62
IA-1275 NUCLEAR DATA EVALUATION FOB PLUTONIUM.242 M. CANER and S. YIF1AH Israel Atomic Energy Commission

Israel Atomic Energy Commission

Embed Size (px)

Citation preview

IA-1275

NUCLEAR DATA EVALUATION FOB

PLUTONIUM.242

M. CANER and S. YIF1AH

I s rae l Atomic Energy Commission

IA-1275 Israel Atomic Energy Commission M. CANER and S. YIFTAH Nuclear data evaluation for plutonium-242 February 1973 56 p. 12 figs. 7 tables

-3 An evaluation was done from 10 eV to

15 x 10 6 eV of the following 2^ 2Pu neutron cross sections: total, elastic, radiative capture, fission, total inelastic, partial inelastic, (n,2n) (n,3n), and differential elastic. Also the number of prompt neutrons per neutron-induced fission and

• •••••r.-.-j-A-JW

the average elastic scattering cosine in the lab I system were evaluated. %

The data are presented in graDhical and 5 tabular form. " \

The following derived quantities are also [ tabulated:nonelastic, absorption and transport J cross sections, alpha and eta. s

The experimental data were supplemented by < optical model and statistical theory code calcu- ••; lations and by systematics. I

A V A I L A B I L I T Y

IsrMl Atomic Enirgy Commission reports and bibliographies may b* obtained on application to:

TtCHWCAl INrOHMATIOM DlrASTMiNT MAIL ATOMIC MMMr COMMISSION

r.o.i. 17 1 2 0 TIL-AVIV, ISRAIl

IA-1275

NUCLEAR DATA EVALUATION FOR PLUTONIUM-242

M. Caner and S. Yiftah

Israel Atomic Energy Commission February 1973

I

CONTENTS

Page

1. INTRODUCTION 1

2. THERMAL ENERGY RANGE 1

3. RESOLVED RESONANCES ENERGY RANGE 4

4. AVERAGE RESONANCE PARAMETERS 7

5. FAST NEUTRON ENERGY RANGE 10

5.1 Introduction . 10

5.2 Optical model and statistical theory calculations 10

5.3 Experimental data and recommended cross sections 15

5.4 Other nuclear data 17

REFERENCES 18

TABLES 20

FIGURES 35

APPENDIX 47

Nuclear data tables 47

II

LIST OF TABLES

Table I

Table II

Table III

Table IV

Table V

Table VI

242 Pu thermal energy cross section data.

Resonance cross section measurements after 1963. 242

Pu resonance parameters: experimental and recommended values. 242.

242. Pu resonance parameters: recommended values,

'Pu average resonance parameters. 242. Pu energy level scheme.

Ill

LIST OF FIGURES 242 Fig. 1 - Fu total cross section from 0.2 to 10 keV. 242 Fig. 2 - Fu total cross section from 1 keV to 15 M«V. 242

Pu elastic scattering cross section from 0.2 to 10 keV. 242

Pu elastic scattering cross section from 1 keV to IS MeV. 242

Pu radiative capture cross section from 0.2 to 10 keV. 242

Pu radiative capture cross section from 1 keV to 15 MeV. 242

Pu fission cross section from 0.2 to 300 keV. 242 Fig. 8 - Pu fission cross section from 0.1 to 15 MeV 242 Fig. 9 - Pu inelastic scattering cross section from 40 keV to 15 MeV. 242 Fig. 10 - Pu inelastic excitation curves for the 44 and 146 keV

levels. 242 Fig. 11 - Pu (n, 2n) and (n, 3n) cross sections from 5 to 15 MeV. 242 Fig. 12 - Pu average elastic scattering cosine in the lab system

from 10 keV to 15 MeV.

Fig- 3

Fig. 4

Fig . 5

Fig. 6

Fig. 7

NUCLEAR DATA EVALUATION FOR PLUTONIUM-242

M. Caner and S. Yiftah

ABSTRACT

An evaluation was done from 10 eV to 15 x 10 eV of the following 2 Pu neutron cross sections: total, elastic, radiative capture, fission, total inelastic, partial inelastic, (n,2n), (n,3n), and differential elastic. Also the number of prompt neutrons per neutron-induced fission and the average elastic scattering cosine in the lab system were evaluated.

The data are presented in graphical and tabular form.

The following derived quantities are also tabu­lated: nonelastic , absorption and transport cross sections, alpha and eta,

The experimental data were supplemented bv optical model and statistical theory code calculations and by systematics.

1. INTRODUCTION

The present work, constitutes an updating of a 1967 evaluation of Plutonium-242 nuclear data . The range covered extends from 1 meV to 15 MeV. These evaluated data were transmitted to the Kernforschung-szentrum Karlsruhe for incorporation into the KEDAK file.

2. THERMAL ENERGY RANGE

The discrepancy between integral and differential values of a (thermal) (E=0.0253 eV) has been resolved by Young

y Ql 7 12) and coworkers ' ' . The high value of a (thermal) in Ref. 11 was due to small particle scattering and water contamination in the Pu0_. A similar correction should be applied to the Auchampaugh 66 o„ fth) value.

- 2 -

The thermal energy data is sunmarized in Table 1. The average (13) o is a weighted average of Butler 57 (corrected by Durham 70),

Halperin 6 4 ( 1 4 ) , Durham 70 ( 1 5 )and Young 7 1 ( 1 2 ) . Since Young 71 established the 1/v nature of o in the thermal range, the Westcott factor g is equal to 1 for the integral measurements of g a (th). a was measured in transmission experiments (differential exp.); a was measured by the activation method (integral exp.); a was calculated from the resonance parameters. The average capture width for the first resonance is V -25.5+0.8 meV. T was adjusted

Y — Y to fit o (thermal); the recommended value is T = 26+1 meV. The thermal range cross sections are therefore calculated from the first resonance parameters.

A discussion of the experimental work follows• Studier 54 (ANL) measured a (th); a Pu sample was irradiated in the Materials Testing Reactor. The Pu was separated chemically from the transplu-toniun> elements and analysed in a mass spectrometer. The value obtai­ned wa,= o - 30+10b.

Butler 57 (Chalk River) measured o (thermal) by the activa­tion method. They report a value of 18.6+_0.8b. Durham 70 corrected

eg this value for the recent values of a ( C o ) and the half-lives of

Pu and Am; the new value is 19.8+10b. (14) Halperin 64 (ORNL) obtained a (effective) by measuring the

243 ^ S emitter Pu; the calculated value was g a (th) - 24.4+4. This work was quoted by Durham 70.

Auchampaugh 66 (see Section 3) measured a_(th)=39.8+1.6'L>. 242 It must be noted that the Pu samples were similar in nature to

those of Young 70 and the same corrections should apply.

Folger 68 (Savannah River Lab.) is a report on activation measurements in S.R. reactor which gave g o =20b . No estimate of the error was given.

- 3 -

Young 68 (Idaho Nuclear Corp.) reports on a transmission 242 measurement of a( Pu) from 0.008 to 8000eV using the Materials

242 Testing Reactor fast chopper. A Pu0 ? (99,88% Pu) powder sample was used. Shape and area analysis was performed. Resonance parame­ters where obtained below 180 eV. The observed a (thermal) was 39+lb; assuming 1/v - dependence, they obtained d (thermal)=22+2b; a was taken to be 14 b. pot

Durham 69 (Chalk River) measured o by determining the 243 y

Am product. Samples were irradiated in a Maxwellian flux. g a = 18.7+0.7b where g represents the deviation from 1/v behavior.

Young 70 reports on the same measurement as in Young 68, but extended down to 0.0015 eV. In the thermal energy range, correc­tions were applied for small particle scattering and water contami­nation in the sample. The analysis gives ff_ (th)=26.9+_2.0b and a (th) = 18.5+2.0b. It was assumed that a =10.7b^ . a (th) was Y — pot Y obtained from a Breit - Wigner formula calculation.

(12) Young 71 : The transmission measurement in Refs. 11 and 7 was repeated from 0.0015 to 1.0 eV using a metal sample. The sample was an alloy of Pu and about 0.96 wtX Al, the isotopic purity w=s

242 99.91% Pu. The measured o_ agreed very tell with the corrected (12) a from Young 70 . The combined results of the met^l and oxide

measurements gave a„(thermal)=26.9+l b and a (th)»13.5+l b. The (15) ^ evaluated value of cr (including Durham ) is c (th)»19.0+0.o b.

The 0.0253 eV values (in barns) adopted in the different evaluations are as follow:

Presen t work EHDF/B-• I I I IA-1152

a Y

18.5 + 1 18.5 30.5

°f 0 0 0

a n 8.3 + 1.4 8.4 9.0

°T 2 6 . 8 + 1 26.9 39.5 + 0 .8

4 -

Our present values agree with ENDF/B - III since they are both based on the same data.

3. RESOLVED RESONANCES ENERGY RANGE The new data (since 1967) allowed us to extend the resolved

resonance range from 390 eV to 495 eV, for a total of 37 resonances. The data between 495 and 4000 eV are incomplete and were used in the determination of the average resonance parameters only. In ENDF/B-III the resolved resonances range extends to 386 eV (20 resonances).

We proceed now to review the post-1963 data (for older measu­rements see Ref. 20).

(4) Fattenden 65 (Harwell) made time-of-flight transmission meas­

urements below 850 eV (area analysis below 320 eV) with a best re'ol-242 ution of 15 nsec/m using Pu0„ samples with 91% Pu, The Harwell

electron linac was used,

Auchampaugh 66 (Lawrence Radiation Lab) made time-of-flight transmission measurements below 400 eV. The resolution was 10-90 nsec/m. The PuO. targets had 97-99% Pu. The data was area and shape analysed.

James 69 (Harwell) made a measurement of cr, from 16 eV to 35 keV, A tirae-of-flight method was used, based on the Harwell 45 MeV electron linac and a pulsed neutron source. Fission fragments from the target foils were detected on solid state detectors. The

235 cross section was measured relative to U. The target was PuO, 242 with an Isotopic purity of 99.89% Pu. Three fission areas were

measured, they are listed in Table III except tor the one at 29.6 242 keV. Because of the spontaneaus fission of Pu no resonances with

T < 0.8 meV could be detected.

Young 70 (Idaho Nuclear Corp.) made transmission measurements from 0.0015 to 8000 eV using PuO. powder samples in the Materials

- 5 -

Testing Reactor fast chopper. The results and the problems in the thermal range were already discussed. The analysis in the resolved resonances range supersedes the one in Young 68 . The energy resolution varies from 300 to 100 nsec/m in the resonance range.

(8) Auchampaugh 71 (LASL) measured fission cross sections between 20 eV and 10 MeV using a nuclear detonation (Physics 8 =vent) as a neutron source. The Pu0„ sample had an isotopic purity of 99,91%. The experiment was of the time-of-flight type. The resolution above 400 eV was 0.8 nsec/m; from 100 to 400 eV the resolution is not clearly defined. The o of Pu was measured relative to Li(n,cc)

235 below 100 keV and to o, of U above 100 keV. The cross section in the subthreshold range exhibits the same type of bunching as for a_

240 of Pu; this behaviour can be explained by fission through a double (21) well potential . The values listed in Ref. 8 are fission areas:

A^ = ( /2)a r barn, eV f or

0 = 4TT(X 2 / E ) g r /r o o r j nr r

where X = 457,102(b.eV)1'2 and the r , E are Breit-o r' r Wigner parameters at the resonance energy. The A extend from 370 to 4000 eV; from 4000 to 110,000 eV the resonances are not fully resolved.

(9 22) Bergen 71 made measurements of a from 50 eV to 5 keV and from 0.1 tc 3 MeV using a nuclear detonation (Pommard event) as a pulsed source for a time-of-flight spectrometer. The PuO sample had

242 an isotopic purity of 99.8%. The crf of Pu was measured with respect 235

to U. Fission fragments where detected in a solid state detector. Measurements in the range 5 - 100 keV are missing '.ue to a malfunc­tion in the electronic system. The data is an average of measurements at 55 and 90 to the neutron beam; below 1 MeV the fission appears to be isotropic. The quantity listed in Table III is a r. (see dis­cussion of Auchampaugh 71).

- 6 -

Simp»on 72* 'made time-of-flight measurements at the ORELA 242 llnac of Pu total cross sections from 15 to 30,000 eV. Transmission

data were taken on three metallic samples of different thicknesses. at 77°K. The data have been analysed below 500 eV: values of r and r are given.

(19) Auchampaugh 72 made time-of-flight measurements of the total 242 cross section of Pu at the Livermore linac. The transmission

measurements were done from 600 eV to 81 keV- Thin and thick samples were used. Parameters were obtained for those resonances below 4 keV with significant fission widths. The fission data from Auchampaugh 71 were combined with the transmission data to yield values of r and T .

The post-1963 experiments are summarized in Table II. The resonance parameters are compiled and evaluated in Table III. Finally, Table IV summarizes the recommended resonance parameters.

In what follows, we discuss the data in Table III. There is a discrepancy between the fission areas of Bergen 71 and Auchampaugh 71: the values of the latter are systematically lower. This discre-pancey is due to the poorer resolution of the Bergen 71 experiment, which becomes apparent when we calculate the resonance integrals in the overlapping range 330 - 791 eV. The integrals are consistent with one another:

I (Auchampaugh 71) - 42.7 + 2.8 b,eV (20 resonances)

I (Bergen 71 ) - 41.1 ± 1.4 b.eV (11 resonances) Therefore, the Auchampaugh values are preferred.

In Table III the fission areas of Auchampaugh 71 are not listed whenever the corresponding fission widths of Auchampaugh 72 are available.

From 495 to 595 eV there is a gap in the knowledge of r . Values of r and r„ are given by Auchampaugh 72 from 595 to 3836 eV,

- 7 -

but only for resonances with significant I",. There will be a great laproveaent in the knowledge of the resolved resonance parameters once the Simpson 72 transmission data, which extends to 30,000 eV, is fully analyzed.

4. AVERAGE RESONANCE PARAMETERS The recommended s and p - wave average resonance parameters

are listed in Table V. The observed average level spacing was calculated as follows:

<D> - (E - E ) / (m - 1) m L o(<D>) » 0.523 <D> / /m-1

The standard error of the mean a is based on the ssumption of a Wigner distribution of the level spacings. From 36 resonances we obtain: <D> - 13.7+1.2 eV.

The compound nucleus level is assumed to have spin and energy (23) dependences according to the Fermi gas model :

<D>(E) - <DI(0).(1 + f)2.exp[-2/a (Vlj+E - ^)]

< D > j < 0 ) ' 2J+T ffiP - r r ^ 20 (24) The neutron separation for the compound nucleus is 5.03 MeV and (25). the pairing energy 0.61 MeV > the effective binding energy (B)

is the difference: 4.42 MeV. For the level density parameter we take a = 27.95 MeV . The spin cutoff parameter is taken to be a-4 . In the low energy limit we recommend

^D^**- 13.7 eV (ENDF/B-III : 18.4 eV) J-2

<D>*"*- 7.52 eV (ENDF/B - III : 9.2 eV) J"2

The average capture is calculated as a weighted averge: <T 28+1 meV (ENDF/B-III : 24.5 meV).

>

8 -

If we assume no correlation between the fission and neutron widths we can use the values of Aucharapaugh 72 for the calculation of the average reduced neutron width. We can compare the value obtained with the average from the recommended resonances:

<r°>(meV) Number of u ,. - 2. ;."̂ > /var(r ) n resonances e f f n n

Recommended resonances 1.10+0.40 37 0.40 R.R. + Auchampaugh 72 1.60+0.28 108 0.61

We see that the second average has a smaller standard error and its sample is closer to a Porter-Thomas distribution (v . « 1):

err therefore we recommend it.

The recommended s-wave strength function is S =<r°>/<D>»(1.17+0.23) -4 o n -I 10 (value calculated from ENDF /B - III: 1.77 x 10"*).

We can derive the strength function from our optical model cal­culation, through the relation

where v. is the penetration factor. From our calculation for E-l keV. we deduce

S 1 / 2= 1.19 x 10~4

o which agrees with the resonance data value. Similarly, we calculated the p-wave strength functions and got:

S* / 2 » 0.520 x 10~ 4 (ENDF/B - III: 1.03 x 10~4)

s j / 2 - 0.675 x 10" 4 (ENDF/B - III: 1.15 x 10"4)

In our previous work we recommended the value S. - 2.5 x 10 i, A 23 8ii based on u.

Using the p-wave strength functions derived from the optical model calculation we get:

- 9 -

<r° > 4"* - 0.712 nieV (EN3)F/B - I I I : 1.90 meV) 1 1 J - |

<r°> ) 1"^ - 0.508 meV (ENDF/B - I I I : 1.06 meV) J 2

We calculated the average fission width as

<r > ^iZi

This expression takes Into account the presence of resonances of negligible fission width and permited us to include the Auchampaugh 72 data. We took &E « [600 eV, 4000 eV] so as to avoid the data gap between 490 and 595 eV; we got <r > = 0.13 + 0.04 meV (effective number of resonances fiE /<D> = 248; 55 nonzero fission widths).

From channel theory calculations (see Section 5.2), the following energy dependence is recommendedi

£_0 This formula yields <r f> . = 0.10 meV, which we recommend; it agrees

with the resonance value within the experimental error of the latter. ENDF/B - III assumes <r > - 0.

It is assumed that the level spacings are distributed according to the Wigner distribution, the capture widths according to a S -function distribution, and the reduced widths according to the Porter-

2 Thomas distribution (x with v-1). From the resolved resonances we eet 2

v »2<rf > /var(rf) = 0.1 : since we constrain ourselves to a x - distribution, we recommend v = 1.

The potential scattering cross section was taken as equal to the shape elastic cross section from the optical model calculation,

- 10 -

evaluated at 1 keV

a „ - o e l 7 (1 keV) - 12.2 b (ENDF/B-III : 10.71 b) pot SE

Our average parameters are based on a fairly large sample and spherical optical model calculations; the ENDF/B-III average parameters are based on a smaller sample and on deformed optical model calculations.

5. FAST NEUTRON ENERGY RANGE 5.1 Introduction

We present here cross sections in the range 200 eV to 15 MeV it must be noted that this section was completed before the reports

Qft^ (18) of Auchampaugh 72 'and Simpson 72 became available; these reports extended the resolved resonance range up to 495 eV and now

(35) only the smooth cross sections down to the ABBN group boundary of 465 eV are of interest.

In Figures 1 to 12 we compare the nuclear data recommended in this work with the data in IA-1152 and with the evaluation of

(26} Alter and Dunford as it appears in the file ENDF/B-III . Below 10 keV the ENDF/B-III cross sections were calculated using the average parameters in File 2.

The tabulated data is listed in the Appendix. For reasons of space only a few representative angular distributions are listed.

(28) For computations we used the optical model code ABACUS-2 (29) but replaced its Hauser - Feshbach subroutine by the code NEARREX .

5.2 The optical model and statistical theory calculations

The optical model code ABACUS-2 is described in Ref. 28 and 42. We use an interaction potential of the form :

V(r) - -(VRE).f(r) - i.(VEf).g(r) - (VSR). h(r )._£.£

f(r) - {1 + exp[ (r-R)/a]}-1

11 -

g (r) - exp[- (r-R)2/b2J

h(r) - (X/v̂ c) - • -£±

R - R -A 1' 3

o The parameters used are discussed below. The statistical code

NEARREX is described in Ref. 29. We did the calculations with the statistical factor Q=0, so that we used the Hauser-Feshbach equations modified to take into account capture and fission competition with inelastic scattering, and the width fluctuation correction.

An addition was made so that the code would calculate the dif­ferential compound elastic cross section a (8). This was done by assuming the shape of the partial cross section a (i,j ,£' ,j',j;9) to be the same as in the simple Hauser-Feshbach theory.

For the calculation of the fission cross section the linear dependence of the fission width on energy was replaced by the expre-

(31) BBions of the channel theory of fission . Energy levels

The first excited level (44 keV) was taken from the ot-decay (32) analysis of Schznorak et al. . The levels and spins at 146, 956

and 995 keV and the level at 1107 keV were taken from the (p,t) reac-(33) tion analysis of Maher et al. . The rest of the levels used in the

240 (34) calculations are taken from our Fu evaluation . The recommended level scheme appears in Table VI.

Calculations of the fission cross section

A Rill-Wheeler penetration factor was assumed: E - E -1

T f (J,n,K,M) - T f = [1 + exp(2Tt -±- )]

where E = entrance channel energy

- 12 -

E - fission threshold

lVi>f» curvature of the potential barrier peak

K - component of total angular momentum J along the body axis of symmetry

M - component of J along a space axis JI - parity

The parameters E, and %ui, are dependent on the quantum numbers J, II, K. In the present analysis ue neglect this dependence and we take

N,(JfH) = [ T (J,ir,K,M) - n(J,n)-T r K,M r r

where

N, (J,II) « effective number of fission channels of given J,II

n(J,n) - total number of fission channels of given J,II

Ir the calculation of the number of channels we include all the levels up to i~4 which are compatible with angular momentum conser­vation.

We calculated the number of fission channels n(J,JI) under the assumption that all the possible K-bands (K£J) are present; and taking Into account that for J there is a twofold degeneracy due to M - +r. The values n(J,n), which are the same as the ones we used for the 240,. , ... (34) , n i Fu evaluation are as follows:

J n +

No. of channels n(J.H)

1/2 n + 2

1/2 - 2 3/2 + 4 3/2 - 4 5/2 + 6 5/2 - 6 7/2 + 8 7/2 - 8 9/2 + 10

- 13 -

The parameters -tVi>f and the E, were adjusted so as to fit o f at and below threshold.

The best overall fit was obtained with the values E - 870 IteV

Ito » 509 keV We assumed the above parameters to be the same for all channels; this is certainly not true for E,, which depends mainly on K, and thus our E, is an effective value.

The width fluctuation correction was calculated, assuming one degree of freedom, below 100 keV only: from 100 keV to 1.5 MeV no fluctuation correction was made, this was done in accordance with the 240 (34)

Pu evaluation . The effect of omitting the fluctuation factor is an increase in a , at the expensi of o . n n

The calculated o~ agrees fairly well with experimental value except above the threshold where the simple one-well potential does not reproduce the af plateau. We recommend the experimental <Jf in the whole range and renormalize the calculated partial reaction cross

E1 sections o ,o ,, a so that all of them are changed by the same percentage.

Calculation of the radiative capture cross section (29) The code NEARREX computes a according to the dipole radiation

model. The code can take into account (n, y "') competition. We have neglected the latter, except that we correct for the 70 mb rise between 1.2 and 1.5 MeV.

The code calculates the level density as

p(U) - C exp - ^ -

U - nuclear excitation energy where, as we use the expression

p (U) - KU~2exp (4aU) 1 / 2

14

Since o is not sensitive to the exact form of the level density, we Y

use the original expression p(U) and equate the coefficients of the exponents: for a-27.95 Mev - 1 we obtain 6-0.059 MeV.

_3 The calculations were done with <r >/ <D> » 1.76 x 10 . Y

Using the presently recommended average parameters, which were recalculated to include Ref. 18-19, would give rise to a 10Z increase in a . Y

Optical model parameters From 0.1 to 15 MeV we used the same parameters as in Ref. 34.

At 3 keV we varied VRE and VIM to fit a from the Young 68^ 'data, averaged over 1 keV intervals (see Figs. 1-2).VRE and VIM were inter­polated between 3 and 100 keV and extrapolated linearly below.

The parameters used throughout are as follows:

0.0002 MeV £ E £ 0.1 MeV VRE = (39.6 + 29E) MeV VIM - (6.18 - 0.4E) MeV

0.1 MeV s E i 1.5 MeV VRE = 42.5 MeV VIM = 6.14 MeV

1.5 MeV £ E a 3.5 MeV VRE = (44.375 - 1.25 E) MeV VIM = (6.407 - 0.178 E)MeV

3.5 MeV * E £ 10 Mev VRE = (38.115 + 0.5385 E)MeV VIM = (5.517 + 0.0763 E)MeV

10 MeV £ E i. 15 MeV VRE - (34.5 + 0.90 E)MeV VIM = (-4.36 + 1.064 E)MeV

0.0002 MeV & E <. 15 MeV VSR = 7.5 MeV

15

a - 0. .47 F R -

0 b -

1. 1,

.32

.00

F

F

5.3 Experimental Data and Recommended Cross Sections

The total cross section Is plotted In Figs. 1-2. It was calculated as discussed in Sect. 5.2.

From 2 to 8 keV c is made to agree with the <o„> calculated (11) from the Young 68 tabulated data.

The <o > from 0.2 to 0.5 keV was calculated from the recommended resonance parameters and o . The ENDF/B-III curve is too high

pot below 10 keV due to its high S .

The elastic scattering cross section is plotted in Figs. 3-4. It was calculated as discussed in Sect. 5.2. The ENDF/B-III lurve is higher than our curve below 50 keV: this is due to the fact that a = a - a is about the same In both evaluation and CJ (ENDF/B-III) is higher than ours.

The radiative capture is plotted in Figs. 5-6. Below 1.2 MeV the ABACUS-NEARREX calculation is used. In the range irom 2.5 to 15 MeV a was taken as equal to a ( U) as given by Schmidt (2.5 -

Y (36) ^ 10 MeV) and Abagianv ' (10-15 MeV). From 1.2 to 2.5 MeV a was interpolated.

The present and the ENDF/B-III curves agree fairly closely except above 10 keV where a is small. The curve in IA-1152

Y was higher than the present curve due to the high value of

—4 238 S = 2.5x10 used there (which was taken from a U evaluation).

The fission cross section is plotted in Figs. 7-8, The recomme­nded curve is described in what follows. From 0.2 to 100 keV 0 is a smooth curve through the averages calculated from the fission

/ON areas tabulated by Auchampaugh 71 , From 100 to 1000 keV we follow

Cxi\ f3R^ Butler 60 as renormalized by Davey 66 and Auchampaugh 71.

- 16 -

From 1 to 9 MeV we follow Auchampaugh 71. The o f curve Is made to (39) pass through the 14.5 MeV measurement of Fomushkin 67 v . Other

experimental data are: the Fomushkin 70 measurement between 0.43-3.6 MeV, which has the same structure above 1 MeV, but 101

(9 22) lower than the recommended curve, and Bergen 71 ' , whose curve is shifted downwards by 40 keV compared to the recommended curve, and 5% higher in the vicinity of 2 MeV, The 40 keV shift is due to a different energy scale for the Bergen 71 and Auchampaugh 71 experiments. The latter experiment, which is the newest of the two,

242 had twice the amount of Pu available; reportedly, it had higher (8) flux ; and in the resonance region it had a better resolution:

it is therefore preferred throughout. (Auchampaugh 71 and Bergen 71 are discussed in Sect. 3).

In the range 10 to 200 keV the ENDF/B-III curve, calculated with the Hill-Wheeler potential, is relatively too high. Below 100 keV the IA-1152 curve is equal to zero. Between 100 and 1000 keV all three curves agree since they are all based on Butler 60 (renor-malized by Davey 66). Above 1.7 MeV the present curve is the only one based on experimental data.

The inelastic scattering cross section is plotted in Fig. 9. It is calculated below 1.5 MeV with ABACUS-NEARREX; from 1.5 to 15 MeV it is calculated as: a , -a„ -(a + a + a, + a_ + a, )

n T n y f 2n 3n • The differences between the present curve and the ENDF/B-III

curve stem mostly from our use of the spherical optical model instead of the more realistic deformed optical model used by Alter and Ounford , as well as different optical model parameters. It is believed that the present calculation Is sufficiently accurate,

242 taking into consideration the small importance of a , of Pu for reactor calculations.

F * The excitation curves a ̂ are calculated for 17 excited states

- 1 7 -

(see Table VI). The lowest 2 excitation curves are plotted in Fig.10; all the calculated curves are tabulated in the Appendix.

The (n, 2n) and (n, 3n) cross sections are plotted in Fig. 11. a_ and a, were calculated using the statistical model, following 2n 3n W 1 )

the procedure of Pearlstein . The cross section for emitting neut­rons only is a., = a , + <?„ + cr. = <s -a - cr_. The ratio (o„ la.,)

M n 2n 3n x y f 2n M was calculated using the formalism given in Ref. 41. Above the a, threshold, c, was calculated in the same wav and subtracted from 0"„ ; this model assumes that multiple neutron emission of the high­est order takes place whenever possible,

242 241 The threshold energies are 6.29 MeV for Pu(n,2n) Pu and 242 240 11.7 M V for Pu(n,3n) Pu. For the level density parameter we

used a = 27.95 MeV _ 1.

5.4 Other Nuclear Data

The average elastic scattering cosine in the lab system (Fig. 12) was calculated by numerical integration of c (9), The latter was calculated with ABACUS-NEARREX.

No data are available for tie number of neutrons per fission. 240 (34) We recommend the same curve as for Pu : \> = 2.88+0.166xE (E in

MeV) (ENDF/B-III recommends v = 2.808 + 0.142 x E).

ACKNOWLEDGEMENTS Our thanks to Drs. H. Kusters, R. Meyer and Mrs. B. Shatz for

helpful criticism and suggestions.

This research is partly supported by the ufk, Kernforschungszentrum, Karlsruhe.

- IB

REFERENCES

References which appear in Table III EGELSTAFF, P.A., GAYTHER, D.B., NICHOLSON, K.P., J. Nucl. En. 6, 303 (1958) COTE, R.E. et al., Phys. Rev. 114. 505(1959) LEONARD Jr., B.R., ODEGAARDEN, R.H., Bull. Am. Phys. Soc. _6, 8 (1961) PATTENDEN, N.J., Int. Cgnf. Study of Nuclear Structure with Neutrons, Antwerp paper 93 (July 1965) AUCHAMPAUGH, G.F. et al., Phys. Rev.146. 840 (1966) JAMES, G.D., Nucl. Phys. A123 (1969) 24 YOUNG, T.E., and REEDER, S.D. Nucl. Sci. Eng. 40. 389 (1970) AUCHAMPAUGH, G.F., FARRELL, J.A. and BERGEN, D.W., Nucl. Phys. A171 (1971) 31 BERGEN, D.W., and FULLWOOD.R.R., Nucl. Phys. A163 (1971) 577 See Ref. 18 See Ref. 19

Egelstaff 58

Cote 59 Leonard 61

Pattenden 65

Auchampaugh 66

James 69 Young 70

Auchampaugh 71

Bergen 71

Simpson 72 Auchampaugh 72 General references YIFTAH, S., SCHMIDT, J.J., CANER, M., and SEGEV, M., "Fast Reactor Physics", IAEA, Vienna (1968), Vol I, p. 123 also: IA-1152 (1967) YOUNG, T.E., and REEDER, S.D., IN-1132 (1968) YOUNG, T.E., and SIMPSON, F.B., Nucl. Sci. Eng. 43 (1971) 341. BUTLER, J.P., LOUNSBURY, M., MERRITT, J.S., Can, J. Phys. 35t 147 (1957)

HALPERIN, J., and OLIVER, J.H., ORNL-3679 (1964) p. 13. DURHAM, R.W., and MOLSON, F., Can, J. Phys. 48_ (1970) 716. STUDIER, M.H. et al., Phys. Rev. 93_. 1433 (1954)

- 19

17. FOLGER, R.L., et al., NBS-299, Vol II, p. 1279 (1968) 18. SIMPSON, F.B., et al., INDC(USA) -36 "V" p. 1 (1971);

and private communication (1972) 19. AUCHAMPAUGK, G.F., and BOWMAN, CD., INDC(USA)-36"U",p.121 (1971);

and private conmunicatlon (1972) 20. STEHN, J.R., GOLDBERG, M.D., WIENER-CHASMAN, R., MUGHABGHAB, S.F.,

MAGURNO, B.A., MAY, V.K., BNL 325, 2nd Ed, Suppl. No.2 (1965) 21. WEIGMANN, H., Zeit. fur Phys. .214 (1968) 7, 22. BERGEN, D.W., and FULLWOOD, R.R., LA-4420 (1970) p. 123. 23. SCHMIDT, J.J., KFK 120/1 (1966) 24. HYDE, E.K., PERLMAN, I., SEABORG, G.T., The Nuclear Properties

of the Heavy Elements I, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964)

25. SOOD, D.K., and SARMA, N., Nucl, Phys. A151 (1970) 532. 26. ALTER and DUNFORD, file ENDF/B-I1I (1971); also: NAA-SR-12271

(1967) 27. SETH, K.K.. Nucl. Data, A2 (1966) 299. 28. AUERBACH, E.H., BNL 6562 (preprint) (1964) 29. MOLDAOER, P.A., ENGELBRECHT, C.A., and DUFFY, G.J., ANL-6978(1964) 30. AUERBACH, E.H., and MOORE, S.O., Phys. Rev. B135 (1964) 895. "1. WHEELER, J.A., "Fast Neutron Physics". Vol II. MARION, J.B.,

and FOWLER, J.L., ed., John Wiley & Sons (1963) 32. SCHMORAK et al., Nucl. Phys. A178 (1972) 410. 33. MAHER, J.V., et al., Phys. Rev. C5 (1972) 1380. 34. CANER, M., and YIFTAH, S., IA-1243 (1972) 35. ABAGIAN , L.P., et al. "Group Constants for Nuclear Reactor

Calculations", Consultants Bureau, New York (1964) 36. ABAGIAN, L.P., et al., INDC (CCP)-U/U 37. BUTLER, D.K., Phys. REV. 117, 1305 (1960) 38. DAVEY, W.G., Nucl. Sci. Eng. ̂ 6_, 149 (1966) 39. FOMUSHKIN, E.F., et al., Sov. J. Nucl. Phys. 5_, 689 (1967) 40. FOMUSHKIN, E.F., and GUTNIKOVA, E.K., Sov. J. Nucl. Phys. 10,

529 (1970) 41. PEARLSTEIN, S., BNL 897 (1964) 42. AUERBACH, E.H., et al., KAPL - 3020 (1964)

TABLE I

Pu-242 Thermal Energy Cross Sect ion Da^a

Reference Barns Remarks ' a Y

a n aT Remarks

1 Studier 5 4 ( 1 6 ) 30 + 10 Pile neutrons; (I)

2 Butler 5 7 ( 1 3 ) 19.8 + 1.0 activation method; corrected by Durham 70 (I)

3 Halperin 6 4 ( 1 4 ) 24.4 + 4 activation method; (I)

4 Auchampaugh 66 30 + 2 8.9 + 2.6 38.9 +1.6 o measured; transmission exp, (D), a 1 from BNL 325 (1958), o T= a - o n r -y

5 Folger 6 8 ( L 7 ) 20 activation method; (I)

6 Durham 7 0 ( 1 5 ) 18.7 +0.7 activation method; (I)

7 Young 7 1 ( 1 2 ) 18,5 + 1 8.4 + 1.4 26.9 + 1 o measured; transmission exp; (D) a calculated from resonance parameters

Average 19,0 + 0.5 7.9 + 1.1 26.9+1 o. is a weighted average of 2,3,6,7

Recommended 18.5 + 1 8.3 + 1.4 26.8 + 1 calculated from first resonance

(D): differential measurements (I): integral measurements

- 21 -

TABLE II

Resonance Cross Section Measurements After 1963

Reference R e m a r k s

Pattenden 65 *4* 242 Transmission below 850 eV. 912 Fu. Linac time-of-flight, at/1 I 15 nsec/m. Area analysis below 320 eV. E ,r ,r° deduced.

* r n* n Auchampaugh 66 o T from 0.02 to 400 eV. 91X 2 4 2Pu. Linac,

time-of-flight. At/1-10 to 90 nsec/m. Area-and shape-analysis. E , r , r deduced

Jaoes 6 9 ( 6 ) Of from 16 eV to 35 keV. 99.89X 2 4 2Pu. Linac, time-of-flight. Fission areas measured.

Young 7 0 ( 7 ) Transmission from 0.0015 to 8000 eV. MTR reactor, tirae-of-flight. At/1-300 to 100 nsec/m. E r r 0 deduced. r> Y* n

(8) Auchampaugh 71 242 af from 20 eV to 10 MeV. 99.91* Pu. Nuclear detonation, time-of-flight. at/1-0.8 nsec/m above 400 eV. Fission areas measured.

Bergen 7 1 ( 9 ) o f from SO eV to 5 keV and 0.1 to 3 MeV. 99.8% 2 4 2Pu. Nuclear detonation, time-of-flight. Fission areas measured.

(191 Auchampaugh 72 Transmission from 600 eV to 81 keV. Linac. Combined with Ref. 8 to yield r and r, below 4keV. n £

Simpson 72 ( 1 8^ Transmission from 15 ev to 30 keV, Linac. r o andf below 500 eV.

TABLE HI PU-242 RESONANCE PARAMETERS PAGE III- 1 ER GN GG GF GNO REFERENCE

2.67+-O.02 2.65+-.01E 2.65 2.64+-.01E 2.68+-.04E 2.68 2.65+-0.01

1.7 +-0.6 1.9 +-0.2

1.92+-0.10

25.1+-2.6

25.5+-1.0 25+-1.5 31+-5.

26.+-1. 0.

1.0 +-0.5 1.2 +-0.1

1.18+-0.06 1.22+-0.05 1.12+-0.09 1.19+-0.03

27

27

.0+-

.4+-

•2.7

•1.0

EGELSTAFF58 C0TE59 LE0NARD61 AUCHAMPAUGH66 YOUNG70 Y0UNG70 RECOMHENDEO

2 2

14.60+-.04E 14.60+-0.04

0.061+-0.013 30 A 28. 0.

0.016+-0.003 0.016+-0.003

PATTEN0EN65 RECOMHENDEO

3 3 3

22.48+-.06E 22.6 +-0.3E 22.566 22.55+-0.06

0.28 +-0.02 30 A 26 A 20+-5 20+-5 0.

0.060+-0.005 0.067+-P.006 0.055+-0.004 0.061+-0.006

PATTENDEN6S V0UNG70 SIHPS0N72 RcCOMHENDED

4 4 4 4

40.96+-.15E 40.9 +-0.7E 40.950 40.94+-0.03

0.48 +-0.04 30 A 26 A ?9+-4 29+-4 0.

0.075+-0.007 0.066+-0.006 0.070+-0.006 0.070+-0.004

PATTEN0EN65 YOUNG 70 SIMPS0N72 RECOHHEMOEO

5 5 5 5 5 5 5 5

53.6 53.5 +-0.2E 54.0 +-0.3E 53.45+-1.1E 53.45 53.*

53.460 53.6+-0.2

44.9+-6.0 56. +-3. 47.S+-5.5

2*.l*-2.b A 30 A

31+-5. 26 A

28+-3 29+-2

1.50+-

0.046+-

-0

-0

.08S

.003

6.1+-0.8 7.7 +-0.4 6.5+-0.7

6.66+-0.40 7.34+-0.70

6.930+-0.22 7.0+-0.2

70 .0+-

71+-

-6.2

-20.

C0TE59 PATTENDEN65 AUCHAHPAUGH66 Y0UNG70 Y0UNG70 BERGEN71 SIMPSON72 RECOMHENOED

6 6 6 6 6 6

67.9 +-0.4E 6B.3 +-0.3E 67.6 +-1.5E 67.5

67.620 67.6+-0.3

2.7 +-0.4 4.6 +-0.9

30 A

26 A

22+-3 ?2+-3

0.29+-

0.041+-

-0

-0

.02S

.003

O.33+-O.05 0.56+-0.11

0.645+-0.06

0.600+-0.05 0.60+-0.04

PATTENDEN65 AUCHAHPAUGH66 YOUNG70 SERGEN71 SIMPS0N72 RECOMHENDEO

7 7 7

89.1 +-0.5E 86.2

83.460

9.80+-0.16 30 A

29 A 0.029+ -. D03S 0.085+-0.020

0.070+-0.005

PATTEN0EN65 BERGEN71 SIMPS0N72

TABLE llllCONT.)

Eli GN GS

7 88.8+-0.4

d 106.0 +-0.6E 0.6 + -0.4 3 106.0+-0.6

9 103.4 +-0.6E 19. + - 4 . 9 107.7 +-0.5E 14.8 •-1.5 9 107.3 +-3.0E 9 107.1 9 107.370 9 107.7+-0.5

10 133.n +-0.8E 0.7 + -1.7 10 132.5 +-0.7t 5.1 + -1.5 U 131.2 +-4.IE 10 131.0 10 131.430 10 132.0+-0.3

11 141.430 11 141.4

12 152. +-1. E 17.C t-5.6 12 150.3 +-0.3E 17.9 + -2.7 12 149.b +-5.0E x2 149.2 12 149.320 12 15U.4+-1.1

13 166. + - 1 . E 1.0 + -0.6 13 163.640 13 163.6

14 208. +-2. E 100. + -49. 14 205. + - 1 . E 31.0 • -3.0 14 204.3 14 204.970 14 204.8+-0.4

21.

30 A 2P.

30 A

26 A

?d + -7 ?8 + -7

'0 i

26 A

14 + -5 34 + -5

29 A ?8

•>o A ?6 A

29 2°. •<o A ?9 A

7B.

*0

?8+-6 26+-6

15 210.100 29 A

PAGE III- 2

GF GNO

0.043+-0.009 0.O7O+-O.0OS

0.

0.53+-0.03S

0.056+-0.005

0.21+-0.01S

0.06W+-0.009

O.35+-O.02S

0.056+-0.009

0.

0.50+-0.03S

0.059+-0.004

0.06+-0.03 0.06+-0.03

1.8 +-0.3 1.43+-0.14 1.93+-0.20

1.7E0+-0.15 1.7+-0.2

0.57+-n.lb 0.44+-0.13 0.61+-0.06

0.540+-0.02 0.54+-0.07

0.010 + -0.00<: 0.010+-0.002

1.4 +-C.5 1.46+-C.22 1.31+-0.13

1.070+-0.06 1.3+-0.2

0.0B+-0.05 0.045+-0.004 0.045+-0.004

6.9 +-3.4 2.16*-0.21

3.800+-0.25 3.8+-0.2

REFERENCE

RECOMMENDED

PATTENDEN65 RECOMMENDED

PATTENDEN65 AUCHAMPAUGH66 YOUN370 BERGEN71 SIHPS0N72 RECOMMENDED

PATTENDEN65 AUCHAHPAUGM66 YOJNG70 BERGEN71 S1MPSON72 KEC3«HENDED

SIMPS0N72 RECOMMENDED

PATTENDEN65 AuCHAMPAuGH66 YOUNG70 6ERGEN71 SIMPS0N72 RECOMMENOEO

PATTENDEN6S SIMPS0N72 RECOMMENDED PATTENDEN65 AuCHAMPAUGHfcft BERGEN71 SIMPS0N72 RECOMMENDED

0.028+-0.006 SIMPS0N72

TABLE I I I I C O M . ?

ER

15 2 1 0 . 1 28

16 16 16

2 1 4 . 6 2 1 5 . 4 3 0 2 1 5 . 4

36 + - 3 T*6 + - 3

17 17 17 17

2 1 9 . + - 2 . 2 1 7 . + - 1 . 2 1 9 . 5 6 0 2 1 9 . 6

3 .4 -i—l. ?0

?9 A 78

l c

18

2 3 7 . + - ; . 2 3 5 . • - ! .

2 3 1 . 9 • J32 .B70

2 3 3 . 9 + - 1 . 2 d * -2B + - 3

2 6 4 . 7 2 0 2 6 4 . 7

?^

20 2 J

2 7 1 . 9 5 0 2 7 2 . 0

?9 A ?3

21 2 7 2 . 2 21 2 7 3 . 7 1 0 21 2 7 3 . 7

*l + -4 ' 1 + - 4

22 22

2 7 4 . 9 5 0 2 7 5 . 0

?9 A ?8

2 3 2 B 0 . + - 3 . E 2 3 2 7 6 . + - 1 . E 2 3 2 8 1 . 0 5 0 23 2 B 1 . 0

1 9 . + - 8 . 1 0 . 1 + - 2 . 1

?9 A 78

2"-2 4

2 9 8 . 7 6 0 2 9 8 . 8

' 9 A ' 8

25 25

3 0 b . + - 3 . E 3 0 6 . - » - 2 . E

9 . 6 + - 3 . ' 2 1 . * - 5 .

^ 0

PAGE I I I - 3

Gf GNO G REFEREMCE

0 0 . 02B-»—0.006 RECOMMENDED

0.2',*-n.02S BERGEN71 Q.365+-0.02 S1MPS0N72

O.lti--I'.OI 0.365*-0.02 RECDMi'SNOEO 0.23+-0.CB PATTENDEM65 0.45^-0.12 AuCHA«PAUGH6fr

0.020+-0.002 SINPSON72 0 0.O2O+-0.DO2 RECOMMENDED

PATTENCf -,<> AUC'l4k'p~. . J5tj sERicWi SIMO50N72 HEC0M«(E'.Cb3

MMPSON72 kECOMMENOfi

5IM BS0N72 ^COMMENDED

66RGEM71 S!«PSOM72

S1MPS0N72 RECOMMENDED

PATTENDEN65 AUCH»MPAUGHb6 ilMPSOM72 RECOMMENDED

0.450+-0.04 SIMPSON72 0.450+-0.04 RECOMMENOEO

0 . 5 7 + - G . • i y 0 . ^ * •* - 0 «

0 . 2 2 * -u. 3 : ) o + - : .

0 . H I * - •:-.; i 3 . 4 * <• -" .

r . 0 ? H • t - ' . , .024•>•- ' - .

0 . 0 1 0 + - 0 . 0 0 . 0 1 0 + - 0 .

J . 3 6+-• P . C 3 S 0 . 7 5 6 > - : . , 'l:

C . 1 4 * - - 0 . C 2 0 . 7 5 6 + - P , 'ii>

0 . 0 1 0 + - 0 . .002 0 0 . 0 1 0 + - 0 . . 0 0 2

i . t • - • . 0 . 6 1 + - 0 ,

0 . 0 0 8 + - ' J . . 0 0 J 0 0 . 0 0 8 * - " . 00?

0.50*-0.19 PATTENDEN65 AUCHAMPAUGH66

TABLE IIIICONT.)

EB. GN GG

25 302.1 25 303.650 25 304.8+-1. 7

?9 A 2".

311. +-3. 11.0 +-5.5 30 A

2b 326. +-4. E 26 323. +-2. E 26 319.0 2b 319.980 26 321.*-2.

27 3*1. +-4. t 27 335. +-2- E 27 331.2 27 332.530 27 334.+-2.

2o 374. 2o 374.390 26 374.4

29 379.630 29 379.6

30 336. +-2. E 30 3S2. 30 380.7 30 382.420 30 382.4

31 394. +-4. E 31 400.020 31 400.0

32 410. 32 410.690 32 410.7

229. +-45.

94.5 +-1B.0

•1.6

*4+-8

36 + -3 36 + -3

29 A 26

?9 A

28+-5 ?8+-5

29 A 28

29 A 28

33 424.

PACE tit- 4

GF G W

0.25+-O.02S 1.020+-0.00

0.075+-0.008 1.02+-0.08 0.63+-0.31

12.7+-2.5

13.10+-0.4 12.9+-0.3

0.58+-0.04S

0.079+-0.005

0.627+-0.04S

0.12+-0.01

0.07+-0.02F 0.350+-0.02

0.0?3+-0.009 0.350+-0.02 0.014+-0.002

0 0.014+-C.002

5 16+-0.9S

3.900+-0.1 3.9+-0.1

0.16+-0.03F 0.38+-0.04S

0.023+-0.004

2.41+-0.06

2.530+-0.13 2.47+-0.08

0.080+-0.010 0 0.080+-0.010

0.05+-0.Q2F 0.340+-0.020

0.025+-O.010 0.340+-0.020

0.09+-0.02F

REFERENCE 8ER&EN71 SIHPSOH72 RECOMMENDED

PATTENDEN65

PATTENDEN65 AUCHAHPAUGH66 BERGEN71 S1HPS0N72 RECOMMENDED

PATTENDEN65 AUCHAMPAUGH66 BERSEN71 SIMPSON72 RECOMMENDED

AUCMAMP4UGH71 SIMPSON72 RECOMMENDED

SIMPSON72 RECOMMENOED

AUCHAHPAUGH66 AUCHAMPAUGH71 BERSEN71 SIMPSON72 RECOMMENDED

PATTENDEN65 SIMPS0N72 RECOMMENDED

AUCrtAMPAUGHU SIMPS0N72 RECOMMENDED

AUCHAMPAUGH71

T A S L E I I K C O N T . )

X ER J'l

33 " . 2 4 . 1 1 0 33 4 2 4 . 1

34 4 2 5 . 1 5 0 34 4 2 5 . 2

35. 4 7 4 . 35 4 7 3 . 5 2 0 35 4 7 3 . 5

3t> 4 o 3 . 3s 4 0 i . 4 3 - 4 i 2 . 7 4 0 3o 4<s2.7

37 5 0 0 . * - 5 . 37 5 0 5 . 3? 5 0 4 . 5 3 7 4 9 4 . 7 5 0 37 4 * 4 . B

0 5 3 0 . + - 5 . 3 5 3 7 . u 5 3 5 . 1

0 5 4 9 . 0 5 4 5 . a

0 5 5 7 . + - 6 . D

0 5 7 7 .

0 5 9 5 . 2 2 S . 9 + - 2 . 9

0 6 0 0 . 1 7 . 9 + - 0 . 8

0 6 1 9 . *-t>. 0 610 .9 1 0 . 1 + - 1 . 9

0 &39.1 4 . 2 + - 0 . 6

79 4 26 ?9 4 ?8

?9 A ?6

?9 4 ?8

'9 4 ?8

PAGE III- 5 GF GNO G REFERENCE

0.185+-0.015 SIMPSON72 0.U77+-O.O17 O.X85*-0.015 RECOMMENDED

•0134*-0.002 SIMPSON72 0 .0134+-0.002 RECOMMENDED

U.14*-0.03F AUCHAMPAUGHT 1 .0400+-0.004 SIMPSON72

0.53+-0.11 .0400+-0.004 RECOMMENDED 1.29+-0.22F AUCHAMPAUGH71 1.803+-O.15S B6RGEN71

0.910+-0.03 SIMPS0N72 O.Olb-f-0.003 0.910+-0.OB RECOMMENDED

PAT7ENDE465 0.29+-0.04F AUCHAMPAUGH71 C.33+-O.06S BER5EN71

O.012*-0.003 SIMP50N72 4.2*~1.0 O.O12+-O.O03 RECQMMENOEO

PATTENDEN65 0.4b-f-0,09F AUCHAMPAU6H71 0.71+-0.06S BERGEN71 0.53+-0.0BF AUCHAMPAUGH71 0.69+-0.07S BERGEN71

PATTEN0EN65 0.17<-0.04F AUCHAMPAUGH71 0.026+-0.007 AUCHAMPAUGH72 0.134+-0.043 A0CHAMPAUGH72

PATTENDEN65 0.084+-0.026 AUCHANPAUGH72 0.05 U AUCHAMPAUGH72

TABLE I I K C O N T . )

ft ER SN

0 6 6 5 . 0 2 . 7 + - 0 . 5

0 6 6 9 . 5 1 2 . 5 + - 1 . 0

0 6 9 4 . 0 0 6 9 3 . 4 3 2 . 3 * - 3 . 0

0 7 1 4 . 5 0 7 1 1 . 9 1 0 0 . + - 1 6

0 7 2 7 . 9 3 . 6 1 — 0 . 8

0 7 3 7 . 1 0 7 3 6 . 8 1 2 0 + - 1 7

0 7 5 7 . 1 0 7 5 5 . 6 115 + - 1 S

0 7 6 7 . 0 7 6 ^ . 5 4 . 2 + - Q . 4

0 7 8 8 . 2 0 7 8 8 . 5 100 + - 3 0

u 7 9 9 . 0 7 9 4 . 5 275 + - 3 0

0 8 2 5 . 2 7 . 3 + - 1 . 0

0 8 3 2 . + - 1 0 . 0 8 3 7 . 9 3 5 . 0 + - 4 . 2

0 8 5 6 . 7 3 1 . 2 + - 3 . 1

0 8 6 6 . 1 1 1 . 0 + - 1 . 5

0 8 7 9 . 1 50-. + - 5 . 0

0 8 8 6 . 8 2 4 . A + - 2 . 5

GG GF

0.08 U 0.11 +-0.04 1.373+-0.14S 0.28 +-0.06 0.a94+-0.11S 0.O48+-O.017 0.06 U 2.692+-0.32S 0.61 +-0.14 11.5+-0.14S 1.65 +-0.39 47.2+-6.0 S

4.67+-0.81S 1.24 +-0.49 7.8+-1.4 S

0.043+-O.OQ9 0.17 +-0.06

0.049+-0,0.17 0.17 +-0.06 0.048+-0.018 0.031+-0.012 0.015+-O.0O6

PAGE III- 6 GW G REFERENCE

AUCHAMPAUGH72 AUCHAMPAU6H72 BERGEN71 AUCHAMPAUGHT2 BERGEN71 AUCHAHPAUGH72 AUCHAHPAUGH72 BER3EN71 AUCHAHPAUGH72 BERGENT1 AUCHAMPAUGH72 JAMES69 AUCHAMPAUGH72 BERGEN71 AUCHAHPAUGH72 JAMES69 AUCHAHPAUGH72 AUCHAMPAUGH72 PATTENDEN65 AUCHAHPAUGH72 AUCHAHPAUGH72 AUCHAMPAUGH72 AUCHAMPAUGH72 AUCHAMPAUGH72

ABLE : IIKCONT.) R ER GN

0 923.* 46.3+-5.0

0 1308.

0 1*03.

0 1457.

0 1696 39.1 — 5.5

0 170d 93.2—12.1 0 1737 9.1+- 2.<t

c 1739 21.5+- 3.6

a 1751 J.4+-2.H

0 1762 as.*+-io.2 0 1783 <t U

0 1789 4 U

0 1306 12.9+- 3.7

0 1820 *.1+- 3.8

0 1836 3.5+-0.5

a 1862 4.9+-3.6

0 1881 84.3+-10.9

D 1891 <•.1 — 4.6

0 2699 S O — 38

0 273<t 108*- 15

GG GF GNO

0.037 — 0.011 0.23+-0.04F 0.26—0.06F 0.24+-0.06F 0.067—0.020 0.001—.0005

0.047—0.014 0.51 — 0.20 0.017 — 0.004 0.18 L

1 L 0.13 +-0.05 0.38 +-0.37

0.49—0.39 0.056—0.013 0.96—1.13 0.11 +-0.03 0.094+--0.031

PAGE til- 7 G REFERENCE

AUCHAHPAUGH72 AUCHAMPAUGH71 AUCHAMPAUSH71 AUCHAHPAUGH71 AUCHAMPAUGH72 AUCHAMPAUGH72 AUCHAMPAUGH72 AUCHAMPAUGH72 AUCHAMPAUGH72 AUCHAHPAUGH72 AUCHAHPAUGH72 AUCHAMPAUGH72 AUCHAMPAUGH72 AUCHAHPAUGH72 AUCHAMPAUGH72 AUCHAMPAUGH72 AUCHAMPAUGH72 AUCKAHPAUGH7? AUCHAHPAUGH72 AUCHAHPAUGH72

ABLE IIUCOUT.)

R ER j'J

0 2741 b.9+-2.

0 2756 220+-31

d 27 72 2.b*-1.0

0 3107 3 U

0 3112 2+-1

0 3 U S .

o 313? 22fa+-32

0 3142 40. 2:+-12.1

J 3156 52.3+-11.9

0 31o4 i+- 1.5

0 3400 380-1-61

u 3422 10.4+-5

0 3433 7.S+-4

a 3451 220+-29

0 3472 7S+-17

0 3485 102+-19

0 3496 122 +-23

0 3521 95 +-21

0 3532 4 u 0 3558 4 U

6F

1.45 +-0.63 0.031+-0.016 0.91 +-0.42 3.4 L

1.56+-0.15F 1.09 +-0.22

0. i •-u.u'. O.o +-0.5 0.09+-0.03 0.3 U 0.3 u

0.13 +-0.03 0.1 U

0.28 +-0.08 0.36 +-0.10 0.2 U 3 L 1 L

PAGE III- B GNO G REFERENCE

AUCHAMPAUSH72 AUCHAMPAUGH72 AUCMAMPAUGH72 AUCHAHPAUGH72 AUCMAMPAUGH72 AUCHAMPAUGH71 AUCHAMPAUGH7Z AUCHAMPAUGH72 AUC4AMPAUGH7,; AUCHAMPAUGH72 AUCHAMPAUGH72 AUCHAMPAUGH72 AUCHAMPAUGH72 AUCHAMPAUGH72 A(jCHAHPAUGH72 AuC,,AMPAU&H7J AuCHAMPAUGn7J ALXHAMPAUGK7?

AUCHAMPAUGH72

AUCHAMPAUGH72

T£3L£ I1HC0NT.)

R ER f.N H GP

0 35o6 <» U

u 3561 1*3 +-Z4 0.16 +-.05

0 3563 G.2+-* 0.6 U

0 3620 13.7+-5 0.29 +-.16

0 2'; 2 9 5.5+-3 1.9 U

3S51 155 +-25 0.67 +-.13

3670 13.9+-5 7.1 +-3.2

369- 13.1+-5 0.3 U

3 712 W . / + -5 O.ol + -.3o

J 372 i 9-0 +-200 0.05 +-.03

3734 9.<. + -5 0. 19 +-.16

I T T 1 2S6 + -<r<» 0.21 +-.06

3790 62 +-22 0.07 +-.0*

3.il2 6^3 +-130 0.13 +-.0fa

0 363b 4<i6 +-161 O.U5 +-.02

PA5E III- 9

GNO & REFERENCE

AUCHAMPAUGH'2

AuCHAWPAuG--: '

AUCHAMPAuG^':

AuCHAMPAUG- 2

AUCHAHPAu^

A U C M A M P A U G H \-

AUCHAMPAUG*-??

AUCHAMPAJG*72

AuC^AMPAJG^'V

AUCHAMPAUGH7 2

AuCHAKPAUGi+^J

AUCHA"PAUGH72

AUCHAMPAUGn''2

AUCHAMPAU&H72

AUCHAHPAUGH?2

- 31 -

TABLE III (Cont.)

Explanation of symbols

A assumed value

D doubtful value

E error calculated by us

S o r , tabulated (b.eV) o i

F fission area tabulated (b.eV)

L lower limit

U upper limit

Resonance energies in eV; resonance widths in meV.

- 32 -

TABLE IV PU-242 RESONANCE PARAMETERS. R ER(eV) GN(nx 1 2.650 1.937 2 14.600 0.061 3 22.550 0.290 4 40.940 0.448 5 53.600 51.248 6 67.800 940 7 88.800 660 8 106.000 U.618 9 107.700 17.642 10 132.000 6.204 11 141.400 0.119 12 150.400 15.943 13 163.600 0.576 I* 204.800 54.381 15 210.100 0.406 16 215.400 5.357 17 219.600 0.296 18 233.900 6.729 19 264.70C 0.390 20 272.000 0.165 21 273.700 12.507 22 275.000 0.166 23 281.000 0.134 2* 298.800 7.779 25 304.BOO 17.808 26 321.000 231.122 27 334.000 71.275 28 374.400 6.772 29 379.600 0.273 30 302.400 46.301 31 400.000 1.600 32 410.700 6.890 33 424.100 3.810 34 425.200 0.276 35 473.500 0.870 36 482.700 19.993 37 494.800 0.267

PAGE IV- 1 RECOMMENDED VALUES

GG (meV) GF (aeV) GNOfreV) 26.000 0.0 1.190 ?«.000 0.0 0.016 2n.000 0.0 0.061 2Q.00O 0.0 0.070 ?<».000 0.046 7.000 2?.000 0.04L 0.600 2A.000 0.043 0.070 2P.000 0.0 0.060 ?fl.000 0.056 1.700 34.000 0.068 0.540 2A.000 0.0 0.010 2".000 0.056 1.300 ?P.000 0.0 0.045 ?P.OO0 0.059 3.800 ?n.ooo 0.0 0.028 ^6.000 0.180 0.365 ?".000 0.0 0.020 2R.000 0.100 0.440 28.000 0.0 0.024 2ft.000 0.0 0.010 31.000 0.140 0.756 2A.000 0.0 0.010 2*.000 0.0 0.008 2R.000 0.0 0.450 2*.000 0.075 1.020 2*.000 0.079 12.900 36.000 0.120 3.900 2R.000 0.033 0.350 2R.0OU 0.0 0.014 28.000 0.023 2.470 28.000 0.0 0.080 2R.000 0.025 0.340 2R.000 0.077 0.185 2B.000 0.0 0.013 28.000 0.530 0.040 28.000 0.018 0.910 2R.000 4.200 0.012

- 33 -

TABLE V

242 Pu Average Resonance Parameters

<D>*" ' - 13.7 + 1.2 eV (error for 4- 0 only) J-= 2

<D>a"3 - 7.52 eV J = 2

<r°>* , = 1.60 + 0.28 meV n 1 —

<T°> £ \ - 0.712 meV n 1 J-2

<T°>%=\ - 0.508 meV 2

SJl - 0 " S o = ( 1 , 1 7 - 0 - 2 3 ) x

„ J *2 « 0.520 x 1 0 " 4

b £ = 1

„ J "2 = 0 .675 x 10~ 4

V l <r > A = ? « 28 + 1 meV

<r ;-*'?- , = 28 meV J 2 '2

<r f > , = 0 . 1 0 meV J = 2

y - 1, » , - 1, v - » , o =12.2 barns, I n - 0+ n ' f Y pot

- ilt -

TABLE VI

'Pu Average Level Scheme

i (keV) J£ 0 0+ 44 2+ 146 4+

[ 294] [6+] [ 597] [1-] [ 649] [3-] [ 742] 15-] 956 0+ 995 (2+)

[1002] [4+] [1031] [3+] [1038] [4-] [1091] [0+1 1107 [2+J [1161] [6-J [1308] [5-] [1411] [0+] [1438] [2+]

( ) . . . doubtful value 240 [ ] . . . value taken from Pu (Ref. 34)

CD

RECOMMENDED IA-1152

Y ENDF/B-III (AVE. RES. PARAMS.) X X YOUNG 68 (AVERAGES)

I

E CEV)

Fig. 1 - Fu total cross section from 0.2 to 10 keV.

RECOMMENDED IA-1152 ENDF/B^III (SMOOTH XSECT.)

Y ENDF/B-III (AVE.RES.PARAMS.) X X YOUNG 68 (AVERAGES)

Fig. 2 - Pu total cross section from 1 keV to 15 MeV.

»•

en CD g

8 J.

RECOMMENDED ++-*- IA-1152

Y EKDF/1-III (AVE.RES.PAEAMS.)

- i * 1 t i — i — i — i

10* 10' 10 :

E <EV>

elastic scattering cross section fron 0.2 to 10 keV.

RECOMMENDED IA-U5Z ENDF/B-III (SMOOTH XSECT.)

Y HJDF/B-III (AVE.RES.PARAMS.)

•: (EV)

Fig. 4 - 2 4 2 P u elastic scattering cross section from 1 keV to IS MeV,

RECOMMENDED -+-+- IA-1152 y ENDF/B-III (AVE.RES.PAKAMS.)

10' i ' 1 1 1 1 — ^ — i — i -

E <TEV) 10:

__, 1- 1 (_

iO

242 Fig. 5 - Pu radiative capture cross section from 0.2 to 10 keV.

10 :

RECOMMENDED 1A-1152 ENDF/B-III (SMOOTH XSECT.)

Y ENDF/B-IXT (AVE.RES.PARAMS.)

i i i i i i i i i 10*

^ ^ * - , L ^ ^ ^ > ^ )-i 11«, _ i—_—i i i i i i i "P* ' I'3afe**>w>>«iiinpimiiii

1 0 5 ID 6 10 I W 1-7

E <EV)

*ig. 6 - ^ a r«dl*tlv« c*ptur« crc«» Motion fron 1 k«V to 15 M«V.

s

8.

S. Z CO CE CD o.

RECOMMENDED IA-1152 EHDF/B-III

Q BUTLER 60 (REMORM.) + SEBGEN 71

*—XX AUCHftMPAUGH 71

i - i i i i. J - _ f c »>4. i J . ' • » !•! I t •» I i I I I I • I 7k %g :

* < M u_ft "•"* * ~ * i . Mi. i i i i I i i < i i i

°10* 10 « E JEV)

10' 10 • 10 •

242. p i 9 - 7 pu fis3ion cross section from 0.2 to 300 JceV.

E (EW 242

fig. 8 Pu fission cross section from 0.1 to 15 Nev.

8 RECOMMENDED IA-J.152 ENEF/B-III

E fEV) Jig. 9 242, Pu inelastic scattering cross section from 40 keV to 15 Mev.

KECOMHENDEI IA-1152 ENDP/B-III

E <EW OHO* )

Fig. 10 - Pu inelastic excitation curves for the 44 and 146 kcV levels.

- 45 -

RECOMMENDED i u . TA 1152 If—T 2NDF/B-III

Fig. 11 - Pu(n, 2n) and (n, 3n) cross section* from 5 to 15 MeV.

8 .31

E CEV) 242 Fig. 12 - Pu average elastic scattering cosine in the lab system from 10 keV to 15 MeV.

APPENDIX PU-242 NUCLEAR DAT* f *BLES PAGE « - 1

(CROSS SECTIONS I N BARNS t B/SH)

E ( E V I TOTAL ELASTIC CAPTURE F ISSION TNELASTIC I N . 2 M ) ( N . 3 N I 0 . 2 0 0 0 0 E 03 4 T . 5150 3 5 . 1 3 3 0 1 2 . 3 0 8 0 0 . 0 7 4 0 0 . 0 0 . 0 0 . 0 0 . 3OO0OE 03 4 0 . 9 9 5 0 3 1 . 9 5 3 0 8 . 9 8 9 0 0 . 0 5 3 0 0 . 0 9 , 9 1 0 0 .40000E 03 3 7 . 1 0 5 0 2 9 . 8 9 0 0 7 . 1 7 2 0 0 . 0 4 3 0 9 . 0 0 . 0 0 0 0 . 6 0 0 0 0 E 03 3 2 . 4 7 5 0 2 7 . 2460 5 . 2 0 2 0 0 . 0 2 7 0 0 , 0 3 . 9 0 0 o. SOOOOE 03 2 9 . 7 0 5 0 2 5 . 5 4 9 0 4 . 1 3 7 0 0 . 0 1 9 0 0 . 0 0 . 0 r% 0 0 . 1 0 0 0 0 E 04 2 7 . 8 0 9 0 2 4 . 3310 3 . 4 6 4 0 0 . 0 1 4 0 0 . 0 0 . 0 0 0 0.30DOOE 04 2 0 . 9 0 8 0 1 9 . 4 1 5 0 1 . 4 8 8 0 0 . 0050 0 . 0 9 , 9 n - 0 0 . 50000E 04 1 8 . 6 9 2 0 1 7 . 6 3 5 0 1 , 0 5 3 3 0 . 0 0 4 0 0 . 0 0, 0 o o 0 . 8 0 0 0 0 E 04 1 7 . 0 1 9 0 1 6 . 2 1 1 0 0 . 8 0 4 0 0 . 0 0 4 9 O.n 9 9 n n 0 .15000E 05 1 5 . 1 6 7 0 1 4 . 5 5 5 0 0 . 6 0 8 0 0 . 0040 0 , 0 !»• 0 9 - 0 0 . 2030OE 05 1 4 . 3 9 1 0 1 3 . 8 4 0 0 0 . 5 4 5 9 0 . 0 0 6 0 0 . 0 0 . 0 0 0 0 . 3 0 3 0 0 E 05 1 3 . 4 5 4 0 1 2 . 9 7 0 0 0 . 4 7 8 0 0 . 0 0 6 0 0 . 0 9 9 0 P 0 . 4 4 0 0 0 E 05 1 2 . 6 7 8 0 1 2 . 2 4 8 0 0 . 4 2 4 0 0 . 0060 0 . 0 9 . 0 0 0 0 .49900E 05 1 2 . 4 4 4 0 1 2 . 0 2 1 0 0 . 4 0 1 0 0 . 0 0 6 9 9 . 0 1 6 0 0 . 0 0 0 0 . 5 5 2 0 0 E 05 1 2 . 2 9 6 0 1 1 . 8 4 5 0 0 . 3910 0; 0060 0 . 0 5 4 0 9 - 9 9 • 9 0 . 6 1 0 0 0 E 05 1 2 . 1 4 4 0 1 1 . 6 8 0 0 0 . 3 T 0 0 0 . 0 0 7 0 n. 0870 0, 0 n o O.-'a-SOOE 05 1 1 . 9 0 2 0 1 1 . 3 9 1 0 O.3300 9 9970 9 . 1 7 4 " r o n n 0 . 8 2 3 0 0 E 05 1 1 . 8 2 8 0 1 1 . 2 8 0 0 0 . 3 1 1 0 0. 0 0 8 " 0 . 2 2 90 1 , 9 n r 0 .91000E 05 1 1 . 7960 1 1 . 2 0 0 0 0 . 2 9 4 0 OcOoeo 0 , 2940 0 , 0 r\ 0 0 . 1 1 1 0 0 E 06 1 1 . 7 2 0 0 10. 4 2 9 0 0 , 2 9 9 0 0 . 9 1 0 9 0.9BZD 9 = 9 0 0 0 . 1 3 6 0 0 E 06 1 1 . 4 7 8 0 1 0 . 0 4 9 0 0 . 2 5 5 " 0.02PO 1 . 1 5 4 0 9 , 0 9 1 0 . 14600E 06 1 1 . 3 8 1 0 9 . 9 0 9 0 0 . 2 4 3 0 0 . 0 2 0 0 1 . 2 9 9 0 9 - 0 n. n 0 . 1 6 6 0 0 E 06 1 1 . 1 8 9 0 9 . 6 4 3 0 0. 2 2 4 0 0 . 0 2 5 0 1=2979 9 . 9 n o 0 .20200E 06 1 0 . 8 4 6 0 9 . 2 0 1 0 0 . 2 0 3 0 0 . 0 3 5 0 1 . 4 0 7 0 0= 0 0 0 0 . 2 4 7 0 0 E 06 1 0 . 4 7 1 0 8 . 7 0 2 0 0 . 1 9 4 0 0 . 0 5 0 9 1 . 5 2 5 0 0 . 0 0. n 0 . 2 9 4 0 0 E 06 1 0 . 0 7 2 0 8 . 2290 0, 1880 0 . 0 6 4 0 1 . 5 9 1 0 3 . 9 9 0 0 . 40000E 06 9 . 2 6 0 0 7 . 3 0 2 0 0 . 1 9 0 3 0 . 1 1 0 9 1 . 6 5 8 0 0 0 0 o 0 . 4 5 0 0 0 E 06 8 . 9 2 6 0 6 . 9 1 8 0 0 . 1 9 5 0 9 . 1 4 5 9 1 . 6 6 8 0 0 . 0 n 0 0.55O0OE 06 8 . 3 5 1 0 6 . 2 2 5 0 0 . 2020 0. 2800 1 . 6 4 4 0 9 0 9 - 0 0 .59700E 06 8 . 1 2 1 0 5 . 9 3 2 0 0 . 2 0 5 0 0 . 3 6 9 0 1 . 6 1 5 0 0 , 9 0, " 0 . 6 4 9 0 0 6 06 7 . 8940 5. 5 9 9 0 0 . 1 9 5 0 0 . 4 6 0 0 1 . 6 4 0 9 J . 9 0 0 0 . 7 0 5 0 0 E 06 7 . 6 8 3 0 5 . 2 8 9 0 0 . 1 8 4 0 0. 5840 1 . 6 2 6 0 9 , 0 0 - 0 0 . 7 4 2 0 0 E 06 7. 5580 5 . 1 0 6 0 0 . 1 7 9 0 0 . 6 T T 0 1 . 5 9 6 0 O.O 0- 0 0 . 8 0 5 0 0 E 06 7 . 3 7 3 0 4 . 8 1 8 0 0 . 1720 0 . B870 1 . 4 9 6 0 9 . 9 o-o 0 . 8 6 I 0 0 E 06 7 . 2 3 6 0 4 . 5 K 7 0

4 . 4 5 8 0 0 . 1 7 0 0 1 . 0 6 1 0 1 . 4 0 8 0 0, 0 n.o

0 . 9 0 0 0 0 E 06 7 . 1 5 3 0 4 . 5 K 7 0 4 . 4 5 8 0 0 . 1 6 9 0 1 . 1 7 9 9 1..3470 0 . 0 o.o

0 . 9 3 8 0 0 E 06 7 . 0 8 0 O 4 . 3 3 9 0 0 . 1 7 0 0 1 . 2 7 3 0 1 . 2 9 8 0 9 - 0 9 - 0 0 .95600E 06 7.O4B0 4 . 2 8 6 0 0 . 1 7 0 0 1 . 3 1 6 0 1 . 2 7 6 0 0 . 0 0 , 0 0 . 9 9 5 0 0 E 06 6 . 9860 4 . 1 7 7 0 0 , 1 7 1 0 1 . 4 9 8 9 1 . 2 3 0 0 9 - 9 0 . 0

APPENDIX PU-24? NUCLEAR DATA TABLES

(CROSS SECTIONS IN UARt'S ». V S ° )

E IEV) 0.1O050E 07 0. 103105 07 0.10380E 07 0.10910E 07 0. 11070E 07 O. l i f t lOE 07 0.13080E 07 0.1M10E 07 0.14380E 07 0.15000E 07

TAL ELASTIC CA°T|>i>r 6.9750 4, 1590 " .1710 6'„ 9330 4.0890 0..1740 6,92 50 <•, 0730 T - l 7 40 6,8570 3,9560 0, 1750 6..S420 3.9240 0.1750 6.7380 3, 8300 0.177H 6 ,6840 3.6650 0,1740 6.6420 3.6120 3.K>93 6.6360 3, 6040 n,1690 6„6250 ?.5<330 0.1650

flV TMcI.ASTir IW.2M) (N.3NI 1.4220 1.2230 0 . 0 0 . 0 1.4450 1.2250 0 , 0 0 - 0 1 ,«51D 1.2275 0 ; 0 0 0 1 4940 1,2320 o.o 0 0 1.5080 1,2350 0 , 0 0 0 1 ,5153 1,2660 1 . 0 n o 1-4730 1.3720 0 - 0 0 0 1,4260 1,4350 0 - 0 n. o 1 ,4150 1.44B0 0,-* 0 0 I , 3900 1-4770 0, 1 o--»

APPENDIX PU-242 NXLEAR DATA TABLES PAGE A- 3

(CROSS SECTIONS I N BARNS & B/SRI

E (EV> TOTAL ELASTIC CAPTURE 0.165OOE 07 6 . « 2 5 0 3 . 5 0 5 0 0 . 1 3 7 0 0 . 1 8 3 0 0 E 0 7 6 . 7 0 6 0 3 . 6 4 4 0 0 . 1 1 4 0 0 . 20200 E 07 6 . 8S70 3. 8650 0 . 0 8 5 0 0.223OOE 07 7 . 0 6 8 0 4 . 1 5 8 0 0 . 0 5 5 0 0 . 2 4 7 0 0 6 07 7 . 3 3 0 0 4 . 5 1 2 0 0 . 0 3 8 0 0 . 2 7 3 0 0 E 07 7 . 5 9 9 0 4 . 8 7 2 0 0. 0320 0 . 3 0 1 OOE 07 7 . 8 3 8 0 5 . 1 9 3 0 0 , 0 2 7 0 0 . 3 3 3 0 0 E 01 a . 0120 5 , 4 4 2 0 0 * 0 2 2 0 0.368OOE 07 8 . 0 4 0 0 5 . 5 3 5 0 0 . 0 1 9 0 0 . 4 0 7 0 0 E 07 T . 9 4 4 0 5 . 5 1 S 0 0 . 0 1 6 0 0 . 4 4 9 0 0 E 07 7 . 7 9 3 0 5 . 4 4 3 0 0 . 0 1 3 0 0 . 4 9 7 0 0 E 07 7 . 6 2 6 0 5 . 30S0 0 . 0 1 1 0 0.549Q0E 07 7. 4 6 8 0 5 .12 50 0 . 0 1 0 0 0 .6070OE 07 7 . 2 3 8 0 4 . 9 0 7 0 0 . 0 0 8 0 C.62900E 07 7 . 1 3 1 0 4 . 3 2 0 0 0 . 0 0 8 0 0 . 67000E 07 6 . 9330 4 . 6 5 9 0 0 , 0 0 8 0 0.741OOE 07 6 . 6 4 2 0 4 . 3 9 7 0 0 . 0 0 7 0 C 8190CE 07 6 . 4 2 3 0 4 . 1 5 8 0 0 . 0 0 6 0 0 . 9 0 5 0 0 E 07 6 , 2 7 3 0 3 . 9 6 1 0 0 . 0 0 5 0 O.IOOOOE 08 6 . 1 6 2 0 3 .8C70 0 . 0 0 5 0 0 . 1 1 1 0 0 E 0 8 5. 9 8 4 0 3 . 5 S 1 0 0 . 0 0 4 0 0 . 1 1 7 0 0 E 08 5 . 8 7 5 0 3 . 4 5 * , 0. 0 0 4 0 0 . 1 2 2 0 0 E 08 5 . 8 1 5 0 3 . 3 6 4 0 0 . 0 0 4 0 0 . 1 3 5 0 0 E 08 5 . 7890 3 . 2 1 8 0 0 . 0 0 3 0 0 . 1 5 0 0 0 E 08 5 . 8 0 1 0 3 . 1 3 4 0 0 . 0 0 3 0

ON INELASTIC (N.2N) (Nt3NI 1.3500 1 .6330 0 . 0 0 . 0 1.3650 1 . 5830 0 . 0 0 . 0 1.3B30 1 .5240 0 . 0 0 . 0 1.4170 1 .4380 0 . 0 0 . 0 1 .4550 1 .3250 0 . 0 0 . 0 1 .3860 1 .3090 0 . 0 0 . 0 1.29B0 1.3200 0 . 0 0 . 0 1 .2410 1 .3070 OoO 0 . 0 1.1BB0 1 .2980 0 .0 0 . 0 1 .1720 1 .2380 0 . 0 0 . 0 1 .1540 1 .1830 0 . 0 0 . 0 1 .1960 1 .1140 0 . 0 0 . 0 1 .2610 1 .0720 0 . 0 0 . 0 1 .3340 0 . 9 8 9 0 0 . 0 0 . 0 1 .3610 0 . 9420 0 . 0 0 . 0 1 .4120 0 . 6 5 0 0 0 . 2 0 4 0 0 . 0 1 .5050 0 . 2 1 S 0 0.51B0 0 . 0 1 .6090 0 . 0560 0 . 5 9 4 0 0 . 0 1 .7230 0 . 0 1 2 0 0 . 5 7 2 0 0 . 0 1 .8500 0 . 0020 0.49B0 0 . 0 1 .9160 0 . 0 0 .4830 0 . 0 1 .9520 0 . 0 0 .4650 0 . 0 1 .9760 0 . 0 0. 3770 0 . 0940 2 . 0 1 5 0 0 . 0 0 .1200 0 . 4 3 3 0 2 . 0 6 0 0 0 . 0 0 .0220 0 .582O

APPENDIX PU-242 UUCLEAP. PATA TABLES PAG? A- 4

(CROSS SECTIONS IN PARMS £ B/SR 1

E <EV> NONE LASTIC ABSnRPT I ON TRANSPORT AVE,COS. (LAB) C A P T . / K 1 S S , NUBA* ETA O.ZOOOOE 03 1 2 . 3 8 2 0 1 2 . 3 8 2 0 4 7 . 4 1 4 3 3 . 0 9 2 9 3 . 1 6 6 3 E 33 0.2880? 01 0.17ZI6-01 0.3OOOOE 03 9 . 0 4 2 0 9 . 0 4 2 0 4 0 , 9 0 1 6 0 , 0029 0 , 1 6 9 6 ? 03 0.2889? 01 O.16B86-01 0 .40000E 03 7 , 2 1 5 0 7 . 2 1 5 0 3 7 . 0 1 5 8 0 . 0 0 3 0 0 , 166BF 03 0.28806 01 0,17166-01 0 . 6 0 0 0 0 E 0 3 5 . 2 2 9 0 5 . 2 2 9 0 3 2 , 3 9 0 1 0 . 0 0 3 1 0 . 1 9 2 7 6 93 0.2BB9? 01 9.14876-01 0 . 8 0 0 0 0 E 03 4 . 1 5 6 0 4 . 1 5 6 0 2 9 . 6 7 1 8 0 . 0 0 3 3 0, 2177? 03 0, ?»S9? 01 9.13I7E-11 0 .10000E 04 3 . 4 7 8 0 3 . 4 7 8 0 2 7 , 7 2 6 2 3 . 0 0 3 4 3 . 2 4 7 4 F 03 0.78805 01 0- 1159?-oi 0 . 3 0 0 0 0 E 0 4 1 . 4 9 3 0 1 .4930 2 0 . 8 0 9 0 0 , 0051 0 2976? 03 9 .2M9? 01 0-9647E-02 0 .50000E 04 1 . 0 5 7 0 1 . 0 5 7 0 1 8 , 5 6 9 0 0 , 0 0 7 0 0 . 2633F 03 0, '881E 01 0, I090F-01 0 . 8 0 0 0 0 F 04 0, 8080 0 , 8080 1 6 . 8 5 8 0 0 . 0 3 9 9 3 .2D10E 03 0- 2B81E Ol 0, 1 426?- 01 0 .1500OE 05 0 . 6 1 2 0 0 . 6 1 2 0 14 , 9195 0 , 0 1 7 0 0 , 1 5 2 0 ? 03 0.2882 = 0 ' 3 18846-01 0.2O30OE 05 0 . 5 5 1 0 0 . 5 5 1 0 1 4 . 0 8 2 2 0 . 0 2 2 3 0 . 9083F 02 0, ?«83F " 1 0 3140F-31 0 . 3 0 3 0 0 E 05 0 . 4 8 4 0 0 . 4840 1 3 . 0 3 9 2 3 . 0 3 2 0 0 , 7 9 6 7 F 02 9 ;2B85? 01 0-3576E-01 0 . 4 4 0 0 0 F 05 0 . 4 3 0 0 0 . 4 3 0 0 1 2 . 1 3 4 9 0 , 0443 0, 7 0 6 7 * 02 0 .2MT* " l 9- 4329F-31 0 . 49900E 0"! 0 . 4230 0 . 4 0 7 0 1 1 . 8 5 0 1 0 , 0 4 9 4 0 , 6 6 8 3 ? 02 o--2«e«E 0\ 0, 4258F-01 0 . 5 5 2 0 0 ? 05 0 , 4 5 1 0 0 . 3970 1 1 , 6 5 6 6 0 , 0 5 4 0 0 . 6 5 1 7 6 0? 9.2?"9? 01 0.4366=-'M 0 . 6 1 0 0 0 ? 0 * 0 . 4 6 4 0 0 . 3 7 7 0 11 4564 C 0 5 8 9 0, 5286F 0? o , ' p i n ? n ; 0-5366?- - ' ! 0 . 7 4 5 0 0 * 05 0 , 5 1 1 0 0 , 3 3 7 0 1 1 . 1 3 1 4 3 . 0 7 3 3 3 . 4 7 1 4 E 02 n .?PO?= 01 0 6O08F-O1 0 . 8 2 3 0 0 E 05 0 , 5 4 8 0 0 . 3 1 9 0 1 0 , 9 5 7 8 0- 0771 0 , 3 8 8 8 ? 0? 0.2894? 01 3,7257F-31 0 .91000E 05 0 . 5 9 6 0 3 . 3 0 2 0 1 0 . 8 4 0 9 3 . 0 B 5 3 0 . 3 6 7 5 F 02 0, 2895? 01 0- 7669F-11 O . l l l O O F Oft 1 .2910 0 . 3090 1 0 . 5 6 5 7 3 . 1 1 3 7 0 . 2 9 9 3 F 02 .3.2898? 01 0-9380=-01 0 . 1 3 6 0 0 E 06 1 „ 4 2 9 P 0 . 2 7 5 0 1 0 . 1 1 9 5 0 , 1 3 5 2 0 , 1 2 7 5 ? 0? 0.2903= 01 3 2111? 3I> 0 .14600E 06 1=4720 0 , 2 6 3 0 9 .C47B 3 , 1 4 4 6 0 . 1 2 1 5 E 02 0.2904? 01 0. 22 n 9? nr, 0 .1660OE OS 1« 5460 0 . 2 4 9 0 9 , 61 75 3 , 1 6 3 0 O.B960F 31 9,2938? 91 9.2919? 0" 0 .2 0200E 06 1 . 6 4 5 0 3 . 2 3 8 0 9 . 0 6 2 6 0 , 1 9 3 8 0 5BO0E 01 0,2914? 91 3,4285? 93 0 . 2 4 7 0 0 E 06 Is 7690 0 . 2 4 4 0 8 . 4 8 1 9 0 . 2 2 8 6 0 . 3 8 8 9 ? 0 1 0,2921E 01 0, 5986E 0" 0 . 2 9 4 0 0 E 06 1 . 8 4 3 0 0 . 2 5 2 0 7 . 9275 0 . 2 6 0 6 0 . 2 9 3 9 F 01 3.2929? 01 0 7438= 00 0 . 4 0 0 0 0 E 06 1 . 9 5 8 0 0 . 3 3 3 0 6 , 9 3 1 0 0 . 3 1 9 0 0 . 1 7 2 7 ? 01 0, 2946? 01 0,1 080 F n\ 0 . 4 5 0 0 0 E 06 2 , 0080 0 . 3400 6 , 5 6 6 9 3 . 3 4 1 3 3 . 1 3 4 5 E 0 1 9,2955= 01 0.1260? o i 0 . 5 5 0 0 0 E 06 2 . 1 2 6 0 0 . 4 8 2 0 6 . 0001 0 . 3 7 7 7 0 , 7 214? 00 0.2971? 01 3,1726? 31 0.5970OE 06 2 , 1 8 9 0 0 . 5 7 4 0 5 . 7 9 5 5 0 . 3 9 2 0 0 . 5556F 00 0, 2979? 01 0,1915F "1 0 . 6 4 9 0 0 E 06 2 . 2 9 5 0 0 . 6550 5 . 6 0 6 7 0 . 4 0 8 5 0 . 4 2 3 9 ? 00 0.29B8E 01 0.2098? 01 0 . 7 0 5 0 0 E 06 2 . 3 9 4 0 0 . 7 6 8 0 5 . 4 4 4 0 0 . 4233 0 . 3 1 5 1 6 00 0-2997? 91 3,2279? 31 0 . 7 * 2 0 0 6 06 2 . 4 5 2 0 0 . 8 5 6 0 5 3530 0 . 4 3 1 8 0 . 2 6 4 4 ? 0 0 0. 3003? 01 0, 2375= 01 0 .8050OE 06 2 . 5 5 5 0 1 . 0 5 9 0 5 . 2 2 8 0 0 . 4 4 5 2 0 . 1 9 3 9 E 39 0*3914? 0 1 0=25246 01 0 . 8 6 1 0 0 E 06 2 . 6 3 9 0 1 . 2 3 1 0 5 . 1 4 3 1 0 , 4 5 5 3 0 . 1 6 0 2 = 00 0, 3*23" 31 0-2605? 01 0 .90000E 06 2, 6950 1 . 3 4 8 0 5 , 0 9 5 0 3 . 4 6 1 6 3 . 1 4 3 3 E 00 0.30295 0 1 0. 2650F 01 0 . 9 3 8 0 0 E 06 2 . 7 4 1 0 1 .4430 5, 0535 0- 4 6 7 0 0 . 1 3 3 5 = 00 0.3336? 01 0.2678? Ot 0*95600E 06 2 . 7 6 2 0 1 .4860 5 . 0 3 5 8 0 . 4 6 9 5 0 . 1292F 00 n. 3 "39? 01 0. 2691 = 01 4 . 9 9 5 0 0 F 06 2 , 8 0 9 0 1 . 5790 5 . 0 0 2 6 3 . 4 7 4 8 0 . 1 2 1 4 E 00 0.3045? 01 0. 2715F 01

APPENDIX PU-242 NUCLEAR DATA TABLES p«se «- s (CROSS SECTIONS IN BARNS 6 B / S P I

E (EV) NONE LA STIC ABSORPTION TRANSPORT « V E . C 0 S . ( l « 8 » CAPT. fflSS. MUB*« ETA 0 . 1 0 0 2 0 E 0 1 2 . 8 1 6 0 1 . 5930 4 . 9 9 6 3 0 . 4 7 5 8 0 . 1 2 0 3 E 00 1 . 3 1 4 6 = 01 0 . 2 T 1 9 F 01 O . l O i l O E 07 2 . 8 4 4 0 1 . 6 1 9 0 4 . 9 7 3 9 0 . 4 7 9 1 0 , 1204E no 0, 3051 P 01 0 . 2 7 2 3 = 01 0 . 1 0 3 8 0 E 07 2 . 8 5 2 0 1 . 6 2 5 0 4 . 9 7 0 1 0 . 4 6 0 0 0 . 1199F 00 0 . 3 0 5 2 F 01 0 , 2725F 01 0 . 1 0 9 1 0 6 0 7 2 . 9 0 1 0 1 . 6 6 9 0 4, 9321 ft, 4 8 * 6 P . J J 7 1 F 00 0 - 3 0 6 1 = «1 0 . 2 T 4 0 F o j 0 . 11070E 07 2 . 9 1 8 0 1 . 6 8 3 0 1 . 9 2 4 9 0 . 4 8 8 6 0 . 1 1 6 0 = on 0 . 3064F 01 0=27455 01 0 . 1 1 6 1 0 E 07 2 . 9 5 8 0 1 . 6920 « . 8 9 2 7 D . 4 9 4 9 0 . 1 I 6 B E 00 0„3073E 01 0 . 2 7 5 1 F 01 0.130BOE 07 3 . 0 1 9 0 1 . 6 4 7 0 4 , 8 1 5 1 0 , 5099 C 1 1 B 1 E 00 0 . 3 0 9 7 E 01 0 , Z 7 7 0 F 01 0 . 1 4 1 I 0 E 07 3 , 0 3 0 0 1 . 5 9 5 0 4 . 7 6 3 0 0 . 5 2 0 2 0„11B5= 00 0 3114? 01 0 . 2 7 8 4 F "M 0 .1438QE 07 3 . 0 3 2 0 1= 5840 4 , 7 5 0 9 f*. 5231 0 , 11 94F 00 0..31J9E 01 0 . 2 7 8 6 = " 1 0 . 1 5 0 0 0 E 07 3 , 0 3 2 0 3 „ 5 5 5 0 4 . 7 2 0 3 0 , 5301 0 . 1187E 00 0 3129F 01 0 . 2 7 9 7 = 31

APPENDIX PU-242 NUCLEAR DATA TABLES PAGE A- 6

(CROSS SECTIONS I N BARNS & B/SR)

E I E V I 0 . 16500E 07 0 . 1 8 3 0 0 6 07 0 . 2 0 2 0 0 E 07 0 . 2 2 3 0 0 6 07 0 . 2 4 7 0 0 E 07 O . 2 7 3 0 0 E 0 7 0 .3Q100E 07 0 . 3 3 3 0 0 E 07 0 . 36800E 07 0 . 4 0 7 0 0 E 07 0 . 4 4 9 0 0 E 07 0 .4970QE 07 0 . 5 4 9 0 0 E 07 0 . 6 0 7 0 0 E 07 0 . 6 2 9 0 0 E 07 0 . 6 7 0 0 0 E 07 0 . 74100E 07 0 . 8 1 9 0 0 E 07 0 . 9 0 5 0 0 E 07 0 . 1OOO0E 08 0 . 1 X 1 0 0 E 08 0 .1170QE 08 0 . L 2 2 0 0 E 08 0 . 1 3 5 0 0 E 08 0 . 1 5 0 0 0 E 08

NON ELASTIC 3 . 1 2 0 0 3 . 0 6 2 0 2 . 9 9 2 0 2 . 9 1 0 0 2 . 8 1 8 0 2 . 7 2 7 0 2 . 6 4 5 0 2 . 5 7 0 0 2 . 5 0 5 0 2 . 4 2 6 0 2 .3500 2 . 3 2 1 0 2 . 3 4 3 0 2 . 3 3 1 0 2 . 3 1 1 0 2 . 2 7 4 0 2 . 2 4 5 0 2 . 2650 2 .3120 2 . 3 5 5 0 2 .4030 2 . 4 2 1 0 2 . 4 5 1 0 2 . 5 7 1 0 2 . 6 6 7 0

ABSORPTION TRANSPORT AVE.COS. tLAB! C A P T . / F I S S . HU6AR ETA 1 . 4 8 7 0 4 . 6 4 9 9 0 . 5 6 3 5 0 . 1 0 1 5 E 00 0 . 3 1 5 4 E 01 0 . 2 8 6 3 E 0 1 1 . 4 7 9 0 4 . 5 6 B 3 0 . 5 8 6 6 0 . 8 3 5 2 E - 0 1 0 . 3 1 8 4 E 0 1 0 . 2 9 3 8 E 0 1 1 . 4 6 8 0 4 , 4 8 2 0 0 . 6145 0 . 6 1 4 6 E - 0 1 0 . 3 2 1 5 E 0 1 0 . 3 0 2 9 E 0 1 1 . 4 7 2 0 4 . 3 8 4 4 0 . 6 4 5 4 0 . 3 8 8 1 E - 0 1 0 . 3 2 5 0 E 0 1 0 . 3 1 2 9 E 0 1 1 . 4 9 3 0 4 . 2723 0 . 6 7 7 7 0 . 2 6 1 2 E - 0 1 0 . 3 2 9 O E 0 1 0 . 3 2 0 6 E 0 1 1 . 4 1 8 0 4 . 1 5 2 5 0 . 7074 0 . 2 3 0 9 E - 0 1 0 . 3 3 3 3 E 0 1 0 . 3 2 5 B E 01 1 . 3 2 5 0 4 , 0 3 0 1 0 . 7 3 3 3 0 . 2 0 8 0 E - 0 1 0 . 3 3 8 0 E 0 1 0 . 3 3 1 IE 01 1 . 2 6 3 0 3 . 8 9 8 6 0 . 7 5 5 9 0 . 1 7 7 3 E - 0 1 0 . 3 4 3 3 E 0 1 0 . 3 3 7 3 E 0 1 1 . 2 0 7 0 3 . 7 9 1 3 0 . 7 6 7 6 0 . 1 5 9 9 E - 0 1 0 . 3491E 01 0 . 3 4 3 6 E 01 1 . 1 8 8 0 3 . 6 6 0 8 0 . 7 7 6 2 0 = 1 3 6 5 6 - 0 1 0 . 3 5 5 6 E 0 1 0 .350BE 0 1 1 . 1 6 7 0 3 . 5 4 7 9 0 . 7 7 9 9 0 . 1 1 2 7 E - 0 1 0 . 3 6 2 5 E 0 1 0 . 3 5 8 5 E 0 1 1 . 2 0 7 0 3 . 4 8 5 7 0 . 7 8 0 4 0 . 9 1 9 7 E - 0 2 0 . 3 7 0 5 E 0 1 0 . 3 6 7 1 E 0 1 1 . 2 7 1 0 3 . 4 6 7 1 0 . 7 8 0 7 0 . 7 9 3 0 E - 0 2 0 . 3 7 9 1 E 0 1 0 . 3 7 6 2 E 0 1 1 . 3 4 2 0 3 . 3 9 3 6 0 . 7 8 3 4 0 . 5 9 9 7 E - 0 2 0 . 3 8 8 8 E 0 1 0 . 3 B 6 4 E 01 1 . 3 6 9 0 3 . 3 4 7 5 0 . 7 8 5 0 0 . 5 8 7 8 6 - 0 2 0 . 3 9 2 4 E 0 1 0 .3901E 0 1 1 . 4 2 0 0 3 . 2 6 3 4 0 , 7876 0 . 5 666 E-02 0 . 3 9 9 2 E 0 1 0 . 3 9 7 0 E 0 1 1 . 5 1 2 0 3 . 1 6 5 2 0 . 7 9 0 7 0 . 4 6 5 1 E - 0 2 0 . 4 1 1 0 E 0 1 0 . 4 0 9 1 E 01 1 . 6 1 5 0 3 . 1 3 2 4 0 . 7 9 1 4 0 . 3 7 2 9 E - 0 2 0 . 4 2 4 0 E 0 1 0 . 4 2 2 4 E 0 1 1 . 7 2 8 0 3 . 1 4 6 0 0 . 7 8 9 4 0 . 2 9 0 2 E - 0 2 0 . 4 3 8 2 E 01 0 . 4 3 7 0 E 0 1 1 . 8 5 5 0 3 . 1 6 0 9 0 . 7 8 8 3 0 . 2 7 0 3 E - 0 2 0 . 4 5 4 0 E 0 1 0 . 4 5 2 S E 01 1 . 9200 3 . 0 7 2 9 0 . 8 1 2 9 O.208BE-O2 0 . 4 7 2 3 E 0 1 0 . 4 7 1 3 E 0 1 1 . 9 5 6 0 3 . 0 3 3 0 0 . 8 2 2 8 0 . 2 0 4 9 E - 0 Z G.4822E 0 1 0 . 4 8 1 2 E 01 1 . 9 8 0 0 3 . 0 2 2 8 O . 8 3 0 0 0 . 2 0 2 4 6 - 0 2 0 . 4 9 0 5 E 0 1 0 . 4 8 9 5 E 0 1 2 . 0 1 8 0 3 . 0 5 5 7 0 . 8494 0 . 1 4 S 9 E - 0 2 0 . 5 1 2 1 E 01 0 . 5 1 1 3 E 0 1 2 . 0 6 3 0 3 . 0 6 7 0 0 . 8 7 2 4 0 . 1 4 5 6 E - 0 2 0 . 5 3 7 0 E 0 1 0 . 5 3 6 2 E 01

APPENDIX PU-242 NUCLEAP DATA TABLES PAGF « - 7

<c*ms SECT TONS IN B « N S G P/SP>

PARTIAL 1NFLAST1C E (EV1 / LEVEL*0.44000E 05

0 .4+OOOE 05 0.49909E 05 0.552OOE 05 0. 61000E OS 0.74500E OS 0.B23O0E 05 0.91000F Oi 0.11100E 06 0.13600E is 0.14600E 06 0.166006 06 0. 2O20OE 06 0.2 47 OOF 06 3,?9400E OS 0, 4 0000F 0* 9.*5003F. 06 0.55000E 06 0.59700E 06 0.649Q9 C Of-0, 7 0100E 06 3.742'JOr 06 3,eosooE 06 9. 56100E 06 0.90000F 06 0.93 800 E 06 0.95600E 06 0.9950PE 06 0.1002OF 07 0.10310E 07 0.10380E 07 0.1091OE 07 0.11070E 07 O.llfelOE 07 0.13080E 07 9.14110E 07 0.143G0E 07 0.15009F 07

OOE 05 0. 1460OE 0 6 0. 29400E 06 0 . 5 9 7 3 0 * D6 0 . 6 4 9 0 9 F 06 0 . 74 200F 0 6 0 . 956O0F 16

0 . 0 0 . 9 0 . 0 O . P 0 . 0 9 . 0 o . n 0 . 0 1 6 0 0 . 0 0 . 0 0 . 0 0 . 3 9 0 n. n 0 . 0 5 * 0 0 . 0 0 , 0 0 , 0 0 . 0 3- 9 1 n 0 . 0 8 7 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 o. 0 0 . 1 7 4 0 0, 0 0 . 0 o-r 3 . 3 0 - 0 n o 0 . ? ? 9 i 0 . 0 0 . 0 0 , 0 0: 0 0 , 9 9 n 0, 294C 0 . 0 0 . 0 0 . 0 0 . 0 0 . 9 9 , 0 9 . 9 8 2 0 0 . 0 0 , 0 3 , " 0 . 3 9- 9 9 . 0 1 . 1 5 4 0 C O 0 . 0 n, 9 0, 0 3 , 9 9 0 1 . 2 390 0 , 0 0 . 0 0 . 0 3 . 3 0 , 0 0 0 1 . 2 9 7 0 0 . 0 0 , 0 O . P 0 , 0 9 . 3 0 , 0 1 .4P7P 0 . 9 0 . 0 0 , r 0 . 0 0, 0 0 , n 1 . 5 1 9 0 0 . 0 1 6 0 0 , 0 0 . 0 3 . 3 0 0 ft. 0 1 . 5 6 3 0 0 . p?r>o 0. 0 0 , 0 0 . 9 9 - 0 9 9 1 .S77P C.OP10 0 . 0 n 0 p 0 . n 0. 0 n n 1 . 5 5 7 0 0 . 1 1 1 0 0 = 0 3 . 3 9 . 0 0 . 9 n. P 1 . 4 6 T C 0 . 1 7 6 0 0 , 0 0 1 0 0 , 0 0 , 0 0 9 9 , P L 4 0 ° 0 0 . 2 0 5 0 n . 9 ^ 1 3 0 , 0 0 , 0 0 , 9 0 , 0 1 . 2 9 * 0 0 , 2 3 1 0 0 . 0 0 3 0 o t 11 2 n 0 . 9 9 9 «.n 1 . 1 8 2 0 3 . 2 4 7 0 P .004P 0 , 1 6 7 0 0 . 0 2 6 0 3 , " 9 , 0 1 . 1 1 4 0 0 . 2 5 6 0 D .0P53 9 , ! 9 3 3 0 . 3 3 R 9 0 , 0 n. n 0 . 9 8 9 0 0 . 2 6 0 0 0 , OO'O 0 . JP90 9 . 0 5 1 " 3 9 P . 9 0 . 8 9 2 0 1 . 2 6 2 0 0 . 0 1 0 0 0 , 1 « 5 0 0 . 0 5 80 0 , OOio 0 0 0 . 8 3 0 0 0 . 2 6 3 0 0 . 0120 3 . 1 7 9 ' ' 0 - 0 6 20 o,oo'n 0 0 0 . 7 7 9 0 0 . 2 6 * 0 0 . 0 1 4 0 0 , 1 7 4 0 0, 0650 9 , 9 9 ? 3 •> 0 0 . 7 5 7 0 0 . 2 6 5 0 9 . 0 1 5 9 3 . 1 7 1 0 0 . 0 6 6 0 ri nn?9 n p 0 , 7 0 * 0 0. 2 6 3 0 0 . 0170 3 . 1 6 3 3 0 . 0 6 8 0 3. •<93'> 0- O' ?9 0 . 6 9 5 0 0 . 2 6 3 0 0 . 0 1 8 0 0 . 1 6 1 0 0, 0680 3 , 9 1 3 9 3 0 1 * 1 0 . 6 6 6 0 0 . 2 6 4 0 0 . 0 1 9 0 0 . 1 5 7 0 0 . 0 7 00 0- 0 0 4 0 9. 0259 0 . 6 5 9 0 0 . 2 6 * 0 0 , 0 2 0 0 0 . 1 5 6 0 O.OTOO 3 3 3 * 0 0 . P 7 7 0 0 . 5 9 4 0 0 . 2 5 6 0 0 . 0 2 2 0 0 . 1 4 5 0 0 . 0 7 1 0 0 , no«0 0 P*?9 0 . 5 7 5 0 0 . 2 5 3 0 3 . 0 2 3 0 9 . 1 « 2 3 0 . 0 7 1 0 0 Ofsn 0 , 0 * 5 9 C.57PP 0 , 2 4 5 0 0 , 0250 0 . 1 3 1 0 0 , 9 7 1 0 3 . 9 P « . 9 . 9,0C*"> 0 . 4 ? 9 0 0 . 2 3 4 0 0 . 0 3 3 0 9 . 1 1 5 0 n. 0 7 4 0 0 , 0O90 0 , 0 6 3 0 0 . 3970 0 . 2 3 2 0 0 . 03(10 3 . 1 9 9 3 3 . 0 7 7 " 0 , 0 1 2 0 0 , n 6 4 n 0 . ' « 9 P 0 . 2 3 2 0 0 . P4P0 0 , 107(1 9, 0 7 8 " "1. 9 1 3 1 3 , 0 6 4 ? 0: ?700 0 , 2 2 8 0 1 . 0 4 2 0 0 1 0 3 " 0 . 0 7 9 9 0 . 0150 0. 0639

APPE'JOiy PU-24? NUCl = AP OATA TABLES

trpiss SErrnvs i« ?APVS ? "/$•>;

PABTJAL INFLASTIC £ l?V) / L=VEL«0. 995005 06 0.10O21F 07 0.1031OF 07

0.99500F 56 0.0 0,0 1.0 0.10020= 07 0,0010 0.0 9,0 0.10310E 07 0.0170 o„0030 0 .0 0.10380= 07 0.02?0 0.0040 0.0010 0.10910F 07 0.0560 0, OlfO 0.0200 0.110705 07 0.0660 0.0190 1 , p?6P 0.1'fal'i? 07 ",0920 I.T'tlO 1.1470 0.130806 07 0.1340 0,053.1 o„0<i70 0 .14110*07 0,1530 1 r 0f.60 .1.1160 0.1438 i c 07 0=1530 0.0690 r-1111 0.15001R 07 0,1570 0.074 0 o, n 70

O A P T H L I N E L A S T I C F (^Vt / L c V6l=0. !3O80 c IT 0 . I 4 I I C E 07 0.1«T38Oc 07 0.130BOE 07 0.0 0.0 0 .1 0.14111E 17 1 . i"10 0.0 i . 0 0.1438""= 07 0,^110 1 . 0 V 1 O.O 0.15001? 07 i = i i 2 0 C. 0110 o . i ] 4 p

0. 10380= 07 0 .10911 ' I"*

0 . 0 0 . 0 1 - 0 0 . 0 0 - 0 1 , 1 0 0 1 . 0 3 . 1 1 & 1 3.1 0 , 0 0 7 0 0 , 1 1 3 1 0,0100 0. 01 5 1 0.-11 71 1 . 0 3 9 0 0,1210 0. 041)0 0 ,0?2 n C. 0490 0.124:) 0 . 0 5 1 1

P»CF »- 8

0,1 I P ' " - 07 0. 11 *•! " c 11

1 . 1 i , 1 0 , 0 n. 0 1 1 0 1 1 , 1 n 0 1 , 1 n 0 1 . 1 1 . 1 1 . 1 7 1 1 ^ 1 1 0B51 1 1 1 , 1 1 3 1 1 n i l 0 1 1 8 " n 111 1 1 - 1 2 7 1 n or ? i

£

APPENDIX PU-242 NUCLEAR DATA TAFHFS

(CROSS SFCTI1NS f'i BARN'S f. 8/SR>

COS / E(EV> = 0 .40000F 0 6 0 . 5 9 7 0 0 F 0 6 1 . 0 0 0 .1480F 0 1 0. lSSSE ni 0 . 9 0 C,1300? 0 1 0 . 1 2 7 5 E 0 1 0 . 8 0 0, 11 44F 0 1 0 . 1 0 5 1 E 01 O.TO 0.10O9E 0 1 0 ,8731= 0 0 0 . 6 0 0 . 8 9 1 1 F 0 0 P.732ft? no O.SO 0. 789SE 0 0 0, 622 65 0 0 0 . 4 0 0 , 7 0 1 8 6 oo 0 ,536 (> r PO 0, 30 0 .6262E or 0 ,4frOQf: 0 0 0 . 2 0 0 . 5613F oo n, M 7 4 E 0 0 0 . 1 0 0 - 5 0 4 8 F 0 0 0 , ^ 7 6 5 ? 0 0 0 . 0 0 0 , 4564F 0 0 0 . 3 M 1 F 0 0

- 0 . 1 0 0 .4146E 0 0 0, 311 55 0 0 - 0 . 2 0 0 , 3 7 8 4 e 0 0 P.2B47E 0 0 - 0 . 3 0 0 , 3 4 7 2 r 0 0 n.-}c^t,f PO - 0 . 4 0 O , 3 2 0 3 r 0 0 3, ?3i6F PO - 0 , "iO 0 , 2 9 7 3 c on 0 ,?10?F ">0 - 0 . 6 0 0 .2781? 0 0 n, lflf.4F 0 0 - 0 . 7 0 0 -2626F CO 0 .1642F oo -0, 80 0 .2 57 Or ro P,14«;5F 0 0 - 0 . 9 0 0 .2436? 0 0 1 , 1329E 0 0 - 1 . 0 0 0 . 2 4 1 3 F 0 0 n . l ? 9 0 F " 0

DIFFERENTIAL ELASTIC COS / E I E V I - 0 . 20200E 07

1 . 0 0 0 . 3 8 4 1 6 0 1 0 . 9 0 0 . 1 7 1 6 E 01 0 . 8 0 0 .6285E 00 0 . 7 0 0 . 1 5 8 3 E 00 0 . 6 0 0 . 2 6 8 5 E - 0 1 0 . 5 0 0 . 5 S 8 6 E - 0 1 0 . 4 0 0 . 1 3 8 1 E 00 0 . 3 0 0 . 2152E 00 0 . 2 0 0 . 2 6 0 9 E 00 0 . 1 0 0 . 2 6 9 2 E 00 0 . 0 0 0 .24556 00

- 0 . 1 0 0 . 2 0 0 7 6 00 - 0 . 2 0 0 .1468E 00 - 0 . 3 0 0 . 9 4 2 5 E - 0 1 - 0 . 4 0 0 . 5 0 5 9 E - 0 1 - 0 . 5 0 0 . 2 0 2 5 E - 0 1 - 0 . 6 0 0 .5362E -02 - 0 . 7 0 0 . 7 6 4 1 E - 0 2 - 0 . 80 0 . 3 Z 9 4 E - 0 1 - 0 . 9 0 0 . 9 4 4 8 E - 0 1 - 1 . 0 0 0 . 2 2 2 3 E 00

0.805POF 06 O. 1653F 01 0 .1229F 01 1 . 9 1 9 7 F 00 " . 69R^F OP P .5448F " 0 0 . 4 4 1 1 * on 0. 3735F 00 C 3 3 P 8 F 00 Or 304 OF OO 0 .2863F 00 0 . 2 7 2 3 F 03 n.2582F on 0 , 2 4 ) 2 « : 0 " P 2 1 9 9 c OP i = 1 9 3 9 c 0 " 0 . 1638? no 0 . 1 3 1 5 F (>r< 0, 1004F 00 0 . 7 5 3 6 F - 0 1 0 , 6 3 0 4 F - n i 0 . 7 2 3 6 ' ' - 01

0 . 1 0 0 2 0 F 07 0 . 1 8 2 7 F 31 0 1 2 i ° F n i n 8109F 00 0-54B7E 00 0. 3900F 00 0 . 3 0 1 8 F 33 0- 2593F 00 0 , 2 4 4 0 F 00 1 2424F JO 0 .2450F 00 0.2454F. 00 0 , 2 3 9 6 c 3D 0: 2 2 5 6 c 00 n. 2028F 00 0 1722F 00 O ^ I ^ P F on P . 9 8 1 5 F - 3 1 0- 6426F-01 1 - 4 2 2 7 F - 0 1 0 4 3 0 2 F - 1 1 0. 8096F-P1

0 . 1 5000S 0 7 1 . 2581 F 0 1 0 , 1341F 01 n 64 02* nn 0 . 2BT2F 0 0 o. 14531= 0 0 0 1200E oo n U 8 3 F o-v p. 1911"= nn 0 2264F 00 n, 2440F Oo p. 2 4 1 V 0 0 n. 2211F 0 1 p : 1 877C On n 1467F 0 0 0 . 1037c On P. 6420C-- 0 1 1. ,3381"=. - n i P, , ] 9 3 5 c - - " 1 P. . 3049F-- n i 0 8197F-- 0 1 0 , 1 967F 0 0

APPENDIX PU-242 NUCLEAR DATA TABLES PACE A- 10

(CROSS SECTIONS IN BARNS E B/SR)

DIFFERENTIAL ELASTIC COS / E l E V I " 0 .407006 07 0 .60700E 07 0.B1930E 07 0 . 1 0 0 0 0 E OB 0 .12200E OB 0 .13500E OB 0 .15000E OB

l .oo 0.B412E 0 1 0 .9850E 01 0.102BE 02 0 .1154E 02 0. 1258E 02 0 .1379E 02 0 . 1 5 4 1 E 02 0 , 9 5 0.5O5OE 01 0 .4797E 01 0.396BE 0 1 0 .3200E 0 1 0 .2551E 01 0 .2244E 0 1 0 .1926E 01 0 . 9 0 0 .2908E 01 0.2243E 01 0 . 1481E 01 0. 8B82E 00 0 .5819E 00 0 . 4 3 7 6 E 00 0 . 3 7 0 0 E 00 0 . 6 5 0 .1584E 01 0 . 1 0 0 4 E 0 1 0 .5846E 00 0 .3990E 00 0.3679E 00 0 .3434E 00 0 . 3 6 1 9 E 00 0 . 8 0 0 .7975E 00 0 .4251E 00 0 .2693E 00 0 . 2 7 4 7 E 00 0 . 2 6 8 7 E 00 0 . 2 3 5 6 E 00 0 .1996E 00 0 . 7 5 0 . 3 5 5 6 E 00 0 .1635E 00 0 , 1356E 00 Oo 1627E 00 0 . 1152E 00 0 . 7 4 5 5 E - 0 1 0 . 3 2 2 2 E - 0 1 0 . 7 0 0 . 1286E 00 0 . 5 0 7 8 E - 0 1 0 i 5 8 7 1 E - 0 1 0 . 5 9 6 5 E - 0 1 0 . 1 5 9 7 E - 0 1 0. 726TE-02 0 . 1 8 9 8 E - 0 1 0 . 6 5 0 . 3 0 9 6 E - 0 1 0 . 1 0 0 6 E - 0 1 0 . 1 6 4 4 E - 0 1 C 1 2 6 7 E - 0 1 0 . 2 1 8 9 E - 0 1 0 . 5 4 3 0 E - 0 1 0 . 1150E 00 0 . 6 0 0 . 7 7 0 5 E - 0 2 0 . 8051E-02 0. -1100E-01 0 . 3 3 7 0 E - 0 1 0 .1011E 00 0 .1492E 00 0 . 2 1 0 4 E 00 0 . 5 5 0 . 2 4 2 3 6 - 0 1 0 .2952 E-01 0 . 4 0 1 0 E - 0 1 0 . 9 9 5 0 E - 0 1 0 .1915E 00 0 .2203E 00 0 .2382E 00 0 . 5 0 0 . 5 9 3 3 E - 0 1 0 . 6 5 1 1 E - 0 1 0. 9194E-01 0 . 1739E 00 0 .2441E 00 0 . 2 3 3 4 E 00 0 . 1 9 5 9 E 00 0 . 4 5 C.1C03E 00 0 . 1 0 6 7 E 00 0 .1494E 00 0 .2271E 00 0 .2412E 00 0 .1930E 00 0 .1200E 00 0 . 4 0 0 . 1397E 00 0. 1467E 00 o^igsgE oo 0 . 2 4 4 2 E 00 0 . 1 9 2 8 E 00 0 .1262E 00 0 . 5168E-01 0 . 3 5 0 .1T32E 00 0 .1783E 00 0.2201E 00 0.2259E 00 0 . 123BE 00 0 . 4 2 T 9 E - 0 1 0 . 1 5 6 1 E - 0 1 0 . 3 0 0 .1985E 00 0 . 1 9 7 0 E 00 0c2177E 00 0 .1831E 00 0 . 6 0 5 7 E - 0 1 0 . 2 3 0 7 E - 0 1 0 . 1 4 6 3 E-01 0 . 2 5 0 .2144E 00 0.2007E 00 0,1912E 00 0 . 1308E 00 0 . 2 1 2 6 E - 0 1 0 . 1 3 2 7 E - 0 1 0 . 3 6 2 5 6 - 0 1 0 . 2 0 0.22O6E 00 0 .1899E 00 0 .1483E 00 0 . 8275E-01 0 . 1 1 7 3 E-01 0 .2 768E-01 0 . 6 2 8 9 E - 0 1 0 . 1 5 0 . 2174E 00 0 .1672E 00 0 . 9 9 5 7 E - 0 1 Oc4820E-01 0 . 2 6 7 9 E - 0 1 0 . 5 3 B 9 E - 0 1 0 .B037E-01 0 . 1 0 0 . 2 0 5 4 5 00 0 .1368E 00 0. 5522E-01 0»3116E-01 0 . 5 4 3 8 E - 0 1 0 . 7 8 5 9 E - 0 1 0 . 8 2 2 7 E - 0 1 0 . 0 5 0 .1860E 00 0 .1034E 00 0 . 2 3 4 2 E - 0 1 Oo3087E-01 0 . 8095E-01 0 .91B9E-01 0 . 6 9 8 9 E - 0 I 0 . 0 0 0 . 1609E 00 0 . 7 1 7 1 E - 0 1 0 .8612E-02 0 . 4 3 2 2 E - 0 1 0 . 9 6 0 6 E - 0 1 0 . 8 9 6 4 E - 0 1 0 . 4 9 4 8 E - 0 1

- 0 . 0 5 0 .1322E 00 0 . 4 5 4 6 E - 0 1 Oc 11C8E-01 0, 6240E-01 0 . 9 5 1 0 E - 0 1 0 .7358 : : - 01 0 . 2 8 6 8 E - 0 1 - 0 . 1 0 0 . 1019E 00 0 . 2 7 2 4 E - 0 1 0 . 2 7 3 2 E - 0 1 0 . B 2 3 0 E - 0 1 0 . 7972E-01 0 . 4 9 8 0 E - 0 1 0 . 1 3 5 0 E - 0 1 - 0 . 1 5 0 . 7260E-01 0 . 1 8 2 4 E - 0 1 0 . 5 1 1 4 E - 0 1 0 . 9 7 5 5 E - 0 1 0 . 5 6 1 7 E - 0 1 0 . 2 6 2 0 E - 0 1 0 . 6 8 6 6 E - 0 2 - 0 . 2 0 0 . 4 6 3 6 E - 0 1 0 . 1 9 3 2 E - 0 1 0=7529E-01 0..1042E 00 0 . 3 2 4 5 E - 0 1 0 . 9 7 2 0 E - 0 2 0 . 8 4 6 7 E - 0 2 - 0 . 2 5 0 . 2 5 1 3 E - 0 1 0 . 2 6 1 9 E - 0 1 C 9 3 1 6 E - 0 1 0 .1003E 00 0 . 1 5 2 9 E - 0 1 0 .41S1E-02 0 . 1 5 5 8 E - 0 1 - 0 . 3 0 0 . 1 0 4 0 E - 0 1 0 . 3 9 6 9 E - 0 1 0 . 1003E 00 0, B625E-01 0 . 7 9 8 3 E - 0 2 0 . 9 1 7 5 E - 0 2 0 . 2 4 3 3 E - 0 1 - 0 . 3 5 0 . 3 0 2 4 E - 0 2 0 . 5 6 1 5 E - 0 1 0 . 9 5 3 1 E - 0 1 0 . 6 4 7 1 E - 0 1 0 . 9 8 1 9 E - 0 2 0 . 2 0 4 9 E - 0 1 0 . 3 0 9 3 E - 0 1 - 0 . 4 0 0 . 3 1 5 3 E - 0 2 0 . 7 2 6 1 E - 0 1 0. 8008E-01 0 . 4 0 5 5 E - 0 1 0 . 1 7 0 2 E - 0 1 0 . 3 1 8 7 E - 0 1 0 .326BE-01 - 0 . 4 5 0 . 1 0 1 5 E - 0 1 0 . 8 6 2 3 E - 0 1 0 . 5 9 0 6 E - 0 1 0 . 1 9 7 7 E - 0 1 0 . 2 4 8 4 E - 0 1 0 . 3 7 6 0 E - 0 1 0 . 2 8 7 2 E - 0 1 - 0 . 5 0 0 . 2 2 5 6 E - 0 1 0 . 9 4 4 7 E - 0 1 0 . 3 7 9 6 E - 0 1 C 7 9 7 8 E - 0 2 0 . 2970E-01 0 . 3 4 9 6 E - 0 1 0 . 2 0 3 8 E - 0 1 - 0 . 5 5 0 . 3 8 2 3 E - 0 1 0 . 9 5 4 5 E - 0 1 C 2 1 9 6 E - 0 1 0 . 8429E-02 0 . 3 0 5 0 E - 0 1 0 . 2 5 3 5 E - 0 1 0 . 1 0 9 0 E - 0 1 - 0 . 6 0 0 . 5 4 3 9 E - 0 1 0 . 8 8 2 6 E - 0 1 O c l 4 1 9 E - 0 1 0 . 2022E-01 0 . 2840E-01 0 . 1 3 6 2 E - 0 1 0 . 4 2 7 8 E - 0 2 - 0 . 6 5 0 . & 7 9 5 E - 0 1 0 . 7 3 3 3 E - 0 1 0 . 1 4 8 0 E - 0 1 0 . 3 7 6 3 E - 0 1 0 . 2 5 2 4 E - 0 1 0 . 5 3 4 3 E - 0 2 0 . 3 3 8 1 E - 0 2 - 0 . 7 0 0 . 7 5 8 6 E - 0 1 0 . 5281E-01 0 . 2114E-01 0. 5146E-01 0 . 2 1 7 7 E - 0 1 0 . 3 5 9 1 E - 0 2 0 . 7 9 2 3 E - 0 2 - 0 . 7 5 0 . 7 5 7 3 E - 0 1 0 . 3 0 7 7 E - 0 1 Q .2925E-01 O.S296E-01 0 . 1725E-01 0 . 6 9 8 7 E - 0 2 0 . 1 3 7 7 E - 0 1 - 0 . 8 0 0 . 6 6 6 6 E - 0 1 0 . 1 3 2 1 E - 0 1 0 . 3600E-01 0 . 3 9 4 7 E - 0 1 0 . 1 1 4 5 E - 0 1 0 . 1113E-01 0 . 1 5 0 8 E - 0 1 - 0 . 8 5 0 . 5 0 4 3 E - 0 1 0 . 7 3 1 2 E - 0 2 0 . 4 0 7 9 E - 0 1 0 . 1921E-01 0 .7B96E-02 0 . 1 3 2 0 E - 0 1 0 . 9 4 7 9 E - 0 2 - 0 . 9 0 0 . 3 3 2 1 E - 0 1 0 . 1 9 9 8 E - 0 1 0 . 4 4 6 6 E - 0 1 0 . 9 8 3 2 E - 0 2 0 . 1 3 6 8 E - 0 1 0 . 1 5 7 8 E - 0 1 0 . 3 0 4 0 E - 0 2 - 0 . 9 5 0 . 2 7 9 B E - 0 1 0 . 5 5 0 5 E - 0 1 0 . 4 3 8 4 E - 0 1 0 . 2 3 1 6 E - 0 1 0 . 2 7 0 2 E-01 0 . 2 1 0 1 E - 0 1 0 . 7 0 4 1 E - 0 2 - 1 . 0 0 0 . 5 7 9 0 E - 0 1 0 .1092E 00 0 , 1478E-01 0 . 2 6 9 8 E - 0 1 0. 2165E-02 0 . 4 4 9 4 E - 0 2 0 . 1 4 3 9 E - 0 1