14
Diffusion dynamics Microeconomics of Technical Change 20153 EMIT Agnese Centineo 1468875 August Majer 1659085

diffusion of innovation

Embed Size (px)

Citation preview

 

 Diffusion  dynamics    Microeconomics  of  Technical  Change  -­‐  20153    EMIT              

       

   

                                   Agnese  Centineo      1468875    August  Majer                  1659085    

  2  

     

   

 

Table  of  Content    

Introduction  ........................................................................................................................  3  

 #  Diffusion  ............................................................................................................................  4  

##  Modeling  diffusion  ......................................................................................................  5  ###  What  affects  the  diffusion?  ....................................................................................  6  

####  Diffusion  speed  .......................................................................................................  9  

#####  Variations  in  speed  ..........................................................................................  11  ######  Final  remarks  ..................................................................................................  13  

 

References  ........................................................................................................................  14    

                                               

  3  

   Diffusion  dynamics    “And  it  ought  to  be  remembered  that  there  is  nothing  more  difficult  to  take  in  hand,  more  perilous  to  conduct,  or  more  uncertain  in  its  success,  than  to  take  the  lead  in  the  introduction  of  a  new  order  of  things.  Because  the  innovator  has  for  enemies  all  those  who  have  done  well  under  the  old  conditions,  and  lukewarm  defenders  in  those  who  may  do  well  under  the  new.  This  coolness  arises  partly  from  fear  of  the  opponents,  who  have  the  laws  on  their  side,  and  partly  from  the  incredulity  of  men,  who  do  not  readily  believe  in  new  things  until  they  have  had  a  long  experience  of  them.”  –  Niccolò  Machiavelli    

Introduction      

History   of   innovation   shows   how   usually   it   takes   far   too   long   for   attested  products   and   processes   to   become   part   of   our   practice.   Innovation   is   a   risky   and  complicated  process,  that  grows  up  from  market  gaps  or  radical  new  ideas  followed  by  creation   of   new  markets;   it  widely   contributes   to   economic   development   and   growth.  The  value  an  innovation  is  capable  to  give  to  a  socio  economic  system  mostly  depends,  on  the  rate  by  which  is  it  adopted  by  individuals  and  on  the  nature  of  that  spread  within  a  population.  In  essence  it’s  a  way  on  which  diffusion  process  takes  its  shape.  Innovation  diffusion   has   a   detrimental   effect   on   social   and   economic   evolution   of   cultures   and  populations.    

 The   impact  an   innovation   is  meant   to  have  on  social  habits  and  conditions  and,  

above   all,   on   social  welfare,   has   a  big  potential   strength  which   every   government   and  institution   has   to   consider   in   addressing   their   development   activities   and   actions.  Trough   diffusion,   an   innovation   acquires   its   proper   social   meaning   and   becomes   a  relevant   tool   to   be   exploited.   As   long   as   is   adopted   by   individuals   and   societies,   it  becomes   useful   and   it   is   utilized   in   order   to   satisfy   a   specific   need   and   accomplish   a  function  by  a  new  technology  product  or  process  application.    

 Since   diffusion   of   innovation   is   socially   critical   and   also   transversal   to   many  

different   disciplines   and   humanistic   and   scientific   fields   of   knowledge,   one   cannot  disregard  to  mention  the  multidimensional  and  variegate  factors  that  interfere  with  the  diffusion   process,   its   fundamental   characteristics,   the  main   theories   developed   so   far  and  some  empirical  evidences.  The  point  this  work  wants  to  start  from,  and  expand  its  focus  on,  has   its  origin   in  Nathan  Rosenberg’s  quote  “in  the  history  of  diffusion  of  many  innovations,  one  cannot  help  being  struck  by  two  characteristics  of   the  diffusion  process:  its   apparent   overall   slowness   on   the   one   hand,   and   the   wide   variations   in   the   rates   of  acceptance  of  different  inventions,  on  the  other”.          

  4  

#  Diffusion      

The   noun   diffusion,   in   the   innovation   of   technology   field,   is   used   to   describe   a  process  by  which  a  cultural  practice  or  skill  spreads  within  a  community.  In  the  1950’s  first   serious   attempts   to   explain   innovation   diffusion  were   taken.   Pivotal  work   comes  from   mentioned   Rogers   M.   Everett   who   published   work   on   diffusion   of   innovation  (1962)  in  which  he  defined  innovation  as  “an  idea,  practice,  or  object  that  is  perceived  as  new  by  individual  or  other  unit  of  adoption”  (Rogers,  1985,  p.11)  and  diffusion  as  “the  process   by  which   an   innovation   is   communicated   through   certain   channels   over   time  among   the  members   of   a   social   system”.   Earlier  Rogers   points   out   that   diffusion   is   “a  special  type  of  communication,  in  that  the  massages  are  concerned  with  new  ideas”  and  “communication   is   a   process   in  which   participants   create   and   share   information  with  one  another  in  other  to  reach  a  mutual  understanding”  (Rogers,  1983).  Such  approach  is  known  as  a  communication  based  theory.  Diffusion  is  assumed,  according  to  Rogers  as  a  social   process   in   which   information   is   spread   and   shared   among   the   members   of   a  society,   and,   as   part   of   a   social   system,   the   diffusion   evolution   of   an   invention   is  influenced   by   the   communication   channel,   the   characteristics   and   culture   of   the  members  of  the  society  and  the  time.  Indeed,  is  to  consider  diffusion  of  innovation  does  not  consist  in  a  mare  technical  switch,  a  research  and  development  goal  or  an  industry  key  source,  but   is  also   the  springboard   for  an  economic   turn  and  a  social  change.  This  phenomenon  is  visible  and  it  is  verified  every  time  an  innovation  adopted  by  a  society  of  individuals  and   institutions  demonstrates   to  be  capable   to  mutate   the  structure  of   the  social  system  and  influence  its  main  functions  and  uses.      

   Rogers   of   course   is   not   the   only   one   to   research   this   topic,   in   1961,  Mansfield  

proposed  that  the  rate  of  diffusion  is  a  “function  of  the  extend  of  economic  advantage  of  innovation,  the  amount  of   investment  required  to  adopt  the  innovation  and  the  degree  of   uncertainty   associated   with   the   innovation”   (Mahajan   V.   and   Peterson   R.A.,   1985).    Learning   perspective   of   innovation   diffusion   was   proposed   by   Casetti   and   Semple  (1969)  and  again  by  Sahal  (1981).  Prominent  work  done  by  Blackman  (1974)  and  Sharif  and   Kabir   (1976)   used   a   technological   substitution   frame   to   describe   innovation  diffusion.    

                           

  5  

##  Modeling  diffusion    Rogers’s   model   looks   at   diffusion   dynamics   under   a   social   environment  

framework   and   investigates   over   different   elements   of   this   framework   that   affect   the  rate   of   adoption.   The   centrality   of   diffusion   matter   lays   on   the   concept   of   rate   of  adoption,   the   relative   speed   at   which   an   innovation   is   adopted   by   the  members   of   a  social   system,   the   determinant   of   the   slope   of   the   adoption   curve   for   an   innovation.  Wondering   the   causes   behind   the   rate   of   adoption   and   diffusion   dynamics,   Rogers  individuates   five  major   types  of  variables  decisive   for   the  determination  of   the   rate  of  adoption.  These  variables  are  the  perceived  attributes  of  innovation;  the  communication  channels  used  to  search  the  information  about  an  innovation,  that  can  be  interpersonal  and  private  or  mass  media;   the   type  of   innovation  decision,   if   collective,   individual   or  social,   namely  made   by   a   govern   organization   or   another   authority;   the   nature   of   the  social  system,  its  habits,  its  laws,  the  degree  of  interconnectedness  and  the  extent  of  the  change  agent’s  efforts  in  promoting  the  innovation.      

 In  particular,  the  characteristics  of  the  innovation  perceived  by  the  adopters  are  

the  most  relevant  and  affective  for  the  adoption  decision  process.  These  are  constituted  by  the  relative  advantage  which  a  consumer  can  gain  from  an  innovation  compared  with  the   previous   benefits   of   the   extant   technology   which   fulfill   the   same   functions;   the  compatibility   with   the   uses   and   habits   of   the   potential   adopters,   their   need   and   the  values,   needs   and   past   experience   framework;   the   degree   of   complexity   of   the  innovation,  namely   the  difficulty  perceived   for   the  necessary  efforts   to   learn   the  know  how   due   to   the   use   of   the   innovation,   which   constitute   a   cost   and   it   is   negatively  correlated  with   the   rate  of   adoption;   the   trialability  whereas   the  possibility   to   find  an  easy   way   to   try   the   innovation   before   the   decision   making;   the   observability,   the  availability  and  the  opportunity  to  find  visible  results  of  an  invention,  easy  to  measure.    

 The   adoption   process,   considering   the   percentage   of   adoptions   in   a   length   of  

time,   follows  an  S  shaped  curve,   in  which   the  slope  and   the  shape   it   is  affected  by   the  social   environment   and   the  mentioned   characteristic   of   a   specific   technology.   Rogers  diffusion  model   categorizes   the   adopters’   typologies   displaying   the   distribution   of   the  different  types  in  a  time  axis.  The  bell  shaped  adoption  curve  with  the  frequency  of  the  adopters  is  correlated  with  the  S  shaped  diffusion  curve  (cumulative).  When  the  S  curve  rises  slowly  we  find  an  uncertainty  stage  where  the  adopters  are   few  and  classified  as  innovators,   with   a   great   interest   in   innovations,   low   risk   adversity   and   low   price  sensibility.   Then   the   early   majority   that   constitutes   a   higher   percentage   made   up   of  individuals  with  a  great  influence  on  the  other  potential  part  of  the  demand.  Next  comes  the  biggest   interval,  which   includes  the  mean  of   the  normal  distribution,  and  the  early  and   the   late   majority   occupy   it.   The   individual’s   part   of   the   early   majority   has   more  resistance  to  adopt  the  innovations  than  the  early  adopters  and  more  price  sensitiveness  too.   The   late  majority   is   composed   of   individuals   that   adopt   the   innovation   after   the  most  of  the  society  have  adopted  it;  they  are  skeptical  about  innovation  and  very  price  sensitive.  The  last  category  is  the  laggards  one;  these  are  individuals  that  decide  to  adopt  an   innovation  very   late,  when  it   is  almost  outdated,  very  price  sensitive  and  not  really  interested  into  the  technological  innovation  characteristics.    

 

  6  

Rogers,   correlating   the   time   of   adoption   of   a   product   with   the   social,  psychological  and  sociological   characteristics  of   the  different   typologies  of   individuals,  states   that   for   the   most   members   of   a   society   the   adoption   decision   depends   on   the  adoption  decision  of  other  members  of  the  social  system.  Indeed,  among  the  factors  that  lead   to   this   results   there  are   the   intrinsic  uncertainty  and   the   lack  of   information   that  influence  the  decision  process  related  to  a  new  product  whose  benefits  and  costs  are  not  certain  and  well  known.    

 

   

Figure   1,   Adoption   curve   and   S-­‐curve   of   diffusion   process;   Rogers,  M.   Everett.   2003.   Diffusion   of   Innovation,   Free  Press  

 

###  What  affects  the  diffusion?    

In  contrast  with   the  sociological  approach  an  economic  prospective  considers  a  cost  benefits  analysis  of  the  possible  adoption  of  an  innovation  based  on  the  incremental  benefits   derived   by   a   new   technology   adoption   and   the   incremental   costs.   In   this  analysis   the  determinants   influencing  diffusion  rate  and  the  extent  of   the  critical  mass  reached  are  reconducted  to  factors  related  to  the  benefits  gained,  the  costs  related  to  the  adoption,  the  industry  and  market  structure  and  the  social  environment  influence,  and  the  uncertainty  and  limited  information  issues.    

Benefits   for   the   demand   side   are   to   be   considered   in   terms   of   better  performances  and  improvements  derived  from  the  adoption  of  a  new  technology,  gain  in  efficiency,   save   of   time,   speed  with  which   a   same   function   can  be   satisfied   in   relation  with  a  previous  technology,  ex  ante  available  information  and  control,  save  of  money  or  transportation  costs.  Since  adopting  a  new  technology  entails  assuming  high  risk  due  to  the   lack   of   awareness   about   the   satisfaction   and   results   and   it   is   usually   costly   and  expensive,   the   initial  benefits,   at   the  beginning  of   the  diffusion  process,   is   smaller  and  

  7  

diffusion  process  manifests  its  intrinsic  slowness.  As  diffusion  proceeds,  the  technology  spreads  and  the  learning  process  takes  place  among  the  members  of  the  social  system.    

 In   this   perspective,   according   to   Rosenberg’s   view,   diffusion   is   evolving   as   the  

learning  by  using  or  doing  and  expanding  trough  out  the  demand,  shaping  in  accordance  to  the  specific  socio  economic  environment  in  which  the  invention  is  introduced.  Thus,  as   the   new   technologies   become   even  more   and  more   attractive,   the   related   benefits  grow   over   time   until   they   increase   at   a   rate   higher   than   the   costs.   Consequently,   the  number   of   the   adopters   rises   over   time   until   the   critical   mass   is   reached,   in  correspondence  of  the  highest  rate  of  adoption.  The  extension  adoption  base,  for  some  new   technologies,   is   proportional   to   the   benefits   an   individual   receives   from   the  adoption.  The  more   the   customer’s  base,   the  more   the  value   a  user   can  gain   from   the  adoption  of  a  product.  These  types  of  technologies  innovation  are  those  network  goods  that   foster  the  diffusion  process  often  accelerating  it.  A  wider  network,  made  of  a  high  number  of  consumers,  leads  to  a  higher  diffusion  rate,  namely  to  a  faster  diffusion  curve.    

 The   strength   of   network   lays   on   the   element   of   standard.  When   a   standard   is  

affirmed  and  the  same  technology  is  chosen  from  the  most  of  the  customers,  it  is  easier  for  the  network  phenomenon  to  raise  and  for  the  adopted  product  to  reach  sooner  the  critical  mass  in  the  diffusion  process,  eventually  leading  the  point  at  which  the  market  is  saturated.   New   technology,   in   particular   social   networks   and   communication   tools  industries,   are   the  ones  where  network  benefits   related   to  diffusion  process  are  more  relevant   and   evident.   Firms   and   consumers   of   these   technologies   benefit   from   the  adoption  of  the  same  product  by  others  consumers  and  firms.  Studies  investigating  the  effects   existent   in   the   speed   of   diffusion   for   a   product   when   there   are   network  externalities  highlighted  that  the  value  of  a  technology  to  a  consumer  increases  with  the  number   of   network   participants.   These   issues   can   be   exploited   promoting   the  standardization   of   different   technologies   among   them   and   enhancing   the   positive  externalities   trough   complementarities.   In   a   network,   when   complementary   products  are   standardized,   benefits   from   network   externalities   increase   and   the   spread   of   a  product  within  a  community  is  broader.    

 Nathan   Rosenberg   looked   at   the   diffusion   of   innovation   also   trough   a   supply  

determinants   considerations.   He   considered   the   industrial   production   process  correlating  it  to  the  diffusion  process  of  an  item  in  the  market.  According  to  Rosenberg  view  behind  the  slowness  of  the  adoption  there  is  the  relative  weak  performance  of  the  innovative  technology  at  the  initial  stage.  Assuming  such  prospective,  is  to  be  enhanced  the   role   of   suppliers   in   improving   and   bettering   the   innovation,   therefore   first   in   the  comprehension   of   the   focal   points   and   in   the   research   of   feedbacks   about   the  performance  of  the  new  technologies  from  the  potential  demand  or  the  early  adopters.  Rosenberg   defined   important   factors   determinant   for   the   supply   side   of   the   market:  alternative   uses   of   new   technologies,   improvements   in   the   technologies   performances  and  applications  after  the  first  launch,  invention  of  complementary  products,  promotion  and  development  of  complementary  skills  by  the  users.  A  further  critical  factor  pointed  out  is  the  negative  effect  of  the  improvements  on  affirmed  technologies  on  the  speed  of  the  diffusion  process  related  to  a  new  technology.    

 The   adoption   process   slowly   at   first,   accelerates   as   the   innovation   spreads  

through  the  potential  customer  base  and  then,  eventually  reached  the  market  saturation,  

  8  

slows   down.   As   a   consequence,   the   S   shape   curve   implicates   that   adoption   is   an  absorbing   state,   namely   it   stressed   the   common  attested   fact   that   there   is   no  point   in  abandoning  a   technology   in   favor  of   an  older  one.  Two  different  models   explain   the  S  adoption  curve  dispersion.    

 The   Heterogeneity   model   states   that   different   individuals   have   different  

preferences  and  give  different  value  to  a  product.  Assuming  normal  the  distribution  of  the   benefits   from   the   adoption   over   the   consumers,   the   cost   of   adoption   is   constant,  declining  over  time,  due  to  the  fact  that  the  net  benefit  from  adoption  is  increasing  over  time,  the  diffusion  curve  has  the  s  shape.  Net  benefit  is  said  to  increase  because  of  scale  economies,   decreasing   of   initial   costs,   learning   by   doing   process.   Another   model,   the  epidemic   model,   also   called   learning   model,   is   based   on   the   opposite   assumption.  Consumers  have  the  same  tastes  and  preferences,  so  the  same  expected  benefits  and  the  costs  are  constant,  but   they  are  not  homogeneous   in  the  degree   information  about  the  product.   The   individual   user   learns   from   his   close   environment,   from   his   proper  neighbor  over  the  time.  An  incremental  number  of  people  become  informed  and  adopt  the  new  technology  over  the  time.  Consequently  the  rate  of  adoption  increases  and  the  market   is   capable   to   become   saturated.   After   the   saturation   point   the   rate   starts  decreasing  again.    

 The  relevance  of  diffusion  of   innovation   theories   is   still  very   important   to  our  

understanding  of  markets  and  it  is  adopted  in  a  huge  number  of  different  fields.  Not  to  forget  mentioning  organizational   applications  of  methods  enhancing  diffusion  of   some  organizational  tools  and  practice.  Overall,  we  can  currently  observe  diffusion  also  just  in  population   every   day   consumptions   choices,   purchases   and   transactions,  which   let   us  measure   in   a   empirical   manner,   how   fast   and   why   a   product   takes   its   space   in   the  markets  all  over  the  world.    

 This  is  just  a  fraction  of  the  research  done  in  the  field,  however  all  have  manage  

to   isolate   and   verify   that   variables   from   various   sets  most   of   all   economic   and   social  ones  are  important  to  explain  an  innovation  diffusion  process.                                        

  9  

####  Diffusion  speed      

Lets   take   a  more   closely   look   at   the   observation   of   different   diffusion   rates   for  different  products.  

 As   has   been   confirmed   by   numerous   empirical   research   innovation   diffusion  

speed   varies,   it   might   grow   or   suddenly   pause,   with   latter   due   to   a   technical  discontinuities.  Technical  discontinuities  and  radical  technological  change,  emergence  of  new   innovations,   a   number   of   different   approaches   were   provided   by   innovation  management   theorists   such   as   Schumpeter’s   creative  destruction   (Schumpeter,   1942),  very   prominently   by   the   incremental   –   radical   innovation   model   (Abernathy   and  Utterback,  1978).  

 The   speed   of   diffusion   and   the   wide   range   of   variation   the   rate   of   adoption  

presents,   have   been   studied   from   several   perspectives   since   a   long   time.   These   key  points   have   been   correlated   with   the   characteristics   of   the   different   technological  innovative   inventions,   with   the   demand   structure   and   the   differences   within   the  typologies  of  potential  adopters  and  their  preferences,  in  order  to  better  understand  the  diffusion  dynamics  and   investigate  on   the  reasons  behind   the  differential   in   the  speed  among  different  innovations  and  among  different  societies.  

 Speed   in   physics   is   define   as   the   rate   or   a   measure   of   the   rate   of   motion,  

especially:  distance  traveled  divided  by  the  time  of  travel,  the  first  derivative  of  distance  with  respect  to  time,  the  magnitude  of  a  velocity  (The  American  Heritage®  Dictionary  of  the   English   Language,   2009).   In   the   context   of   diffusion,   the   relevant   measure   is   the  difference  between  two  penetration  levels.  Having  above  in  mind  the  diffusion  speed  can  be  define  as  the  amount  of  time  it  takes  to  go  from  one  penetration  level  to  a  higher  level  (Fisher   and   Pry,   1971).   Accepted   practice   by   researches   in   the   field   of   diffusion  modeling  and  diffusion  speed  measurement  is  to  first  estimate  a  specific  diffusion  model  and  then  use  one  or  more  of  the  estimated  parameters  as  an  indicator  of  diffusion  speed.  Typically   in   situations   in  which  an   innovation  diffuses   though  a  population  a   simplest  model   is   used:   the   logistic   model.   The   model   results   the   familiar   “S”   curve   in   which  period  of  rapid  acceleration  is  followed  by  deceleration  and  finally,  saturation  (Richard,  2002).  The  model  is  presented  with  the  following  mathematical  expression:    

    𝑥 𝑡 = 𝛽  𝐹(𝑡 − 1) 𝑀 − 𝑋(𝑡 − 1)   (1)    Let   the   number   of   adopters   of   innovation   at   time   t   be   x(t)   and   the   total   number   of  adopters  by  time  t  be  X(t).  M  the  number  of  eventual  adopters  and  F(t)=X(t)/M.    The  β  parameter  in  presented  model  has  a  direct  relationship  with  diffusion  speed  the  time  it  takes  to  go  from  one  penetration  level  p1  to  penetration  level  p2  which  equals  to:       𝑝! = 𝛽!!𝑙𝑛 1− 𝑝! 𝑝!/ (1− 𝑝!)𝑝!   (2)    

By  this,  we  can  show  that  the  time  it  would  take  to  go  from  10%  to  90%  of  the  max  M,   (t90%   -­‐   t   10%)  would  be  equal   to  4.93/β   in   the   logistic  diffusion  process   (Fisher  and   Pry,   1971).   Continuing,   1/β   also   equals   the   Gini   coefficient   in   logistic   model,  

  10  

showing   the   expected  waiting   time  of   random  potential   adopter   at   a   random  point   in  time  (Trajtenberg  and  Yitzhaki,  1989).    

This  representation  of  the  measurement  of  the  diffusion  speed  is  an  aggregate  or  average  property  of  the  entire  diffusion  process  over  all  adopters.  In   those  settings  it’s  hard   to   connect   diffusion   speed   parameter   to   any   explanatory   variables   that   have   a  tendency  to  vary  over  time,  as  one  of  the  prominent  parameters,  purchasing  power.  In  order   to   improve   on   this   limitation,   many   researches   opt   for   use   of   measures   of  instantaneous  growth,  that   is,   to  measure  growth  in  penetration  at  every  point   in  time  for  which  data  exist  (Christopher,  2000).  Several  possibilities  have  been  offered:    

-­‐ the  use  of  local  slope  o  the  diffusion  curve,  is  one,  defined  as:       𝑓 𝑡 = 𝑑𝐹(𝑡)/𝑑𝑡   (3)    

-­‐ the  empirical  hazard  rate  (Trajtenberg  and  Yitzhaki,  1989)  defined  as:    

  𝑓ℎ 𝑡 = 𝑓(𝑡)/ 1− 𝐹(𝑡 − 1)   (4)    

-­‐ the  use  of  empirical  growth  rate  (Dixon,  1980)  defined  as:    

  𝑔 𝑡 = 𝑓(𝑡)/𝐹(𝑡 − 1)    

(5)  

As   has   been   pointed   out,   within   the   logistic   model,   parameter   β   has   an  interpretation  as  an  aggregate  measure  of  speed.  However,  it  has  to  be  pointed  out  that  the  same  parameter  has  a  unique  relationship  to  the  before  mentioned  empirical  growth  rate  (measure  of  instantaneous  growth  in  penetration)(Dixon,  1980):  

    𝑥 𝑡 = 𝛽 + 𝛾𝑋(𝑡 − 1)  

 (6)  

where  𝛾 = −𝛽/𝑀.    

In   examining   data   related   to   the   investigation   of   the   different   rates   of   the  diffusion   speed   several   settings   have   to   be   respected.   First   to   reduce   the   danger   of  possible  unaccounted  heterogeneity,   the  data  stream  should  be  restricted  to  the  single  country   with   products   that   are   similar   along   the   qualitatively   dimension   such   as  potential   adopters   and   usage   situations   (Olshavsky,   1980).   Second,   data   regarding  penetration  or  adoption  level  should  be  used  rather  then  sales  data.  In  this  way  adoption  will  not  be  confounded  with  repeat  purchases.  Third,  data  available  should  cover  a  large  number   of   years.   This  will   increase   accuracy   of   any   research   but   it  will   also   limit   the  time-­‐varying   period   effects   know   to   effect   diffusion   processes   such   as   periods   of  economic  expansion  and  contraction.  Finally,  the  years  of  observation  should  have  data  of  multiple  products  within  same  product  category.    

 When   discussing   data   observation   another   term   should   be   explained   the  

innovation’s   vintage.   The   latter   is   typically   defined   as   the   time   the   innovation   was  introduced,  the  time  it  achieved  a  particular  penetration  level  or  when  that  information  are  not  available  the  time  at  which  one’s  observation  starts.  In  most  research  vintage  is  operationalized  as  the  year  at  which  an  innovation  has  reached  5%  rather  then  it  launch  year  (Gruble,  1990).  This  is  explained  on  several  levels  mostly  by  the  fact  that  lunch  year  for   particular   products   can   be   in   question   since   different   researchers   offer   different  

  11  

dates,  further  more  the  level  of  5%  is  know  for  the  most  of  the  products.  Following  table  displays  such  data  for  consumer  durables.  

#####  Variations  in  speed    

Diffusion  speed  varies  across  different  products  or  consumer  durables.  Its  overall  slowness  on  the  one  hand,  and  the  wide  variations  in  the  rates  of  acceptance  of  different  innovations  has  been  empirically  confirmed.    The  following  data  sat  has  been  examined  (Van  Den  Bulte,  2000),  note  the  maximum  observed  penetration  level  for  each  product:    Table  1,  Products  and  Years  Included  in  the  Data1  

 

Product  

Year  in  Which  

Household  Penetration  Reached  5%   Launch  Year   Max.Obs.Pen.   Years  

1.   Coffeemaker   1922   -­‐   36.2%   1923-­‐25,  1932-­‐41  2.   Radio   1924   1920   89.8   1924-­‐32  3.   Refrigerator   1928   1918  (1913)   71.2   1928-­‐41,  1946-­‐47  4.   Rangers   1931   (1919)   21.0   1931-­‐41,  1946-­‐50  5.   Water  heater   1947   -­‐   26.7   1947-­‐66  6.   Freezer   1949   1939  (1929)   28.5   1949-­‐68  7.   Black  and  white  television   1949   1939  (1939)   94.1   1949-­‐64  8.   Bedcover   1950   1936   47.5   1950-­‐69  9.   Clothes  dryer   1953   1936  (1939)   51.0   1953-­‐72  10.   Room  air  conditioner   1955   1929  (1933)   51.6   1955-­‐74  11.   Blender   1955   1938  (1946)   43.8   1955-­‐74  12.   Food  disposer   1955   1935  (1935)   37.2   1955-­‐74  13.   Dishwasher   1957   1900  (1912)   39.6   1957-­‐76  14.   Built-­‐in  ranges   1959   -­‐   19.8   1959-­‐78  15.   Can  opener   1961   1956  (1957)   63.6   1961-­‐79  16.   Color  television   1964   1954  (1954)   89.8   1965-­‐79  17.   Hairdryer   1973   -­‐   79.6   1973-­‐79,  1986-­‐92  18.   Auto  drip  coffeemaker   1974   -­‐   76.6   1974-­‐79,  1988-­‐92  19.   Curling  iron   1974   -­‐   82.0   1974-­‐79,  1988-­‐90  20.   Slow  cookers   1974   1972   58.7   1974-­‐79,  1986-­‐93  21.   Toaster  oven   1974   -­‐   38.2   1974-­‐79,  1986-­‐93  22.   Microwave  oven   1976   1966  (1955)   90.1   1976-­‐79,  1986-­‐95  23.   Hand-­‐held  massager   1977   -­‐   23.1   1977-­‐79,  1990-­‐96  24.   Food  processor   1979   1973  (1971)   40.6   1979,  1986-­‐96  25.   VCR   1983   1972  (1975)   81.0   1983-­‐95  26.   Home  PC   1983                        (1975)   39.3   1983-­‐96  27.   Telephone  answ.  device   1984   1972   67.7   1984-­‐96  28.   Power  leaf  blower   1986   -­‐   24.2   1986-­‐96  29.   CD  player   1987   1983  (1983)   30.6   1987-­‐96  30.   Camcorder   1988   1984   26.9   1988-­‐96  31.     Cellular  telephone   1990   1983  (1983)   27.8   1990-­‐96    Following  reparametrized  logistic  mode  has  been  used:    

                                                                                                               1  Sources:  Golder  and  Tellis  (1997),  values  between  brackets,  Kohli  et  al.  (1999),  summarization  by  Van  den  Bulte  (2000)  

  12  

  𝑥!(𝑡)𝑋!(𝑡 − 1)

= 𝛽! + 𝛾!𝑋!(𝑡 − 1)𝑀(𝑡) + 𝑢!"  

(7)  

 where  M(t)   is   the   size   of   total   population   (floor   ceiling   of   95%  penetration   rate).   The  model  allows  the  between  innovation  variance  in  diffusion  speed  by  allowing  βi  to  vary  across   innovation   s   according   to   a   random   component   Ubi   i.i.d.   (independent   and  identically  distributed)  N(0,τb):       𝛽! = 𝛽! + 𝑈!" ,    Ubi  i.i.d.  N(0,τb)  

 (8)  

where  β0  is  the  mean  value  of  βi  (Van  Den  Bulte,  2000).    

Diffusion  speed  exhibits  clear  variations  across  different  innovation.  The  mean  of  βi   parameter   is   0.529   with   the   standard   deviation   of   no   less   then   0.228.   Within  confidence  level  of  90%  the  time  it  takes  for  innovations  to  reach  90%  penetration  level  from  starting  10%  varies  between  5  to  28  years.    

 The  second  important  point  is  whether  the  diffusion  speed  parameter,  varies  not  

only  randomly  but  also  a   function  of  some  other  covariate.   In   the  observed  model   this  can  be  analyzed  by  expanding  last  equation  with  covariate  of  interest  and  adjusting  for  preservation  of  β0  as  a  mean  (Van  den  Bulte,  2000).    

The   before   mention   study   has   examined   four   variables   also   previously  documented  as  variables  that  can  significantly  effect  household  adoption  or  purchase  of  new  products  (Haldar  and  Rao,  1998,  Onely  1991,  Parker  1992).  There  are:  disposable  income   per   household,   unemployment,   household   formation   rate   and   price   of   the  product.  The  resulted  data  showed  that  almost  all  variance  in  diffusion  speed  could  be  explained  by  the  systematic  increase  in  purchasing  power,  variations  in  unemployment,  demographic   changes   and  with   the   changing   nature   of   the   product   studied   (Van   den  Bulte,  2000).                                            

  13  

 

######  Final  remarks      

Invention,  innovation,  adoption  and  diffusion  of  a  product  are  the  building  blocks  on   which   economy   is   based.   Diffusion,   as   a   form   of   communication   by   which   it   is  possible  for  an  innovation  to  become  part  of  the  market  and  trough  the  market  be  part  of  the  society.  Within  the  society  able  to  foster  a  technological  shift  that  sometimes  has  such   relevance   to   cause   a   social   turn,   could   be   interpreted   as   fundamental   link   and   a  central   feature  for  an  innovation  to  assume  a  social  meaning.  Central  to  this  work  was  the  examination  of  the  variation  in  speed  of  diffusion  for  different  categories  of  products  and  product  its  self  trough  empirical  evidences  and  meaningful  data.  It  is  suggested  that  the   starting   point   of   this   work,   namely   Rosenberg’s   statement     “in   the   history   of  diffusion  of  many  innovations,  one  cannot  help  being  struck  by  two  characteristics  of  the  diffusion  process:  its  apparent  overall  slowness  on  the  one  hand,  and  the  wide  variations  in   the  rates  of  acceptance  of  different   inventions,  on   the  other”,   is   to  consider  as  valid  and  verified  by  empirical  evidence.    

However,  further  research  should  be  taken.  In  accordance  to  the  maximal  posed  length   on   this   work,   several   issues   have   been   ignored.   In   particular   the   extended  analysis  of  the  variables  and  the  linkage  between  the  same,  that  influences  the  variation  of   the   diffusion   speed   among   products.   Also   examination   of   the   variation   in   speed  among  different  countries   should  be  examined   if  qualified  date  could  be   located.  Final  point  is  the  new  arising  issue  of  possible  increase  of  diffusion  speed  observed  with  in  the  new   product   groups.   The  main   question   been   posed   here   is:   are   the   products   launch  today  diffuse  faster  then  products  launched  in  the  past?                                                

  14  

 

References    Fisher,  J.C.,  R.H.Pry.  1971.  A  simple  sustition  model  of  technology  change.  Tech.  Forcasting  Soc.  Change  3  (1)  75-­‐88.    Gatignon,  Hubert,  Jehoshua  Eliashberg,  Thomas  S.  Robertson.  1989.  Modeling  multinational  diffusion  patterns:  An  efficient  methodology.  Marketing  Sci.  8  (Summer)  231-­‐247.    Golder,  Peter  N.,  Gerald  J.  Tellis.  1997.  Will  it  ever  fly?  Modeling  the  takeoff  of  really  new  consumer  durables.  Marketing  Sci.  16  (3)  256-­‐270.    Grubler,  Arnulf.  1990.  The  Rise  and  Fall  of  Infrastructures:  Dynamics  of  Evolution  and  Technological  Change  in  Transport.  Physica-­‐Verlag,  Heidelberg,  Germany.    Halder,  Sudeep,  Vithala  Rao.  1998.  A  micro-­‐analytic  threshold  model  for  the  timing  of  the  first  purchase  of  durable  goods.  Appl.  Econom.  30  959-­‐974.    Kohli,  Rajeev,  Donald  R.  Lehman,  Jae  Pae.  1999.  Extent  and  impact  of  incubation  time  in  new  product  diffusion.  J.  Product  Innovation  Management  16  (March)  134-­‐144.    Mansfield,  Edwin.  1961.  Technical  change  and  the  rate  of  imitation.  Econometrica  29  (October)  741-­‐766.    Olney,  Martha  L.  1991.  Buy  Now,  Pay  Later:  Advertising,  Credit,  and  Consumer  Durables  in  the  1920s.  University  of  North  Carolina  Press,  Chapel  Hill,  NC.    Olshavsky,  Richard  W.  1980.  Time  and  the  rate  of  adoption  of  innovations  J.  Consumer  Res.  6  (March)  425-­‐428.    Parket,  Philip  M.  1992.  Price  elasticity  dynamics  over  the  adoption  life  cycle.  J.  Marketing  Res.  29  (August)  358-­‐367.    Rogers,  M.  Everett.  2003.  Diffusion  of  Innovations,  5th  Edition.  Free  Press.    Trajtenberg,  Manuel,  Shlomo  Yitzhaki.  1989.  The  diffusion  of  innovations:  A  methodology  reappraisal.  J.  Bus.  Economic  Statist.  7  (January)  35-­‐47    Van  den  Bulte,  Christophe,  Gary  L.  Lilien.  1997.  Bias  and  systematic  change  in  the  parameter  estimates  of  the  macro-­‐level  diffusion  models.  Marketing  Sci.  16  (4)  338-­‐353    Van  den  Bulte,  2000.  New  Prodact  Diffusion  Acceleration:  Measurement  and  Analysis.  Marketing  Sci.  Vol.  19.  No.  4  (Fall).  366-­‐380.