55
Der Ottomotor im Hybridfahrzeug Gasoline Engines in Hybrid Vehicles P. E. Kapus AVL List GmbH, Graz, Austria Vortrag an der FH Joanneum Graz, 3. März 2010

Der Ottomotor im Hybridfahrzeug Gasoline Engines in Hybrid

Embed Size (px)

Citation preview

Der Ottomotor im Hybridfahrzeug

Gasoline Engines in Hybrid Vehicles

P. E. KapusAVL List GmbH, Graz, Austria

Vortrag an der FH Joanneum Graz, 3. März 2010

2

CO2 EMISSION AND LEGISLATION

0

50

100

150

200

250

300

350

400

450

500 1000 1500 2000 2500

Vehicle Curb Weight [kg]

CO

2 E

mis

sio

n i

n N

ED

C [

g/k

m]

Gasoline NA

Gasoline-TURBO

GDI, GDI-tc (BMW, VW)

Hybrid - Gasoline

CNG Turbo (OPEL, VW)

EU-proposed CO2 Limit

China Stage 2 - CO2 [g/km]

China Stage 3 - CO2 [g/km](under discussion)

Source: AR 2008, 2009

Hybrids

CNG withCharging

GDI and GDI Turbo

3

IC Engine

TransmissionCost: 1 + 1 = 2

Benefit: 1 + 1 = 2

CO2 / FUEL CONSUMPTION REDUCTION BY

COMBINATION OF ELEMENTS OF THE POWERTRAIN

4

IC Engine

Control Strategy

Battery

Electric Motor

• Variable valve lift

• Variable compression ratio

• Variable oilpump

• …….

• CVT

• DCT

• AT 8

• …….

• Complex EMS

• Complex TMS

•…….

• High power /

torque E-Motor

• High battery

capacity at

low weight

Transmission

BASE ELEMENTS OF THE POWERTRAIN

≈Cost,

Complexity& R

isk

Flexibility

high

smallmedium

5

IC Engine

TransmissionCost: 1+1+1+1+1 >> 5

Benefit: 1+1+1+1+1 << 5

Control Strategy

Battery

Electric Motor

Electrification Arithmetics

BASE ELEMENTS OF THE POWERTRAIN

6

BASE ELEMENTS OF THE POWERTRAIN

IC Engine

Transmission

Control Strategy

Battery

Electric Motor

Target for futurePowertrains

Electrification Arithmetics

Cost: 1+1+1+1+1 >> 5

Benefit: 1+1+1+1+1 << 5

Cost: 1+1+1+1+1 < 5

Benefit: 1+1+1+1+1 > 5

Electrification Arithmetics

7

IC Engine

Transmission

Control Strategy

Battery

Electric Motor

BASE ELEMENTS OF THE POWERTRAIN

Flexibility

high

smallmedium

8

IC Engine

Transmission

Control Strategy

Battery

Electric Motor

Fully Variable SI Engine

+ Manual Transmission

Flexibility

high

smallmedium

ALLOCATION OF FLEXIBILITIES TO THE FIVE

BASE ELEMENTS OF THE POWERTRAIN

9

Fully Variable SI Engine

+ Man. TransmissionIC Engine

Battery

Trans-

mission

Electric

Motor

Control Strategy

Flexibility

ALLOCATION OF FLEXIBILITIES TO THE FIVE

BASE ELEMENTS OF THE POWERTRAIN

10

Fully Variable SI Engine

+ Man. Transmission

Standard IC Engine

+ Autom. Transm.

Battery

IC Engine

Trans-

mission

Electric

Motor

Control Strategy

Flexibility

ALLOCATION OF FLEXIBILITIES TO THE FIVE

BASE ELEMENTS OF THE POWERTRAIN

Battery

Trans-

mission

Electric

Motor

Control Strategy

Flexibility

11

ALLOCATION OF FLEXIBILITIES TO THE FIVE

BASE ELEMENTS OF THE POWERTRAIN Fully Variable SI Engine

+ Man. Transmission

Standard IC Engine

+ Autom. Transm.

Battery

IC Engine

Trans-

mission

Electric

Motor

Control Strategy

Flexibility

Battery

Trans-

mission

Electric

Motor

Control Strategy

Flexibility

SI Powersplit Hybrid

Battery

IC Engine

Trans-mission

Electric

Motor

Control Strategy

Flexibility

12

SI Powersplit Hybrid

Battery

IC Engine

Trans-mission

Electric

Motor

Control Strategy

Flexibility

ALLOCATION OF FLEXIBILITIES TO THE FIVE

BASE ELEMENTS OF THE POWERTRAIN Fully Variable SI Engine

+ Man. Transmission

Standard IC Engine

+ Autom. Transm.

Battery

IC Engine

Trans-

mission

Electric

Motor

Control Strategy

Flexibility

Battery

Trans-

mission

Electric

Motor

Control Strategy

Flexibility

Electric Vehicle+ Range Extender

Battery

IC Engine

Trans-

mission

Electric

Motor

Control Strategy

Flexibility

13

1000 1500 2000 2500 3000 3500

Engine Speed - rpm

0

1

2

3

4

5

6

7

8

BM

EP

-b

ar

27

0

420 g/kWh

340 g/kWh

300 g/kWh

270 g/kWh

250 g/kWh

240 g/kWh

120 km/h

100 km/h

70 km/h

50 km/h

15 km/h

32 km/h

35 km/h

SHIFTING OF ENGINE OPERATION BY APPLICATION OF A 15 KW ISG

GEAR RATIOS ADAPTED FOR SAME DRIVEABILITY

2.0 MT6

2.0 MT6 +15 kW E

Mean load point

Mean load pointNEDC

40%

14

1000 1500 2000 2500 3000 3500

Engine Speed - rpm

0

1

2

3

4

5

6

7

8

BM

EP

-b

ar

27

0

420 g/kWh

340 g/kWh

300 g/kWh

270 g/kWh

250 g/kWh

240 g/kWh

120 km/h

100 km/h

SHIFTING OF ENGINE OPERATION BY APPLICATION OF A 15 KW ISG

2.0 MT6

2.0 MT6 +15 kW E

2.0 DCT

70 km/h

50 km/h 35 km/h

15 km/h

32 km/h

2.0 Powersplit

1.6 MT6 +15 kW E

15

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

Mean Shift of Engine Load in NEDC -%

Fu

elE

co

no

my I

mp

rove

men

tin

NE

DC

-%

Base: 2.0 NA, MT6Load shift by:• Electrification, • Downsizing / Downspeeding or• Double Clutch Transmission

FUEL ECONOMY IMPROVEMENT VS. MEAN SHIFT OF ENGINE OPERATION IN NEDC TEST

16

0

4

8

12

16

0 4 8 12 16 20 24 28

2.0 NA MPFI+ electr. Boost

2.0 NA MPFI+15 kW ISG

1.6 Turbo

Turbohybrid

Powersplit - hybrid

FE- Potential in NEDC by Shifting of Operation Points - %

Ad

dit

ion

al

FE

-P

ote

nti

al

in N

ED

C b

y

Sp

ray G

uid

ed

Lean

Op

era

tio

n -

%

2.0 NA MPFI

Base: 2.0 MPFI NA, MT6Load shift by Electrification, Downsizing / Downspeeding, or Double Clutch Transmission

FUEL ECONOMY POTENTIAL OF SPRAY GUIDED STRATIFIED CHARGE SYSTEM WITH DIFFERENT LEVELS OF ELECTRIFICATION

17

Electric Boost Low Cost Hybrid Demonstrator

Medium LowFlexibility high

Electric BoostLowCost

HybridBattery

IC Engine

Electric Motor

Control Strategy

Transmission

HYBRID EXAMPLES GASOLINE ENGINE

18

TRADE-OFF FUN TO DRIVE VERSUS FUEL ECONOMY – LOW CO2 LOW COST CONCEPT

TargetTargetBase Base

Electric BoosterElectric Booster

NA engine: Downspeeding

NA engine: Downspeeding

Fun to Drive

0

1

2

3

4

5

6

7

8

9

10

11

12

0 20 40 60 80 100

Tra

ctio

nF

orc

e [

N ]

Velocity [ km/h ]

Slip Limit

Fuel Economy Improvement

Speed [ rpm ]

To

rqu

e[

Nm

]

Best

Efficiency

Speed [ rpm ]

To

rqu

e[

Nm

]

Best

Efficiency

Recuperation Recuperation

Stop-StartStop-Start

19

AVL LOW CO2 LOW COST CONCEPT

Content Benefit used in simulation

Compact car baseline

1,2 to 1,4l Engine baseline

Var. Oilpump -1,5% fuel consumption acc. to prev. project

Thermal Management -1% fuel consumption acc. to prev. project

Start / Stop System from internal R&D

Intelligent Alternator from internal R&D

El. Supercharger up to 14 bar BMEP

Wide Spread Transmission same traction force as baseline, butwith el. supercharger

Reduced Vehicle Resistance Tires, underbody cover

Robotised Gearbox allows free choice of gear

Electronic Cylinder Deactivation fuel cons. red. taken from previous project

20

AVL LOW CO2 LOW COST CONCEPT Traction Force

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180 200 220

Vehicle Speed [kph]

Tra

cti

on

Fo

rce [

kN

]

1,4 Basis, 1. gear

1,4 Basis, 2. gear

1,4 Basis, 3. gear

1,4 Basis, 4. gear

1,4 Basis, 5. gear

1,4 Basis, 6. gear

1,4 TC long, 1. gear

1,4 TC long, 2. gear

1,4 TC long, 3. gear

1,4 TC long, 4. gear

1,4 TC long, 5. gear

1,4 TC long, 6. gear

1,4 Basis 1500 rpm

1,4 TC long, 1500 rpm

1,4 TC long, Peak Power

1,4 Basis, Peak Power

21

AVL LOW CO2 LOW COST CONCEPT Fuel Consumption Simulation

0

20

40

60

80

100

120

140

160

Bas

elin

eVar

. Oil

Pump

Therm

al M

anag

emen

t

Start

/ Sto

p

Inte

lligen

t Alte

rnat

or

Wid

e Spre

ad T

ransm

issi

on

Vehic

le C

oast D

own

Robotis

ed G

earb

ox

El. C

ylin

der D

eact

ivat

ion

CO

2 E

mis

sio

n -

g/k

m

-33

%

22

Electric Boost Low Cost Hybrid Demonstrator

TRADE-OFF FUN TO DRIVE VERSUS FUEL ECONOMY - ELC-HYBRID

TargetTarget

TC engine Downsizing +

Downspeeding

TC engine Downsizing +

Downspeeding

Turbo-charger

Turbo-charger

Base Base

Electric BoosterElectric Booster

NA engine: Downspeeding

NA engine: Downspeeding

Fun to Drive

0

1

2

3

4

5

6

7

8

9

10

11

12

0 20 40 60 80 100

Tra

ctio

nF

orc

e [

N ]

Velocity [ km/h ]

Slip Limit

Fuel Economy Improvement

Speed [ rpm ]

To

rqu

e[

Nm

]

Best

Efficiency

Speed [ rpm ]

To

rqu

e[

Nm

]

Best

Efficiency

Recuperation Recuperation

Stop-StartStop-Start

23

AVL GASOLINE DEMO WITH DIESEL CO2

Features:

2L 4-cylinder turbo GDI engine, 200HP, 420Nm

60 – 100 km/h (4. gear) 6 s

Standard turbocharger (single scroll, wastegate)

Diesel-like transmission settings (long gear ratios)

VTES electric boosting device for improved transient load response

External cooled EGR at high engine load operation:

Lambda-1 operation up to 4000 rpm full load (210 km/h in 6th gear)

Intelligent Alternator control

Engine Start/Stop Management

Electric Boost Low Cost Hybrid

Demonstrator

24

Electric Boost Low Cost Hybrid Demonstrator

AVL GASOLINE DEMO WITH DIESEL CO2

Battery:

Odyssey PC 1500

Max. 15 V

65 Ah

Max. 814 Wh

Alternator:

120 A

VTES:

Pressure ratio 1,45

Max. shaft power 1,7 kW

Max. Power 4,2 kW required for 300 ms

Steady state power 2,2 kW

25

Electric Boost Low Cost Hybrid Demonstrator

SYSTEM SETUP 2 STAGE CHARGING ON DEMAND

Air mass flow meter

High Pressure EGR

Lambda sond

Variable valve timing: volumetric efficiency, internal EGR

Throttlebody

Turbocharger

Boost pressure sensor

M

EGR Rail

VTES

Non returnvalve

26

Electric Boost Low Cost Hybrid Demonstrator

EXTERNAL COOLED EGR; HIGH PRESSURE SYSTEM

High Pressure EGR

Charge aircooler

Turbine

Com-pressor

EGR distributor line

EGR Valve

EGR Cooler

HFMCat

27

BSFC MAP WITH INTERNAL EGR AND HIGH PRESSURE EGR; RON 98

GDI-tc 2.0l RON 98

250 g/kWh

245 g/kWh at 4000 rpm / full load249 g/kWh at 2000 rpm / full load

28

Electric Boost Low Cost Hybrid Demonstrator

TRANSIENT TORQUE BUILD-UP WITH ADDITIONAL ELECTRIC PRESSURE BOOST

TC - Benchmark

0

2

4

6

8

10

12

14

16

18

20

22

24

Time - s

0 0,5 1 1,5 2 2,5

BM

EP

-b

ar

Compressor and TC

AVL 2.0 tc GDI demo

Load step at 1500 rpm

AVL 2.0 tc + electr. Booster

Luftfilter

E- Charger

Air Filter

Non Return Valve

E-

Electr. Charger: 4,2 kW (300ms)

2,2 kW (700ms)

Bypass

Turbocharger

Waste-

gate

Charge Air

Cooler

Intake Manifold

Exhaust Manifold

29

Electric Boost Low Cost Hybrid Demonstrator

ELECTRIFICATION ARITHMETICS FOR AVL ELECTRIC BOOST LOW COST HYBRID

Benefit: 1 + 1 = “2,2“

Cost: 1 + 1 = “2,0“

30

Medium LowFlexibility high

Battery

IC Engine

Electric Motor

Control Strategy

Transmission

Turbo Hybrid

HYBRID EXAMPLES GASOLINE ENGINE

31

TRADE-OFF FUN TO DRIVE VERSUS FUEL ECONOMY - TURBO HYBRID

Driveability

(Fun to Drive)TARGETTARGET

Fuel

Efficiency

Recuperation Recuperation

Stop-StartStop-Start

Downspeeding&

Downsizing

Downspeeding&

Downsizing0

1

2

3

4

5

6

7

8

9

10

11

12

0 20 40 60 80 100

Tra

ctio

n F

orc

e [

N ]

Velocity [ km/h ]

Slip Limit

Speed [ rpm ]

To

rqu

e [

Nm

]Best

Efficiency

HybridHybrid

TurboTurbo

Downspeeding&

Downsizing

Downspeeding&

Downsizing!

32

TURBOHYBRID

POWERTRAIN CONCEPT – STAGE 1

e-Motor Module

not activated

AVLHybridcontroller

HS-CAN

PR-CAN

12V

DLC Double Layer Capacitors

Voltage: 388VCapacity: 4,8 F

Energy hub: 334 kJ

Power Electronics

ECU

MT 6-Speed1,6L GDI-tc

33

e-Motor Module

activated

AVLHybridcontroller

HS-CAN

PR-CAN

12V

Power Electronics

ECU

MT 6-Speed1,6L GDI-tc

Li Ion Battery

TURBOHYBRID

POWERTRAIN CONCEPT – STAGE 2 (2010)

34

0

50

100

150

200

250

300

350

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Speed [ rpm ]

To

rqu

e[

Nm

]

Over-boost for battery charge during acceleration

Over-boost for battery charge during acceleration

Engine

transiente-

Motor

Charge

1.6L GDI-tc,Steady State

1.6L GDI-tc, Overboost

1.6L Turbohybrid

eMotor

TORQUE CHARACTERISTICS OF THE AVL TURBOHYBRID SYSTEM

eMotor torque demand

e-Motor

Boost

35

FULL LOAD ACCELERATION IN 3rd GEAR

268 270 272 274 276 278 280 Time [sec]-40

-20

0

20

40

El.

Po

wer

[kW

]

268 270 272 274 276 278 280 Time [sec]0

800

1600

2400

3200

4000

4800

En

gin

eS

pe

ed

[rp

m]

-80

0

80

160

240

320

400

To

rqu

e[N

m]

Eng. Torque

Eng. Speed

E Motor Torque

Gearbox Input

Engine Signals

0

20

40

60

80

100

120

Ve

hic

leV

elo

cit

y [

km

/h]

268 270 272 276 278 280 Time [sec]2740

20

40

60

80

100

120

Pe

da

l P

os

itio

n

Vehicle Signals

Velocity

Pedal Pos.

E Motor Power

BOOST OVER BOOST

Recharging Phase

Power Distribution

36

ELECTRIFICATION ARITHMETICS FOR AVL TURBOHYBRID SYSTEM

Cost: 1+1+1 = “2,5“

Benefit: 1+1+1 = “3,1“

37

Medium LowFlexibility high

Battery

IC Engine

Electric Motor

Control Strategy

Transmission

Electric Vehicle

RANGE EXTENDER

Range Extender

Pure Range Extender

38

Drive Distance [km]0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

2,50 27,50 52,50 77,50 102,50 127,50

45% of vehicles do not exceed 30 km and account for 20% of total driving

>70% of vehicles do not exceed 50 km (50% of annual mileage)

30 50 100 [km]

City Vehicle (EV)

All Purpose Vehicle

City Vehicle (EV) + RE

Reference: IVT, 2004

AVL ELECTRIC VEHICLE

Distribution of Daily Driving Distances in Germany

39

€ 0

€ 2.500

€ 5.000

€ 7.500

€ 10.000

€ 12.500

€ 15.000

€ 17.500

€ 20.000

€ 22.500

€ 25.000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

500 €/ k

Wh

250 € / kWh

Battery Costs - based on energy consumption of 20 kWh / 100km

Range [km]

12.200 € Saving

5.400 € Saving

AER pure EV

> 300

Total Range with RE

AER with RE

RE Cost

RE Cost

AER = All Electric Range

AVL ELECTRIC VEHICLE

Battery Cost Comparison

40

100 %

Sta

te O

f C

harg

e

Run time

Technical Minimum

Energy Reserve

AVL PURE RANGE EXTENDER

Energy Reserve - Recharging Strategy

If RE starts here: RE performance according to E-Drive

If RE starts here: performance according to max. configuration performance of E-Drive

41

1. NVH, Comfort

2. Reliability

3. Package and Weight

4. Costs

5. Performance / Efficiency

AVL PURE RANGE EXTENDER

Targets

42

Eccentric shaft

Rotor

Counter weights

AVL PURE RANGE EXTENDER

43

Generator

Rotor & Stator

AVL PURE RANGE EXTENDER

44

Generator

housing

AVL PURE RANGE EXTENDER

45

Engine housing

AVL PURE RANGE EXTENDER

46

Oil pan

Oil pump

AVL PURE RANGE EXTENDER

47

SYSTEM OPTIMIZATION

48

AVL PURE RANGE EXTENDER Vehicle Integration

Range Extender

integrated

behind rear axle

Li-Ion Battery system in

front of rear axle and in

middle tunnel

75kW traction motor in vehicle front:

- acceleration 0 – 60km/h: 6sec

- top speed 130km/h

49

ELECTRIFICATION ARITHMETICS FOR AVL PURE-RANGE-EXTENDER

Cost: 1+1+1+1 = “3,5“

Benefit: 1+1+1+1 = “4,5“

50

EXAMPLES OF AVL LOW-CO2 CONCEPTSD

rivin

g D

yn

am

ics

AV

L-D

RIV

E –

Dynam

ic Index [-

]

80 90 100 110 120 130 140 150 160 170 180 190 200

NEDC - CO2 [g/km]

5,5

6

6,5

7

7,5

8

8,5

60 70

Base vehicles

Good drivingdynamicsabove 7

2010Step 2 Plug-In

AVL Pure Range Extender

2009/10

2008Step 1

AVL Turbohybrid AVL ELC-Hybrid

2009

Electric Boost Low Cost Hybrid

Demonstrator

Electric Boost Low Cost Hybrid

Demonstrator

AVL Low CO2

Low Cost Concept 2010

51

AVL’s ON-ROAD FUEL CONSUMPTION LAP

Extra Urban

28%

City

20%

City

50%

Highway

22%

Extra Urban

40%

Highway

40%

Time Distance

Vehicles driven in parallel

Driver change after each lap

refuelling after all laps

slope ca. 5

%

slope ca. 5

%

slope ca. 5

%

ca. 55 k

m

ca. 55 k

m

ca. 55 k

m

ca. 55 k

m130130

5050

100100

slope ca. 5

%

slope ca. 5

%

slope ca. 5

%

ca. 55 k

m

ca. 55 k

m

ca. 55 k

m

ca. 55 k

m130130

5050

100100

Driving style „Eco“: as economic as possible

Driving style „Fun“: as sporty as possible

52

slope c

a. 5%

slope c

a. 5%

slope c

a. 5%

ca. 5

5 km

ca. 5

5 km

ca. 5

5 km

ca. 5

5 km

130130

5050

100100

slope c

a. 5%

slope c

a. 5%

slope c

a. 5%

ca. 5

5 km

ca. 5

5 km

ca. 5

5 km

ca. 5

5 km

130130

5050

100100

VEHICLE AND TECHNOLOGY COMPARISON

Saloon, 1550kg, ECO DrivestyleHybrids with system related add. weight

80

100

120

140

160

180

200

220

240

260

1 2 3 4 5 6 7

CO

2 E

mis

sio

n -

g/k

m

Full Hybrid *)Turbo

Hybrid *)

2,0l ELC

Hybrid *)

Production

Diesel 1

2,0l NA

stratified *)

Production

Gasoline TC

Production

Diesel 2 *)

*) ECO measures at engine, gearbox, energy management and vehicle

Driver Influence

53

slope c

a. 5%

slope c

a. 5%

slope c

a. 5%

ca. 5

5 km

ca. 5

5 km

ca. 5

5 km

ca. 5

5 km

130130

5050

100100

slope c

a. 5%

slope c

a. 5%

slope c

a. 5%

ca. 5

5 km

ca. 5

5 km

ca. 5

5 km

ca. 5

5 km

130130

5050

100100

VEHICLE AND TECHNOLOGY COMPARISON

Saloon, 1550kg, FUN DrivestyleHybrids with system related add. weight

80

100

120

140

160

180

200

220

240

260

1 3 4 5 6 7

CO

2 E

mis

sio

n -

g/k

m

Turbo

Hybrid *)

2,0l ELC

Hybrid *)

Production

Diesel 1

2,0l NA

stratified *)

Production

Gasoline TC

Driver Influence

*) ECO measures at engine, gearbox, energy management and vehicle

54

Gasoline electrification is notonly a technical challenge!Electrification arithmeticshave to be taken into account!

Der Ottomotor im Hybridfahrzeug

Gasoline Engines in Hybrid Vehicles

P. E. KapusAVL List GmbH, Graz, Austria

Vortrag an der FH Joanneum Graz, 3. März 2010