Problems :

Aragone – Deser problem (with “minimal” gravity coupling)

Weinberg – Witten Coleman - Mandula Velo - Zwanziger problem Weinberg’s 1964 S-matrix argument ............................... (see Porrati, 2008)

(Vasiliev, 1990, 2003) (Sezgin, Sundell, 2001)

But:

(Light-cone or covariant) 3-vertices

[higher derivatives] (Scalar) scattering via current exchanges String contact terms resolve Velo-Zwanziger

Deformed low-derivative with Λ≠0

Infinitely many fields

Berends, Burgers, van Dam, 1982) (Bengtsson2, Brink, 1983)

(Boulanger et al, 2001 -) (Metsaev, 2005,2007)

(Buchbinder,Fotopoulos, Irges, Petkou, Tsulaia, 2006) (Boulanger, Leclerc, Sundell, 2008)

(Zinoviev, 2008) (Manvelyan, Mkrtchyan, Ruhl, 2009)

(Bekaert, Mourad, Joung, 2009)

(Argyres, Nappi, 1989) (Porrati, Rahman, 2009)

(Porrati, Rahman, AS, 2010)

Vasiliev eqs:

• Static sources: Coulomb-like • Residues: degrees of freedom

• e.g. s=1 :

• All s :

(Fronsdal, 1978)

… Unique NON-LOCAL Lagrangian (with proper current exchange)

E.g. for s=3:

(Francia, Mourad, AS, 2007, 2008)

NOTICE:

A. SAGNOTTI - Istanbul, 2011

(van Dam, Veltman; Zakharov, 1970)

∀s and D, m=0 :

VDVZ discontinuity: comparing D and (D+1)-dim exchanges ∀s: can describe massive fields a’ la Scherk-Schwarz from (D+1) dimensions :

[ e.g. for s=2 : hAB (hab cos(my) , Aa sin(my), ϕ cos(my) ) ]

(conserved Tµν)

A. SAGNOTTI - Istanbul, 2011

Two types of deformations:

a finite dS radius L a mass M

s=2 : (Higuchi, 1987,2002) (Porrati, 2001) (Kogan, Mouslopoulos, Papazoglou, 2001)

massless result as (ML)0 massive result as (ML)∞

How to extend to all s ? Origin of the poles ? Questions:

E.g.: massive s=2 in dS in general NO gauge symmetry, BUT if

“Partial” gauge symmetry :

NOTE: the coupling Jµνhµν is NOT “partially gauge invariant“

Unless Jµν is CONSERVED AND TRACELESS

(Deser, Nepolmechie, 1984) (Deser, Waldron, 2001)

Rational function of (ML)² :

A. SAGNOTTI - Istanbul, 2011

E.g.: massive s=2 in dS in general NO gauge symmetry, BUT if

“Partial” gauge symmetry :

NOTE: the coupling Jµνhµν is NOT “partially gauge invariant“

Unless Jµν is CONSERVED AND TRACELESS

(Deser, Nepolmechie, 1984) (Deser, Waldron, 2001)

A. SAGNOTTI - Istanbul, 2011

Closer look at old difficulties (for definiteness s-s-2 case)

• Aragone-Deser: NO “standard”gravity coupling

for massless HS around flat space;

• Fradkin-Vasiliev : OK with also higher-derivative terms around (A)dS;

• Metsaev (2007) light-cone

• Boulanger, Leclercq, Sundell (2008): non-Abelian CUBIC “SEEDS”

HS around flat space; MORE DERIVATIVES

DEFORMING the highest vertex to (A)dS one can recover consistent “minimal-like” couplings WITH higher-derivative tails, with a singular limit as Λ 0

Naively: 2 derivatives,

BUT ACTUALLY: 4 derivatives!

A. SAGNOTTI - Istanbul, 2011

Closer look at old difficulties (for definiteness s-s-2 case)

• Aragone-Deser: NO “standard”gravity coupling

for massless HS around flat space;

• Fradkin-Vasiliev : OK with also higher-derivative terms around (A)dS;

• Metsaev (2007) light-cone

• Boulanger, Leclercq, Sundell (2008): non-Abelian CUBIC “SEEDS”

HS around flat space; MORE DERIVATIVES

DEFORMING the highest vertex to (A)dS one can recover consistent “minimal-like” couplings WITH higher-derivative tails, with a singular limit as Λ 0

Naively: 2 derivatives,

BUT ACTUALLY: 4 derivatives!

¤A¹ ¡ r¹r ¢A ¡ 1

L2(1 ¡ D) A¹ = 0

Gauge fixed Polyakov path integral Koba-Nielsen amplitudes

Vertex operators asymptotic states

Sopenj1¢¢¢jn =

Z

Rn¡3

dy4 ¢ ¢ ¢ dyn jy12y13y23j

£ h Vj1(y1)Vj2(y2)Vj3(y3) ¢ ¢ ¢ Vjn(yn) iTr(¤a1 ¢ ¢ ¢¤an)

yij = yi ¡ yj

Chan-Paton factors

(L0 ¡ 1) jªi = 0

L1 jªi = 0

L2 jªi = 0

Virasoro Fierz-Pauli

HERE massive HS, but …

(AS, Taronna, 2010)

A. SAGNOTTI - Istanbul, 2011

Z » exp

2

4¡1

2

nX

i6=j

®0 p i ¢ p j ln jyij j ¡p

2a0»i ¢ p j

yij+

1

2

»i ¢ »jy2ij

3

5

Z[J ] = i(2¼)d±(d)(J0)C exp³¡

1

2

Zd2¾d2¾0 J(¾) ¢ J(¾0) G(¾; ¾0)

´

For symmetric open-string states

( 1st Regge trajectory)

Z(»(n)i ) » exp

³X»(n)i Anm

ij (yl) »(m)j + »

(n)i ¢Bn

i (yl; p l) + ®0 p i ¢ p j ln jyij j´

Á i(p i; » i) =1

n!Ái ¹1¢¢¢¹n » ¹1

i : : : » ¹ni

“symbols”

A. SAGNOTTI - Istanbul, 2011

¡p 21 =

s1 ¡ 1

®0 ¡ p 22 =

s2 ¡ 1

®0 ¡ p 23 =

s3 ¡ 1

®0

Zphys » exp

(r®0

2

µ» 1 ¢ p 23

¿y23

y12y13

À+ » 2 ¢ p 31

¿y13

y12y23

À+ » 3 ¢ p 12

¿y12

y13y23

À¶+ (» 1 ¢ » 2 + » 1 ¢ » 3 + » 2 ¢ » 3)

)

• L0 constraint: mass

• L1 constraint: transversality

• L2 constraint: vanishing trace

Virasoro constraints directly in generating function

Signs (twist)

“On-shell” couplings star- product with symbols of fields

A§ = Á 1

Ãp 1;

@

@Ȥr

®0

2p 31

!Á 2

Ãp 2; » +

@

@Ȥr

®0

2p 23

!Á 3

Ãp 3; » §

r®0

2p 12

! ¯¯¯»= 0

DFP conditions

(AS, Taronna, 2010)

KEY SIMPLIFICATION OF 3-POINT FUNCTIONS:

A. SAGNOTTI - Istanbul, 2011

• 0-0-s:

• 1-1-(s≥2):

A§0¡0¡s =

çr

® 0

2

!s

Á 1 Á 2 Á 3 ¢ p s12

J §(x; ») = ©

Ãx § i

r® 0

Ãx ¨ i

r® 0

!Conserved (massless φ)

A§1¡1¡s =

çr

® 0

2

!s¡2

s(s¡ 1) A1¹ A2 º Á¹º::: p s¡212

+

çr

® 0

2

!s hA1 ¢ A2 Á ¢ p s

12 + s A1 ¢ p 23 A2 º Á º::: p s¡112

+ s A2 ¢ p 31 A1 º Á º::: p s¡112

i

+

çr

® 0

2

!s+2

A1 ¢ p 23 A2 ¢ p 31 Á ¢ p s12 ;

Wigner Function

(Berends, Burger, van Dam, 1986)

A. SAGNOTTI - Istanbul, 2011

• OLD IDEA: String Theory broken phase of “something”

• AMPLITUDES: can spot extra “debris” that drops out in the “massless”

limit, where one ought to recover couplings based on conserved currents.

A gauge invariant pattern shows up!

A§ = exp

(r®0

2

h(@» 1 ¢ @» 2)(@» 3 ¢ p 12) + (@» 2

¢ @» 3)(@» 1 ¢ p 23) + (@» 3 ¢ @» 1)(@» 2 ¢ p 31)i)

£ Á 1

Ãp 1; » 1 +

r®0

2p 23

!Á 2

Ãp 2; » 2 +

r®0

2p 31

!Á 3

Ãp 3; » 3 +

r®0

2p 12

! ¯¯¯» i = 0

G operator: builds a CASCADE of lower-derivative terms

(AS, Taronna, 2010)

A. SAGNOTTI - Istanbul, 2011

The limiting couplings are induced by conserved currents:

J §(x ; ») = exp

èi

r® 0

2»®£@³1 ¢ @³2 @ ®

12 ¡ 2 @ ®³1 @³2 ¢ @ 1 + 2 @ ®

³2 @³1 ¢ @ 2

¤!

£ Á 1

Ãx ¨ i

r® 0

2» ; ³1 ¨ i

p2® 0 @ 2

!Á 2

Ãx § i

r® 0

2» ; ³2 § i

p2® 0 @ 1

! ¯¯¯³i = 0

• GENERALIZED WIGNER FUNCTIONS, conserved up to massless Klein-Gordon, divergences and traces. Unique extension to both Fronsdal and compensator cases (with divergences and traces), conserved up to complete eqs.

• CORRESPONDING GAUGE INVARIANT 3-POINT FUNCTIONS:

J ¢ Á(AS, Taronna, 2010)

A§ = exp

(r®0

2

h(@» 1 ¢ @» 2 + 1)(@» 3 ¢ p 12) + (@» 2 ¢ @» 3 + 1)(@» 1 ¢ p 23) + (@» 3 ¢ @» 1 + 1)(@» 2 ¢ p 31)

i)

£ Á 1 (p 1; » 1 ) Á 2 (p 2; » 2 ) Á 3 (p 3; » 3 )

¯¯¯» i = 0

Related work : Manvelyan, Mkrtchyan, Ruhl, 2010

A. SAGNOTTI - Istanbul, 2011

(AS, Taronna, 2010)

Related work : Manvelyan, Mkrtchyan, Ruhl, 2010

“Off – Shell” Vertices:

A§ = exp

(r®0

2

h(@» 1 ¢ @» 2 + 1)(@» 3 ¢ p 12) + (@» 2 ¢ @» 3 + 1)(@» 1 ¢ p 23) + (@» 3 ¢ @» 1 + 1)(@» 2 ¢ p 31)

i)

£ Á 1 (p 1; » 1 ) Á 2 (p 2; » 2 ) Á 3 (p 3; » 3 )

¯¯¯» i = 0

Hij = (@» i ¢ @» j + 1)D j ¡1

2p j ¢ @» i @» j ¢ @» j

D j = p j ¢ @» j ¡1

2p j ¢ » j @» j ¢ @» j ( de Donder operator )

V123 = exp (§¡)

·1 +

® 0

2

³H 12 H 13 + H 23 H 21 + H 31 H 32

´

¨µ

® 0

2

¶ 32 ³

: H12 H 31 H 23 : ¡ : H21 H 32 H 13 :´#

A. SAGNOTTI - Istanbul, 2011

A natural guess for gauge invariant FFB couplings in (type-0) superstrings:

Determines corresponding (Bose and Fermi)conserved HS currents:

J[0]§FF (x ; ») = exp

è i

r® 0

2»®£@³1 ¢ @³2 @ ®

12 ¡ 2 @ ®³1 @³2 ¢ @ 1 + 2 @ ®

³2 @³1 ¢ @ 2

¤!

£ ¹ª 1

Ãx ¨ i

r® 0

2» ; ³1 ¨ i

p2 ® 0 @ 2

! h1 + =»

iª 2

Ãx § i

r® 0

2» ; ³2 § i

p2 ® 0 @ 1

! ¯¯¯³i = 0

:

A [0]§F = exp(§G) ¹Ã 1

Ãp 1 ; » 1 §

r® 0

2p 23

![1 + =@ » 3

] Ã 2

Ãp 2 ; » 2 §

r® 0

2p 31

!

£ Á 3

Ãp 3 ; » 3 §

r® 0

2p 12

! ¯¯¯» i = 0

;

J[0]§BF (x ; ») = exp

è i

r® 0

2»®£@³1 ¢ @³2 @ ®

12 ¡ 2 @ ®³1 @³2 ¢ @ 1 + 2 @ ®

³2 @³1 ¢ @ 2

¤!

£h1 + =@³ 2

iª 1

Ãx ¨ i

r® 0

2» ; ³1 ¨ i

p2 ® 0 @ 2

!© 2

Ãx § i

r® 0

2» ; ³2 § i

p2® 0 @ 1

! ¯¯¯³i = 0

:

(AS, Taronna, 2010)

A. SAGNOTTI - Istanbul, 2011

• Current-exchange formula: (Fronsdal, 1978; Francia, Mourad, AS, 2007)

• Scalar currents & “coupling function” (Berends, Burgers, van Dam, 1986)

(Bekaert, Joung, Mourad, 2009)

• Bekaert-Joung-Mourad amplitude (D=4):

X

n

1

n! 22n(3¡ d2 ¡ s)n

hJ [n] ; J [n]i ;

J(x; u) = ©?(x + iu) ©(x¡ iu) ; a(z) =X

r

zr

r!ar

A(s) = ¡ 1

® 0s

·a

µ® 0

4(u¡ t) +

® 0

2

p¡ut

¶+ a

µ® 0

4(u¡ t)¡ ® 0

2

p¡ut

¶¡ a0

¸£Á 1 (p 1) Á 2 (p 2) Á 3 (p 3; ) Á 4 (p 4)

A. SAGNOTTI - Prague, 2011

(Taronna, 2011)

• What is the meaning of Γ ?

• Cubic vertex: tensor products of YM and scalar vertices • These quantities are gauge invariant, up to the DFP conditions

• What are the analogues of the two basic vertices for N>3 pts?

[“Lego bricks” for S-matrix amplitudes]

A§ = exp

(r®0

2

h(@» 1 ¢ @» 2 + 1)@» 3 ¢ p 12 + (@» 2 ¢ @» 3 + 1)@» 1 ¢ p 23 + (@» 3 ¢ @» 1 + 1)@» 2 ¢ p 31

i)

£ Á 1 (p 1; » 1 ) Á 2 (p 2; » 2 ) Á 3 (p 3; » 3 )

¯¯¯» i = 0

• (Limiting) 3-pt functions:

A. SAGNOTTI - Istanbul, 2011

(Taronna, 2011)

• Quartic YM vertex: ”conterterm”for linearized gauge symmetry

• Actually: gauge symmetry requires “planarly dual” pairs

• YM amplitudes:

Aa¹ Ab

º Ac½ Ad

¾

µ® s¹º½¾

s+ ¯ s

¹º½¾ +®u¾¹º½

u+ ¯ u

¾¹º½

¶ £tr¡T aT bT cT d

¢+ tr

¡T dT cT bT a

¢¤+ : : :

(Taronna, 2011)

• Quartic YM vertex: ”conterterm”for linearized gauge symmetry

• Actually: gauge symmetry requires “planarly dual” pairs

• YM amplitudes:

• Gauge invariant HS amplitudes (open-string-like):

• Weinberg’s 1964 argument bypassed: lowest exchanged spin = 2s-1

• Non-local Lagrangian couplings

• Closed-string-like amplitudes: striking differences already for s=2 !

Aa¹ Ab

º Ac½ Ad

¾

µ® s¹º½¾

s+ ¯ s

¹º½¾ +®u¾¹º½

u+ ¯ u

¾¹º½

¶ £tr¡T aT bT cT d

¢+ tr

¡T dT cT bT a

¢¤+ : : :

Áa¹1:::¹k

Ábº1:::ºk

Ác½1:::ºk

Ád¾1:::¾k

µ® s

s+ ¯ s +

®u

u+ ¯ u

¶k

(su)k¡1 £

tr¡T aT bT cT d

¢+ tr

¡T dT cT bT a

¢¤+ : : :

• Free HS Fields: – Constraints, compensators and curvatures – (String Theory (α΄ ∞) : triplets)

• Interacting HS Fields: – External currents and vDVZ (dis)continuity – Cubic interactions and (conserved) currents

• (Old) Frontier Crossed: 4-point amplitudes – Massless flat limits vs locality

A. SAGNOTTI - Istanbul, 2011

• Free HS Fields: – Constraints, compensators and curvatures – (String Theory (α΄ ∞) : triplets)

• Interacting HS Fields: – External currents and vDVZ (dis)continuity – Cubic interactions and (conserved) currents

• (Old) Frontier Crossed: 4-point amplitudes – Massless flat limits vs locality

A. SAGNOTTI - Istanbul, 2011