390
Bibliography A large number of references allows direct access to the detailed scientific research results in the field. The selected articles are cited with all authors, the full title and the number of pages, and are arranged in descending year order per topic. Considering this information and the title of the journal may help to select the most useful articles from the list for the reader’s purpose. In addition, the related section is cited as {Sect. ... } and thus the ref- erences of a section can be read almost separately. In these references also additional effects and their applications are described. The descriptions in this book allow a general understanding of these specialized articles. It may be worth searching for a special reference in the Chaps. 1 to 5 describing the basics as well as in the applications part (Chaps. 6 and 7) of the book because the references are cited usually only once. These references represent mostly current research topics. The pioneering work, if not explicitly given, can be traced back from these articles. Many of the measured material parameters have slightly different values. In the sense used in this book the most prob- able or averaged values are given without a detailed discussion. For details the references with their cited literature shall be used. For further general reading some selected textbooks are given (cited as monographs [M. . . ]). The titles and publication years may be used for guid- ance. Questions, comments and corrections are welcome and can be sent to the author via the e-mail address: photonics [email protected]. Further Reading [M1] G. P. Agrawal: Nonlinear Fiber Optics (Academic Press, Boston, 1995) [M2] F. T. Arecci, E.O. Schulz-Dubois (ed.): Laser Handbook Vol.1, 2 (North- Holland Publishing, Amsterdam, New York, Oxford, 1972 [M3] H.-A. Bachor: A Guide to Experiments in Quantum Optics (Wiley-VCH, Weinheim, New York, 1997) [M4] S. M. Barnett, P. Radmore: Methods in Theoretical Quantum Optics (Ox- ford University Press, New York, Oxford, 1997) [M5] M. Bass (ed.): Handbook of Optics, Vol. I,II (McGraw-Hill, New York, 1995) [M6] J.B. Birks (ed.): Organic Molecular Photonics (Wiley, London 1973) [M7] A. Bjarklev, J. Broeng: Photonic Crystal Fibres (Kluwer Academic Pub- lishers, Dordrecht, Boston, London, 2003)

Bibliography - Springer

Embed Size (px)

Citation preview

Bibliography

A large number of references allows direct access to the detailed scientificresearch results in the field. The selected articles are cited with all authors,the full title and the number of pages, and are arranged in descending yearorder per topic. Considering this information and the title of the journal mayhelp to select the most useful articles from the list for the reader’s purpose.

In addition, the related section is cited as {Sect. . . . } and thus the ref-erences of a section can be read almost separately. In these references alsoadditional effects and their applications are described. The descriptions inthis book allow a general understanding of these specialized articles. It maybe worth searching for a special reference in the Chaps. 1 to 5 describing thebasics as well as in the applications part (Chaps. 6 and 7) of the book becausethe references are cited usually only once. These references represent mostlycurrent research topics. The pioneering work, if not explicitly given, can betraced back from these articles. Many of the measured material parametershave slightly different values. In the sense used in this book the most prob-able or averaged values are given without a detailed discussion. For detailsthe references with their cited literature shall be used.

For further general reading some selected textbooks are given (cited asmonographs [M. . . ]). The titles and publication years may be used for guid-ance.

Questions, comments and corrections are welcome and can be sent to theauthor via the e-mail address: photonics [email protected].

Further Reading

[M1] G. P. Agrawal: Nonlinear Fiber Optics (Academic Press, Boston, 1995)[M2] F. T. Arecci, E.O. Schulz-Dubois (ed.): Laser Handbook Vol.1, 2 (North-

Holland Publishing, Amsterdam, New York, Oxford, 1972[M3] H.-A. Bachor: A Guide to Experiments in Quantum Optics (Wiley-VCH,

Weinheim, New York, 1997)[M4] S. M. Barnett, P. Radmore: Methods in Theoretical Quantum Optics (Ox-

ford University Press, New York, Oxford, 1997)[M5] M. Bass (ed.): Handbook of Optics, Vol. I,II (McGraw-Hill, New York, 1995)[M6] J.B. Birks (ed.): Organic Molecular Photonics (Wiley, London 1973)[M7] A. Bjarklev, J. Broeng: Photonic Crystal Fibres (Kluwer Academic Pub-

lishers, Dordrecht, Boston, London, 2003)

636 Further Reading

[M8] M. Born, E. Wolf: Principles of Optics (Cambridge University Press, Cam-bridge, 1999)

[M9] D. Bouwmeester, A. K. Ekert, A. Zeilinger (eds.): The Physics of QuantumInformation (Springer-Verlag, Berlin, Heidelberg, 2007)

[M10] R. W. Boyd: Nonlinear Optics (Academic Press, Boston, 1992)[M11] P.N. Butcher: The Elements of Nonlinear Optics (Cambridge University

Press, Cambridge, 1990)[M12] C. Cohen-Tannoudji: Photons & Atoms: Introduction to quantum electron-

ics (Wiley-VCH, Weinheim, New York, 2004)[M13] E. Collett: Polarized Light – Fudamentals and Applications (Marcel Dekker

Inc, New York, Basel, Hong Kong, 1993)[M14] J. C. Dainty: Current Trends in Optics (Academic Press, San Diego, 1994)[M15] W. Demtroder: Laser Spectroscopy (Springer, Berlin, Heidelberg, New York,

1996)[M16] J.-C. Diels, W. Rudolph: Ultrashort Laser Pulse Phenomena (Academic

Press, San Diego, 1996)[M17] F. J. Duarte (ed.): Tunable Laser Applications (Marcel Dekker, New York,

Basel, Hong Kong, 1995)[M18] C. W. Gardiner, P. Zoller: Quantum Noise: A Handbook of Markovian and

Non-Markovian Quantum Stochastic Methods with Applications to Quan-tum Optics (Springer-Verlag Telos, Berlin, Heidelberg, New York, 1999)

[M19] H. M. Gibbs: Nonlinear Photonics (Springer, Berlin, Heidelberg, New York,1990)

[M20] A. Griffin, S. Stringari, D. W. Snoke (eds.): Bose-Einstein Condensation(Cambridge University Press, Cambridge, 2002)

[M21] M. C. Gupta (ed.): Handbook of Photonics (CRC Press, Boca Raton, NewYork, 1997)

[M22] E. Hecht: Optics (Addison-Wesley Publishing)[M23] A. R. Henderson: A Guide to Laser Safety (Chapman & Hall, London, 1997)[M24] N. Hodgson, H. Weber: Optical Resonators (Springer, London, 1997)[M25] P. Horowitz, W. Will: The Art of Electronics (Cambridge University Press,

Cambridge, 1994)[M26] S. Huard: Polarization of Light (John Wiley & Sons, Chichester, 1996)[M27] K. Iga: Fundamentals of Laser Optics (Plenum Press, New York, London,

1994)[M28] M. Inguscio, R. Wallenstein: Solid State Lasers: New Developments and

Applications (Plenum Publishing Corporation, New York, 1993)[M29] J. D. Jackson: Classical Electrodynamics (John Wiley & Sons, Chichester,

1975)[M30] W. Kaiser: Ultrashort Laser Pulses (Springer, Berlin, Heidelberg, 1993)[M31] I.-C. Khoo, F. Simoni: Novel Optical Materials & Applications (John Wiley

& Sons, Chichester, 1996)[M32] D.S. Kliger, J.W. Lewis, C.E. Randall: Polarized Light in Optics and Spec-

troscopy (Academic Press, Boston, 1990)[M33] W. Koechner: Solid-State Laser Engineering (Springer, Berlin, Heidelberg,

1999)[M34] J. R. Lakowicz (ed.): Topics in Fluorescence Spectroscopy, Vol. I: Techniques

(Plenum Publishing Corporation, New York, 1991)[M35] J. R. Lakowicz (ed.): Topics in Fluorescence Spectroscopy, Vol. I: Principles

(Plenum Publishing Corporation, New York, 1991)[M36] J. R. Lakowicz (ed.): Topics in Fluorescence Spectroscopy, Vol. I: Biomedical

Applicationis (Plenum Publishing Corporation, New York, 1991)[M37] D. R. Lide, Handbook of Chemistry and Physics (CRC Press, Boca Raton,

New York, London, Tokyo, 1995)

References 637

[M38] L. Mandel, E. Wolf: Optical Coherence and Quantum Optics (CambridgeUniversity Press, Cambridge, 1995)

[M39] P. Meystre, M. Sargent: Elements of Quantum Optics (Springer, Berlin,Heidelberg, 1990)

[M40] D. L. Mills: Nonlinear Optics (Springer, Berlin, Heidelberg, New York, 1998)[M41] S. Mukamel: Principles of Nonlinear Optical Spectroscopy (Oxford Univer-

sity Press, Oxford, 1995)[M42] H. Niedrig (ed.): Bergmann Schaefer, Optics of Waves and Particles (Walter

de Gruyter, Berlin, New York, 1999)[M43] D. N. Nikogosyan: Properties of Optical and Laser-Related Materials – A

Handbook (John Wiley & Sons, Chichester, 1997)[M44] C. Rulliere: Femtosecond Laser Pulses (Springer, Berlin, Heidelberg, 1998)[M45] B. E. A. Saleh, M. C. Teich: Fundamentals of Photonics (John Wiley &

Sons, New York, 1991)[M46] E. G. Sauter: Nonlinear Optics (John Wiley & Sons, New York, 1996)[M47] M. O. Scully, M. S. Zubairy: Quantum Optics (Cambridge University Press,

1997)[M48] Y. R. Shen: Principles of Nonlinear Optics (John Wiley & Sons, Chichester,

1984)[M49] A. E. Siegmann: Lasers (University Science Books, Sausalito, California,

1986)[M50] W. T. Silfvast: Laser Fundamentals (Cambridge University Press, Cam-

bridge, 1996)[M51] S. Sudo (ed.): Optical Fiber Amplifiers (Artech House, Boston, London,

1997)[M52] O. Svelto: Ultrafast Processes in Spectroscopy (Plenum Press, New York,

1996)[M53] D. F. Walls, G. J. Milburn: Quantum Optics (Springer, Berlin, Heidelberg,

1995)[M54] A. Yariv: Quantum Electronics (John Wiley & Sons, Chichester, 1989)[M55] C. Yeh: Applied Photonics (Academic Press, London, 1994)[M56] M. Young: Optics and Lasers (Springer, Berlin, Heidelberg, New York, 1993)[M57] D. Zwillinger (ed.): CRC Standard Mathematical Tables and Formulae

(CRC Press, Boca Raton, New York, London, Tokyo, 1996)[M58] Picosecond Phenomena (Springer Ser. Chem. Phys.) I, ed. by K.V. Shank,

E.P. Ippen, S.L. Shapiro. Vol 4 (1978)[M59] Picosecond Phenomena (Springer Ser. Chem. Phys.) II, ed. by R.M. Hoch-

strasser, W. Kaiser, C.V. Shank. Vol 14 (1980)[M60] Picosecond Phenomena (Springer Ser. Chem. Phys.) III, ed. by E.B. Eisen-

thal, R.M. Hochstrasser, W. Kaiser, A. Lauberau. Vol. 38 (1982)[M61] Ultrafast Phenomena (Springer Ser. Chem. Phys.) IV, ed. by D.H. Auston,

K.B. Eisenthal. Vol. 38 (1984)[M62] Ultrafast Phenomena (Springer Ser. Chem. Phys.) V, ed. by G.R. Fleming,

A.E. Siegman. Vol. 46 (1986)[M63] Ultrafast Phenomena (Springer Ser. Chem. Phys.) VI ed. by T. Yajima, K.

Yoshihara, C.B. Harris, S. Shionoya. Vol. 48 (1988)[M64] Ultrafast Phenomena (Springer Ser. Chem. Phys.) VII, ed. by E. Ippen,

C.B. Harris, A.H. Zewail. Vol. 53 (1990)[M65] Ultrafast Phenomena (Springer Ser. Chem. Phys.) VIII, ed. by A. Migus,

J.-L. Martin, G.A. Mourou, A.H. Zewail. Vol. 55[M66] P. F. Barbara, M. H. Knox: Ultrafast Phenomena X (Springer-Verlag,

Berlin, Heidelberg, New York, 1991)[M67] Harnessing Light (National Academy Press, Washington, D.C, 1998)

638 1. Topics in Photonics

References

1. Topics in Photonics

[1.1] {Sect. 1.1} T.H. Maiman: Stimulated Optical Radiation in Ruby, Nature187, p.493-494 (1960)

[1.2] {Sect. 1.2} A. Zeilinger: Experiment and the foundations of quantum physics,Rev. Mod. Phys. 71, p.288-297 (1999)

[1.3] {Sect. 1.2} E.A. Cornell, C.E. Wieman: The Bose-Einstein Condensate, Sci-entific American, March, p.40-45 (1998)

[1.4] {Sect. 1.2} A. Griffin, D.W. Snoke, S. Stringari (ed.): Bose-Einstein-conden-sation, Cambridge University Press, Cambridge, 1995)

[1.5] {Sect. 1.2} G.P. Koch, F. MasnouSeeuws, R. Kosloff: Creating ground statemolecules with optical Feshbach resonances in tight traps – art. no. 193001,Phys Rev Lett 9419, p.3001 (2005)

[1.6] {Sect. 1.2} T. Schmidt, C. Figl, A. Grimpe, J. Grosser, O. Hoffmann, F.Rebentrost: Control of atomic collisions by laser polarization – art. no.033201, Phys Rev Lett 9203, p.3201 (2004)

[1.7] {Sect. 1.2} M. Zhang, L. You: Quantum Zeno subspace and entangled Bose-Einstein condensates – art. no. 230404, Phys Rev Lett 9123, p.404 (2003)

[1.8] {Sect. 1.2} A.P. Chikkatur, Y. Shin, A.E. Leanhardt, D. Kielpinski, E.Tsikata, T.L. Gustavson, D.E. Pritchard, W. Ketterle: A continuous sourceof Bose-Einstein condensed atoms, Science 296, p.2193-2195 (2002)

[1.9] {Sect. 1.2} J. Mayers: Bose-Einstein condensation and spatial correlationsin He-4, Phys Rev Lett 84, p.314-317 (2000)

[1.10] {Sect. 1.2} E.W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y.B. Band,M. Edwards, M. Doery, P.S. Julienne, K. Helmerson, S.L. Rolston et al.:Measurement of the coherence of a Bose-Einstein condensate, Phys Rev Lett83, p.3112-3115 (1999)

[1.11] {Sect. 1.2} I. Bloch, T. W. Hansch, T. Esslinger: Atom Laser with a cwOutput Coupler, Phys. Rev. Lett. 82, p.3008-3011 (1999)

[1.12] {Sect. 1.2} S. Inouye, A.P. Chikkatur, D.M. StamperKurn, J. Stenger,D.E. Pritchard, W. Ketterle: Superradiant Rayleigh scattering from a Bose-Einstein condensate, Science 285, p.571-574 (1999)

[1.13] {Sect. 1.2} C.W. Gardiner, M.D. Lee, R.J. Ballagh, M.J. Davis, P. Zoller:Quantum kinetic theory of condensate growth: Comparison of experimentand theory, Phys Rev Lett 81, p.5266-5269 (1998)

[1.14] {Sect. 1.2} H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau,J. Mlynek: Quasi-2D gas of laser cooled atoms in a planar matter waveg-uide, Phys Rev Lett 81, p.5298-5301 (1998)

[1.15] {Sect. 1.2} R. Graham: Decoherence of Bose-Einstein condensates in trapsat finite temperature, Phys Rev Lett 81, p.5262-5265 (1998)

[1.16] {Sect. 1.2} C.K. Law, H. Pu, N.P. Bigelow: Quantum spins mixing in spinorBose-Einstein condensates, Phys Rev Lett 81, p.5257-5261 (1998)

[1.17] {Sect. 1.2} U. Ernst, A. Marte, F. Schreck, J. Schuster. G. Rempe: Bose-Einstein condensation in a pure Ilffe-Pritchard field configuration, Europhys.Lett. 41, p.1-6 (1998)

[1.18] {Sect. 1.2} B. Saubamea, T.W. Hijmans, S. Kulin, E. Rasel, E. Peik,M. Leduc, C. Cohentannoudji: Direct measurement of the spatial correla-tion function of ultracold atoms, Phys Rev Lett 79, p.3146-3149 (1997)

[1.19] {Sect. 1.2} C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet: Evidenceof Bose-Einstein condensation in an atomic gas with attractive interactions,Phys Rev Lett 75, p.1687-1690 (1995)

1.2 Scientific Topics 639

[1.20] {Sect. 1.2} M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman:Observation of Bose-Einstein-Condensation in a Dilute Atomic Vapor, Sci-ence269, p.198-201 (1995)

[1.21] {Sect. 1.2} K.B. Davis, M.O. Mewes, M.R. Andrew, N.J. Vandruten, D.S.Durfee, D.M. Kurn, W. Ketterle: Bose-Einstein condensation in a gas ofsodium atoms, Phys Rev Lett 75, p.3969-3973 (1995)

[1.22] {Sect. 1.2} J. McKeever, A. Boca, A.D. Boozer, J.R. Buck, H.J. Kimble;Experimental realization of a one-atom laser in the regime of strong coupling,Nature 425, p.268-271 (2003)

[1.23] {Sect. 1.2} K. Helmerson, D. Hutchinson, K. Burnett, W.D. Phillips: AtomLasers, Phys. WorldAugustp.31-35 (1999)

[1.24] {Sect. 1.2} M. Trippenbach, Y.B. Band, M. Edwards, M. Doery, P.S. Juli-enne, E.W. Hagley, L. Deng, M. Kozuma, K. Helmerson, S.L. Rolston etal.: Coherence properties of an atom laser, J Phys B At Mol Opt Phys 33,p.47-54 (2000)

[1.25] {Sect. 1.2} I. Bloch, T.W. Hansch, T. Esslinger: Atom laser with a cw outputcoupler, Phys Rev Lett 82, p.3008-3011 (1999)

[1.26] {Sect. 1.2} H.P. Breuer, D. Faller, B. Kappler, F. Petruccione: Non-Markovian dynamics in pulsed- and continuous-wave atom lasers, Phys RevA 60, p.3188-3196 (1999)

[1.27] {Sect. 1.2} K.G. Manohar, B.N. Jagatap: Atom laser, Curr Sci 76, p.1420-1423 (1999)

[1.28] {Sect. 1.2} J. Schneider, A. Schenzle: Output from an atom laser: theory vs.experiment, Appl Phys B Lasers Opt 69, p.353-356 (1999)

[1.29] {Sect. 1.2} B. Kneer, T. Wong, K. Vogel, W.P. Schleich, D.F. Walls: Genericmodel of an atom laser, Phys Rev A 58, p.4841-4853 (1998)

[1.30] {Sect. 1.2} M. Holland, K. Burnett, C. Gardiner, J.I. Cirac, P. Zoller: Theoryof an atom laser, Phys Rev A 54, p.R1757-R1760 (1996)

[1.31] {Sect. 1.2} M. Wilkens, R.J.C. Spreeuw, T. Pfau, U. Janicke, M. Mlynek:Towards a laser-like source of atoms, Prog Cryst Growth Charact 33, p.385-393 (1996)

[1.32] {Sect. 1.2} T. Pfau, U. Janicke, M. Wilkens: Laser-like scheme for atomic-matter waves, Europhys. Lett.32, p.469-474 (1995)

[1.33] {Sect. 1.2} S.L. Rolston, W.D. Phillips: Nonlinear and quantum atom optics,Nature 416, p.219-224 (2002)

[1.34] {Sect. 1.2} W.L. Power: Atom optics: matter and waves in harmony, PhilTrans Roy Soc London A 358, p.127-135 (2000)

[1.35] {Sect. 1.2} M.O. Mewes, M.R. Andrews, D.M. Kum, D.S. Durfee, C.G.Townsend, W. Ketterle : Output coupler for Bose Einstein Condensation,Phys. Rev. Lett.78, p.582-585 (1997)

[1.36] {Sect. 1.2} C.S. Adams, M. Sigel, J. Mlynek: Atom optics, Phys. Reports240, p.143 (1994)

[1.37] {Sect. 1.2} C.H. Bennett, G. Brassard, A.K. Ebert: Quantum Cryptogra-phy, Scientific AmericanOctoberp.50-59 (1992); D. Bouwmeester, A. Ekert,A. Zeilinger, The Physics at Quantum Information (Springer, Berlin, Hei-delberg, 2000)

[1.38] {Sect. 1.2} G. Morigi, J. Eschner, S. Mancini, D. Vitali: Entangled lightpulses from single cold atoms – art. no. 023601, Phys Rev Lett 9602, p.3601(2006)

[1.39] {Sect. 1.2} T. Yang, Q. Zhang, T.Y. Chen, S. Lu, J. Yin, J.W. Pan, Z.Y. Wei,J.R. Tian, J. Zhang: Experimental synchronization of independent entangledphoton sources – art. no. 110501, Phys Rev Lett 9611, p.501 (2006)

[1.40] {Sect. 1.2} J.D. Franson: Entangled photon holes – art. no. 090402, PhysRev Lett 9609, p.402 (2006)

640 1. Topics in Photonics

[1.41] {Sect. 1.2} Q. Lin, G.P. Agrawal: Silicon waveguides for creating quantum-correlated photon pairs, Optics Letters 31, p.3140-3142 (2006)

[1.42] {Sect. 1.2} X.H. Chen, Y.H. Zhai, D. Zhang, L.A. Wu: Absolute self-calibration of the quantum efficiency of single-photon detectors, Optics Let-ters 31, p.2441-2443 (2006)

[1.43] {Sect. 1.2} G. Puentes, D. Voigt, A. Aiello, J.P. Woerdman: Tunable spatialdecoherers for polarization-entangled photons, Optics Letters 31, p.2057-2059 (2006)

[1.44] {Sect. 1.2} X.L. Su, A.H. Tan, X.J. Jia, Q. Pan, C.D. Xie, K.C. Peng: Exper-imental demonstration of quantum entanglement between frequency- nonde-generate optical twin beams, Optics Letters 31, p.1133-1135 (2006)

[1.45] {Sect. 1.2} S.K. Sekatskii, T.T. Basiev, I.T. Basieva, G. Dietler, V.V. Fe-dorov, A.Y. Karasik, Y.V. Orlovskii, K.K. Pukhov: Experimental prepara-tion of entangled Bell’s vacuum-single exciton and vacuum-biexciton statesfor pair centers of neodymium ions in a crystal, Opt Commun 259, p.298-303(2006)

[1.46] {Sect. 1.2} T. Halfmann: Special issue on ”Quantum Control of Light andMatter” – In honor of the 70th birthday of Bruce Shore, Opt Commun 264,p.247 (2006)

[1.47] {Sect. 1.2} S.G. Lukishova, R.P. Knox, P. Freivald, A. McNamara, R.W.Boyd, C.R. Stroud, A.W. Schmid, K.L. Marshall: Single-photon source forquantum information based on single dye molecule fluorescence in liquidcrystal host, Mol Cryst Liquid Cryst 454, p.1-14 (2006)

[1.48] {Sect. 1.2} M. Tsang: Spectral phase conjugation via extended phase match-ing, J Opt Soc Am B Opt Physics 23, p.861-867 (2006)

[1.49] {Sect. 1.2} M. Lindenthal, J. Kofler: Measuring the absolute photodetec-tion efficiency using photon number correlations, Appl Opt 45, p.6059-6064(2006)

[1.50] {Sect. 1.2} N.J. Cerf, N. Gisin, S. Massar, S. Popescu: Simulating maximalquantum entanglement without communication, Physical Review Letters 94,p. 220403-1- 220403-4 (2005)

[1.51] {Sect. 1.2} H. Xiong, M.O. Scully, M.S. Zubairy: Correlated spontaneousemission laser as an entanglement amplifier – art. no. 023601, Phys Rev Lett9402, p.3601 (2005)

[1.52] {Sect. 1.2} V. Balic, D.A. Braje, P. Kolchin, G.Y. Yin, S.E. Harris: Genera-tion of paired photons with controllable waveforms – art. no. 183601, PhysRev Lett 9418, p.3601 (2005)

[1.53] {Sect. 1.2} J. Fan, A. Dogariu, L.J. Wang: Generation of correlated photonpairs in a microstructure fiber, Optics Letters 30, p.1530-1532 (2005)

[1.54] {Sect. 1.2} H. Takesue, K. Inoue: Generation of polarization-entangled pho-ton pairs and violation of Bell’s inequality using spontaneous four-wave mix-ing in a fiber loop, Physical Review A 70, p. 031802-1- 031802-4 (2004)

[1.55] {Sect. 1.2} R.S. Bennink, S.J. Bentley, R.W. Boyd, J.C. Howell: Quantumand classical coincidence imaging (Vol 92, art no 033601, 2004) – art. no.069901, Phys Rev Lett 9206, p.9901 (2004)

[1.56] {Sect. 1.2} K. Edamatsu, G. Oohata, R. Shimizu, T. Itoh: Generation ofultraviolet entangled photons in a semiconductor, Nature 431, p.167-170(2004)

[1.57] {Sect. 1.2} P. Kok, S.L. Braunstein, J.P. Dowling: Quantum lithography, en-tanglement and Heisenberg-limited parameter estimation, J. Opt. B: Quan-tum Semiclass. Opt. 6, p.S811-S815 (2004)

[1.58] {Sect. 1.2} A.S. Sorensen, K. Molmer: Measurement induced entanglementand quantum computation with atoms in optical cavities – art. no. 097905,Phys Rev Lett 9109, p.7905 (2003)

1.2 Scientific Topics 641

[1.59] {Sect. 1.2} S.G. Clark, A.S. Parkins: Entanglement and entropy engineeringof atomic two-qubit states – art. no. 047905, Phys Rev Lett 9004, p.7905(2003)

[1.60] {Sect. 1.2} S.D. Bartlett, H.M. Wiseman: Entanglement constrained by su-perselection rules – art. no. 097903, Phys Rev Lett 9109, p.7903 (2003)

[1.61] {Sect. 1.2} M.G. Payne, L. Deng: Quantum entanglement of Fock states withperfectly efficient ultraslow single-probe photon four-wave mixing – art. no.123602, Phys Rev Lett 9112, p.3602 (2003)

[1.62] {Sect. 1.2} W.P. Bowen, R. Schnabel, P.K. Lam, T.C. Ralph: Experimen-tal investigation of criteria for continuous variable entanglement – art. no.043601, Phys Rev Lett 9004, p.3601 (2003)

[1.63] {Sect. 1.2} N. Kiesel, M. Bourennane, C. Kurtsiefer, H. Weinfurter, D. Kas-zlikowski, W. Laskowski, M. Zukowski Three-photon W-state, Journal ofModern Optics 50, p.1131-1138 (2003)

[1.64] {Sect. 1.2} S.G. Lukishova, A.W. Schmid, A.J. McNamara, R.W. Boyd,C.R. Stroud: Room temperature single-photon source: Single-dye moleculefluorescence in liquid crystal host, Ieee J Sel Top Quantum Electr 9, p.1512-1518 (2003)

[1.65] {Sect. 1.2} A. Kuhn, M. Hennrich, G. Rempe: Deterministic single-photonsource for distributed quantum networking – art. no. 067901, Phys Rev Lett8906, p.7901 (2002)

[1.66] {Sect. 1.2} S. Fasel, N. Gisin, G. Ribordy, V. Scarani, H. Zbinden: Quantumcloning with an optical fiber amplifier – art. no. 107901, Phys Rev Lett 8910,p.7901 (2002)

[1.67] {Sect. 1.2} C. Brukner, M. Zukowski, A. Zeilinger: Quantum communicationcomplexity protocol with two entangled qutrits – art. no. 197901, Phys RevLett 8919, p.7901 (2002)

[1.68] {Sect. 1.2} D. Braun: Creation of entanglement by interaction with a com-mon heat bath – art. no. 277901, Phys Rev Lett 8927, p.7901 (2002)

[1.69] {Sect. 1.2} M. Pelton, C. Santori, J. Vuckovic, B.Y. Zhang, G.S. Solomon,J. Plant, Y. Yamamoto: Efficient source of single photons: A single quantumdot in a micropost microcavity – art. no. 233602, Phys Rev Lett 8923, p.3602(2002)

[1.70] {Sect. 1.2} A. Valencia, M.V. Chekhova, A. Trifonov, Y. Shih: Entangledtwo-photon wave packet in a dispersive medium – art. no. 183601, Phys RevLett 8818, p.3601 (2002)

[1.71] {Sect. 1.2} R.M. Gingrich, C. Adami: Quantum entanglement of movingbodies – art. no. 270402, Phys Rev Lett 8927, p.402 (2002)

[1.72] {Sect. 1.2} E. Altewischer, M.P. vanExter, J.P. Woerdman: Plasmon-assistedtransmission of entangled photons, Nature 418, p.304-306 (2002)

[1.73] {Sect. 1.2} Y. Shih: Quantum imaging, quantum lithography and the uncer-tainty principle, Journal of Modern Optics 49, p.2275-2287 (2002)

[1.74] {Sect. 1.2} D.V. Strekalov, J.P. Dowling: Two-photon interferometry forhigh-resolution imaging, Journal of Modern Optics 49, p.519-527 (2002)

[1.75] {Sect. 1.2} L.A. Lugiato, A. Gatti, E. Brambilla: Quantum Imaging, J. Opt.B: Quantum Semiclass. Opt. 4, p.S176-S183 (2002)

[1.76] {Sect. 1.2} J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, A. ZeilingerExperimental demonstration of four-photon entangelment and high-fidelityteleportation, Physical Review Letters 86, p.4435-4438 (2001)

[1.77] {Sect. 1.2} A. Lamas-Linares, J.C. Howell, D. Bouwmeester: Stimulatedemission of polarization-entangled photons, Nature 412, p.887-890 (2001)

[1.78] {Sect. 1.2} C. Simon, G. Weihs, e Zilinger A Optimal quantum cloning viastimulated emission, Physical Review Letters 84, p.2993-2996 (2000)

642 1. Topics in Photonics

[1.79] {Sect. 1.2} O. Benson, C. Santori, M. Pelton, Y. Yamamoto: Regulated andentangled photons from a single quantum dot, Phys Rev Lett 84, p.2513-2516(2000)

[1.80] {Sect. 1.2} M. Vasilyev, S.K. Choi, P. Kumar, G.M. DAriano: Tomographicmeasurement of joint photon statistics of the twin-beam quantum state, PhysRev Lett 84, p.2354-2357 (2000)

[1.81] {Sect. 1.2} D. Bouwmeester, J.W. Pan, M. Daniell, H. Weinfurter, A. Zei-linger: Observation of three-photon Greenberger-Horne-Zeilinger entangle-ment, Phys Rev Lett 82, p.1345-1349 (1999)

[1.82] {Sect. 1.2} J. Brendel, N. Gisin, W. Tittel, H. Zbinden: Pulsed energy-timeenangled twin-photon source for quantum communication, Phys Rev Lett82, p.2594-2597 (1999)

[1.83] {Sect. 1.2} A. Kent, N. Linden, S. Massar: Optimal entanglement enhance-ment for mixed states, Phys Rev Lett 83, p.2656-2659 (1999)

[1.84] {Sect. 1.2} J.M. Merolla, Y. Mazurenko, J.P. Goedgebuer, H. Porte, W.T.Rhodes: Phase-modulation transmission system for quantum cryptography,Optics Letters 24, p.104-106 (1999)

[1.85] {Sect. 1.2} J.M. Merolla, Y. Mazurenko, J.P. Goedgebuer, W.T. Rhodes:Single-photon interference in sidebands of phase-modulated light for quan-tum cryptography, Phys Rev Lett 82, p.1656-1659 (1999)

[1.86] {Sect. 1.2} L. Quiroga, N.F. Johnson: Entangled Bell and Greenberger-Horne-Zeilinger states of excitons in coupled quantum dots, Phys Rev Lett83, p.2270-2273 (1999)

[1.87] {Sect. 1.2} A.G. White, D.F.V. James, P.H. Eberhard, P.G. Kwiat: Non-maximally entangled states: Production, characterization, and utilization,Phys Rev Lett 83, p.3103-3107 (1999)

[1.88] {Sect. 1.2} D. Bouwmeester, J.W. Pan, M. Daniell, H. Weinfurter, A. Zei-linger: Observation of three-photon Greenberger-Horne-Zeilinger entangle-ment, Phys Rev Lett 82, p.1345-1349 (1999)

[1.89] {Sect. 1.2} J. Brendel, N. Gisin, W. Tittel, H. Zbinden: Pulsed energy-timeenangled twin-photon source for quantum communication, Phys Rev Lett82, p.2594-2597 (1999)

[1.90] {Sect. 1.2} W. Tittel, J. Brendel, N. Gisin, H. Zbinden: Long-distance Bell-type tests using energy-time entangled photons, Phys Rev A 59, p.4150-4163(1999)

[1.91] {Sect. 1.2} F. Demartini: Amplification of quantum entanglement, Phys RevLett 81, p.2842-2845 (1998)

[1.92] {Sect. 1.2} T.C. Ralph, P.K. Lam: Teleportation with bright squeezed light,Phys Rev Lett 81, p.5668-5671 (1998)

[1.93] {Sect. 1.2} E.S. Polzik, J.L. Sorenson, J. Hald: Subthreshold tunable OPO:a source of nonclassical light for atomic physics experiments, Appl Phys. B66, p.759-764 (1998)

[1.94] {Sect. 1.2} Q.A. Turchette, C.S. Wood, B.E. King, C.J. Myatt, D. Leibfried,W.M. Itano, C. Monroe, D.J. Wineland: Deterministic entanglement of twotrapped ions, Phys Rev Lett 81, p.3631-3634 (1998)

[1.95] {Sect. 1.2} J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi: Quantum statetransfer and entanglement distribution among distant nodes in a quantumnetwork, Phys Rev Lett 78, p.3221-3224 (1997)

[1.96] {Sect. 1.2} H.B. Fei, B.M. Jost, S. Popescu, B.E.A. Saleh, M.C. Teich:Entanglement-induced two-photon transparency, Phys Rev Lett 78, p.1679-1682 (1997)

1.2 Scientific Topics 643

[1.97] {Sect. 1.2} V. Blanchet, C. Nicole, M.-A. Bouchene, B. Girard: TemporalCoherent Control in Two-Photon Transitions: From Optical Interferencesto Quantum Interferences, Phys. Rev. Lett. 78, p.2716-2719 (1997)

[1.98] {Sect. 1.2} G. Digiuseppe, F. Demartini, D. Boschi: Experimental test of theviolation of local realism in quantum mechanics without Bell inequalities,Phys Rev A 56, p.176-181 (1997)

[1.99] {Sect. 1.2} S.F. Huelga, C. Macchiavello, T. Pellizzari, A.K. Ekert, M.B.Plenio, J.I. Cirac: Improvement of frequency standards with quantum en-tanglement, Phys Rev Lett 79, p.3865-3868 (1997)

[1.100] {Sect. 1.2} J. Brendel, E. Mohler, W. Martienssen: Time-resolved dualbeamtwo-photon interferences with high visibility, Phys Rev Lett 66p.1142-1145(1991)

[1.101] {Sect. 1.2} Z.Y. Ou, L. Mandel: Observation of spatial quantum beatingwith separated photodetectors, Phys Rev Lett 61p.54-57 (1988)

[1.102] {Sect. 1.2} E. Wu, V. Jacques, H.P. Zeng, P. Grangier, F. Treussart, J.F.Roch: Narrow-band single-photon emission in the near infrared for quantumkey distribution, Opt Express 14, p.1296-1303 (2006)

[1.103] {Sect. 1.2} F.M. Spedalieri: Quantum key distribution without referenceframe alignment: Exploiting photon orbital angular momentum, Opt Com-mun 260, p.340-346 (2006)

[1.104] {Sect. 1.2} V. Scarani, A. Acin, G. Ribordy, N. Gisin: Quantum cryptog-raphy protocols robust against photon number splitting attacks for weaklaser pulse implementations – art. no. 057901, Phys Rev Lett 9205, p.7901(2004)

[1.105] {Sect. 1.2} D. Bruss, M. Christandl, A. Ekert, B.G. Englert, D. Kasz-likowski, C. Macchiavello: Tomographic quantum cryptography: Equiva-lence of quantum and classical key distillation – art. no. 097901, Phys RevLett 9109, p.7901 (2003)

[1.106] {Sect. 1.2} N. Gisin, G.G. Ribordy, W. Tittel, H. Zbinden: Quantum cryp-tography, Rev Mod Phys 74, p.145-195 (2002)

[1.107] {Sect. 1.2} N.J. Cerf, M. Bourennane, A. Karlsson, N. Gisin: Security ofquantum key distribution using d-level systems – art. no. 127902, Phys RevLett 8812, p.7902 (2002)

[1.108] {Sect. 1.2} C.H. Bennett: Quantum cryptography using any two nonorthog-onal states, Phys. Rev. Lett. 68, p.3121-3124 (1992)

[1.109] {Sect. 1.2} N.J. Cerf, N. Gisin, S. Massar: Classical teleportation of a quan-tum bit, Phys Rev Lett 84, p.2521-2524 (2000)

[1.110] {Sect. 1.2} W.T. Buttler, R.J. Hughes, S.K. Lamereaux, G.L. Morgan, J.E.Nordholt, C.G. Peterson: Daylight quantum key distribution over 1.6 km,Phys. Rev. Lett.84, p. 5652-5655 (2000)

[1.111] {Sect. 1.2} Th. Jennewein, Ch. Simon, G. Weihs, H. Weinfurter, A. Zei-linger: Quantum cryptography with entangled photons, Phys. Rev. Lett.84,p.4729-4732 (2000)

[1.112] {Sect. 1.2} H. BechmannPasquinucci, N. Gisin: Incoherent and coherenteavesdropping in the six-state protocol of quantum cryptography, Phys RevA 59, p.4238-4248 (1999)

[1.113] {Sect. 1.2} G. Bonfrate, V. Pruneri, P.G. Kazansky, P. Tapster, J.G. Rarity:Parametric fluorescence in periodically poled silica fibers, Appl Phys Lett75, p.2356-2358 (1999)

[1.114] {Sect. 1.2} N. Gisin, S. Wolf: Quantum cryptography on noisy channels:Quantum versus classical key- agreement protocols, Phys Rev Lett 83,p.4200-4203 (1999)

[1.115] {Sect. 1.2} N. Lutkenhaus: Estimates for practical quantum cryptography,Phys Rev A 59, p.3301-3319 (1999)

644 1. Topics in Photonics

[1.116] {Sect. 1.2} A.V. Sergienko, M. Atature, Z. Walton, G. Jaeger, B.E.A. Saleh,M.C. Teich: Quantum cryptography using femtosecond-pulsed parametricdown-conversion, Phys Rev A 60, p.R2622-R2625 (1999)

[1.117] {Sect. 1.2} P.D. Townsend: Experimental investigation of the performancelimits for first telecommunications-window quantum cryptography systems,IEEE Photonic Technol Lett 10, p.1048-1050 (1998)

[1.118] {Sect. 1.2} E. Biham, T. Mor: Bounds on information and the security ofquantum cryptography, Phys Rev Lett 79, p.4034-4037 (1997)

[1.119] {Sect. 1.2} M. Koashi, N. Imoto: Quantum cryptography based on splittransmission of one- bit information in two steps, Phys Rev Lett 79, p.2383-2386 (1997)

[1.120] {Sect. 1.2} A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden,N. Gisin: “Plug and play” systems for quantum cryptography, Appl PhysLett 70, p.793-795 (1997)

[1.121] {Sect. 1.2} B.C. Jacobs, J.D. Franson: Quantum cryptography in free space,Optics Letters 21, p.1854-1856 (1996)

[1.122] {Sect. 1.2} M. Koashi, N. Imoto: Quantum cryptography based on twomixed states, Phys Rev Lett 77, p.2137-2140 (1996)

[1.123] {Sect. 1.2} A. Peres: Quantum cryptography with orthogonal states?, PhysRev Lett 77, p.3264 (1996)

[1.124] {Sect. 1.2} S. Braunstein (ed.): Quantum Computing. (Wiley-VCH, Wein-heim, New York, 1999)

[1.125] {Sect. 1.2} H.-K. Lo, T. Spiller, S. Popescu (ed.): Introduction to QuantumComputatioj and Information. (World Scientific Pub. Co, Singapore, 1998)

[1.126] {Sect. 1.2} J. McKeever, A. Boca, A.D. Boozer, R. Miller, J.R. Buck, A.Kuzmich, H.J. Kimble: Deterministic generation of single photons from oneatom trapped in a cavity, Science 303, p.1992-1994 (2004)

[1.127] {Sect. 1.2}ParkH.G., S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek,S.B. Kim, Y.H. Lee: Electrically driven single-cell photonic crystal laser,Science 305, p.1444-1447 (2004)

[1.128] {Sect. 1.2} J.K. Pachos, P.L. Knight: Quantum computation with a one-dimensional optical lattice – art. no. 107902, Phys Rev Lett 9110, p.7902(2003)

[1.129] {Sect. 1.2} C. Fabre, U. Andersen, H. Bachor, B. Buchler, S. Gigan, P.K.Lam, A. Maitre, N. Treps: Quantum information processing in optical im-ages, Superlattices and Microstructures 32, p.323-329 (2002)

[1.130] {Sect. 1.2} J. Pachos, H. Walther: Quantum computation with trapped ionsin an optical cavity – art. no. 187903, Phys Rev Lett 8918, p.7903 (2002)

[1.131] {Sect. 1.2} R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl, W.Ertmer: Micro-optical realization of arrays of selectively addressable dipoletraps: A scalable configuration for quantum computation with atomic qubits– art. no. 097903, Phys Rev Lett 8909, p.7903 (2002)

[1.132] {Sect. 1.2} M.J. Bremner, C.M. Dawson, J.L. Dodd, A. Gilchrist, A.W.Harrow, D. Mortimer, M.A. Nielsen, T.J. Osborne: Practical scheme forquantum computation with any two-qubit entangling gate – art. no. 247902,Phys Rev Lett 8924, p.7902 (2002)

[1.133] {Sect. 1.2} D. Goswami: Laser phase modulation approaches towards en-semble quantum computing – art. no. 177901, Phys Rev Lett 8817, p.7901(2002)

[1.134] {Sect. 1.2} B. DeMarco, A. BenKish, D. Leibfried, V. Meyer, M. Rowe,B.M. Jelenkovic, W.M. Itano, J. Britton, C. Langer, T. Rosenband, D.J.Wineland: Experimental demonstration of a controlled-NOT wave-packetgate – art. no. 267901, Phys Rev Lett 8926, p.7901 (2002)

1.2 Scientific Topics 645

[1.135] {Sect. 1.2} K.F. Huang, Y.F. Chen, H.C. Lai, Y.P. Lan: Observation of thewave function of a quantum billiard from the transverse patterns of verticalcavity surface emitting lasers – art. no. 224102, Phys Rev Lett 8922, p.4102(2002)

[1.136] {Sect. 1.2} J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning:Experimental demonstration of an all-optical CNOT gate, , p. (2002)

[1.137] {Sect. 1.2} L.M.K. Vandersypen, M. Steffen, M.H. Sherwood, C.S. Yannoni,G. Breyta, I.L. Chuang: Implementation of a three-quantum-bit search al-gorithm, Appl Phys Lett 76, p.646-648 (2000)

[1.138] {Sect. 1.2} A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo,D. Loss, M. Sherwin, A. Small: Quantum information processing usingquantum dot spins and cavity QED, Phys Rev Lett 83, p.4204-4207 (1999)

[1.139] {Sect. 1.2} D. Bacon, D.A. Lidar, K.B. Whaley: Robustness of decoherence-free subspaces for quantum computation, Phys Rev A 60, p.1944-1955(1999)

[1.140] {Sect. 1.2} J.I. Cirac, A.K. Ekert, S.F. Huelga, C. Macchiavello: Distributedquantum computation over noisy channels, Phys Rev A 59, p.4249-4254(1999)

[1.141] {Sect. 1.2} J. Eisert, M. Wilkens, M. Lewenstein: Quantum games andquantum strategies, Phys Rev Lett 83, p.3077-3080 (1999)

[1.142] {Sect. 1.2} S. Lloyd, S.L. Braunstein: Quantum computation over continu-ous variables, Phys Rev Lett 82, p.1784-1787 (1999)

[1.143] {Sect. 1.2} M.S. Sherwin, A. Imamoglu, T. Montroy: Quantum computationwith quantum dots and terahertz cavity quantum electrodynamics, PhysRev A 60, p.3508-3514 (1999)

[1.144] {Sect. 1.2} L.M.K. Vandersypen, C.S. Yannoni, M.H. Sherwood, I.L.Chuang: Realization of logically labeled effective pure states for bulk quan-tum computation, Phys Rev Lett 83, p.3085-3088 (1999)

[1.145] {Sect. 1.2} E. Farhi, J. Goldstone, S. Gutmann, M. Sipser: Limit on thespeed of quantum computation in determining parity, Phys Rev Lett 81,p.5442-5444 (1998)

[1.146] {Sect. 1.2} E. Knill, R. Laflamme: Power of one bit of quantum information,Phys Rev Lett 81, p.5672-5675 (1998)

[1.147] {Sect. 1.2} N. Olivier, M.K. Olsen: Bright entanglement and the Einstein-Podolsky-Rosen paradox with coupled parametric oscillators, Opt Commun259, p.781-788 (2006)

[1.148] {Sect. 1.2} J.C. Howell, R.S. Bennink, S.J. Bentley, R.W. Boyd: Realizationof the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion, PhysicalReview Letters 21, p.210403-1- 210403-4 (2004)

[1.149] {Sect. 1.2} P. Zanardi, F. Rossi: Quantum information in semiconductors:Noiseless encoding in a quantum-dot array, Phys Rev Lett 81, p.4752-4755(1998)

[1.150] {Sect. 1.2} C. Miquel, J.P. Paz, W.H. Zurek: Quantum computation withphase drift errors, Phys Rev Lett 78, p.3971-3974 (1997)

[1.151] {Sect. 1.2} L.M. Duan, G.C. Guo: Preserving coherence in quantum com-putation by pairing quantum bits, Phys Rev Lett 79, p.1953-1956 (1997)

[1.152] {Sect. 1.2} W. Vogel: Nonclassical states: An observable criterion, Phys RevLett 84, p.1849-1852 (2000)

[1.153] {Sect. 1.2} A.B. Matsko, V.V. Kozlov, M.O. Scully: Backaction cancellationin quantum nondemolition measurement of optical solitons, Phys Rev Lett82, p.3244-3247 (1999)

646 1. Topics in Photonics

[1.154] {Sect. 1.2} V. Savalli, G.Z.K. Horvath, P.D. Featonby, L. Cognet, N. West-brook, C.I. Westbrook, A. Aspect: Optical detection of cold atoms withoutspontaneous emission, Optics Letters 24, p.1552-1554 (1999)

[1.155] {Sect. 1.2} R.L. Dematos, W. Vogel: Quantum nondemolition measurementof the motional energy of a trapped atom, Phys Rev Lett 76, p.4520-4523(1996)

[1.156] {Sect. 1.2} F.X. Kartner, H.A. Haus: Quantum-Nondemolition Measure-ments and the ’Collapse of the Wave Function’, Phys Rev A 47, p.4585-4590(1993)

[1.157] {Sect. 1.2} W. Tittel, J. Brendel, H. Zbinden, N. Gisin: Violation of bellinequalities by photons more than 10 km apart, Phys Rev Lett 81, p.3563-3566 (1998)

[1.158] {Sect. 1.2} A. Aspect, J. Dalibard, G. Roger: Experimental Test of Bell’sInequalities Using Time-Varying Analyzers, Phys. Rev. Lett. 49, p.1804-1807 (1982)

[1.159] {Sect. 1.2} A. Aspect, P. Grangier, G. Roger: Experimental Realization ofEinstein-Podolsky-Rosen-Bohm Gedankenexperiment: A. New Violation ofBell’s Inequalities, Phys. Rev. Lett. 49, p.91-94 (1982)

[1.160] {Sect. 1.2} J.F. Clauser, A. Shimony: Bell’s theorem: experimental testsand implications, Rep. Prog. Phys. 41, p.1881-1927 (1978)

[1.161] {Sect. 1.2} J. Bell: On the Einstein-Podolsky-Rosen Paradox, Physics1,p.195-200 (1964)

[1.162] {Sect. 1.2} N. Bloembergen: From nanosecond to femtosecond science, Rev.Mod. Phys. 71, p.283-287 (1999)

[1.163] {Sect. 1.2} H. Frauenfelder, P.G. Wolynes, R.H. Austin: Biological Physics,Rev. Mod. Phys. 71, p.419-430 (1999)

[1.164] {Sect. 1.2} W.E. Lamb, W.P. Schleich, M.O. Scully, C.H. Townes: Laserphysics: Quantum controversy in action, Rev. Mod. Phys. 71, p.263-273(1999)

[1.165] {Sect. 1.2} L. Mandel: Quantum Effects in one-photon and two-photoninterference, Rev. Mod. Phys. 71, p.274-282 (1999)

[1.166] {Sect. 1.2} R.E. Slusher: Laser technology, Rev. Mod. Phys. 71, p.471-479(1999)

[1.167] {Sect. 1.3} B.Ya. Zel’dovich, V.I. Popovicher, V.V. Ragul’skii, F.S. Faizul-low: Connection between the wavefronts of the reflected and the excitinglight in stimulated Mandel’shtam-Brillouin scattering, Sov. Phys. JETP 15,p.109-112 (1972)

[1.168] {Sect. 1.3} infinity – A Revolutionary Nd:YAG Laser System, Technicaldigest; Coherent

[1.169] {Sect. 1.5} Harnessing Light (National Academy Press, Washington, D.C,1998)

[1.170] {Sect. 1.5} W.K. Choi, D.G. Kim, D.G. Kim, Y.W. Choi, K.D. Choquette,S. Lee, D.H. Woo: Optical AND/OR gates based on monolithically inte-grated vertical cavity laser with depleted optical thyristor structure, OptExpress 14, p.11833-11838 (2006)

[1.171] {Sect. 1.5} J. Zhou, L. Petti, P. Mormile, A. Roviello: Comparison of thethermo- and electro-optical properties of doped and un-doped MOM basedPDLCs, Opt Commun 231, p.263-271 (2004)

[1.172] {Sect. 1.5} R.P. Schmid, T. Schneider, J. Reif: Optical processing on afemtosecond time scale, Opt Commun 207, p.155-160 (2002)

[1.173] {Sect. 1.5} A. Melloni, M. Chinello, M. Martinelli: All-optical switching inphase-shifted fiber Bragg grating, IEEE Photonic Technol Lett 12, p.42-44(2000)

1.5 Applications 647

[1.174] {Sect. 1.5} D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly,D. Nesset, I.D. Phillips, A.J. Poustie, D.C. Rogers: Nonlinear optics forhigh-speed digital information processing, Science 286, p.1523-1528 (1999)

[1.175] {Sect. 1.5} R.W. Eason, A. Miller (ed.): Nonlinear Optics in Signal Pro-cessing (Chapman & Hall, London, 1993)

[1.176] {Sect. 1.5} Z.V. Vardeny: Telecommunications – A boost for fibre optics,Nature 416, p.489 (2002)

[1.177] {Sect. 1.5} J.M. Kahn, K.P. Ho: Communications technology – A bottleneckfor optical fibres, Nature 411, p.1007-1010 (2001)

[1.178] {Sect. 1.5} A. Ghatak, K. Thyagarajan: Introduction to Fiber Optics (Cam-bridge University Press, Cambridge, 1998)

[1.179] {Sect. 1.5} J. S. Sanghera, I. D. Aggarwal: Infrared Fibre Optics (CRCPress, Boca Raton, Boston, London, New York, Washington, D. C, 1998)

[1.180] {Sect. 1.5} J.W. Lou, J.K. Andersen, J.C. Stocker, M.N. Islam, D.A. Nolan:Polarization insensitive demultiplexing of 100-Gb/s words using a twistedfiber nonlinear optical loop mirror, IEEE Photonic Technol Lett 11, p.1602-1604 (1999)

[1.181] {Sect. 1.5} D.S. Govan, W. Forysiak, N.J. Doran: Long-distance 40-Gbit/ssoliton transmission over standard fiber by use of dispersion management,Optics Letters 23, p.1523-1525 (1998)

[1.182] {Sect. 1.5} M.A. Neifeld: Information, resolution, and space-bandwidthproduct, Optics Letters 23, p.1477-1479 (1998)

[1.183] {Sect. 1.5} C.C. Chang, A.M. Weiner: Fiber transmission for sub-500-fspulses using a dispersion-compensating fiber, IEEE J QE-33, p.1455-1464(1997)

[1.184] {Sect. 1.5} T. Ono, Y. Yano: Key technologies for terabit/second WDMsystems with high spectral efficiency of over 1 bit/s/Hz, IEEE J QE-34,p.2080-2088 (1998)

[1.185] {Sect. 1.5} E.A. Desouza, M.C. Nuss, W.H. Knox, D.A.B. Miller: Wave-length division multiplexing with femtosecond pulses, Optics Letters 20,p.1166-1168 (1995)

[1.186] {Sect. 1.5} Q.M. Ali, P.K. Palanisamy, S. Manickasundaram, P. Kannan:Sudan IV dye based poly(Alkyloxymethacrylate) films for optical data stor-age, Opt Commun 267, p.236-243 (2006)

[1.187] {Sect. 1.5} A. Takita, H. Yamamoto, Y. Hayasaki, N. Nishida, H. Misawa:Three-dimensional optical memory using a human fingernail, Opt Express13, p.4560-4567 (2005)

[1.188] {Sect. 1.5} B.L. Yao, Z.W. Ren, N. Menke, Y.L. Wang, Y. Zheng, M. Lei,G.F. Chen, N. Hampp: Polarization holographic high-density optical datastorage in bacteriorhodopsin film, Appl Opt 44, p.7344-7348 (2005)

[1.189] {Sect. 1.5} Y.J. Zhang, Z.F. Lu, X.F. Deng, Y.C. Liu, Y.Y. Zhao: Holo-graphic grating recorded by He-Ne laser operating at 632.8 nm in polymerfilm containing push-pull azo dye, Opt Commun 220, p.289-295 (2003)

[1.190] {Sect. 1.5} F. Ciuchi, A. Mazzulla, G. Cipparrones: Permanent polarizationgratings in elastomer azo-dye systems: comparison of layered and mixedsamples, J Opt Soc Am B Opt Physics 19, p.2531-2537 (2002)

[1.191] {Sect. 1.5} D. Liu, L.R. Liu, C.H. Zhou, L.Y. Ren, G.G. Li: Nonvolatileholograms in LiNbO3 : Fe : Cu by use of the bleaching effect, Appl Opt 41,p.6809-6814 (2002)

[1.192] {Sect. 1.5} A. Adibi, K. Buse, D. Psaltis: Multiplexing holograms in LiNbO3: Fe : Mn crystals, Optics Letters 24, p.652-654 (1999)

[1.193] {Sect. 1.5} L. Dhar, A. Hale, H.E. Katz, M.L. Schilling, M.G. Schnoes,F.C. Schilling: Recording media that exhibit high dynamic range for digitalholographic data storage, Optics Letters 24, p.487-489 (1999)

648 1. Topics in Photonics

[1.194] {Sect. 1.5} O. Matoba, B. Javidi: Encrypted optical storage with wave-length-key and random phase codes, Appl Opt 38, p.6785-6790 (1999)

[1.195] {Sect. 1.5} H.H. Suh: Color-image generation by use of binary-phase holo-grams, Optics Letters 24, p.661-663 (1999)

[1.196] {Sect. 1.5} C.A. Volkert, M. Wuttig: Modeling of laser pulsed heating andquenching in optical data storage media, J Appl Phys 86, p.1808-1816 (1999)

[1.197] {Sect. 1.5} G. Xu, Q.G. Yang, J.H. Si, X.C. Liu, P.X. Ye, Z. Li, Y.Q. Shen:Application of all-optical poling in reversible optical storage in azopolymerfilms, Opt Commun 159, p.88-92 (1999)

[1.198] {Sect. 1.5} L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W.Wilson, A. Hill, C. Boyd, N. Levinos, A. Harris: Holographic storage ofmultiple high-capacity digital data pages in thick photopolymer systems,Optics Letters 23, p.1710-1712 (1998)

[1.199] {Sect. 1.5} A. Toriumi, S. Kawata, M. Gu: Reflection confocal microscopereadout system for three-dimensional photochromic optical data storage,Optics Letters 23, p.1924-1926 (1998)

[1.200] {Sect. 1.5} H. Sasaki, K. Karaki: Direct pattern recognition of a motionpicture by hole- burning holography of Eu3+:Y2SiO5, Appl Opt 36, p.1742-1746 (1997)

[1.201] {Sect. 1.5} E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.H. Her,J.P. Callan, E. Mazur: Three-dimensional optical storage inside transparentmaterials, Optics Letters 21, p.2023-2025 (1996)

[1.202] {Sect. 1.5} D. Lande, J.F. Heanue, M.C. Bashaw, L. Hesselink: Digitalwavelength-multiplexed holographic data storage system, Optics Letters 21,p.1780-1782 (1996)

[1.203] {Sect. 1.5} T. Tomiyama, I. Watanabe, A. Kuwano, M. Habiro, N. Takane,M. Yamada: Rewritable optical-disk fabrication with an optical record-ing material made of naphthalocyanine and polythiophene, Appl Opt 34,p.8201-8208 (1995)

[1.204] {Sect. 1.5} E.S. Maniloff, S.B. Altner, S. Bernet, F.R. Graf, A. Renn, U.P.Wild: Recording of 6000 holograms by use of spectral hole burning, Appl.Opt. 34, p.4140-4148 (1995)

[1.205] {Sect. 1.5} R. Ao, S. Jahn, L. Kummerl, R. Weiner, D. Haarer: SpatialResolution and Data Adddressing of Frequency Domain Optical StorageMaterials in the Near IR Regime, Jpn. J. Appl. Phys. 31, p.693-698 (1992)

[1.206] {Sect. 1.5} H.A. Haus, A. Mecozzi: Long-Term Storage of a Bit Stream ofSolitons, Optics Letters 17, p.1500-1502 (1992)

[1.207] {Sect. 1.5} A. Renn, U.P. Wild: Spectral hole burning and hologram storage,Appl. Opt. 26, p.4040-4042 (1987)

[1.208] {Sect. 1.5} U.P. Wild, S.E. Bucher, F.A. Burkhalter: Hole Burning, StarkEffect, and Data Storage, Appl. Opt. 24, p.1526-1530 (1985)

[1.209] {Sect. 1.5} E. Innerhofer, F. Brunner, S.V. Marchese, R. Paschotta, G.Arisholm, S. Kurimura, K. Kitamura, T. Usami, H. Ito, U. Keller: Analy-sis of nonlinear wavelength conversion system for a red-green- blue laser-projection source, J Opt Soc Am B Opt Physics 23, p.265-275 (2006)

[1.210] {Sect. 1.5} R. Shechter, N. Bokor, Y. Amitai, A.A. Friesem: Compactred-green-blue beam illuminator and expander, Appl Opt 41, p.1229-1235(2002)

[1.211] {Sect. 1.5} D. Jaque, J. Capmany, J.G. Sole: Red, green, and blue laserlight from a single Nd : YAl3 (BO3) (4) crystal based on laser oscillationat 1.3 mu m, Appl Phys Lett 75, p.325-327 (1999)

[1.212] {Sect. 1.5} A. Parfenov: Diffraction light modulator based on transverseelectro-optic effect in short-pitch ferroelectric liquid crystals, Appl Opt 38,p.5656-5661 (1999)

1.5 Applications 649

[1.213] {Sect. 1.5} K. Takizawa, T. Fujii, H. Kikuchi, H. Fujikake, M. Kawakita,Y. Hirano, F. Sato: Spatial light modulators for high-brightness projectiondisplays, Appl Opt 38, p.5646-5655 (1999)

[1.214] {Sect. 1.5} Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale,M. Richardson, A. Chin, B.H.T. Chai: Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd : YCOB crystals, Opt Commun164, p.33-37 (1999)

[1.215] {Sect. 1.5} A. Bewsher, I. Powell, W. Boland: Design of single-elementlaser-beam shape projectors, Appl Opt 35, p.1654-1658 (1996)

[1.216] {Sect. 1.5} S. Maruo, A. Arimoto, S. Kobayashi: Multibeam scanning opticswith single laser source for full-color printers, Appl Opt 36, p.7234-7238(1997)

[1.217] {Sect. 1.5} U.P. Wild, A. Renn: Molecular Computing: a Review, J. Mol.Electron. 7, p.1-20 (1991)

[1.218] {Sect. 1.5} U.P. Wild, A. Renn, C. De Caro, S. Bernet: Spectral hole burningand molecular computing, Appl. Opt. 29, p.4329-4331 (1990)

[1.219] {Sect. 1.5} S. Trippel, J. Mikosch, R. Berhane, R. Otto, M. Weidemuller,R. Wester: Photodetachment of cold OH- in a multipole ion trap – art. no.193003, Phys Rev Lett 9719, p.3003 (2006)

[1.220] {Sect. 1.5} C.H. Storry, A. Speck, D. LeSage, N. Guise, G. Gabrielse, D.Grzonka, W. Oelert, G. Schepers, T. Sefzick, H. Pittner, M. Herrmann, J.Walz, T.W. Hansch, D. Comeau, E.A. Hessels: First laser-controlled anti-hydrogen production – art. no. 263401, Phys Rev Lett 9326, p.3401 (2004)

[1.221] {Sect. 1.5} H. Ohmura, T. Nakanaga, M. Tachiya: Coherent control ofphotofragment separation in the dissociative ionization of IBr – art. no.113002, Phys Rev Lett 9211, p.3002 (2004)

[1.222] {Sect. 1.5} K. Yamanouchi: Laser chemistry and physics – The next frontier,Science 295, p.1659-1660 (2002)

[1.223] {Sect. 1.5} P.F. Bernath: Laser chemistry – Water vapor gets excited, Sci-ence 297, p.943 (2002)

[1.224] {Sect. 1.5} J.L. Herek, W. Wohlleben, R.J. Cogdell, D. Zeidler, M. Motzkus:Quantum control of energy flow in light harvesting, Nature 417, p.533-535(2002)

[1.225] {Sect. 1.5} R.J. Levis, G.M. Menkir, H. Rabitz: Selective bond dissociationand rearrangement with optimally tailored, strong-field laser pulses, Science292, p.709-713 (2001)

[1.226] {Sect. 1.5} S.M. Hurley, A.W. Castleman: Laser chemistry – Keeping reac-tions under quantum control, Science 292, p.648-649 (2001)

[1.227] {Sect. 1.5} T. Brixner, N.H. Damrauer, P. Niklaus, G. Gerber: Photoselec-tive adaptive femtosecond quantum control in the liquid phase, Nature 414,p.57-60 (2001)

[1.228] {Sect. 1.5} A.H. Zewail: Femtochemistry (World Scientific, Singapore 1994)Vols. I and II

[1.229] {Sect. 1.5} J. Manz, L. Woste (eds.): Femtosecond Chemistry (VCH, Wein-heim, 1995)

[1.230] {Sect. 1.5} D.L. Andrews: Lasers in Chemistry, 3rd edn. (Springer, Berlin,Heidelberg 1997)

[1.231] {Sect. 1.5} K.B. Eisenthal (ed.): Applications of Picosecond Spectroscopyto Chemistry (Reidel, Dordrecht 1984)

[1.232] {Sect. 1.5} K. Kalyanasundaram: Photochemistry in microheterogeneoussystems (Academic Press Inc, Florida 1987)

[1.233] {Sect. 1.5} G.J. Kavarnos: Fundamentals of Photoinduced Electron Transfer(VCH Publ. Inc. 1993)

650 1. Topics in Photonics

[1.234] {Sect. 1.5} I. Prigogine, S. Rice (ed.): Advances in Chemical Physics(Wiley, New York 1983)

[1.235] {Sect. 1.5} A. Callegari, J. Rebstein, R. Jost, T.R. Rizzo: State-to-stateunimolecular reaction dynamics of HOCl near the dissociation threshold:The role of vibrations, rotations, and IVR probed by time- and eigenstate-resolved spectroscopy, J Chem Phys 111, p.7359-7368 (1999)

[1.236] {Sect. 1.5} J. Karczmarek, J. Wright, P. Corkum, M. Ivanov: Optical cen-trifuge for molecules, Phys Rev Lett 82, p.3420-3423 (1999)

[1.237] {Sect. 1.5} M. Oppel, G.K. Paramonov: Selective vibronic excitation andbond breaking by picosecond UV and IR laser pulses: application to a two-dimensional model of HONO2, Chem Phys Lett 313, p.332-340 (1999)

[1.238] {Sect. 1.5} J. Manz, K. Sundermann, R. deVivieRiedle: Quantum optimalcontrol strategies for photoisomerization via electronically excited states,Chem Phys Lett 290, p.415-422 (1998)

[1.239] {Sect. 1.5} A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer,V. Seyfried, M. Strehle, G. Gerber: Control of chemical reactions byfeedback-optimized phase-shaped femtosecond laser pulses, Science 282,p.919-922 (1998)

[1.240] {Sect. 1.5} R.N. Zare: Laser control of chemical reactions, Science 279,p.1875-1879 (1998)

[1.241] {Sect. 1.5} L. Banares, T. Baumert, M. Bergt, B. Kiefer, G. Gerber: Fem-tosecond photodissociation dynamics of Fe (CO) (5) in the gas phase, ChemPhys Lett 267, p.141-148 (1997)

[1.242] {Sect. 1.5} R.J. Finlay, T.H. Her, C. Wu, E. Mazur: Reaction pathways insurface femtochemistry: routes to desorption and reaction in CO/O-2/Pt(111), Chem Phys Lett 274, p.499-504 (1997)

[1.243] {Sect. 1.5} W. Freyer, D. Leupold: A multiphotochromic tetraanthrapor-phyrazine based on the involvement of molecular singlet oxygen, J. Pho-tochem. and Photobiol. A: Chemistry 105, p.153-158 (1997)

[1.244] {Sect. 1.5} A. Kasapi: Enhanced isotope discrimination using electromag-netically induced transparency, Phys Rev Lett 77, p.1035-1038 (1996)

[1.245] {Sect. 1.5} C. Desfrancois, H. Abdoulcarime, C.P. Schulz, J.P. Schermann:Laser separation of geometrical isomers of weakly bound molecular com-plexes, Science 269, p.1707-1709 (1995)

[1.246] {Sect. 1.5} V. Vaida, J.D. Simon: The photoreactivity of chlorine dioxide,Science 268, p.1443-1448 (1995)

[1.247] {Sect. 1.5} L.C. Zhu, V. Kleiman, X.N. Li, S.P. Lu, K. Trentelman, R.J.Gordon: Coherent laser control of the product distribution obtained in thephotoexcitation of HI, Science 270, p.77-80 (1995)

[1.248] {Sect. 1.5} P. Siders, R.A. Marcus, R.J. Cave: A Model for OrientationEffects in Electron Transfer Reactions, J Chem Phys 81, p.5613-5624 (1984)

[1.249] {Sect. 1.5} A.H. Zewail: Laser selective chemistry – is it possible?, Phys.Today Nov. 1980, p.27-33 (1980)

[1.250] {Sect. 1.5} E.S. Yeung, C.B. Moore: Isotopic separation by photopredisso-ciation, Appl. Phys. Lett. 21, p.109-110 (1972)

[1.251] {Sect. 1.5} D. Schuocker: High-Power Lasers in Production Engineering(World Scientific Publishing, Singapore, 1998)

[1.252] {Sect. 1.5} W. M. Steen: Laser Material Processing (Springer, London,Berlin, Heidelberg, New York, 1998)

[1.253] {Sect. 1.5} M. She, D. Kim, C.P. Grigoropoulos: Liquid-assisted pulsedlaser cleaning using near-infrared and ultraviolet radiation, J Appl Phys86, p.6519-6524 (1999)

[1.254] {Sect. 1.5} G. Vereecke, E. Rohr, M.M. Heyns: Laser-assisted removal ofparticles on silicon wafers, J Appl Phys 85, p.3837-3843 (1999)

1.5 Applications 651

[1.255] {Sect. 1.5} A.A. Kolomenskii, H.A. Schuessler, V.G. Mikhalevich, A.A.Maznev: Interaction of laser-generated surface acoustic pulses with fine par-ticles: Surface cleaning and adhesion studies, J Appl Phys 84, p.2404-2410(1998)

[1.256] {Sect. 1.5} S. Siano, F. Margheri, R. Pini, P. Mazzinghi, R. Salimbeni:Cleaning processes of encrusted marbles by Nd:YAG lasers operating infree-running and Q-switching regimes, Appl Opt 36, p.7073-7079 (1997)

[1.257] {Sect. 1.5} D.X. Hua, T. Kobayashi: Ultraviolet Rayleigh-Mie lidar by useof a multicavity Fabry-Perot filter for accurate temperature profiling of thetroposphere, Appl Opt 44, p.6474-6478 (2005)

[1.258] {Sect. 1.5} K. McNesby, C. Kaminski, A. Yalin: Laser applications to chem-ical and environmental analysis: introducton, Appl Opt 44, p.3637 (2005)

[1.259] {Sect. 1.5} D.X. Hua, M. Uchida, T. Kobayashi: Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual- pass Fabry-Perot etalon for mea-suring atmospheric temperature profiles of the troposphere, Optics Letters29, p.1063-1065 (2004)

[1.260] {Sect. 1.5} D. Bruneau, J. Pelon: Simultaneous measurements of particlebackscattering and extinction coefficients and wind velocity by lidar witha Mach-Zehnder interferometer: principle of operation and performance as-sessment, Appl Opt 42, p.1101-1114 (2003)

[1.261] {Sect. 1.5} A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, T. Tsuda:Combined Raman lidar for the measurement of atmospheric temperature,water vapor, particle extinction coefficient, and particle backscatter coeffi-cient, Appl Opt 41, p.7657-7666 (2002)

[1.262] {Sect. 1.5} Z.S. Liu, D. Wu, J.T. Liu, K.L. Zhang, W.B. Chen, X.Q. Song,J.W. Hair, C.Y. She: Low-altitude atmospheric wind measurement from thecombined Mie and Rayleigh backscattering by Doppler lidar with an iodinefilter, Appl Opt 41, p.7079-7086 (2002)

[1.263] {Sect. 1.5} X.Z. Chu, W.L. Pan, G.C. Papen, C.S. Gardner, J.A. Gelbwachs:Fe Boltzmann temperature lidar: design, error analysis, and initial resultsat the North and South Poles, Appl Opt 41, p.4400-4410 (2002)

[1.264] {Sect. 1.5} T. Nayuki, T. Fukuchi, N. Cao, H. Mori, T. Fujii, K. Nemoto,N. Takeuchi: Sum-frequency-generation system for differential absorptionlidar measurement of atmospheric nitrogen dioxide, Appl Opt 41, p.3659-3664 (2002)

[1.265] {Sect. 1.5} R.P. Lucht, M.C. Allen, S. Downey: Laser applications to chem-ical and environmental analysis: An introduction, Appl Opt 36, p.3187(1997)

[1.266] {Sect. 1.5} M. Bass (ed.): Handbook of Optics, Vol. I, chapter 44 (McGraw-Hill, New York, 1995)

[1.267] {Sect. 1.5} R.M. Measure: Laser Remote Sensing: Fundamentals and Ap-plications (Wiley, Toronto 1984)

[1.268] {Sect. 1.5} A.I. Karapuzikov, A.N. Malov, I.V. Sherstov: Tunable TEA CO2laser for long-range DIAL lidar, Infrared Phys Technol 41, p.77-85 (2000)

[1.269] {Sect. 1.5} A.I. Karapuzikov, I.V. Ptashnik, I.V. Sherstov, O.A. Roma-novskii, G.G. Matvienko, Y.N. Ponomarev: Modeling of helicopter-bornetunable TEA CO2 DIAL system employment for detection of methane andammonia leakages, Infrared Phys Technol 41, p.87-96 (2000)

[1.270] {Sect. 1.5} G.H. Pettengill, P.G. Ford: Winter clouds over the North Mar-tian Polar Cap, Geophys Res Lett 27, p.609-612 (2000)

[1.271] {Sect. 1.5} P.E. Smith, N.M. Evensen, D. York: Under the volcano: A newdimension in Ar-Ar dating of volcanic ash, Geophys Res Lett 27, p.585-588(2000)

652 1. Topics in Photonics

[1.272] {Sect. 1.5} T. Eriksen, U.P. Hoppe, E.V. Thrane, T.A. Blix: RocketborneRayleigh lidar for in situ measurements of neutral atmospheric density, ApplOpt 38, p.2605-2613 (1999)

[1.273] {Sect. 1.5} F.J. Lubken, F. Dingler, H. vonLucke, J. Anders, W.J. Riedel,H. Wolf: MASERATI: a rocketborne tunable diode laser absorption spec-trometer, Appl Opt 38, p.5338-5349 (1999)

[1.274] {Sect. 1.5} V. Sherlock, A. Hauchecorne, J. Lenoble: Methodology for theindependent calibration of Raman backscatter water-vapor lidar systems,Appl Opt 38, p.5816-5837 (1999)

[1.275] {Sect. 1.5} J.H. Churnside, V.V. Tatarskii, J.J. Wilson: Oceanographic lidarattenuation coefficients and signal fluctuations measured from a ship in theSouthern California Bight, Appl Opt 37, p.3105-3112 (1998)

[1.276] {Sect. 1.5} G.P. Gobbi: Parameterization of stratospheric aerosol physicalproperties on the basis of Nd:YAG lidar observations, Appl Opt 37, p.4712-4720 (1998)

[1.277] {Sect. 1.5} J. Kasparian, J.P. Wolf: A new transient SRS analysis methodof aerosols and application to a nonlinear femtosecond lidar, Opt Commun152, p.355-360 (1998)

[1.278] {Sect. 1.5} C.L. Korb, B.M. Gentry, S.X. Li, C. Flesia: Theory of the double-edge technique for Doppler lidar wind measurement, Appl Opt 37, p.3097-3104 (1998)

[1.279] {Sect. 1.5} A. Kouzoubov, M.J. Brennan, J.C. Thomas: Treatment of po-larization in laser remote sensing of ocean water, Appl Opt 37, p.3873-3885(1998)

[1.280] {Sect. 1.5} G.C. Papen, D. Treyer: Comparison of an Fe Boltzmann tem-perature Lidar with a Na narrow-band lidar, Appl Opt 37, p.8477-8481(1998)

[1.281] {Sect. 1.5} H.R. Lange, G. Grillon, J.-F. Ripoche, M.A. Franco, B. Lam-ouroux, B.S. Prade, A. Mysyrowicz: Anomalous long-range propagation offemtosecond laser pulses through air: moving focus or pulse self-guiding?,Opt. Lett. 23, p.120-122 (1998)

[1.282] {Sect. 1.5} P. Askebjer, S.W. Barwick, L. Bergstrom, A. Bouchta,S. Carius, E. Dalberg, K. Engel, B. Erlandsson, A. Goobar, L. Gray, etal.: Optical properties of deep ice at the South Pole: Absorption, Appl Opt36, p.4168-4180 (1997)

[1.283] {Sect. 1.5} Y.Y.Y. Gu, C.S. Gardner, P.A. Castleberg, G.C. Papen, M.C.Kelley: Validation of the lidar in-space technology experiment: Stratospherictemperature and aerosol measurements, Appl Opt 36, p.5148-5157 (1997)

[1.284] {Sect. 1.5} M.J. Mcgill, W.R. Skinner, T.D. Irgang: Analysis techniques forthe recovery of winds and backscatter coefficients from a multiple-channelincoherent Doppler lidar, Appl Opt 36, p.1253-1268 (1997)

[1.285] {Sect. 1.5} S.H. Melfi, K.D. Evans, J. Li, D. Whiteman, R. Ferrare,G. Schwemmer: Observation of Raman scattering by cloud droplets in theatmosphere, Appl Opt 36, p.3551-3559 (1997)

[1.286] {Sect. 1.5} J.R. Quagliano, P.O. Stoutland, R.R. Petrin, R.K. Sander, R.J.Romero, M.C. Whitehead, C.R. Quick, J.J. Tiee, L.J. Jolin: Quantitativechemical identification of four gases in remote infrared (9-11 mu m) differ-ential absorption lidar experiments, Appl Opt 36, p.1915-1927 (1997)

[1.287] {Sect. 1.5} J.D. Spinhirne, S. Chudamani, J.F. Cavanaugh, J.L. Bufton:Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 mu m by air-borne hard-target-calibrated Nd:YAG/methane Raman lidar, Appl Opt 36,p.3475-3490 (1997)

1.5 Applications 653

[1.288] {Sect. 1.5} P.S. Argall, F. Jacka: High-pulse-repetition-frequency lidar sys-tem using a single telescope for transmission and reception, Appl Opt 35,p.2619-2629 (1996)

[1.289] {Sect. 1.5} J. Roths, T. Zenker, U. Parchatka, F.G. Wienhold, G.W. Harris:Four-laser airborne infrared spectrometer for atmospheric trace gas mea-surements, Appl Opt 35, p.7075-7084 (1996)

[1.290] {Sect. 1.5} R. Targ, B.C. Steakley, J.G. Hawley, L.L. Ames, P. Forney, D.Swanson, R. Stone, R.G. Otto, V. Zarifis, P. Brockman, et al.: Coherentlidar airborne wind sensor. 2. Flight-test results at 2 and 10 mu m, ApplOpt 35, p.7117-7127 (1996)

[1.291] {Sect. 1.5} J. Zeyn, W. Lahmann, C. Weitkamp: Remote daytime measure-ments of tropospheric temperature profiles with a rotational Raman lidar,Optics Letters 21, p.1301-1303 (1996)

[1.292] {Sect. 1.5} V. Vaida, J.D. Simon: The photoreactivity of chlorine dioxide,Science 268, p.1443-1448 (1995)

[1.293] {Sect. 1.5} W. Steinbrecht, K.W. Rothe, H. Walther: Lidar setup for day-time and nighttime probing of stratospheric ozone and measurements inpolar and equitorial regimes, Appl. Opt. 28, p.3616-3624 (1989)

[1.294] {Sect. 1.5} H. Edner, S. Svanberg, L. Uneus, W. Wendt: Gas-correlationLidar, Opt. Lett. 9, p.493-495 (1984)

[1.295] {Sect. 1.5} J. Werner, K.W. Rothe, H. Walther: Monitoring of the Strato-spheric Ozone Layer by Laser Radar, Appl. Phys. B 32p.113-118 (1983)

[1.296] {Sect. 1.5} J.H. Schon, C. Kloc, E. Bucher, B. Batiogg: Efficient organicphotovoltaic diodes based on doped pentacene, Nature 403, p.408-410 (2000)

[1.297] {Sect. 1.5} T. Tesfamichael, E. Wackelgard: Angular solar absorptance ofabsorbers used in solar thermal collectors, Appl Opt 38, p.4189-4197 (1999)

[1.298] {Sect. 1.5} S. Hamma, P.I. RocaiCabarrocas: Determination of themobility gap of microcrystalline silicon and of the band discontinuities atthe amorphous microcrystalline silicon interface using in situ Kelvin probetechnique, Appl Phys Lett 74, p.3218-3220 (1999)

[1.299] {Sect. 1.5} K.L. Narayanan, M. Yamaguchi: Boron ion-implanted C-60 het-erojunction photovoltaic devices, Appl Phys Lett 75, p.2106-2107 (1999)

[1.300] {Sect. 1.5} M.K. Nazeeruddin, S.M. Zakeeruddin, R. HumphryBaker, M.Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.H. Fischer, M. Gratzel:Acid-base equilibria of (2,2 ’-bipyridyl-4,4 ’-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge- transfer sensitizationof nanocrystalline titania, Inorg Chem 38, p.6298-6305 (1999)

[1.301] {Sect. 1.5} A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner: Pho-tovoltaic technology: The case for thin-film solar cells, Science 285, p.692-698 (1999)

[1.302] {Sect. 1.5} J.T. Warren, D.H. Johnston, C. Turro: Ground state and photo-physical properties of Ru (Phen) (2)quo (+): a strong excited state electrondonor, Inorg Chem Commun 2, p.354-357 (1999)

[1.303] {Sect. 1.5} J.T. Warren, W. Chen, D.H. Johnston, C. Turro: Ground-stateproperties and excited-state reactivity of 8-quinolate complexes of ruthe-nium (II), Inorg Chem 38, p.6187-6192 (1999)

[1.304] {Sect. 1.5} J.H. Zhao, A.H. Wang, M.A. Green, F. Ferrazza: 19.8% efficient“honeycomb” textured multicrystalline and 24.4% monocrystalline siliconsolar cells, Appl Phys Lett 73, p.1991-1993 (1998)

[1.305] {Sect. 1.5} B.T. Boiko, G.S. Khripunov, V.B. Yurchenko, H.E. Ruda: Pho-tovoltaic properties in CdS/CdTe thin-film heterosystems with graded-gapinterfaces, Solar Energ Mater Solar Cells 45, p.303-308 (1997)

654 1. Topics in Photonics

[1.306] {Sect. 1.5} K. Kalyanasundaram, M. Gratzel: Photovoltaic performance ofinjection solar cells and other applications of nanocrystalline oxide layers,Proc Indian Acad Sci Chem Sci 109, p.447-469 (1997)

[1.307] {Sect. 1.5} J.A. Quintana, P.G. Boj, J. Crespo, M. Pardo, M.A. Satorre:Line-focusing holographic mirrors for solar ultraviolet energy concentration,Appl Opt 36, p.3689-3693 (1997)

[1.308] {Sect. 1.5} I. Shibata, T. Nishide: Solar control coatings containing a sputterdeposited SiWOx film, Solar Energ Mater Solar Cells 45, p.27-33 (1997)

[1.309] {Sect. 1.5} R. Memming: Photoelectrochemical Solar Energy Conversion,Topics Curr. Chem. 143, p.81-112 (1988)

[1.310] {Sect. 1.5} A. Heisterkamp, I.Z. Maxwell, E. Mazur, J.M. Underwood, J.A.Nickerson, S. Kumar, D.E. Ingber: Pulse energy dependence of subcellulardissection by femtosecond laser pulses, Opt Express 13, p.3690-3696 (2005)

[1.311] {Sect. 1.5} Q.Y. Fang, X.H. Hu: Modeling of skin tissue ablation by nanosec-ond pulses from ultraviolet to near-infrared and comparison with experi-mental results, Ieee J Quantum Electron 40, p.69-77 (2004)

[1.312] {Sect. 1.5} K. Konig, I. Riemann, W. Fritzsche: Nanodissection of humanchromosomes with near-infrared femtosecond laser pulses, Optics Letters26, p.819-821 (2001)

[1.313] {Sect. 1.5} S.L. Marcus: In Lasers in Medicine, ed. by G. Petttit, R.W.Wayant (Wiley, New York 1995)

[1.314] {Sect. 1.5} R. Pratesi, C.A. Sacci (eds.): Lasers in Photomedicine and Pho-tobiology, (Springer Ser. Opt. Sci, Vol.31 (Springer, Berlin, Heidelberg 1980)

[1.315] {Sect. 1.5} R. Steiner (ed.): Laser Lithotripsy (Springer, Berlin, Heidelberg1988)

[1.316] {Sect. 1.5} A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi(eds.): Biomedical Optical Instrumentation and Laser-Assisted Biotechnol-ogy (Kluwer Academic Publishers, Dordrecht, Boston, London, 1996)

[1.317] {Sect. 1.5} J. A. S. Carruth, A. L. McKenzie: Medical Lasers (Adam HilgerLtd, Bristol, Boston, 1986)

[1.318] {Sect. 1.5} M. L. Wolbarsht: Laser Applications in Medicine and Biology(Plenum Publishing Corporation, New York, 1991)

[1.319] {Sect. 1.5} B.A. Hooper, Y. Domankevitz, C.P. Lin, R.R. Anderson: Precise,controlled laser delivery with evanescent optical waves, Appl Opt 38, p.5511-5517 (1999)

[1.320] {Sect. 1.5} S.R. Goldstein, P.G. McQueen, R.F. Bonner: Thermal modelingof laser capture microdissection, Appl Opt 37, p.7378-7391 (1998)

[1.321] {Sect. 1.5} M. Frenz, H. Pratisto, F. Konz, E.D. Jansen, A.J. Welch, H.P.Weber: Comparison of the effects of absorption coefficient and pulse du-ration of 2.12-mu m and 2.79-mu m radiation on laser ablation of tissue,IEEE J QE-32, p.2025-2036 (1996)

[1.322] {Sect. 1.5} T. Johansson, M.S. Thompson, M. Stenberg, C. afKlinteberg,S.A. Engels, S. Svanberg, K. Svanberg: Feasibility study of a system forcombined light dosimetry and interstitial photodynamic treatment of mas-sive tumors, Appl Opt 41, p.1462-1468 (2002)

[1.323] {Sect. 1.5} S. Karrer, R.M.Szeimies, C. Abels, M. Landthaler: The use ofphotodynamic therapy for skin cancer, Onkologie 21, p.20-27 (1998)

[1.324] {Sect. 1.5} F. H. Blum: Photodynamic Action and Diseases Caused by Light(Hafner Publ, New York 1964)

[1.325] {Sect. 1.5} J.G. Moser (ed.): Photodynamic Tumor Therapy- 2nd and 3rdGeneration Photosensitizers (harwood academic publishers 1998)

[1.326] {Sect. 1.5} K. Chen, Y.J. Qin, F. Zheng, M.H. Sun, D.R. Shi: Diagnosis ofcolorectal cancer using Raman spectroscopy of laser- trapped single livingepithelial cells, Optics Letters 31, p.2015-2017 (2006)

1.5 Applications 655

[1.327] {Sect. 1.5} H.F. Wang, T.B. Huff, J.X. Cheng: Coherent anti-Stokes Ramanscattering imaging with a laser source delivered by a photonic crystal fiber,Optics Letters 31, p.1417-1419 (2006)

[1.328] {Sect. 1.5} T.H. Tsai, S.P. Tai, W.J. Lee, H.Y. Huang, Y.H. Liao, C.K.Sun: Optical signal degradation study in fixed human skin using confocalmicroscopy and higher-harmonic optical microscopy, Opt Express 14, p.749-758 (2006)

[1.329] {Sect. 1.5} G. Pal, S. Basu, K. Mitra, T. VoDinh: Time-resolved optical to-mography using short-pulse laser for tumor detection, Appl Opt 45, p.6270-6282 (2006)

[1.330] {Sect. 1.5} L. Bartolini, L. DeDominicis, M.F. deCollibus, G. Fornetti, M.Guarneri, E. Paglia, C. Poggi, R. Ricci: Underwater three-dimensional imag-ing with an amplitude-modulated laser radar at a 405 nm wavelength, ApplOpt 44, p.7130-7135 (2005)

[1.331] {Sect. 1.5} H.Y. Quan, Z.X. Guo: Fast 3-D optical imaging with transientfluorescence signals, Opt Express 12, p.449-457 (2004)

[1.332] {Sect. 1.5} A. Liebert, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald,H. Rinneberg: Evaluation of optical properties of highly scattering mediaby moments of distributions of times of flight of photons, Appl Opt 42,p.5785-5792 (2003)

[1.333] {Sect. 1.5} M. Sakami, K. Mitra, T. VoDinh: Analysis of short-pulse laserphoton transport through tissues for optical tomography, Optics Letters 27,p.336-338 (2002)

[1.334] {Sect. 1.5} C.G. Xie, M.A. Dinno, Y.Q. Li: Near-infrared Raman spec-troscopy of single optically trapped biological cells, Optics Letters 27, p.249-251 (2002)

[1.335] {Sect. 1.5} E. Bordenave, E. Abraham, G. Jortusauskas, J. Oberle, C. Rul-liere: Single-shot correlation system for longitudinal imaging in biologicaltissues, Opt Commun 208, p.275-283 (2002)

[1.336] {Sect. 1.5} S.V. Tsinopoulos, E.J. Sellountos, D. Polyzos: Light scatteringby aggregated red blood cells, Appl Opt 41, p.1408-1417 (2002)

[1.337] {Sect. 1.5} F. Koenig, J. Knittel, H. Stepp: Diagnosing cancer in vivo,Science 292, p.1401 (2001)

[1.338] {Sect. 1.5} R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini:Noninvasive absorption and scattering spectroscopy of bulk diffusive media:An application to the optical characterization of human breast, Appl PhysLett 74, p.874-876 (1999)

[1.339] {Sect. 1.5} S. Gorti, H. Tone, G. Imokawa: Triangulation method for deter-mining capillary blood flow and physical characteristics of the skin, ApplOpt 38, p.4914-4929 (1999)

[1.340] {Sect. 1.5} M. Rajadhyaksha, R.R. Anderson, R.H. Webb: Video-rate con-focal scanning laser microscope for imaging human tissues in vivo, ApplOpt 38, p.2105-2115 (1999)

[1.341] {Sect. 1.5} G. Zacharakis, A. Zolindaki, V. Sakkalis, G. Filippidis,E. Koumantakis, T.G. Papazoglou: Nonparametric characterization of hu-man breast tissue by the Laguerre expansion of the kernels technique appliedon propagating femtosecond laser pulses through biopsy samples, Appl PhysLett 74, p.771-772 (1999)

[1.342] {Sect. 1.5} K. Dowling, M.J. Dayel, M.J. Lever, P.M.W. French, J.D. Hares,A.K.L. DymokeBradshaw: Fluorescence lifetime imaging with picosecondresolution for biomedical applications, Optics Letters 23, p.810-812 (1998)

[1.343] {Sect. 1.5} S.L. Jacques, S.J. Kirkpatrick: Acoustically modulated speckleimaging of biological tissues, Optics Letters 23, p.879-881 (1998)

656 1. Topics in Photonics

[1.344] {Sect. 1.5} H.Q. Shangguan, L.W. Casperson: Estimation of scattered lighton the surface of unclad optical fiber tips: a new approach, Opt Commun152, p.307-312 (1998)

[1.345] {Sect. 1.5} Y.C. Guo, P.P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz,F. Liu, N. Zhadin, R.R. Alfano: Second-harmonic tomography of tissues,Optics Letters 22, p.1323-1325 (1997)

[1.346] {Sect. 1.5} A. Joblin: Tumor contrast in time-domain, near-infrared laserbreast imaging, Appl Opt 36, p.9050-9057 (1997)

[1.347] {Sect. 1.5} K. Konig, P.T.C. So, W.W. Mantulin, E. Gratton: Cellular re-sponse to near-infrared femtosecond laser pulses in two-photon microscopes,Optics Letters 22, p.135-136 (1997)

[1.348] {Sect. 1.5} Y. Guo, P.P. Ho, A. Tirksliunas, F. Liu, R.R. Alfano: Opti-cal harmonic generation from animal tissues by the use of picosecond andfemtosecond laser pulses, Appl Opt 35, p.6810-6813 (1996)

[1.349] {Sect. 1.5} A.P. Shepherd, P.A. Obers (eds.): Laser Doppler Blood Flowme-try. (Kluwer, Boston 1990)

[1.350] {Sect. 1.5} N.V. Iftimia, D.X. Hammer, C.E. Bigelow, T. Ustun, J.F. de-Boer, R.D. Ferguson: Hybrid retinal imager using line-scanning laser oph-thalmoscopy and spectral domain optical coherence tomography, Opt Ex-press 14, p.12909-12914 (2006)

[1.351] {Sect. 1.5} B. Povazay, A. Unterhuber, B. Hermann, H. Sattmann, H.Arthaber, W. Drexler: Full-field time-encoded frequency-domain optical co-herence tomography, Opt Express 14, p.7661-7669 (2006)

[1.352] {Sect. 1.5} Z.G. Wang, Z.J. Yuan, H.Y. Wang, Y.T. Pan: Increasing theimaging depth of spectral-domain OCT by using interpixel shift technique,Opt Express 14, p.7014-7023 (2006)

[1.353] {Sect. 1.5} H. Lim, J.F. deBoer, B.H. Park, E.C.W. Lee, R. Yelin, S.H.Yun: Optical frequency domain imaging with a rapidly swept laser in the815-870 nm range, Opt Express 14, p.5937-5944 (2006)

[1.354] {Sect. 1.5} A.E. Desjardins, B.J. Vakoc, G.J. Tearney, B.E. Bouma: Specklereduction in OCT using massively-parallel detection and frequency-domainranging, Opt Express 14, p.4736-4745 (2006)

[1.355] {Sect. 1.5} E.C.W. Lee, J.F. deBoer, M. Mujat, H. Lim, S.H. Yun: In vivooptical frequency domain imaging of human retina and choroid, Opt Express14, p.4403-4411 (2006)

[1.356] {Sect. 1.5} Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara,V.D. Madjarova, M. Yamanari, S. Makita, T. Araki, M. Itoh, T. Yatagai:Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography, Opt Express 14, p.1862-1877(2006)

[1.357] {Sect. 1.5} R. Huber, M. Wojtkowski, J.G. Fujimoto, J.Y. Jiang, A.E. Ca-ble: Three-dimensional and C-mode OCT imaging with a compact, fre-quency swept laser source at 1300 nm, Opt Express 13, p.10523-10538 (2005)

[1.358] {Sect. 1.5} E.J. Fernandez, W. Drexler: Influence of ocular chromatic aber-ration and pupil size on transverse resolution in ophthalmic adaptive opticsoptical coherence tomography, Opt Express 13, p.8184-8197 (2005)

[1.359] {Sect. 1.5} E.J. Fernandez, A. Unterhuber, P.M. Prieto, B. Hermann, W.Drexler, P. Artal: Ocular aberrations as a function of wavelength in thenear infrared measured with a femtosecond laser, Opt Express 13, p.400-409 (2005)

[1.360] {Sect. 1.5} M. Sato, I. Wakaki, Y. Watanabe, N. Tanno: Fundamental char-acteristics of a synthesized light source for optical coherence tomography,Appl Opt 44, p.2471-2481 (2005)

1.5 Applications 657

[1.361] {Sect. 1.5} A. Unterhuber, B. Povaay, K. Bizheva, B. Hermann, H.Sattmann, A. Stingl, T. Le, M. Seefeldt, R. Menzel, M. Preusser, H. Budka,C. Schubert, H. Reitsamer, P.K. Ahnelt, J.E. Morgan, A. Cowey, F. DrexlerW Advances in broad bandwidth light sources for ultrahigh resolution op-tical coherence tomography, Phys. Med. Biol. 49, p.1235-1246 (2004)

[1.362] {Sect. 1.5} Y. Jiang, I. Tomov, Y.M. Wang, Z.P. Chen: Second-harmonicoptical coherence tomography, Optics Letters 29, p.1090-1092 (2004)

[1.363] {Sect. 1.5} P. Yu, L. Peng, M. Mustata, J.J. Turek, M.R. Melloch, D.D.Nolte: Time-dependent speckle in holographic optical coherence imagingand the health of tumor tissue, Optics Letters 29, p.68-70 (2004)

[1.364] {Sect. 1.5} S. Bourquin, A.D. Aguirre, I. Hartl, P. Hsiung, T.H. Ko, J.G.Fujimoto, T.A. Birks, W.J. Wadsworth, U. Bunting, D. Kopf: Ultrahighresolution real time OCT imaging using a compact femtosecond Nd:Glasslaser and nonlinear fiber, Opt Express 11, p.3290-3297 (2003)

[1.365] {Sect. 1.5} B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H.Sattmann, A.F. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J.C.Knight, P.S.J. Russell, M. Vetterlein, E. Scherzer: Submicrometer axial res-olution optical coherence tomography, Optics Letters 27, p.1800-1802 (2002)

[1.366] {Sect. 1.5} A.M. Kowalevicz, T. Ko, I. Hartl, J.G. Fujimoto, M. Pollnau,R.P. Salathe: Ultrahigh resolution optical coherence tomography using asuperluminescent light source, Opt Express 10, p.349-353 (2002)

[1.367] {Sect. 1.5} J. Li, G. Ku, L.H.V. Wang: Ultrasound-modulated optical to-mography of biological tissue by use of contrast of laser speckles, Appl Opt41, p.6030-6035 (2002)

[1.368] {Sect. 1.5} E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J.Oberle, C. Rulliere, P.E. Minot, M. Lassegues, J.E.S. Bazeille: Wide-fieldoptical coherence tomography: imaging of biological tissues, Appl Opt 41,p.2059-2064 (2002)

[1.369] {Sect. 1.5} I.J. Hsu, C.W. Lu, C.R. Deng, C.C. Yang, C.P. Chiang, C.W.Lin, Y.W. Kiang: Optical coherence tomography using nonlinear optics infiber for broadband source generation, Opt Commun 212, p.391-396 (2002)

[1.370] {Sect. 1.5} U. Morgner, W. Drexler, F.X. Kartner, X.D. Li, C. Pitris, E.P.Ippen, J.G. Fujimoto: Spectroscopic optical coherence tomography, OpticsLetters 25, p.111-113 (2000)

[1.371] {Sect. 1.5} Y.H. Zhao, Z.P. Chen, C. Saxer, S.H. Xiang, J.F. deBoer, J.S.Nelson: Phase-resolved optical coherence tomography and optical Dopplertomography for imaging blood flow in human skin with fast scanning speedand high velocity sensitivity, Optics Letters 25, p.114-116 (2000)

[1.372] {Sect. 1.5} B.E. Bouma, G.J. Tearney: Power-efficient nonreciprocal in-terferometer and linear-scanning fiber-optic catheter for optical coherencetomography, Optics Letters 24, p.531-533 (1999)

[1.373] {Sect. 1.5} W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart,X.D. Li, E.P. Ippen, J.G. Fujimoto: In vivo ultrahigh-resolution opticalcoherence tomography, Optics Letters 24, p.1221-1223 (1999)

[1.374] {Sect. 1.5} A.G. Podoleanu, D.A. Jackson: Noise analysis of a combinedoptical coherence tomograph and a confocal scanning ophthalmoscope, ApplOpt 38, p.2116-2127 (1999)

[1.375] {Sect. 1.5} XA. Wax, S. Bali, J.E. Thomas: Optical phase-space distribu-tions for low-coherence light, Optics Letters 24, p.1188-1190 (1999)

[1.376] {Sect. 1.5} X.J. Wang, T.E. Milner, J.F. deBoer, Y. Zhang, D.H. Pash-ley, J.S. Nelson: Characterization of dentin and enamel by use of opticalcoherence tomography, Appl Opt 38, p.2092-2096 (1999)

658 1. Topics in Photonics

[1.377] {Sect. 1.5} S.R. Chinn, E.A. Swanson, J.G. Fujimoto: Optical coherencetomography using a frequency-tunable optical source, Optics Letters 22,p.340-342 (1997)

[1.378] {Sect. 1.5} B.E. Bouma, G.J. Tearney, I.P. Bilinsky, B. Golubovic, J.G.Fujimoto: Self-phase-modulated Kerr-lens mode-locked Cr:forsterite lasersource for optical coherence tomography, Optics Letters 21, p.1839-1841(1996)

[1.379] {Sect. 1.5} G. J. Muller, B. Chance: Medical Optical Tomography: Func-tional Imaging and Monitoring (SPIE Optical Engineering Press, London,1993)

[1.380] {Sect. 1.5} G. Muller (ed.): Optical Tomography (SPIE Bellingham 1994)[1.381] {Sect. 1.5} S.V. Patwardhan, S.R. Bloch, S. Achilefu, J.P. Culver: Time-

dependent whole-body fluorescence tomography of probe bio- distributionsin mice, Opt Express 13, p.2564-2577 (2005)

[1.382] {Sect. 1.5} L. Paterson, B. Agate, M. Comrie, R. Ferguson, T.K. Lake,J.E. Morris, A.E. Carruthers, C.T.A. Brown, W. Sibbett, P.E. Bryant, F.GunnMoore, A.C. Riches, K. Dholakia: Photoporation and cell transfectionusing a violet diode laser, Opt Express 13, p.595-600 (2005)

[1.383] {Sect. 1.5} M.A. El-Sayed, I. Tanaka, Y. Molin: Ultrafast Processes inChemistry and Biology (lBlackwell, Oxford 1995)

[1.384] {Sect. 1.5} T. Kobayashi: Primary Processes in Photobiology (Springer,Berlin, Heidelberg, 1987)

[1.385] {Sect. 1.5} E. Kohen, R. Santus, J. Hirschberg: Photobiology (AcademicPress, San Diego, 1995)

[1.386] {Sect. 1.5} C.B. Moore (ed.): Chemical and Biochemical Applications ofLasers, Vols. 1-5 (Academic, New York 1974-1984)

[1.387] {Sect. 1.5} XL. Moreaux, O. Sandre, M. BlanchardDesce, J. Mertz: Mem-brane imaging by simultaneous second-harmonic generation and two- pho-ton microscopy, Optics Letters 25, p.320-322 (2000)

[1.388] {Sect. 1.5} D. Kelly, K.M. Grace, X. Song, B.I. Swanson, D. Frayer, S.B.Mendes, N. Peyghambarian: Integrated optical biosensor for detection ofmultivalent proteins, Optics Letters 24, p.1723-1725 (1999)

[1.389] {Sect. 1.5} S. Shikano, K. Horio, Y. Ohtsuka, Y. Eto: Separation of a singlecell by red-laser manipulation, Appl Phys Lett 75, p.2671-2673 (1999)

[1.390] {Sect. 1.5} Y.C. Guo, P.P. Ho, F. Liu, Q.Z. Wang, R.R. Alfano: Nonin-vasive two-photon-excitation imaging of tryptophan distribution in highlyscattering biological tissues, Opt Commun 154, p.383-389 (1998)

[1.391] {Sect. 1.5} M.S.Z. Kellermayer, S.B. Smith, H.L. Granzier, C. Bustamante:Folding-unfolding transitions in single titin molecules characterized withlaser tweezers, Science 276, p.1112-1116 (1997)

[1.392] {Sect. 1.5} D. Leupold, I.E. Kochevar: Multiphoton Photochemistry in Bi-ological Systems: Introduction, Photochem. and Photobiol. 66, p.562-565(1997)

[1.393] {Sect. 1.5} S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, W.W. Webb:Measuring serotonin distribution in live cells with three-photon excitation,Science 275, p.530-532 (1997)

[1.394] {Sect. 1.5} M. Sauer, K.H. Drexhage, C. Zander, J. Wolfrum: Diode laserbased detection of single molecules in solutions, Chem Phys Lett 254, p.223-228 (1996)

[1.395] {Sect. 1.5} G.J. Tearney, B.E. Bouma, S.A. Boppart, B. Golubovic, E.A.Swanson, J.G. Fujimoto: Rapid acquisition of in vivo biological images byuse of optical coherence tomography, Optics Letters 21, p.1408-1410 (1996)

[1.396] {Sect. 1.5} L.H. Wang, D. Liu, N. He, S.L. Thomsen: Biological laser action,Appl Opt 35, p.1775-1779 (1996)

1.5 Applications 659

[1.397] {Sect. 1.5} W.A. Carrington, R.M. Lynch, E.D.W. Moore, G. Isenberg,K.E. Fogarty, F.S. Fredric: Superresolution three-dimensional images offluorescence in cells with minimal light exposure, Science 268, p.1483-1487(1995)

[1.398] {Sect. 1.5} P. Anger, P. Bharadwaj, L. Novotny: Enhancement and quench-ing of single-molecule fluorescence – art. no. 113002, Phys Rev Lett 9611,p.3002 (2006)

[1.399] {Sect. 1.5} C. Kung, M.D. Barnes, N. Lermer, W.B. Whitten, J.M. Ramsey:Single-molecule analysis of ultradilute solutions with guided streams of 1-mu m water droplets, Appl Opt 38, p.1481-1487 (1999)

[1.400] {Sect. 1.5} M. Sauer, K.H. Drexhage, U. Lieberwirth, R. Muller, S. Nord,C. Zander: Dynamics of the electron transfer reaction between an oxazinedye and DNA oligonucleotides monitored on the single-molecule level, ChemPhys Lett 284, p.153-163 (1998)

[1.401] {Sect. 1.5} D.S. Ko, M. Sauer, S. Nord, R. Muller, J. Wolfrum: Determi-nation of the diffusion coefficient of dye in solution at single molecule level,Chem Phys Lett 269, p.54-58 (1997)

[1.402] {Sect. 1.5} S.M. Nie, S.R. Emery: Probing single molecules and singlenanoparticles by surface-enhanced Raman scattering, Science 275, p.1102-1106 (1997)

[1.403] {Sect. 1.5} D.A. Vandenbout, W.T. Yip, D.H. Hu, D.K. Fu, T.M. Swager,P.F. Barbara: Discrete intensity jumps and intramolecular electronic energytransfer in the spectroscopy of single conjugated polymer molecules, Science277, p.1074-1077 (1997)

[1.404] {Sect. 1.5} X.H. Xu, E.S. Yeung: Direct measurement of single-moleculediffusion and photodecomposition in free solution, Science 275, p.1106-1109(1997)

[1.405] {Sect. 1.5} R.M. Dickson, D.J. Norris, Y.L. Tzeng, W.E. Moerner: Three-dimensional imaging of single molecules solvated in pores of poly (acryl-amide) gels, Science 274, p.966-969 (1996)

[1.406] {Sect. 1.5} T. Plakhotnik, D. Walser, M. Pirotta, A. Renn, U.P. Wild: Non-linear spectroscopy on a single quantum system: Two- photon absorptionof a single molecule, Science 271, p.1703-1705 (1996)

[1.407] {Sect. 1.5} O. Burkacky, A. Zumbusch, C. Brackmann, A. Enejder: Dual-pump coherent anti-Stokes-Raman scattering microscopy, Optics Letters 31,p.3656-3658 (2006)

[1.408] {Sect. 1.5} A.S. Morlens, J. Gautier, G. Rey, P. Zeitoun, J.P. Caumes, M.KosRosset, H. Merdji, S. Kazamias, K. Casson, M. Fajardo: Submicrometerdigital in-line holographic microscopy at 32 nm with high-order harmonics,Optics Letters 31, p.3095-3097 (2006)

[1.409] {Sect. 1.5} M.J. Koehler, K. Konig, P. Elsner, R. Buckle, M. Kaatz: In vivoassessment of human skin aging by multiphoton laser scanning tomography,Optics Letters 31, p.2879-2881 (2006)

[1.410] {Sect. 1.5} M.T. Myaing, D.J. MacDonald, X.D. Li: Fiber-optic scanningtwo-photon fluorescence endoscope, Optics Letters 31, p.1076-1078 (2006)

[1.411] {Sect. 1.5} J.P. Ogilvie, E. Beaurepaire, A. Alexandrou, M. Joffre: Fourier-transform coherent anti-Stokes Raman scattering microscopy, Optics Let-ters 31, p.480-482 (2006)

[1.412] {Sect. 1.5} G. Vaschenko, C. Brewer, E. Brizuela, Y. Wang, M.A. Laro-tonda, B.M. Luther, M.C. Marconi, J.J. Rocca, C.S. Menoni: Sub-38 nmresolution tabletop microscopy with 13 nm wavelength laser light, OpticsLetters 31, p.1214-1216 (2006)

660 1. Topics in Photonics

[1.413] {Sect. 1.5} J.R. Unruh, E.S. Price, R.G. Molla, L. StehnoBittel, C.K. John-son, R.Q. Hui: Two-photon microscopy with wavelength switchable fiberlaser excitation, Opt Express 14, p.9825-9831 (2006)

[1.414] {Sect. 1.5} H. Kano, H. Hamaguchi: In-vivo multi-nonlinear optical imag-ing of a living cell using a supercontinuum light source generated from aphotonic crystal fiber, Opt Express 14, p.2798-2804 (2006)

[1.415] {Sect. 1.5} K. Isobe, S. Kataoka, R. Murase, W. Watanabe, T. Higashi, S.Kawakami, S. Matsunaga, K. Fukui, K. Itoh: Stimulated parametric emis-sion microscopy, Opt Express 14, p.786-793 (2006)

[1.416] {Sect. 1.5} E.J. Botcherby, R. Juskaitis, T. Wilson: Scanning two photonfluorescence microscopy with extended depth of field, Opt Commun 268,p.253-260 (2006)

[1.417] {Sect. 1.5} G.J. Simpson: Biological imaging – The diffraction barrier bro-ken, Nature 440, p.879-880 (2006)

[1.418] {Sect. 1.5} P. Dufour, M. Piche, Y. DeKoninck, N. McCarthy: Two-photonexcitation fluorescence microscopy with a high depth of field using an axi-con, Appl Opt 45, p.9246-9252 (2006)

[1.419] {Sect. 1.5} G. Vaschenko, E. Brizuela, C. Brewer, M. Grisham, H. Mancini,C.S. Menoni, M.C. Marconi, J.J. Rocca, W. Chao, J.A. Liddle, E.H. Ander-son, D.T. Attwood, A.V. Vinogradov, I.A. Artioukov, Y.P. Pershyn, V.V.Kondratenko: Nanoimaging with a compact extreme-ultraviolet laser, Op-tics Letters 30, p.2095-2097 (2005)

[1.420] {Sect. 1.5} C. Boudoux: Rapid wavelength-swept spectrally encoded confo-cal microscopy, Opt Express 13, p.8214-8221 (2005)

[1.421] {Sect. 1.5} C. IbanezLopez, G. Saavedra, G. Boyer, M. MartinezCorral:Quasi-isotropic 3-D resolution in two-photon scanning microscopy, Opt Ex-press 13, p.6168-6174 (2005)

[1.422] {Sect. 1.5} H. Kano, H. Hamaguchi: Vibrationally resonant imaging of asingle living cell by supercontinuum-based multiplex coherent anti-StokesRaman scattering microspectroscopy, Opt Express 13, p.1322-1327 (2005)

[1.423] {Sect. 1.5} H. Schroeder, S.L. Chin: Visualization of the evolution of mul-tiple filaments in methanol, Opt Commun 234, p.399-406 (2004)

[1.424] {Sect. 1.5} A. Egner, S. Jakobs, S.W. Hell: Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in liveyeast, PNAS 99, p.3370-3375 (2002)

[1.425] {Sect. 1.5} R.S. Bennink, S.J. Bentley, R.W. Boyd: ”Two-photon” coinci-dence imaging with a classical source – art. no. 113601, Phys Rev Lett 8911,p.3601 (2002)

[1.426] {Sect. 1.5} D.S. Elson, J. Siegel, S.E.D. Webb, S. LevequeFort, M.J. Lever,P.M.W. French, K. Lauritsen, M. Wahl, R. Erdmann: Fluorescence lifetimesystem for microscopy and multiwell plate imaging with a blue picoseconddiode laser, Optics Letters 27, p.1409-1411 (2002)

[1.427] {Sect. 1.5} M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Naka-mura, S. Kawata: Second-harmonic-generation microscope with a microlensarray scanner, Optics Letters 27, p.1324-1326 (2002)

[1.428] {Sect. 1.5} D. Bird, M. Gu: Compact two-photon fluorescence microscopebased on a single-mode fiber coupler, Optics Letters 27, p.1031-1033 (2002)

[1.429] {Sect. 1.5} G. Pedrini, H.J. Tiziani: Short-coherence digital microscopy byuse of a lensless holographic imaging system, Appl Opt 41, p.4489-4496(2002)

[1.430] {Sect. 1.5} D. Bird, M. Gu: Resolution improvement in two-photon fluo-rescence microscopy with a single-mode fiber, Appl Opt 41, p.1852-1857(2002)

1.5 Applications 661

[1.431] {Sect. 1.5} J.T. Frohn, H.F. Knapp, A. Stemmer: Three-dimensional res-olution enhancement in fluorescence microscopy by harmonic excitation,Optics Letters 26, p.828-830 (2001)

[1.432] {Sect. 1.5} T.M. Fortier, Y. LeCoq, J.E. Stalnaker, D. Ortega, S.A. Did-dams, C.W. Oates, L. Hollberg: Kilohertz-resolution spectroscopy of coldatoms with an optical frequency comb – art. no. 163905, Phys Rev Lett9716, p.3905 (2006)

[1.433] {Sect. 1.5} S.E. Park, E.B. Kim, Y.H. Park, D.S. Yee, T.Y. Kwon, C.Y.Park, H.S. Moon, T.H. Yoon: Sweep optical frequency synthesizer with adistributed-Bragg- refiector laser injection locked by a single component ofan optical frequency comb, Optics Letters 31, p.3594-3596 (2006)

[1.434] {Sect. 1.5} M.J. Ablowitz, B. Ilan, S.T. Cundiff: Noise-induced linewidthin frequency combs, Optics Letters 31, p.1875-1877 (2006)

[1.435] {Sect. 1.5} T.M. Fortier, A. Bartels, S.A. Diddams: Octave-spanningTi:sapphire laser with a repetition rate >1 GHz for optical frequency mea-surements and comparisons, Optics Letters 31, p.1011-1013 (2006)

[1.436] {Sect. 1.5} Z.H. Duan, Y. Miyamoto, M. Takeda: Dispersion-free opticalcoherence depth sensing with a spatial frequency comb generated by anangular spectrum modulator, Opt Express 14, p.12109-12121 (2006)

[1.437] {Sect. 1.5} J. Jin, Y.J. Kim, Y. Kim, S.W. Kim: Absolute length calibrationof gauge blocks using optical comb of a femtosecond pulse laser, Opt Express14, p.5968-5974 (2006)

[1.438] {Sect. 1.5} H. Inaba, Y. Daimon, F.L. Hong, A. Onae, K. Minoshima, T.R.Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, M. Nakazawa:Long-term measurement of optical frequencies using a simple, robust andlow-noise fiber based frequency comb, Opt Express 14, p.5223-5231 (2006)

[1.439] {Sect. 1.5} S. Witte, R.T. Zinkstok, W. Ubachs, W. Hogervorst, K.S.E.Eikema: Deep-ultraviolet quantum interference metrology with ultrashortlaser pulses, Science 307, p.400-403 (2005)

[1.440] {Sect. 1.5} C. Daussy, O. Lopez, A. AmyKlein, A. Goncharov, M. Guinet, C.Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G.Santarelli, M.E. Tobar, A.N. Luiten: Long-distance frequency disseminationwith a resolution of 10(-17) – art. no. 203904, Phys Rev Lett 9420, p.3904(2005)

[1.441] {Sect. 1.5} R.J. Jones, K.D. Moll, M.J. Thorpe, J. Ye: Phase-coherent fre-quency combs in the vacuum ultraviolet via high- harmonic generation in-side a femtosecond enhancement cavity – art. no. 193201, Phys Rev Lett9419, p.3201 (2005)

[1.442] {Sect. 1.5} A. AmyKlein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez,A. Shelkovnikov, C. Chardonnet: Absolute frequency measurement of a SF6two-photon line by use of a femtosecond optical comb and sum-frequencygeneration, Optics Letters 30, p.3320-3322 (2005)

[1.443] {Sect. 1.5} V. Gerginov, C.E. Tanner, S.A. Diddams, A. Bartels, L. Holl-berg: High-resolution spectroscopy with a femtosecond laser frequencycomb, Optics Letters 30, p.1734-1736 (2005)

[1.444] {Sect. 1.5} B.R. Washburn, W.C. Swann, N.R. Newbury: Response dy-namics of the frequency comb output from a femtosecond fiber laser, OptExpress 13, p.10622-10633 (2005)

[1.445] {Sect. 1.5} G.R. Lin, I.H. Chiu: Femtosecond wavelength tunable semicon-ductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz, Opt Express 13, p.8772-8780 (2005)

[1.446] {Sect. 1.5} I. Hartl, G. Imeshev, M.E. Fermann, C. Langrock, M.M. Fejer:Integrated self-referenced frequency-comb laser based on a combination offiber and waveguide technology, Opt Express 13, p.6490-6496 (2005)

662 1. Topics in Photonics

[1.447] {Sect. 1.5} N.R. Newbury, B.R. Washburn: Theory of the frequency comboutput from a femtosecond fiber laser, Ieee J Quantum Electron 41, p.1388-1402 (2005)

[1.448] {Sect. 1.5} L.S. Ma, Z.Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R.S.Windeler, G. Wilpers, C. Oates, L. Hollberg, S.A. Diddams: Optical fre-quency synthesis and comparison with uncertainty at the 10(-19) level, Sci-ence 303, p.1843-1845 (2004)

[1.449] {Sect. 1.5} A. Bartels, C.W. Oates, L. Hollberg, S.A. Diddams: Stabilizationof femtosecond laser frequency combs with subhertz residual linewidths,Optics Letters 29, p.1081-1083 (2004)

[1.450] {Sect. 1.5} M. Zimmermann, C. Gohle, R. Holzwarth, T. Udem, T.W.Hansch: Optical clockwork with an offset-free difference-frequency comb:accuracy of sum- and difference-frequency generation, Optics Letters 29,p.310-312 (2004)

[1.451] {Sect. 1.5} A. Baltuska, T. Fuji, T. Kobayashi: Self-referencing of thecarrier-envelope slip in a 6-fs visible parametric amplifier, Optics Letters27, p.1241-1243 (2002)

[1.452] {Sect. 1.5} S. Schilier: Spectrometry with frequency combs, Optics Letters27, p.766-768 (2002)

[1.453] {Sect. 1.5} T. Udem, R. Holzwarth, T.W. Hansch: Optical frequency metrol-ogy, Nature 416, p.233-237 (2002)

[1.454] {Sect. 1.5} R. Holzwarth, M. Zimmermann, T. Udem, T.W. Hansch, P.Russbuldt, K. Gabel, R. Poprawe, J.C. Knight, W.J. Wadsworth, P.S.J.Russell: White-light frequency comb generation with a diode-pumped Cr :LiSAF laser, Optics Letters 26, p.1376-1378 (2001)

[1.455] {Sect. 1.5} R. Ell, U. Morgner, F.X. Kartner, J.G. Fujimoto, E.P. Ippen, V.Scheuer, G. Angelow, T. Tschudi, M.J. Lederer, A. Boiko, B. LutherDavies:Generation of 5-fs pulses and octave-spanning spectra directly from a Ti :sapphire laser, Optics Letters 26, p.373-375 (2001)

[1.456] {Sect. 1.5} F. Seifert, P. Kwee, M. Heurs, B. Willke, K. Danzmann: Laserpower stabilization for second-generation gravitational wave detectors, Op-tics Letters 31, p.2000-2002 (2006)

[1.457] {Sect. 1.5} B. Abbott, R. Abbott, R. Adhikari, J. Agresti, P. Ajith, B. Allen,J. Allen, R. Amin, S.B. Anderson, W.G. Anderson, M. Araya, H. Arman-dula, M. Ashley, C. Aulbert, S. Babak, R. Balasubramanian, S. Ballmer,B.C. Barish, C. Barker, D. Barker, M.A. Barton, K. Bayer, K. Belczynski,J. Betzwieser, B. Bhawal, I.A. Bilenko, G. Billingsley, E. Black, K. Black-burn, L. Blackburn, B. Bland, L. Bogue, R. Bork, S. Bose, P.R. Brady, V.B.Braginsky, J.E. Brau, D.A. Brown, A. Buonanno, D. Busby, W.E. Butler,L. Cadonati, G. Cagnoli, J.B. Camp, J. Cannizzo, K. Cannon, L. Carde-nas, K. Carter, M.M. Casey: Upper limits on a stochastic background ofgravitational waves – art. no. 221101, Phys Rev Lett 9522, p.1101 (2005)

[1.458] {Sect. 1.5} J.M. Courty, A. Heidmann, M. Pinard: Quantum locking ofmirrors in interferometers – art. no. 083601, Phys Rev Lett 9008, p.3601(2003)

[1.459] {Sect. 1.5} G. Muller, T. Delker, D.B. Tanner, D. Reitze: Dual-recycledcavity-enhanced Michelson interferometer for gravitational-wave detection,Appl Opt 42, p.1257-1268 (2003)

[1.460] {Sect. 1.5} K.A. Strain, G. Muller, T. Delker, D.H. Reitze, D.B. Tan-ner, J.E. Mason, P.A. Willems, D.A. Shaddock, M.B. Gray, C. MowLowry,D.E. McClelland: Sensing and control in dual-recycling laser interferometergravitational-wave detectors, Appl Opt 42, p.1244-1256 (2003)

1.5 Applications 663

[1.461] {Sect. 1.5} O. Jennrich, G. Newton, K.D. Skeldon, J. Hough: A high powerphotodetection system for use with laser interferometric gravitational wavedetectors, Opt Commun 205, p.405-413 (2002)

[1.462] {Sect. 1.5} N. Seto, S. Kawamura, T. Nakamura: Possibility of direct mea-surement of the acceleration of the universe using 0.1 Hz band laser inter-ferometer gravitational wave antenna in space – art. no. 221103, Phys RevLett 8722, p.1103 (2001)

[1.463] {Sect. 1.5} P. Astone, M. Bassan, P. Bonifazi, P. Carelli, E. Coccia,V. Fafone, S. DAntonio, S. Frasca, A. Marini, E. Mauceli et al.: Cosmic raysobserved by the resonant gravitational wave detector NAUTILUS, Phys RevLett 84, p.14-17 (2000)

[1.464] {Sect. 1.5} B. Allen, J.K. Blackburn, P.R. Brady, J.D.E. Creighton,T. Creighton, S. Droz, A.D. Gillespie, S.A. Hughes, S. Kawamura, T.T.Lyons et al.: Observational limit on gravitational waves from binary neu-tron stars in the Galaxy, Phys Rev Lett 83, p.1498-1501 (1999)

[1.465] {Sect. 1.5} G. Heinzel, A. Rudiger, R. Schilling, K. Strain, W. Winkler, J.Mizuno, K. Danzmann: Automatic beam alignment in the Garching 30-mprototype of a laser- interferometric gravitational wave detector (Vol 160,pg 321, 1999), Opt Commun 164, p.161 (1999)

[1.466] {Sect. 1.5} C.J. Walsh, A.J. Leistner, B.F. Oreb: Power spectral densityanalysis of optical substrates for gravitational-wave interferometry, ApplOpt 38, p.4790-4801 (1999)

[1.467] {Sect. 1.5} F. Benabid, M. Notcutt, L. Ju, D.G. Blair: Rayleigh scattering insapphire test mass for laser interferometric gravitational-wave detectors: II:Rayleigh scattering induced noise in a laser interferometric-wave detector,Opt Commun 170, p.9-14 (1999)

[1.468] {Sect. 1.5} T. Uchiyama, T. Tomaru, M.E. Tobar, D. Tatsumi, S. Miyoki,M. Ohashi, K. Kuroda, T. Suzuki, N. Sato, T. Haruyama et al.: Mechani-cal quality factor of a cryogenic sapphire test mass for gravitational wavedetectors, Phys Lett A 261, p.5-11 (1999)

[1.469] {Sect. 1.5} P. Fritschel, N. Mavalvala, D. Shoemaker, D. Sigg, M. Zucker,G. Gonzalez: Alignment of an interferometric gravitational wave detector,Appl Opt 37, p.6734-6747 (1998)

[1.470] {Sect. 1.5} A.R. Agachev, A.B. Balakin, G.N. Buinov, S.L. Buchinskaya,R.A. Daishev, G.V. Kisunko, V.A. Komissaruk, S.V. Mavrin, Z.G. Murza-khanov, R.A. Rafikov et al.: Pentagonal two-loop ring interferometer, TechPhys 43, p.591-595 (1998)

[1.471] {Sect. 1.5} A.Y. Ageev, I.A. Bilenko, V.B. Braginsky: Excess noise in thesteel suspension wires for the laser gravitational wave detector, Phys LettA 246, p.479-484 (1998)

[1.472] {Sect. 1.5} P. Fritschel, N. Mavalvala, D. Shoemaker, D. Sigg, M. Zucker,G. Gonzalez: Alignment of an interferometric gravitational wave detector,Appl Opt 37, p.6734-6747 (1998)

[1.473] {Sect. 1.5} M.V. Plissi, K.A. Strain, C.I. Torrie, N.A. Robertson, S. Kill-bourn, S. Rowan, S.M. Twyford, H. Ward, K.D. Skeldon, J. Hough: Aspectsof the suspension system for GEO 600, Rev Sci Instr 69, p.3055-3061 (1998)

[1.474] {Sect. 1.5} T. Uchiyama, D. Tatsumi, T. Tomaru, M.E. Tobar, K. Kuroda,T. Suzuki, N. Sato, A. Yamamoto, T. Haruyama, T. Shintomi: Cryogeniccooling of a sapphire mirror-suspension for interferometric gravitationalwave detectors, Phys Lett A 242, p.211-214 (1998)

[1.475] {Sect. 1.5} S.V. Dhurandhar, P. Hello, B.S. Sathyaprakash, J.Y. Vinet:Stability of giant Fabry-Perot cavities of interferometric gravitational-wavedetectors, Appl Opt 36, p.5325-5334 (1997)

664 1. Topics in Photonics

[1.476] {Sect. 1.5} A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully,G. Muller, R.H. Rinkleff: White-light cavities, atomic phase coherence, andgravitational wave detectors, Opt Commun 134, p.431-439 (1997)

[1.477] {Sect. 1.5} S. Braccini, C. Bradaschia, R. Delfabbro, A. Divirgilio, I. Fer-rante, F. Fidecaro, R. Flaminio, A. Gennai, A. Giazotto, P. Lapenna, et al.:Mechanical filters for the gravitational waves detector VIRGO: Performanceof a two-stage suspension, Rev Sci Instr 68, p.3904-3906 (1997)

[1.478] {Sect. 1.5} H. Heitmann, C. Drezen: Measurement of position and orienta-tion of optical elements in interferometric gravity wave detectors, Rev SciInstr 68, p.3197-3205 (1997)

[1.479] {Sect. 1.5} P.W. Mcnamara, H. Ward, J. Hough, D. Robertson: Laserfrequency stabilization for spaceborne gravitational wave detectors, ClassQuantum Gravity 14, p.1543-1547 (1997)

[1.480] {Sect. 1.5} J. Mizuno, A. Rudiger, R. Schilling, W. Winkler, K. Danzmann:Frequency response of Michelson- and Sagnac-based interferometers, OptCommun 138, p.383-393 (1997)

[1.481] {Sect. 1.5} M. Musha, K. Nakagawa, K. Ueda: Wideband and high fre-quency stabilization of an injection-locked Nd:YAG laser to a high-finesseFabry-Perot cavity, Optics Letters 22, p.1177-1179 (1997)

[1.482] {Sect. 1.5} M. Musha, S. Telada, K. Nakagawa, M. Ohashi, K. Ueda: Mea-surement of frequency noise spectra of frequency- stabilized LD-pumpedNd:YAG laser by using a cavity with separately suspended mirrors, OptCommun 140, p.323-330 (1997)

[1.483] {Sect. 1.5} N. Nakagawa, B.A. Auld, E. Gustafson, M.M. Fejer: Estimationof thermal noise in the mirrors of laser interferometric gravitational wavedetectors: Two point correlation function, Rev Sci Instr 68, p.3553-3556(1997)

[1.484] {Sect. 1.5} A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Muller,R.H. Rinkleff: White-light cavities, atomic phase coherence, and gravita-tional wave detectors, Opt Commun 134, p.431-439 (1997)

[1.485] {Sect. 1.5} J. Giaime, P. Saha, D. Shoemaker, L. Sievers: A passivevibration isolation stack for LIGO: Design, modeling, and testing, Rev SciInstr 67, p.208-214 (1996)

[1.486] {Sect. 1.5} G. Heinzel, J. Mizuno, R. Schilling, W. Winkler, A. Rudiger, K.Danzmann: An experimental demonstration of resonant sideband extrac-tion for laser-interferometric gravitational wave detectors, Phys Lett A 217,p.305-314 (1996)

[1.487] {Sect. 1.5} L. Ju, M. Notcutt, D. Blair, F. Bondu, C.N. Zhao: Sapphirebeamsplitters and test masses for advanced laser interferometer gravita-tional wave detectors, Phys Lett A 218, p.197-206 (1996)

[1.488] {Sect. 1.5} D.E. Mcclelland: An overview of recycling in laser interferometricgravitational wave detectors, Aust J Phys 48, p.953-970 (1996)

[1.489] {Sect. 1.5} D. Nicholson, C.A. Dickson, W.J. Watkins, B.F. Schutz,J. Shuttleworth, G.S. Jones, D.I. Robertson, N.L. Mackenzie, K.A. Strain,B.J. Meers, et al.: Results of the first coincident observations by two laser-interferometric gravitational wave detectors, Phys Lett A 218, p.175-180(1996)

[1.490] {Sect. 1.5} P.J. Veitch, J. Munch, M.W. Hamilton, D. Ottaway, A. Green-tree, A. Tikhomirov: High power lasers and novel optics for laser interfero-metric gravitational wave detectors, Aust J Phys 48, p.999-1006 (1996)

[1.491] {Sect. 1.5} Y. Wang, A. Stebbins, E.L. Turner: Gravitational lensing ofgravitational waves from merging neutron star binaries, Phys Rev Lett 77,p.2875-2878 (1996)

1.5 Applications 665

[1.492] {Sect. 1.5} S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect,J.P. Pocholle: Mode-coupling control in resonant devices: Application tosolid-state ring lasers – art. no. 093902, Phys Rev Lett 9709, p.3902 (2006)

[1.493] {Sect. 1.5} Y.P. Wang, L.M. Xiao, D.N. Wang, W. Jin: Highly sensitivelong-period fiber-grating strain sensor with low temperature sensitivity, Op-tics Letters 31, p.3414-3416 (2006)

[1.494] {Sect. 1.5} J.H. Chow, I.C.M. Littler, D.E. McClelland, M.B. Gray: Laserfrequency-noise-limited ultrahigh resolution remote fiber sensing, Opt Ex-press 14, p.4617-4624 (2006)

[1.495] {Sect. 1.5} J.M. Tualle, H.L. Nghiem, C. Schafauer, P. Berthaud, E. Tinet,D. Ettori, S. Avrillier: Time-resolved measurements from speckle interfer-ometry, Optics Letters 30, p.50-52 (2005)

[1.496] {Sect. 1.5} P. Heinz, E. Garmire: Low-power optical vibration detection byphotoconductance monitoring with a laser speckle pattern, Optics Letters30, p.3027-3029 (2005)

[1.497] {Sect. 1.5} M.J. Damzen, A. Boyle, A. Minassian: Adaptive gain interfer-ometry: a new mechanism for optical metrology with speckle beams, OpticsLetters 30, p.2230-2232 (2005)

[1.498] {Sect. 1.5} A.C. Volker, P. Zakharov, B. Weber, F. Buck, F. Scheffold:Laser speckle imaging with an active noise reduction scheme, Opt Express13, p.9782-9787 (2005)

[1.499] {Sect. 1.5} O. Boyko, C. Valentin, G. Rey, L. Antonucci, P. Balcou, S.Coudreau: Temporal superresolution of ultrashort laser pulses, Opt Express13, p.8222-8230 (2005)

[1.500] {Sect. 1.5} R. GiezendannerThoben, U. Meier, W. Meier, J. Heinze, M.Aigner: Phase-locked two-line OH planar laser-induced fluorescence ther-mometry in a pulsating gas turbine model combustor at atmospheric pres-sure, Appl Opt 44, p.6565-6577 (2005)

[1.501] {Sect. 1.5} R. Menzel: Metrological applications, Femtosecond Technologyfor Technical and Medical Applications, p.257-283 (2004) ed. Dausinger, F.Lichtner, H. Lubatschowski: Springer-Verlag Berlin

[1.502] {Sect. 1.5} A. Rohrbach, H. Kress, E.H.K. Stelzer: Three-dimensional track-ing of small spheres in focused laser beams: influence of the detection an-gular aperture, Optics Letters 28, p.411-413 (2003)

[1.503] {Sect. 1.5} J. Bae, J. Lee, D. Kim, J.Y. Kim, O. Kwon: Extremely uniformangular distributions of the three-dimensional emission spectra of photonicquantum ring lasers, Appl Opt 42, p.5508-5511 (2003)

[1.504] {Sect. 1.5} D. Weidmann, D. Courtois: Infrared 7.6-mu m lead-salt diodelaser heterodyne radiometry of water vapor in a CH4-air premixed flatflame, Appl Opt 42, p.1115-1121 (2003)

[1.505] {Sect. 1.5} G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke,F. Riehle: Optical clock with ultracold neutral atoms – art. no. 230801,Phys Rev Lett 8923, p.801 (2002)

[1.506] {Sect. 1.5} D.H. Liu, J.F. Xu, R.S. Li, R. Dai, W.P. Gong: Measurementsof sound speed in the water by Brillouin scattering using pulsed Nd : YAGlaser, Opt Commun 203, p.335-340 (2002)

[1.507] {Sect. 1.5} C. Siegel, M. Braud, J.E. Balmer, J. Nilsen: Near-field spatialimaging of the Ni-like palladium soft-X-ray laser, Opt Commun 210, p.305-312 (2002)

[1.508] {Sect. 1.5} T. Mohamed, G. Andler, R. Schuch: Development of an electro-optical device for storage of high power laser pulses, Opt Commun 214,p.291-295 (2002)

666 1. Topics in Photonics

[1.509] {Sect. 1.5} R. Kohler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield,A.G. Davies, D.A. Ritchie, R.C. Iotti, F. Rossi: Terahertz semiconductor-heterostructure laser, Nature 417, p.156-159 (2002)

[1.510] {Sect. 1.5} T. Sekikawa, T. Yamazaki, Y. Nabekawa, S. Watanabe: Fem-tosecond lattice relaxation induced by inner-shell excitation, J Opt Soc AmB Opt Physics 19, p.1941-1945 (2002)

[1.511] {Sect. 1.5} J. Brillaud, F. Lagattu: Limits and possibilities of laser speckleand white-light image- correlation methods: theory and experiments, ApplOpt 41, p.6603-6613 (2002)

[1.512] {Sect. 1.5} A.P. Yalin, Y.Z. Ionikh, R.B. Miles: Gas temperature measure-ments in weakly ionized glow discharges with filtered Rayleigh scattering,Appl Opt 41, p.3753-3762 (2002)

[1.513] {Sect. 1.5} J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Uma-suthan, A. Wallace: Optical design and evaluation of a three-dimensionalimaging and ranging system based on time-correlated single-photon count-ing, Appl Opt 41, p.1063-1070 (2002)

[1.514] {Sect. 1.5} G.W. Collins, P.M. Celliers, L.B. DaSilva, D.M. Gold,R. Cauble: Laser-shock-driven laboratory measurements of the equationof state of hydrogen isotopes in the megabar regime, High Pressure Res 16,p.281-290 (2000)

[1.515] {Sect. 1.5} A. Mohacsi, M. Szakall, Z. Bozoki, G. Szabo, Z. Bor: Highstability external cavity diode laser system for photoacoustic gas detection,Laser Phys 10, p.378-381 (2000)

[1.516] {Sect. 1.5} E. Beaurepaire, L. Moreaux, F. Amblard, J. Mertz: Combinedscanning optical coherence and two-photon-excited fluorescence microscopy,Optics Letters 24, p.969-971 (1999)

[1.517] {Sect. 1.5} A. Garnache, A.A. Kachanov, F. Stoeckel, R. Planel: High-sensitivity intracavity laser absorption spectroscopy with vertical-external-cavity surface-emitting semiconductor lasers, Optics Letters 24, p.826-828(1999)

[1.518] {Sect. 1.5} J. Han: Fabry-Perot cavity chemical sensors by silicon micro-machining techniques, Appl Phys Lett 74, p.445-447 (1999)

[1.519] {Sect. 1.5} E. Lacot, R. Day, F. Stoeckel: Laser optical feedback tomogra-phy, Optics Letters 24, p.744-746 (1999)

[1.520] {Sect. 1.5} J. Nolte, M. Paul: ICP-OES analysis of coins using laser ablation,At Spectrosc 20, p.212-216 (1999)

[1.521] {Sect. 1.5} H. Okayama, L.Z. Wang: Measurement of the spatial coherenceof light influenced by turbulence, Appl Opt 38, p.2342-2345 (1999)

[1.522] {Sect. 1.5} K.A. Peterson, D.B. Oh: High-sensitivity detection of CH rad-icals in flames by use of a diode- laser-based near-ultraviolet light source,Optics Letters 24, p.667-669 (1999)

[1.523] {Sect. 1.5} F.M. Xu, H.E. Pudavar, P.N. Prasad, D. Dickensheets: Confocalenhanced optical coherence tomography for nondestructive evaluation ofpaints and coatings, Optics Letters 24, p.1808-1810 (1999)

[1.524] {Sect. 1.5} G. Zikratov, F.Y. Yueh, J.P. Singh, O.P. Norton, R.A. Kumar,R.L. Cook: Spontaneous anti-Stokes Raman probe for gas temperature mea-surements in industrial furnaces, Appl Opt 38, p.1467-1475 (1999)

[1.525] {Sect. 1.5} C.-T. Hsieh, C.-K. Lee: Cylindrical-type nanometer-resolutionlaser diffractive optical encoder, Appl. Opt. 38, p.4743-4750 (1999)

[1.526] {Sect. 1.5} V. Lecoeuche, D.J. Webb, C.N. Pannell, D.A. Jackson: Brillouinbased distributed fibre sensor incorporating a mode-locked Brillouin fibrering laser, Opt Commun 152, p.263-268 (1998)

[1.527] {Sect. 1.5} K.J. Schulz, W.R. Simpson: Frequency-matched cavity ring-down spectroscopy, Chem Phys Lett 297, p.523-529 (1998)

1.5 Applications 667

[1.528] {Sect. 1.5} F. Kuhnemann, K. Schneider, A. Hecker, A.A.E. Martis,W. Urban, S.Schiller, J. Mlynek: Photoacoustic trace-gas detection usinga cw single-frequency parametric oscillator, Appl. Phys. B 66, p.741-745(1998)

[1.529] {Sect. 1.5} Y.M. Chang, L. Xu, H.W.K. Tom: Observation of coherent sur-face optical phonon oscillations by time-resolved surface second-harmonicgeneration, Phys Rev Lett 78, p.4649-4652 (1997)

[1.530] {Sect. 1.5} J.C. Cotteverte, J. Poirson, A. LeFloch, F. Bretenaker,A. Chauvin: Laser magnetometer measurement of the natural remanentmagnetization of rocks, Appl Phys Lett 70, p.3075-3077 (1997)

[1.531] {Sect. 1.5} J. Larsson, Z. Chang, E. Judd, P.J. Schuck, R.W. Falcone, P.A.Heimann, H.A. Padmore, H.C. Kapteyn, P.H. Bucksbaum, M.M. Murnane,et al.: Ultrafast x-ray diffraction using a streak-camera detector in averagingmode, Optics Letters 22, p.1012-1014 (1997)

[1.532] {Sect. 1.5} B.W. Lee, H.J. Jeong, B.Y. Kim: High-sensitivity mode-lockedfiber laser gyroscope, Optics Letters 22, p.129-131 (1997)

[1.533] {Sect. 1.5} R.M. Mihalcea, D.S. Baer, R.K. Hanson: Diode laser sensor formeasurements of CO, CO2, and CH4 in combustion flows, Appl Opt 36,p.8745-8752 (1997)

[1.534] {Sect. 1.5} R.B. Rogers, W.V. Meyer, J.X. Zhu, P.M. Chaikin, W.B. Russel,M. Li, W.B. Turner: Compact laser light-scattering instrument for micro-gravity research, Appl Opt 36, p.7493-7500 (1997)

[1.535] {Sect. 1.5} E.W. Rothe, P. Andresen: Application of tunable excimer lasersto combustion diagnostics: A review, Appl Opt 36, p.3971-4033 (1997)

[1.536] {Sect. 1.5} A. Brockhinke, K. Kohsehoinghaus, P. Andresen: Double-pulseone-dimensional Raman and Rayleigh measurements for the detection oftemporal and spatial structures in a turbulent H-2-air diffusion flame, Op-tics Letters 21, p.2029-2031 (1996)

[1.537] {Sect. 1.5} S.L. Min, A. Gomez: High-resolution size measurement of singlespherical particles with a fast Fourier transform of the angular scatteringintensity, Appl Opt 35, p.4919-4926 (1996)

[1.538] {Sect. 1.5} P. Repond, M.W. Sigrist: Photoacoustic spectroscopy on tracegases with continuously tunable CO2 laser, Appl Opt 35, p.4065-4085 (1996)

[1.539] {Sect. 1.5} P.A. Roos, M. Stephens, C.E. Wieman: Laser vibrometer basedon optical-feedback-induced frequency modulation of a single-mode laserdiode, Appl Opt 35, p.6754-6761 (1996)

[1.540] {Sect. 1.5} T. Dresel, G. Hausler, H. Venzke: Three-dimensional sensing ofrough surfaces by coherence radar, Appl. Opt. 31, p.919-925 (1992)

[1.541] {Sect. 1.5} T.J. Kane, W.J. Kozlovsky, R.L. Byer, C.E. Byvik: Coherentlaser radar at 1.06 µm using Nd:YAG lasers, Opt. Lett. 12, p.239-241 (1987)

[1.542] {Sect. 1.5} A. Guttman, T. Lengyel, M. Szoke, M. SasvariSzekely: Ultra-thin-layer agarose gel electrophoresis – II. Separation of DNA fragments oncomposite agarose-linear polymer matrices, J Chromatogr A 871, p.289-298(2000)

[1.543] {Sect. 1.5} M. Neumann, D.P. Herten, A. Dietrich, J. Wolfrum, M. Sauer:Capillary array scanner for time-resolved detection and identification offluorescently labelled DNA fragments, J Chromatogr A 871, p.299-310(2000)

[1.544] {Sect. 1.5} H.H. Zhou, A.W. Miller, Z. Sosic, B. Buchholz, A.E. Barron,L. Kotler, B.L. Karger: DNA sequencing up to 1300 bases in two hoursby capillary electrophoresis with mixed replaceable linear polyacrylamidesolutions, Anal Chem 72, p.1045-1052 (2000)

[1.545] {Sect. 1.5} S.O. Kelley, J.K. Barton: Electron transfer between bases indouble helical DNA, Science 283, p.375-381 (1999)

668 1. Topics in Photonics

[1.546] {Sect. 1.5} G.V. Shivashankar, A. Libchaber: Biomolecular recognition us-ing submicron laser lithography, Appl Phys Lett 73, p.417-419 (1998)

[1.547] {Sect. 1.5} R. Muller, D.P. Herten, U. Lieberwirth, M. Neumann,M. Sauer, A. Schulz, S. Siebert, K.H. Drexhage, J. Wolfrum: Efficient DNAsequencing with a pulsed semiconductor laser and a new fluorescent dye set,Chem Phys Lett 279, p.282-288 (1997)

[1.548] {Sect. 1.5} A. Anders: Selective Laser Excitation of Bases in Nucleic Acids,Appl. Phys. 20, p.257-259 (1979)

[1.549] {Sect. 1.5} A. Anders: Models of DNA-Dye-Complexes: Energy Transferand Molecular Structures as Evaluated by Laser Excitation, Appl. Phys.18, p.333-338 (1979)

[1.550] {Sect. 1.5} E.A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S.Backus, I.P. Christov, A. Aquila, E.M. Gullikson, D.T. Attwood, M.M.Murnane, H.C. Kapteyn: Coherent soft x-ray generation in the water win-dow with quasi-phase matching, Science 302, p.95-98 (2003)

[1.551] {Sect. 1.5} M. Beck, U. Vogt, I. Will, A. Liero, H. Stiel, W. Sandner, T.Wilheim: A pulse-train laser driven XUV source for picosecond pump-probeexperiments in the water window, Opt Commun 190, p.317-326 (2001)

[1.552] {Sect. 1.5} H. Daido, S. Sebban, N. Sakaya, Y. Tohyama, T. Norimatsu,K. Mima, Y. Kato, S. Wang, Y. Gu, G. Huang et al.: Experimental char-acterization of short-wavelength Ni-like soft-x-ray lasing toward the waterwindow, J Opt Soc Am B Opt Physics 16, p.2295-2299 (1999)

[1.553] {Sect. 1.5} C. Spielmann, N.H. Burnett, S. Sartania, R. Koppitsch,M. Schnurer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz: Generationof coherent X-rays in the water window using 5-femtosecond laser pulses,Science 278, p.661-664 (1997)

[1.554] {Sect. 1.5} P. Gibbon: Harmonic generation by femtosecond laser-solid in-teraction: A coherent “water-window” light source?, Phys Rev Lett 76, p.50-53 (1996)

[1.555] {Sect. 1.5} B. Lengeler, C.G. Schroer, M. Richwin, J. Tummler,M. Drakopoulos, A. Snigirev, I. Snigireva: A microscope for hard x raysbased on parabolic compound refractive lenses, Appl Phys Lett 74, p.3924-3926 (1999)

[1.556] {Sect. 1.5} Y. Aglitskiy, T. Lehecka, S. Obenschain, S. Bodner, C. Paw-ley, K. Gerber, J. Sethian, C.M. Brown, J. Seely, U. Feldman et al.: High-resolution monochromatic x-ray imaging system based on spherically bentcrystals, Appl Opt 37, p.5253-5261 (1998)

[1.557] {Sect. 1.5} J.A. Koch, O.L. Landen, T.W. Barbee, P. Celliers, L.B.DaSilva, S.G. Glendinning, B.A. Hammel, D.H. Kalantar, C. Brown, J.Seely et al.: High-energy x-ray microscopy techniques for laser-fusion plasmaresearch at the National Ignition Facility, Appl Opt 37, p.1784-1795 (1998)

[1.558] {Sect. 1.5} C.C. Gaither, E.J. Schmahl, C.J. Crannell, B.R. Dennis, F.L.Lang, L.E. Orwig, C.N. Hartman, G.J. Hurford: Quantitative characteriza-tion of the x-ray imaging capability of rotating modulation collimators withlaser light, Appl Opt 35, p.6714-6726 (1996)

[1.559] {Sect. 1.5} N. Zhavoronkov, Y. Gritsai, M. Bargheer, M. Woerner, T. El-saesser, F. Zamponi, I. Uschmann, E. Forster: Microfocus Cu K-alpha sourcefor femtosecond x-ray science, Optics Letters 30, p.1737-1739 (2005)

[1.560] {Sect. 1.5} K.A. Janulewicz, M. Schnurer, J. Tummler, G. Priebe, E. Risse,P.V. Nickles, B. Greenberg, M. Levin, A. Pukhov, P. Mandelbaum, A.Zigler: Enhancement of a 24.77-nm line emitted by the plasma of a boronnitride capillary discharge irradiated by a high-intensity ultrashort laserpulse, Optics Letters 30, p.1572-1574 (2005)

1.5 Applications 669

[1.561] {Sect. 1.5} J. Seres, E. Seres, A.J. Verhoef, G. Tempea, C. Strelill, P. Wo-brauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, E. Krausz: Source ofcoherent kiloelectronvolt X-rays, Nature 433, p.596 (2005)

[1.562] {Sect. 1.5} P.K. Rambo, I.C. Smith, J.L. Porter, M.J. Hurst, C.S. Speas,R.G. Adams, A.J. Garcia, E. Dawson, B.D. Thurston, C. Wakefield, J.W.Kellogg, M.J. Slattery, H.C. Ives, R.S. Broyles, J.A. Caird, A.C. Erlandson,J.E. Murray, W.C. Behrendt, N.D. Neilsen, J.M. Narduzzi: Z-Beamlet: amultikilojoule, terawatt-class laser system, Appl Opt 44, p.2421-2430 (2005)

[1.563] {Sect. 1.5} F. He, Y.Y. Lau, D.P. Umstadter, R. Kowalczyk: Backscatteringof an intense laser beam by an electron – art. no. 055002, Phys Rev Lett9005, p.5002 (2003)

[1.564] {Sect. 1.5} Y. Jiang, T.W. Lee, W. Li, G. Ketwaroo, C.G. RosePetruck:High-average-power 2-kHz laser for generation of ultrashort x-ray pulses,Optics Letters 27, p.963-965 (2002)

[1.565] {Sect. 1.5} G. Korn, A. Thoss, H. Stiel, U. Vogt, M. Richardson, T. El-saesser, M. Faubel: Ultrashort 1-kHz laser plasma hard x-ray source, OpticsLetters 27, p.866-868 (2002)

[1.566] {Sect. 1.5} F. Delmotte, M.F. Ravet, F. Bridou, F. Varniere, P. Zeitoun, S.Hubert, L. Vanbostal, G. Soullie: X-ray-ultraviolet beam splitters for theMichelson interferometer, Appl Opt 41, p.5905-5912 (2002)

[1.567] {Sect. 1.5} M.F. DeCamp, D.A. Reis, P.H. Bucksbaum, B. Adams, J.M.Caraher, R. Clarke, C.W.S. Conover, E.M. Dufresne, R. Merlin, V. Sto-ica, J.K. Wahlstrand: Coherent control of pulsed X-ray beams, Nature 413,p.825-828 (2001)

[1.568] {Sect. 1.5} I.P. Christov, M.M. Murnane, H.C. Kapteyn: Generation ofsingle-cycle attosecond pulses in the vacuum ultraviolet, Opt Commun 148,p.75-78 (1998)

[1.569] {Sect. 1.5} G. Schriever, K. Bergmann, R. Lebert: Narrowband laser pro-duced extreme ultraviolet sources adapted to silicon/molybdenum multi-layer optics, J Appl Phys 83, p.4566-4571 (1998)

[1.570] {Sect. 1.5} I.V. Tomov, P. Chen, P.M. Rentzepis: Pulse broadening in fem-tosecond x-ray diffraction, J Appl Phys 83, p.5546-5548 (1998)

[1.571] {Sect. 1.5} Z.H. Chang, A. Rundquist, H.W. Wang, M.M. Murnane, H.C.Kapteyn: Generation of coherent soft X rays at 2.7 nm using high harmonics,Phys Rev Lett 79, p.2967-2970 (1997)

[1.572] {Sect. 1.5} R.W. Schoenlein, W.P. Leemans, A.H. Chin, P. Volfbeyn, T.E.Glover, P. Balling, M. Zolotorev, K.J. Kim, S. Chattopadhyay, C.V. Shank:Femtosecond x-ray pulses at 0.4 angstrom generated by 90 degrees Thomsonscattering: A tool for probing the structural dynamics of materials, Science274, p.236-238 (1996)

[1.573] {Sect. 1.5} H.H. Solak, D. He, W. Li, S. SinghGasson, F. Cerrina, B.H.Sohn, X.M. Yang, P. Nealey: Exposure of 38 nm period grating patternswith extreme ultraviolet interferometric lithography, Appl Phys Lett 75,p.2328-2330 (1999)

[1.574] {Sect. 1.5} eds. Updated Roadmap identifies technical, stategic challenges,Solid State Technologyp.43-53 (1995)

[1.575] {Sect. 1.5} S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva: Coherentfocusing of high harmonics: A new way towards the extreme intensities –art. no. 103903, Phys Rev Lett 9410, p.3903 (2005)

[1.576] {Sect. 1.5} S.P. Regan, J.A. Marozas, R.S. Craxton, J.H. Kelly, W.R.Donaldson, P.A. Jaanimagi, D. Jacobs Perkins, R.L. Keck, T.J. Kessler,D.D. Meyerhofer, T.C. Sangster, W. Seka, V.A. Smalyuk, S. Skupsky, J.D.Zuegel: Performance of 1-THz-bandwidth, two-dimensional smoothing by

670 1. Topics in Photonics

spectral dispersion and polarization smoothing of high-power, solid-statelaser beams, J Opt Soc Am B Opt Physics 22, p.998-1002 (2005)

[1.577] {Sect. 1.5} H.W. Yu, G. Bourdet, S. Ferre: Comprehensive modeling ofthe temperature-related laser performances of the amplifiers of the LUCIAlaser, Appl Opt 44, p.6412-6418 (2005)

[1.578] {Sect. 1.5} A. Neauport, E. Journot, G. Gaborit, P. Bouchut: Design, opticalcharacterization, and operation of large transmission gratings for the laserintegration line and laser megajoule facilities, Appl Opt 44, p.3143-3152(2005)

[1.579] {Sect. 1.5} C. Seife: Nuclear proliferation – South Korea admits to laserenrichment program, Science 305, p.1549 (2004)

[1.580] {Sect. 1.5} Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T.Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori,N. Miyanaga, Y. Izawa: Prepulse-free petawatt laser for a fast ignitor, IeeeJ Quantum Electron 40, p.281-293 (2004)

[1.581] {Sect. 1.5} R. Kodama: Nuclear fusion – Fast heating scalable to laser fusionignition, Nature 418, p.933-934 (2002)

[1.582] {Sect. 1.5} R. Kodama, P.A. Norreys, K. Mima, A.E. Dangor, R.G. Evans,H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T.Norimatsu, S.J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo,K.A. Tanaka, Y. Toyama, Y. Yamanaka, M. Zepf: Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition, Nature 412, p.798-802(2001)

[1.583] {Sect. 1.5} V.I. Bespalov: Large-size monosectorial crystal elements for pow-erful laser systems, J Nonlinear Opt Physics Mat 6, p.467-472 (1997)

[1.584] {Sect. 1.5} T.R. Boehly, D.L. Brown, R.S. Craxton, R.L. Keck, J.P. Knauer,J.H. Kelly, T.J. Kessler, S.A. Kumpan, S.J. Loucks, S.A. Letzring, et al.:Initial performance results of the OMEGA laser system, Opt Commun 133,p.495-506 (1997)

[1.585] {Sect. 1.5} M.J. Guardalben: Conoscopic alignment methods for birefrin-gent optical elements in fusion lasers, Appl Opt 36, p.9107-9109 (1997)

[1.586] {Sect. 1.5} B.M. Vanwonterghem, J.R. Murray, J.H. Campbell, D.R. Speck,C.E. Barker, I.C. Smith, D.F. Browning, W.C. Behrendt: Performance of aprototype for a large-aperture multipass Nd: glass laser for inertial confine-ment fusion, Appl Opt 36, p.4932-4953 (1997)

[1.587] {Sect. 1.5} Y.I. Salamin: Mono-energetic GeV electrons from ionization ina radially polarized laser beam, Optics Letters 32, p.90-92 (2007)

[1.588] {Sect. 1.5} T. Toncian, M. Borghesi, J. Fuchs, E. DHumieres, P. Antici,P. Audebert, E. Brambrink, C.A. Cecchetti, A. Pipahl, L. Romagnani, O.Willi: Ultrafast laser-driven microlens to focus and energy-select mega- elec-tron volt protons, Science 312, p.410-413 (2006)

[1.589] {Sect. 1.5} M. Dunne: Laser-driven particle accelerators, Science 312, p.374-376 (2006)

[1.590] {Sect. 1.5} B. Hidding, K.U. Amthor, B. Liesfeld, H. Schwoerer, S. Karsch,M. Geissler, L. Veisz, K. Schmid, J.G. Gallacher, S.P. Jamison, D. Jaroszyn-ski, G. Pretzler, R. Sauerbrey: Generation of quasimonoenergetic electronbunches with 80-fs laser pulses – art. no. 105004, Phys Rev Lett 9610, p.5004(2006)

[1.591] {Sect. 1.5} S. Banna, V. Berezovsky, L. Schachter: Experimental observa-tion of direct particle acceleration by stimulated emission of radiation – art.no. 134801, Phys Rev Lett 9713, p.4801 (2006)

[1.592] {Sect. 1.5} S.E. Irvine, A.Y. Elezzabi: Femtosecond electron pulse gatingusing surface plasmons, Opt Express 14, p.4115-4127 (2006)

1.5 Applications 671

[1.593] {Sect. 1.5} M. Chen, Z.M. Sheng, J. Zheng, Y.Y. Ma, M.A. Bari, Y.T. Li, J.Zhang: Surface electron acceleration in relativistic laser-solid interactions,Opt Express 14, p.3093-3098 (2006)

[1.594] {Sect. 1.5} H. Schwoerer, S. Pfotenhauer, O. Jackel, K.U. Amthor, B. Lies-feld, W. Ziegler, R. Sauerbrey, K.W.D. Ledingham, T. Esirkepov: Laser-plasma acceleration of quasi-monoenergetic protons from microstructuredtargets, Nature 439, p.445-448 (2006)

[1.595] {Sect. 1.5} G. Brumfiel: That’s no laser, it’s a particle accelerator, Nature443, p.256 (2006)

[1.596] {Sect. 1.5} T. Plettner, R.L. Byer, E. Colby, B. Cowan, C.M.S. Sears, J.E.Spencer, R.H. Siemann: Visible-laser acceleration of relativistic electronsin a semi- infinite vacuum – art. no. 134801, Phys Rev Lett 9513, p.4801(2005)

[1.597] {Sect. 1.5} X. Liu, C.F.D. Faria: Nonsequential double ionization with few-cycle laser pulses – art. no. 133006, Phys Rev Lett 9213, p.3006 (2004)

[1.598] {Sect. 1.5} Y. Cheng, Z.Z. Xu: Vacuum laser acceleration by an ultrashort,high-intensity laser pulse with a sharp rising edge, Appl Phys Lett 74,p.2116-2118 (1999)

[1.599] {Sect. 1.5} G. Malka, E. Lefebvre, J.L. Miquel: Experimental observation ofelectrons accelerated in vacuum to relativistic energies by a high-intensitylaser, Phys Rev Lett 78, p.3314-3317 (1997)

[1.600] {Sect. 1.5} G. Malka, J. Fuchs, F. Amiranoff, S.D. Baton, R. Gaillard, J.L.Miquel, H. Pepin, C. Rousseaux, G. Bonnaud, M. Busquet, et al.: Suprather-mal electron generation and channel formation by an ultrarelativistic laserpulse in an underdense preformed plasma, Phys Rev Lett 79, p.2053-2056(1997)

[1.601] {Sect. 1.5} B. Rau, T. Tajima, H. Hojo: Coherent electron acceleration bysubcycle laser pulses, Phys Rev Lett 78, p.3310-3313 (1997)

2. Properties and Description of Light

[2.1] {Sect. 2.1.1} B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M.Arndt, A. Zeilinger: Matter-wave interferometer for large molecules – art.no. 100404, Phys Rev Lett 8810, p.404 (2002)

[2.2] {Sect. 2.1.1} M.F. Andersen, C. Ryu, P. Clade, V. Natarajan, A. Vaziri, K.Helmerson, W.D. Phillips: Quantized rotation of atoms from photons withorbital angular momentum – art. no. 170406, Phys Rev Lett 9717, p.406(2006)

[2.3] {Sect. 2.1.1} J. Hotta, H. Ujii, J. Hofkens: The fabrication of a thin, circu-lar polymer film based phase shaper for generating doughnut modes, OptExpress 14, p.6273-6278 (2006)

[2.4] {Sect. 2.1.1} J.F. Bisson, J. Li, K. Ueda, Y. Senatsky: Radially polarizedring and arc beams of a neodymium laser with an intra-cavity axicon, OptExpress 14, p.3304-3311 (2006)

[2.5] {Sect. 2.1.1} I. BialynickiBirula, Z. BialynickaBirula: Beams of electromag-netic radiation carrying angular momentum: The Riemann-Silberstein vec-tor and the classical-quantum correspondence, Opt Commun 264, p.342-351(2006)

[2.6] {Sect. 2.1.1} Y. Kozawa, S. Sato: Generation of a radially polarized laserbeam by use of a conical Brewster prism, Optics Letters 30, p.3063-3065(2005)

672 2. Properties and Description of Light

[2.7] {Sect. 2.1.1} M.S. Bigelow, P. Zerom, R.W. Boyd: Breakup of ring beamscarrying orbital angular momentum in sodium vapor – art. no. 083902, PhysRev Lett 9208, p.3902 (2004)

[2.8] {Sect. 2.1.1} G. Gibson, J. Courtial, M.J. Padgett, M. Vasnetsov, V. Pasko,S.M. Barnett, S. FrankeArnold: Free-space information transfer using lightbeams carrying orbital angular momentum, Opt Express 12, p.5448-5456(2004)

[2.9] {Sect. 2.1.1} A. Vaziri, G. Weihs, A. Zeilinger: Experimental two-photon,three-dimensional entanglement for quantum communication – art. no.240401, Phys Rev Lett 8924, p.401 (2002)

[2.10] {Sect. 2.1.1} E. Santamato, A. Sasso, B. Piccirillo, A. Vella: Optical angu-lar momentum transfer to transparent isotropic particles using laser beamcarrying zero average angular momentum, Opt Express 10, p.871-878 (2002)

[2.11] {Sect. 2.1.1} E. Lundstrom, G. Brodin, J. Lundin, M. Marklund, R. Bing-ham, J. Collier, J.T. Mendonca, P. Norreys: Using high-power lasers fordetection of elastic photon-photon scattering – art. no. 083602, Phys RevLett 9608, p.3602 (2006)

[2.12] {Sect. 2.1.1} D.L. Burke, R.C. Field, G. Hortonsmith, J.E. Spencer, D.Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, C. Bula,et al.: Positron production in multiphoton light-by-light scattering, PhysRev Lett 79, p.1626-1629 (1997)

[2.13] {Sect. 2.1.1} B.J. Smith, B. Killett, M.G. Raymer, I.A. Walmsley: Measure-ment of the transverse spatial quantum state of light at the single-photonlevel, Optics Letters 30, p.3365-3367 (2005)

[2.14] {Sect. 2.1.1} O. Nairz, M. Arndt, A. Zeilinger: Experimental verificationof the Heisenberg uncertainty principle for fullerene molecules – art. no.032109, Phys Rev A 6503, p.2109 (2002)

[2.15] {Sect. 2.2.1} W.K. Kuo, Y.T. Huang, S.L. Huang: Three-dimensionalelectric-field vector measurement with an electro- optic sensing technique,Optics Letters 24, p.1546-1548 (1999)

[2.16] {Sect. 2.4.0} P. Varga, P. Torok: The Gaussian wave solution of Maxwell’sequations and the validity of scalar wave approximation, Opt Commun 152,p.108-118 (1998)

[2.17] {Sect. 2.4.0} J. Durnin, J.J. Miceli, Jr, J.H. Eberly: Diffraction-Free Beams,Phys. Rev. Lett. 58, p.1499-1501 (1987)

[2.18] {Sect. 2.4.0} J. Durnin: Exact solutions for nondiffracting beams. I. Thescalar theory, J.Opt. Soc. Am. A 4, p.651-654 (1987)

[2.19] {Sect. 2.4.0} R. Pratesi, L. Ronchi: Generalized Gaussian beams in freespace, J. Opt. Soc. Am. 67, p.1274-1276 (1977)

[2.20] {Sect. 2.4.0} A. Chernyshov, U. Sterr, F. Riehle, J. Helmcke, J. Pfund: Cal-ibration of a Shack-Hartmann sensor for absolute measurements of wave-fronts, Appl Opt 44, p.6419-6425 (2005)

[2.21] {Sect. 2.4.3} V. Laude, S. Olivier, C. Dirson, J.P. Huignard: Hartmannwave-front scanner, Optics Letters 24, p.1796-1798 (1999)

[2.22] {Sect. 2.4.3} S. Linden, J. Kuhl, H. Giessen: Amplitude and phase charac-terization of weak blue ultrashort pulses by downconversion, Optics Letters24, p.569-571 (1999)

[2.23] {Sect. 2.4.3} A. Baltuska, M.S. Pshenichnikov, D.A. Wiersma: Amplitudeand phase characterization of 4.5-fs pulses by frequency- resolved opticalgating, Optics Letters 23, p.1474-1476 (1998)

[2.24] {Sect. 2.4.3} J.C. Chanteloup, F. Druon, M. Nantel, A. Maksimchuk,G. Mourou: Single-shot wave-front measurements of high-intensity ultra-short laser pulses with a three-wave interferometer, Optics Letters 23, p.621-623 (1998)

2.4.3 Beam Characteristics and Parameter 673

[2.25] {Sect. 2.4.3} G.Y. Yoon, T. Jitsuno, M. Nakatsuka, S. Nakai: Shack Hart-mann wave-front measurement with a large F- number plastic microlensarray, Appl Opt 35, p.188-192 (1996)

[2.26] {Sect. 2.4.3} J. M. Geary: Introduction to Wavefront Sensors (SPIE OpticalEngineering Press, London, 1995)

[2.27] {Sect. 2.4.4} E.J. Grace, G.H.C. New, P.M.W. French: Simple ABCD ma-trix treatment for transversely varying saturable gain, Optics Letters 26,p.1776-1778 (2001)

[2.28] {Sect. 2.4.4} S. Gangopadhyay, S. Sarkar: ABCD matrix for reflection andrefraction of Gaussian light beams at surfaces of hyperboloid of revolutionand efficiency computation for laser diode to single-mode fiber coupling byway of a hyperbolic lens on the fiber tip, Appl Opt 36, p.8582-8586 (1997)

[2.29] {Sect. 2.4.4} P.A. Belanger: Beam propagation and the ABCD ray matrices,Opt. Lett. 16, p.196-198 (1991)

[2.30] {Sect. 2.4.4} A. Yariv: Operator algebra for propagation problems involvingphase conjugation and nonreciprocal elements, Appl. Opt. 26, p.4538-4540(1987)

[2.31] {Sect. 2.4.4} K. Halbach: Matrix Representation of Gaussian Optics, Am.J. Phys. 32, p.90-108 (1964)

[2.32] {Sect. 2.4.4} A. Gerrard, J.M. Burch: Introduction to Matrix Methods. inOptics (Wiley London 1975)

[2.33] {Sect. 2.5.3} U. Fuchs, U.D. Zeitner, A. Tunnermann: Ultra-short pulsepropagation in complex optical systems, Opt Express 13, p.3852-3861 (2005)

[2.34] {Sect. 2.5.4} I. Gregor, J. Enderlein: Focusing astigmatic Gaussian beamsthrough optical systems with a high numerical aperture, Optics Letters 30,p.2527-2529 (2005)

[2.35] {Sect. 2.5.4} F. Lindner, G.G. Paulus, H. Walther, A. Baltuska, E. Gouliel-makis, M. Lezius, F. Krausz: Gouy phase shift for few-cycle laser pulses –art. no. 113001, Phys Rev Lett 9211, p.3001 (2004)

[2.36] {Sect. 2.5.4} H. Urey: Spot size, depth-of-focus, and diffraction ring inten-sity formulas for truncated Gaussian beams, Appl Opt 43, p.620-625 (2004)

[2.37] {Sect. 2.5.4} T.A. Planchon, P. Mercere, G. Cheriaux, J.P. Chambaret:Off-axis aberration compensation of focusing with spherical mirrors usingdeformable mirrors, Opt Commun 216, p.25-31 (2003)

[2.38] {Sect. 2.5.4} S. Ameerbeg, A.J. Langley, I.N. Ross, W. Shaikh, P.F. Taday:An achromatic lens for focusing femtosecond pulses: Direct measurementof femtosecond pulse front distortion using a second-order autocorrelationtechnique, Opt Commun 122, p.99-104 (1996)

[2.39] {Sect. 2.5.4} M. Gu, E. Yap: Axial imaging behaviour of a single lens illu-minated by an ultrashort pulsed beam, Opt Commun 124, p.202-207 (1996)

[2.40] {Sect. 2.5.4} M. Kempe, U. Stamm, B. Wilhelmi, W. Rudolph: Spatialand temporal transformation of femtosecond laser pulses by lenses and lenssystems, J. Opt. Soc. Am. B 9, p.1158-1165 (1992)

[2.41] {Sect. 2.6.4} A. Aiello, G. Puentes, D. Voigt, J.P. Woerdman: Maximum-likelihood estimation of Mueller matrices, Optics Letters 31, p.817-819(2006)

[2.42] {Sect. 2.6.4} B. Kaplan, B. Drevillon: Muller matrix measurements of smallspherical particles deposited on a c-Si wafer, Appl Opt 41, p.3911-3918(2002)

[2.43] {Sect. 2.6.0} E. Collett: Polarized Light – Fudamentals and Applications(Marcel Dekker Inc, New York, Basel, Hong Kong, 1993)

[2.44] {Sect. 2.6.0} R.C. Jones: A new calculus for the treatment of optical sys-tems. VIII Electromagnetic theory, J. Opt. Soc. Am. 38, p.126-131 (1956)

674 2. Properties and Description of Light

[2.45] {Sect. 2.6.0} R.C. Jones: A New Calculus for the Treatment of OpticalSystems, J. Opt. Soc. Am. 32, p.486-493 (1942)

[2.46] {Sect. 2.6.0} S. Huard: Polarization of Light (Wiley, VCH, Chichester, 1997)[2.47] {Sect. 2.6.0} J. Junghans, M. Keller, H. Weber: Laser Resonators with

Polarizing Elements – Eigenstates and Eigenvalues of Polarization, Appl.Opt. 13, p.2793-2798 (1974)

[2.48] {Sect. 2.6.0} A.H. Carrieri: Neural network pattern recognition by means ofdifferential absorption Mueller matrix spectroscopy, Appl Opt 38, p.3759-3766 (1999)

[2.49] {Sect. 2.6.0} E. Compain, S. Poirier, B. Drevillon: General and self-consistent method for the calibration of polarization modulators, polarime-ters, and Mueller-matrix ellipsometers, Appl Opt 38, p.3490-3502 (1999)

[2.50] {Sect. 2.6.0} G. Yao, L.V. Wang: Two-dimensional depth-resolved Muellermatrix characterization of biological tissue by optical coherence tomogra-phy, Optics Letters 24, p.537-539 (1999)

[2.51] {Sect. 2.6.0} C. Ye: Photopolarimetric measurement of single, intact pulpfibers by Mueller matrix imaging polarimetry, Appl Opt 38, p.1975-1985(1999)

[2.52] {Sect. 2.6.0} B.D. Cameron, M.J. Rakovic, M. Mehrubeoglu, G.W. Kat-tawar, S. Rastegar, L.V. Wang, G.L. Cote: Measurement and calculationof the two-dimensional backscattering Mueller matrix of a turbid medium(Vol 23, pg 485, 1998), Optics Letters 23, p.1630 (1998)

[2.53] {Sect. 2.6.0} B.D. Cameron, M.J. Rakovic, M. Mehrubeoglu, G.W. Kat-tawar, S. Rastegar, L.V. Wang, G.L. Cote: Measurement and calculationof the two-dimensional backscattering Mueller matrix of a turbid medium,Optics Letters 23, p.485-487 (1998)

[2.54] {Sect. 2.6.0} A.H. Carrieri, J.R. Bottiger, D.J. Owens, E.S. Roese: Differ-ential absorption Mueller matrix spectroscopy and the infrared detection ofcrystalline organics, Appl Opt 37, p.6550-6557 (1998)

[2.55] {Sect. 2.6.2} H. Kogelnik, L.E. Nelson, J.P. Gordon, R.M. Jopson: Jonesmatrix for second-order polarization made dispersion, Optics Letters 25,p.19-21 (2000)

[2.56] {Sect. 2.6.2} XD. Penninckx, V. Morenas: Jones matrix of polarizationmode dispersion, Optics Letters 24, p.875-877 (1999)

[2.57] {Sect. 2.7.1} G. Gronninger, A. Penzkofer: Determination of energy andduration of picosecond light pulses by bleaching of dyes, Opt. Quant. Electr.16, p.225-233 (1984)

[2.58] {Sect. 2.7.1} A. Penzkofer, W. Falkenstein: Direct Determination of the In-tensity of Picosecond Light Pulses by Two-Photon Absorption, Opt. Comm.17, p.1-5 (1976)

[2.59] {Sect. 2.7.1} T.R. Gentile, J.M. Houston, G. Eppeldauer, A.L. Migdall,C.L. Cromer: Calibration of a pyroelectric detector at 10.6 mu m with theNational Institute of Standards and Technology high- accuracy cryogenicradiometer, Appl Opt 36, p.3614-3621 (1997)

[2.60] {Sect. 2.7.1} D.N. Fittinghoff, J.L. Bowie, J.N. Sweetser, R.T. Jennings,M.A. Krumbugel, K.W. Delong, R. Trebino, I.A. Walmsley: Measurement ofthe intensity and phase of ultraweak, ultrashort laser pulses, Optics Letters21, p.884-886 (1996)

[2.61] {Sect. 2.7.3} M.A. Bolshtyansky, N.V. Tabiryan, B.Y. Zeldovich: BRIEF-ING: Beam reconstruction by iteration of an electromagnetic field with aninduced nonlinearity gauge, Optics Letters 22, p.22-24 (1997)

[2.62] {Sect. 2.7.3} A. Cutolo, R. Ferreri, T. Isernia, R. Pierri, L. Zeni: Measure-ments of the waist and the power distribution across the transverse modesof a laser beam, Opt. Quantum Electron. 24, p.963-971 (1992)

2.7.3 Intensity and Beam Radius 675

[2.63] {Sect. 2.7.3} R. Borghi, M. Santarsiero: Modal decomposition of partiallycoherent flat-topped beams produced by multimode lasers, Optics Letters23, p.313-315 (1998)

[2.64] {Sect. 2.7.3} T.Y. Cherezova, S.S. Chesnokov, L.N. Kaptsov, A.V. Kudrya-shov: Super-Gaussian laser intensity output formation by means of adaptiveoptics, Opt Commun 155, p.99-106 (1998)

[2.65] {Sect. 2.7.3} J.J. Kasinski, R.L. Burnham: Near-diffraction-limited laserbeam shaping with diamond- turned aspheric optics, Optics Letters 22,p.1062-1064 (1997)

[2.66] {Sect. 2.7.3} M. Cywiak, M. Servin, F.M. Santoyo: Vibrating knife-edgetechnique for measuring the focal length of a microlens, Appl Opt 40,p.4947-4952 (2001)

[2.67] {Sect. 2.7.3} N. Lisi, P. Dilazzaro, F. Flora: Time-resolved divergence mea-surement of an excimer laser beam by the knife-edge technique, Opt Com-mun 136, p.247-252 (1997)

[2.68] {Sect. 2.7.3} W. Plass, R. Maestle, K. Wittig, A. Voss, A. Giesen: High-resolution knife-edge laser beam profiling, Opt Commun 134, p.21-24 (1997)

[2.69] {Sect. 2.7.4} D. Dragoman: Can the Wigner transform of a two-dimensionalrotationally symmetric beam be fully recovered from the Wigner transformof its one- dimensional approximation?, Optics Letters 25, p.281-283 (2000)

[2.70] {Sect. 2.7.4} B. Eppich, C. Gao, H. Weber: Determination of the ten secondorder intensity moments, Opt. Laser Technol.30p.337-340 (1998)

[2.71] {Sect. 2.7.4} H. Weber: Propagation of higher-order intensity moments inquadratic-index media, Opt. Quant. Electr. 24, p.1027-1049 (1992)

[2.72] {Sect. 2.7.4} H.O. Bartelt, K.-H. Brennner, A.W. Lohmann: The Wignerdistribution function and its optical production, Opt. Commun. 32, p.32-38(1980)

[2.73] {Sect. 2.7.4} M.J. Bastiaans: Wigner distribution function and its applica-tion to first-order optics, J. Opt. Soc. Am. 69, p.1710-1716 (1979)

[2.74] {Sect. 2.7.5} S. Bollanti, P. Dilazzaro, D. Murra: How many times is a laserbeam diffraction-limited?, Opt Commun 134, p.503-513 (1997)

[2.75] {Sect. 2.7.5} G. Nemes, A.E. Siegman: Measurement of all ten second-ordermoments of an astigmatic beam by the use of rotating simple astigmatic(anamorphic) optics, J.Opt. Soc. Am. A 11, p.2257-2264 (1994)

[2.76] {Sect. 2.7.5} A. Caprara, G.C. Reali: Time varying M2 in Q-switched lasers,Opt. Quant. Electr. 24, p.1001-1009 (1992)

[2.77] {Sect. 2.7.5} N. Hodgson, T. Haase, R. Kostka, H. Weber: Determination oflaser beam parameters with the phase space beam analyser, Opt. QuantumElectron. 24, p.927-949 (1992)

[2.78] {Sect. 2.7.5} N. Reng, B. Eppich: Definition and measurements of high-power laser beam parameters, Opt. Quant. Electr. 24, p.973-992 (1992)

[2.79] {Sect. 2.7.5} Anonymus: ISO Standards Handbook 2: Units of Measure-ment, 2d ed. (International Organization for Standardization, 1982)

[2.80] {Sect. 2.7.5} ISO, Norm-Manuscript ISO/DIS 11146 ”Optics and opticalinstruments – Lasers and laser related equipment – Test methods for laserbeam parameters: Beam widths, divergence angle and beam propagationfactor, 1995

[2.81] {Sect. 2.7.5} D. Wright, P. Greve, J. Fleischer, L. Austin: Laser beam width,divergence and beam propagation factor – an international standardizationapproach, Opt. Quant. Electr. 24, p.993-1000 (1992)

[2.82] {Sect. 2.7.5} L. LeDeroff, P. Salieres, B. Carre: Beam-quality measurementof a focused high-order harmonic beam, Optics Letters 23, p.1544-1546(1998)

676 2. Properties and Description of Light

[2.83] {Sect. 2.7.5} H.L. Offerhaus, C.B. Edwards, W.J. Witteman: Single shotbeam quality (M-2) measurement using a spatial Fourier transform of thenear field, Opt Commun 151, p.65-68 (1998)

[2.84] {Sect. 2.7.5} T.F. Johnston, J.M. Fleischer: Calibration standard for laserbeam profilers: Method for absolute accuracy measurement with a Fresneldiffraction test pattern, Appl Opt 35, p.1719-1734 (1996)

[2.85] {Sect. 2.7.7} G. Machavariani, A.A. Ishaaya, L. Shimshi, N. Davidson,A.A. Friesem, E. Hasman: Efficient mode transformations of degenerateLaguerre-Gaussian beams, Appl Opt 43, p.2561-2567 (2004)

[2.86] {Sect. 2.7.6} G. Machavariani, N. Davidson, A.A. Ishaaya, A.A. Friesem, E.Hasman: Efficient formation of a high-quality beam from a pure high-orderHermite-Gaussian mode, Optics Letters 27, p.1501-1503 (2002)

[2.87] {Sect. 2.7.8} S. Yu, H. Guo, X.Q. Fu, W. Hu: Propagation properties of ele-gant Hermite-cosh-Gaussian laser beams, Opt Commun 204, p.59-66 (2002)

[2.88] {Sect. 2.7.9} P.F. Cohadon, A. Heidmann, M. Pinard: Cooling of a mirrorby radiation pressure, Phys Rev Lett 83, p.3174-3177 (1999)

[2.89] {Sect. 2.7.9} V. Chickarmane, S.V. Dhurandhar, R. Barillet, P. Hello, J.Y.Vinet: Radiation pressure and stability of interferometric gravitational-wave detectors, Appl Opt 37, p.3236-3245 (1998)

[2.90] {Sect. 2.7.9} S. Nemoto, H. Togo: Axial force acting on a dielectric spherein a focused laser beam, Appl Opt 37, p.6386-6394 (1998)

[2.91] {Sect. 2.7.9} Y.N. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda,T. Igarashi, K.B. Shintaku, S. Toride, H. Sekino, K. Kabuto, I. Nishio:Direct measurement of infinitesimal depletion force in a colloid-polymermixture by laser radiation pressure, Phys Rev Lett 78, p.3963-3966 (1997)

[2.92] {Sect. 2.7.9} Y. Harada, T. Asakura: Radiation forces on a dielectric spherein the Rayleigh scattering regime, Opt Commun 124, p.529-541 (1996)

[2.93] {Sect. 2.7.9} J. Huisken, E.H.K. Stelzer: Optical levitation of absorbingparticles with a nominally Gaussian laser beam, Optics Letters 27, p.1223-1225 (2002)

[2.94] {Sect. 2.7.9} F. Benabid, J.C. Knight, P.S. Russell: Particle levitation andguidance in hollow-core photonic crystal fiber, Opt Express 10, p.1195-1203(2002)

[2.95] {Sect. 2.7.9} K. Taguchi, M. Tanaka, M. Ikeda: Theoretical study of anoptical levitation using dual beam from optical fibers inserted at an angle,Opt Commun 194, p.67-73 (2001)

[2.96] {Sect. 2.7.9} K. Sasaki, M. Tsukima, H. Masuhara: Three-dimensional po-tential analysis of radiation pressure exerted on a single microparticle, ApplPhys Lett 71, p.37-39 (1997)

[2.97] {Sect. 2.7.9} M. Trunk, J.F. Lubben, J. Popp, B. Schrader, W. Kiefer:Investigation of a phase transition in a single optically levitated micro-droplet by Raman-Mie scattering, Appl Opt 36, p.3305-3309 (1997)

[2.98] {Sect. 2.7.9} A. Ashkin, J.M. Dziedzic: Feedback stabilization of opticallylevitated particles, Appl. Phys. Lett. 30, p.202-204 (1977)

[2.99] {Sect. 2.7.9} A. Ashkin, J.M. Dziedzic: Optical levitation in high vacuum,Appl. Phys. Lett. 28, p.333-335 (1976)

[2.100] {Sect. 2.7.9} A. Ashkin, J.M. Dziedzic: Optical Levitation by RadiationPressure, Appl. Phys. Lett. 19, p.283-285 (1971)

[2.101] {Sect. 2.7.9} V. Wong, M.A. Ratner: Size dependence of gradient and non-gradient optical forces in silver nanoparticles, J Opt Soc Am B Opt Physics24, p.106-112 (2007)

[2.102] {Sect. 2.7.9} D. Ganic, X.S. Gan, M. Gu: Optical trapping force with an-nular and doughnut laser beams based on vectorial diffraction, Opt Express13, p.1260-1265 (2005)

2.7.8 Radiation Pressure and Optical Levitation 677

[2.103] {Sect. 2.7.9} R.R. Agayan, F. Gittes, R. Kopelman, C.F. Schmidt: Opticaltrapping near resonance absorption, Appl Opt 41, p.2318-2327 (2002)

[2.104] {Sect. 2.7.9} J. Arlt, V. GarcesChavez, W. Sibbett, K. Dholakia: Opticalmicromanipulation using a Bessel light beam, Opt Commun 197, p.239-245(2001)

[2.105] {Sect. 2.7.9} R.C. Gauthier: Optical levitation and trapping of a micro-opticinclined end-surface cylindrical spinner, Appl Opt 40, p.1961-1973 (2001)

[2.106] {Sect. 2.7.9} A. Ambrosio, B. Piccirillo, A. Sasso, E. Santamato: Experimen-tal and theoretical study of the transient rotation of isotropic transparentmicroparticles in astigmatic optical tweezers, Opt Commun 230, p.337-345(2004)

[2.107] {Sect. 2.7.9} J.A. Lock: Calculation of the radiation trapping force for lasertweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force,Appl Opt 43, p.2545-2554 (2004)

[2.108] {Sect. 2.7.9} J.A. Lock: Calculation of the radiation trapping force for lasertweezers by use of generalized Lorenz-Mie theory. I. Localized model de-scription of an on-axis tightly focused laser beam with spherical aberration,Appl Opt 43, p.2532-2544 (2004)

[2.109] {Sect. 2.7.9} R.B. Diener, B. Wu, M.G. Raizen, Q. Niu: Quantum tweezerfor atoms – art. no. 070401, Phys Rev Lett 8907, p.401 (2002)

[2.110] {Sect. 2.7.9} P. Zemanek, A. Jonas, L. Sramek, M. Liska: Optical trappingof nanoparticles and microparticles by a Gaussian standing wave, OpticsLetters 24, p.1448-1450 (1999)

[2.111] {Sect. 2.7.9} K.M. O’Hara, S.R. Granade, M.E. Gehm, T.A. Savard, S.Bali, C. Freed, J.E. Thomas: Ultrastable CO2 Laser Trapping of LithiumFermions, Phys. Rev. Lett. 82, p.4204-4207 (1999)

[2.112] {Sect. 2.7.9} S. Chang, S.S. Lee: Optical torque exerted on a sphere in theevanescent field of a circularly-polarized Gaussian laser beam, Opt Commun151, p.286-296 (1998)

[2.113] {Sect. 2.7.9} R.C. Gauthier, M. Ashman: Simulated dynamic behavior ofsingle and multiple spheres in the trap region of focused laser beams, ApplOpt 37, p.6421-6431 (1998)

[2.114] {Sect. 2.7.9} T. Takekoshi, B.M. Patterson, R.J. Knize: Observation of opti-cally trapped cold cesium molecules, Phys Rev Lett 81, p.5105-5108 (1998)

[2.115] {Sect. 2.7.9} J.P. Yin, Y.F. Zhu: Dark-hollow-beam gravito-optical atomtrap above an apex of a hollow optical fibre, Opt Commun 152, p.421-428(1998)

[2.116] {Sect. 2.7.9} P. Zemanek, A. Jonas, L. Sramek, M. Liska: Optical trappingof Rayleigh particles using a Gaussian standing wave, Opt Commun 151,p.273-285 (1998)

[2.117] {Sect. 2.7.9} T. Kuga, Y. Torii, N. Shiokawa, T. Hirano: Novel optical trapof atoms with a doughnut beam, Phys Rev Lett 78, p.4713-4716 (1997)

[2.118] {Sect. 2.7.9} T. Vanderveldt, J.F. Roch, P. Grelu, P. Grangier: Nonlinearabsorption and dispersion of cold Rb 87 atoms, Opt Commun 137, p.420-426(1997)

[2.119] {Sect. 2.7.9} W.L. Power, R.C. Thompson: Laguerre-Gaussian laser beamsand ion traps, Opt Commun 132, p.371-378 (1996)

[2.120] {Sect. 2.7.9} A. Ashkin: Trapping of Atoms by Resonance Radiation Pres-sure, Phys. Rev. Lett. 40, p.729-732 (1978)

[2.121] {Sect. 2.7.9} M.E.J. Friese, A.G. Truscott, H. RubinszteinDunlop, N.R.Heckenberg: Three-dimensional imaging with optical tweezers, Appl Opt38, p.6597-6603 (1999)

678 2. Properties and Description of Light

[2.122] {Sect. 2.7.9} M.S.Z. Kellermayer, S.B. Smith, H.L. Granzier, C. Busta-mante: Folding-unfolding transitions in single titin molecules characterizedwith laser tweezers, Science 276, p.1112-1116 (1997)

[2.123] {Sect. 2.7.9} S. Kawata, T. Tani: Optically driven Mie particles in anevanescent field along a channeled waveguide, Optics Letters 21, p.1768-1770 (1996)

[2.124] {Sect. 2.7.9} Y. Liu, G.J. Sonek, M.W. Berns, K. Konig, B.J. Tromberg:Two-photon fluorescence excitation in continuous-wave infrared opticaltweezers, Optics Letters 20, p.2246-2248 (1995)

[2.125] {Sect. 2.8.0} L. Mandel: Fluctuations of light beams. Progress in Optics 2,181 (North Holland, Amsterdam 1963)

[2.126] {Sect. 2.8.0} G. Chirico, M. Gardella: Photon cross-correlation spectroscopyto 10-ns resolution, Appl Opt 38, p.2059-2067 (1999)

[2.127] {Sect. 2.8.0} W.S. Choi, J.H. Lee, K.W. An, C. FangYen, R.R. Dasari,M.S. Feld: Observation of sub-Poisson photon statistics in the cavity-QEDmicrolaser – art. no. 093603, Phys Rev Lett 9609, p.3603 (2006)

[2.128] {Sect. 2.8.0} V.P. Kozich, A.I. Vodtchits, D.A. Ivanov, V.A. Orlovich:Changing the statistical properties of noisy laser radiation in a saturableabsorber, Opt Commun 169, p.97-102 (1999)

[2.129] {Sect. 2.8.0} Y.J. Qu, S. Singh, C.D. Cantrell: Measurements of higher orderphoton bunching of light beams, Phys Rev Lett 76, p.1236-1239 (1996)

[2.130] {Sect. 2.8.0} J.M. Raimond, P. Goy, M. Gross, C. Fabre, S. Haroche: Col-lective absorption of blackbody radiation by Rydberg atoms in a cavity –An Experiment on Bose statistics and Brownian motion, Phys. Rev. Lett.49, p.117-120 (1982)

[2.131] {Sect. 2.8.4} P. Lodahl: Quantum noise frequency correlations of multiplyscattered light, Optics Letters 31, p.110-112 (2006)

[2.132] {Sect. 2.8.4} G. Baili, M. Alouini, C. Moronvalle, D. Dolfi, F. Bretenaker:Broad-bandwidth shot-noise-limited class-A operation of a monomode semi-conductor fiber-based ring laser, Optics Letters 31, p.62-64 (2006)

[2.133] {Sect. 2.8.4} C.J. McKinstrie, S. Radic, R.M. Jopson, A.R. Chraplyvy:Quantum noise limits on optical monitoring with parametric devices, OptCommun 259, p.309-320 (2006)

[2.134] {Sect. 2.8.4} C.M. MowLowry, B.S. Sheard, M.B. Gray, D.E. McClelland,S.E. Whitcomb: Experimental demonstration of a classical analog to quan-tum noise cancellation for use in gravitational wave detection – art. no.161102, Phys Rev Lett 9216, p.1102 (2004)

[2.135] {Sect. 2.8.4} F. Rana, R.J. Ram, H.A. Hans: Quantum noise of activelymode-locked lasers with dispersion and amplitude/phase modulation, IeeeJ Quantum Electron 40, p.41-56 (2004)

[2.136] {Sect. 2.8.4} Y. Lien, E. vanderTogt, M.P. vanExter, J.P. Woerdman, N.J.vanDruten: Resonant excess quantum noise in lasers with mixed guiding,Optics Letters 28, p.1668-1670 (2003)

[2.137] {Sect. 2.8.4} P. Kappe, J. Kaiser, W. Elsasser: Spatially correlated lightemission from a resonant-cavity light- emitting diode, Optics Letters 28,p.49-51 (2003)

[2.138] {Sect. 2.8.4} H. Cao, W.S. Warren, A. Dogariu, L.J. Wang: Reduction ofoptical intensity noise by means of two-photon absorption, J Opt Soc AmB Opt Physics 20, p.560-563 (2003)

[2.139] {Sect. 2.8.4} J. Zhang, H.L. Ma, C.D. Xie, K.C. Peng: Suppression of in-tensity noise of a laser-diode-pumped single- frequency Nd:YVO4 laser byoptoelectronic control, Appl Opt 42, p.1068-1074 (2003)

[2.140] {Sect. 2.8.4} F. Rana, H.L.T. Lee, R.J. Ram, M.E. Grein, L.A. Jiang, E.P.Ippen, H.A. Haus: Characterization of the noise and correlations in harmon-

2.8.4 Fluctuations of the Electric Field 679

ically mode- locked lasers, J Opt Soc Am B Opt Physics 19, p.2609-2621(2002)

[2.141] {Sect. 2.8.3} P.L. Voss, P. Kumar: Raman-effect induced noise limits on?(3) parametric amplifiers and wavelength converters, J. Opt. B: QuantumSemiclass. Opt. 6, p.S762-S770 (2004)

[2.142] {Sect. 2.8.6} T. Tanimura, D. Akamatsu, Y. Yokoi, A. Furusawa, M.Kozuma: Generation of a squeezed vacuum resonant on a rubidium D-1 linewith periodically poled KTiOPO4, Optics Letters 31, p.2344-2346 (2006)

[2.143] {Sect. 2.8.6} S. Castelletto, I.P. Degiovanni, M.L. Rastello: Quantumand classical noise in practical quantum cryptography systems basedon polarization-entangled photons, arXiv:quant-ph/0205142v2 Jan, p.1-13(2003)

[2.144] {Sect. 2.8.6} R.S. Bennink, R.W. Boyd: Improved measurement of multi-mode squeezed light via an eigenmode approach – art. no. 053815, PhysRev A 6605, p.3815 (2002)

[2.145] {Sect. 2.8.6} M.J. Lawrence, R.L. Byer, M.M. Fejer, W. Bowen, P.K. Lam,H.A. Bachor: Squeezed singly resonant second-harmonic generation in peri-odically poled lithium niobate, J Opt Soc Am B Opt Physics 19, p.1592-1598(2002)

[2.146] {Sect. 2.8.6} S. Kasapi, S. Lathi, Y. Yamamoto: Sub-shot-noise frequency-modulation spectroscopy by use of amplitude- squeezed light from semicon-ductor losers, J Opt Soc Am B Opt Physics 17, p.275-279 (2000)

[2.147] {Sect. 2.8.6} J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute,J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg etal.: Squeezing the optical near-field zone by plasmon coupling of metallicnanoparticles, Phys Rev Lett 82, p.2590-2593 (1999)

[2.148] {Sect. 2.8.6} D. Levandovsky, M. Vasilyev, P. Kumar: Amplitude squeezingof light by means of a phase-sensitive fiber parametric amplifier, OpticsLetters 24, p.984-986 (1999)

[2.149] {Sect. 2.8.6} Y.Q. Li, D. Guzun, M. Xiao: Sub-shot-noise-limited opticalheterodyne detection using an amplitude-squeezed local oscillator, Phys RevLett 82, p.5225-5228 (1999)

[2.150] {Sect. 2.8.6} Y.Q. Li, D. Guzun, M. Xiao: Quantum-noise measurementsin high-efficiency single-pass second-harmonic generation with femtosecondpulses, Optics Letters 24, p.987-989 (1999)

[2.151] {Sect. 2.8.6} X.M. Hu, J.S. Peng: Dynamic quantum noise reduction in aLambda quantum-beat laser, Opt Commun 154, p.152-159 (1998)

[2.152] {Sect. 2.8.6} Z.H. Lu, S. Bali, J.E. Thomas: Observation of squeezing in thephase-dependent fluorescence spectra of two-level atoms, Phys Rev Lett 81,p.3635-3638 (1998)

[2.153] {Sect. 2.8.6} S. Rebic, A.S. Parkins, D.F. Walls: Transfer of photon statisticsin a Raman laser, Opt Commun 156, p.426-434 (1998)

[2.154] {Sect. 2.8.6} G.M. Schucan, A.M. Fox, J.F. Ryan: Femtosecond quadrature-squeezed light generation in CdSe at 1.55 mu m, Optics Letters 23, p.712-714(1998)

[2.155] {Sect. 2.8.6} M.S. Shahriar, P.R. Hemmer: Generation of squeezed statesand twin beams via non-degenerate four- wave mixing in a Lambda system,Opt Commun 158, p.273-286 (1998)

[2.156] {Sect. 2.8.6} K.C. Peng, Q. Pan, H. Wang, Y. Zhang, H. Su, C.D. Xie: Gen-eration of two-mode quadrature-phase squeezing and intensity-differencesqueezing from a cw-NOPO, Appl. Phys. B 66, p.755-758 (1998)

[2.157] {Sect. 2.8.6} S. Kakimoto, K. Shigihara, Y. Nagai: Laser diodes in photonnumber squeezed state, IEEE J QE-33, p.824-830 (1997)

680 2. Properties and Description of Light

[2.158] {Sect. 2.8.6} S. Kasapi, S. Lathi, Y. Yamamoto: Amplitude-squeezed, fre-quency-modulated, tunable, diode- laser-based source for sub-shot-noise FMspectroscopy, Optics Letters 22, p.478-480 (1997)

[2.159] {Sect. 2.8.6} Y.Q. Li, P. Lynam, M. Xiao, P.J. Edwards: Sub-shot-noiselaser Doppler anemometry with amplitude- squeezed light, Phys Rev Lett78, p.3105-3108 (1997)

[2.160] {Sect. 2.8.6} J. Maeda, T. Numata, S. Kogoshi: Amplitude squeezing fromsingly resonant frequency- doubling laser, IEEE J QE-33, p.1057-1067(1997)

[2.161] {Sect. 2.8.6} F. Marin, A. Bramati, V. Jost, E. Giacobino: Demonstrationof high sensitivity spectroscopy with squeezed semiconductor lasers, OptCommun 140, p.146-157 (1997)

[2.162] {Sect. 2.8.6} D.K. Serkland, P. Kumar, M.A. Arbore, M.M. Fejer: Ampli-tude squeezing by means of quasi-phase-matched second-harmonic genera-tion in a lithium niobate waveguide, Optics Letters 22, p.1497-1499 (1997)

[2.163] {Sect. 2.8.6} E. Giacobino, F. Marin, A. Bramati, V. Jost: Quantum noisereduction in lasers, J Nonlinear Opt Physics Mat 5, p.863-877 (1996)

[2.164] {Sect. 2.8.6} K. Schneider, R. Bruckmeier, H. Hansen, S. Schiller, J. Mlynek:Bright squeezed-light generation by a continuous-wave semimonolithic para-metric amplifier, Optics Letters 21, p.1396-1398 (1996)

[2.165] {Sect. 2.8.6} J. Kitching, A. Yariv, Y. Shevy: Room temperature generationof amplitude squeezed light from a semiconductor laser with weak opticalfeedback, Phys Rev Lett 74, p.3372-3375 (1995)

[2.166] {Sect. 2.8.6} J. Kitching, D. Provenzano, A. Yariv: Generation of amplitude-squeezed light from a room- temperature Fabry-Perot semiconductor laser,Optics Letters 20, p.2526-2528 (1995)

[2.167] {Sect. 2.8.6} F. Marin, A. Bramati, E. Giacobino, T.C. Zhang, J.P. Poizat,J.F. Roch, P. Grangier: Squeezing and intermode correlations in laserdiodes, Phys Rev Lett 75, p.4606-4609 (1995)

[2.168] {Sect. 2.8.6} K. Bergman, C.R. Doerr, H.A. Haus, M. Shirasaki: Sub-Shot-Noise Measurement with Fiber-Squeezed Optical Pulses, Optics Letters 18,p.643-645 (1993)

[2.169] {Sect. 2.8.6} C.R. Doerr, M. Shirasaki, H.A. Haus: Dispersion of PulsedSqueezing for Reduction of Sensor Nonlinearity, Optics Letters 17, p.1617-1619 (1992)

[2.170] {Sect. 2.8.6} D.F. Walls: Squeezed states of light, Nature 306, p.141-146(1983)

[2.171] {Sect. 2.9.0} R. Kaltenbaek, B. Blauensteiner, M. Zukowski, M. As-pelmeyer, A. Zeilinger: Experimental interference of independent photons –art. no. 240502, Phys Rev Lett 9624, p.502 (2006)

[2.172] {Sect. 2.9.0} H. Luck, K.O. Muller, P. Aufmuth, K. Danzmann: Correc-tion of wavefront distortions by means of thermally adaptive optics, OptCommun 175, p.275-287 (2000)

[2.173] {Sect. 2.9.0} H.P. Ho, K.M. Leung, K.S. Chan, E.Y.B. Pun: Highly sta-ble differential phase optical interferometer using rotating Ronchi gratings,Appl Opt 37, p.3494-3497 (1998)

[2.174] {Sect. 2.9.0} J.Y. Lee, D.C. Su: High resolution central fringe identification,Opt Commun 156, p.1-4 (1998)

[2.175] {Sect. 2.9.0} A. Araya, N. Mio, K. Tsubono, K. Suehiro, S. Telada,M. Ohashi, M.K. Fujimoto: Optical mode cleaner with suspended mirrors,Appl Opt 36, p.1446-1453 (1997)

[2.176] {Sect. 2.9.0} H. Welling, B. Wellegehausen: High Resolution Michelson In-terferometer for Spectral Investigations of Lasers, Appl. Opt. 11, p.1986-1990 (1972)

2.9 Interference and Coherence of Light 681

[2.177] {Sect. 2.9.0} D.A. Shaddock, M.B. Gray, D.E. McClelland: Experimentaldemonstration of resonant sideband extraction in a Sagnac interferometer,Appl Opt 37, p.7995-8001 (1998)

[2.178] {Sect. 2.9.1} L. Gallmann, D.H. Sutter, N. Matuschek, G. Steinmeyer,U. Keller, C. Iaconis, I.A. Walmsley: Characterization of sub-6-fs opticalpulses with spectral phase interferometry for direct electric-field reconstruc-tion, Optics Letters 24, p.1314-1316 (1999)

[2.179] {Sect. 2.9.1} S. Leute, T. Lottermoser, D. Frohlich: Nonlinear spatiallyresolved phase spectroscopy, Optics Letters 24, p.1520-1522 (1999)

[2.180] {Sect. 2.9.1} A.M. Rollins, J.A. Izatt: Optimal interferometer designs foroptical coherence tomography, Optics Letters 24, p.1484-1486 (1999)

[2.181] {Sect. 2.9.1} P.T. Wilson, Y. Jiang, O.A. Aktsipetrov, E.D. Mishina, M.C.Downer: Frequency-domain interferometric second-harmonic spectroscopy,Optics Letters 24, p.496-498 (1999)

[2.182] {Sect. 2.9.1} D. Braun, P. Fromherz: Fluorescence interferometry of neu-ronal cell adhesion on microstructured silicon, Phys Rev Lett 81, p.5241-5244 (1998)

[2.183] {Sect. 2.9.1} W.D. Zhou, L.L. Cai: Optical readout for optical storage withphase jump, Appl Opt 38, p.5058-5065 (1999)

[2.184] {Sect. 2.9.1} D.J. Ulness, M.J. Stimson, A.C. Albrecht: High-contrast inter-ferometry based on anti-Stokes stimulated Raman scattering with broad-band and narrow-band quasi-continuous-wave laser light, Optics Letters 22,p.433-435 (1997)

[2.185] {Sect. 2.9.1} J.L.A. Chilla, J.J. Rocca, O.E. Martinez, M.C. Marconi: Soft-x-ray interferometer for single-shot laser linewidth measurements, OpticsLetters 21, p.955-957 (1996)

[2.186] {Sect. 2.9.2} L.G. Wang, Q. Lin: The evolutions of the spectrum and spatialcoherence of laser radiation in resonators with hard apertures and phasemodulation, Ieee J Quantum Electron 39, p.749-758 (2003)

[2.187] {Sect. 2.9.2} V.M. Papadakis, A. Stassinopoulos, D. Anglos, S.H. Anas-tasiadis, E.P. Giannelis, D.G. Papazoglou: Single-shot temporal coherencemeasurements of random lasing media, J Opt Soc Am B Opt Physics 24,p.31-36 (2007)

[2.188] {Sect. 2.9.2} Y. Liu, Y. Wang, M.A. Larotonda, B.M. Luther, J.J. Rocca,D.T. Attwood: Spatial coherence measurements of a 13.2 nm transientnickel-like cadmium soft X-ray laser pumped at grazing incidence, Opt Ex-press 14, p.12872-12879 (2006)

[2.189] {Sect. 2.9.2} L. Mandel, E. Wolf: Coherence properties of optical fields,Rev. Mod. Phys. 37, p.271 (1965)

[2.190] {Sect. 2.9.2} R.F. Wuerker, J. Munch, L.O. Heflinger: Coherence lengthmeasured directly by holography, Appl. Opt. 28, p.1015-1017 (1989)

[2.191] {Sect. 2.9.2} E. Fischer, E. Dalhoff, H. Tiziani: Overcoming coherencelength limitation in two wavelength interferometry – An experimental ver-ification, Opt Commun 123, p.465-472 (1996)

[2.192] {Sect. 2.9.2} C.C. Cheng, M.G. Raymer: Long-range saturation of spatialdecoherence in wave-field transport in random multiple-scattering media,Phys Rev Lett 82, p.4807-4810 (1999)

[2.193] {Sect. 2.9.7} A. Kimachi: Real-time heterodyne imaging interferometry:focal-plane amplitude and phase demodulation using a three-phase correla-tion image sensor, Appl Opt 46, p.87-94 (2007)

[2.194] {Sect. 2.9.7} S. Reinhardt, G. Saathoff, S. Karpuk, C. Novotny, G. Huber,M. Zimmermann, R. Holzwarth, T. Udem, T.W. Hansch, G. Gwinner: Io-dine hyperfine structure and absolute frequency measurements at 565, 576,and 585 nm, Opt Commun 261, p.282-290 (2006)

682 2. Properties and Description of Light

[2.195] {Sect. 2.9.7} F. Yu, J.P. Song, Y.P. Zhang, K.Q. Lu: Radiation-matteroscillations in attosecond polarization beats using twin color-locked noisylights, Opt Commun 256, p.216-219 (2005)

[2.196] {Sect. 2.9.7} L.J. Zeng, I. Fujima, A. Hirai, H. Matsumoto, S. Iwasaki: Atwo-color heterodyne interferometer for measuring the refractive index ofair using an optical diffraction grating, Opt Commun 203, p.243-247 (2002)

[2.197] {Sect. 2.9.7} G. Mueller, Q.Z. Shu, R. Adhikari, D.B. Tanner, D. Reitze,D. Sigg, N. Mavalvala, J. Camp: Determination and optimization of modematching into optical cavities by heterodyne detection, Optics Letters 25,p.266-268 (2000)

[2.198] {Sect. 2.9.7} J.Y. Lee, D.C. Su: Common-path heterodyne interferometricdetection scheme for measuring wavelength shift, Opt Commun 162, p.7-10(1999)

[2.199] {Sect. 2.9.7} C.M. Wu, J. Lawall, R.D. Deslattes: Heterodyne interferometerwith subatomic periodic nonlinearity, Appl Opt 38, p.4089-4094 (1999)

[2.200] {Sect. 2.9.7} S. Yoon, Y. Lee, K. Cho: Intermode beat heterodyne sensorscheme for mapping optical properties of optical media, Opt Commun 161,p.182-186 (1999)

[2.201] {Sect. 2.9.7} C. Chou, C.Y. Han, W.C. Kuo, Y.C. Huang, C.M. Feng, J.C.Shyu: Noninvasive glucose monitoring in vivo with an optical heterodynepolarimeter, Appl Opt 37, p.3553-3557 (1998)

[2.202] {Sect. 2.9.7} H. Ludvigsen, M. Tossavainen, M. Kaivola: Laser linewidthmeasurements using self-homodyne detection with short delay, Opt Com-mun 155, p.180-186 (1998)

[2.203] {Sect. 2.9.7} G.Y. Lyu, S.S. Lee, D.H. Lee, C.S. Park, M.H. Kang, K. Cho:Simultaneous measurement of multichannel laser linewidths and spacing byuse of stimulated Brillouin scattering in optical fiber, Optics Letters 23,p.873-875 (1998)

[2.204] {Sect. 2.9.7} S.A. Shen, T. Liu, J.H. Guo: Optical phase-shift detection ofsurface plasmon resonance, Appl Opt 37, p.1747-1751 (1998)

[2.205] {Sect. 2.9.7} M.J. Snadden, R.B.M. Clarke, E. Riis: FM spectroscopy influorescence in laser-cooled rubidium, Opt Commun 152, p.283-288 (1998)

[2.206] {Sect. 2.9.7} J.T. Hoffges, H.W. Baldauf, T. Eichler, S.R. Helmfrid,H. Walther: Heterodyne measurement of the fluorescent radiation of a singletrapped ion, Opt Commun 133, p.170-174 (1997)

[2.207] {Sect. 2.9.7} S. Matsuo, T. Tahara: Phase-stabilized optical heterodynedetection of impulsive stimulated Raman scattering, Chem Phys Lett 264,p.636-642 (1997)

[2.208] {Sect. 2.9.7} M. Pitter, E. Jakeman, M. Harris: Heterodyne detection ofenhanced backscatter, Optics Letters 22, p.393-395 (1997)

[2.209] {Sect. 2.9.7} K.X. Sun, M.M. Fejer, E.K. Gustafson, R.L. Byer: Balancedheterodyne signal extraction in a postmodulated Sagnac interferometer atlow frequency, Optics Letters 22, p.1485-1487 (1997)

[2.210] {Sect. 2.9.7} R. Onodera, Y. Ishii: Effect of beat frequency on the measuredphase of laser- diode heterodyne interferometry, Appl Opt 35, p.4355-4360(1996)

[2.211] {Sect. 2.9.7} R. Onodera, Y. Ishii: Two-wavelength laser-diode heterodyneinterferometry with one phasemeter, Optics Letters 20, p.2502-2504 (1995)

3.2 Refraction and Dispersion 683

3. Linear Interactions Between Light and Matter

[3.1] {Sect. 3.2} M.H. Chiu, J.Y. Lee, D.C. Su: Complex refractive-index mea-surement based on Fresnel’s equations and the uses of heterodyne interfer-ometry, Appl Opt 38, p.4047-4052 (1999)

[3.2] {Sect. 3.2} S.M. Mian, A.Y. Hamad, J.P. Wicksted: Refractive index mea-surements using a CCD, Appl Opt 35, p.6825-6826 (1996)

[3.3] {Sect. 3.2} Y.P. Zhang, R. Kachru: Photon-echo novelty filter for measuringa sudden change in index of refraction, Appl Opt 35, p.6762-6766 (1996)

[3.4] {Sect. 3.2} Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, H. Uyama: Re-fractive indices and extinction coefficients of polymers for the mid-infraredregion, Appl Opt 37, p.7091-7095 (1998)

[3.5] {Sect. 3.2} M.J. Weber (ed.): CRC Handbook of Laser Science and Tech-nology, Vol. IV-Optical Materials (CRC Press, Inc, Boca Raton, 1986)

[3.6] {Sect. 3.3.1} R.C. Hilborn: Einstein coefficients, cross sections, f values,dipole moments, and all that, Am. J. Phys.50, p.982-986 (1982)

[3.7] {Sect. 3.3.1} M.C.E. Huber, R.J. Sandeman: The measurement of oscillatorstrengths, Rep. Progr. Phys. 49, p.397-490 (1986)

[3.8] {Sect. 3.3.3} C. Rothe, S.I. Hintschich, A.P. Monkman: Violation of theexponential-decay law at long times – art. no. 163601, Phys Rev Lett 9616,p.3601 (2006)

[3.9] {Sect. 3.3.3} R. Carminati, J.J. Greffet, C. Henkel, J.M. Vigoureux: Ra-diative and non-radiative decay of a single molecule close to a metallicnanoparticle, Opt Commun 261, p.368-375 (2006)

[3.10] {Sect. 3.3.3} M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda: Si-multaneous inhibition and redistribution of spontaneous light emission inphotonic crystals, Science 308, p.1296-1298 (2005)

[3.11] {Sect. 3.3.3} P. Vukusic, I. Hooper: Directionally controlled fluorescenceemission in butterflies, Science 310, p.1151 (2005)

[3.12] {Sect. 3.3.3} K. Yasui: Single-bubble sonoluminescence from hydrogen,J Chem Phys 111, p.5384-5389 (1999)

[3.13] {Sect. 3.3.3} J. Holzfuss, M. Ruggeberg, A. Billo: Shock wave emissions ofa sonoluminescing bubble, Phys Rev Lett 81, p.5434-5437 (1998)

[3.14] {Sect. 3.3.3} J.R. Willison: Sonoluminescence: Proton-tunneling radiation,Phys Rev Lett 81, p.5430-5433 (1998)

[3.15] {Sect. 3.3.4} T. Renger, V. May: Multiple exciton effects in molecular ag-gregates: Application to a photosynthetic antenna complex, Phys Rev Lett78, p.3406-3409 (1997)

[3.16] {Sect. 3.3.4} S. Savikhin, D.R. Buck, W.S. Struve: Oscillating anisotropiesin a bacteriochlorophyll protein: Evidence for quantum beating betweenexciton levels, Chem Phys 223, p.303-312 (1997)

[3.17] {Sect. 3.3.4} M. Joffre, D. Hulin, A. Migus, A. Antonietti, C. Benoit a laGuillaume, N. Peyghambarian, M. Lindberg, S.W. Koch: Coherent effectsin pump-probe spectroscopy of excitons, Opt. Lett. 13, p.276-278 (1988)

[3.18] {Sect. 3.3.4} E. Morikawa, K. Shikichi, R. Katoh, M. Kotani: Transientphotoabsorption by singlet excitons in p-terphenyl single crystals, Chem.Phys. Lett. 131, p.209-212 (1986)

[3.19] {Sect. 3.3.4} W.T. Simpson, D.L. Peterson: Coupling Strength for Res-onance Force Transfer of Electronic Energy in Van der Waals Solids, J.Chem. Phys. 26, p.588-593 (1957)

[3.20] {Sect. 3.3.4} J. R. Lakowicz: Principles of Fluorescence Spectroscopy(Plenum Press, New York, London, 1983)

[3.21] {Sect. 3.3.4} Th. Forster: Zwischenmolekulare Energiewanderung und Flu-oreszenz, Ann. Phys. 6, p.55-75 (1948)

684 3. Linear Interactions Between Light and Matter

[3.22] {Sect. 3.4.3} Z.W. Yan, L. Ju, C.N. Zhao, S. Gras, D.G. Blair, M. Tokunari,K. Kuroda, J.M. Mackowski, A. Remillieux: Rayleigh scattering, absorption,and birefringence of large-size bulk single-crystal sapphire, Appl Opt 45,p.2631-2637 (2006)

[3.23] {Sect. 3.4.3} N. Ho, M.C. Phillips, H. Qiao, P.J. Allen, K. Krishnaswami,B.J. Riley, T.L. Myers, N.C. Anheier: Single-mode low-loss chalcogenideglass waveguides for the mid- infrared, Optics Letters 31, p.1860-1862 (2006)

[3.24] {Sect. 3.4.3} S.S. Bayya, G.D. Chin, J.S. Sanghera, I.D. Aggarwal: Ger-manate glass as a window for high energy laser systems, Opt Express 14,p.11687-11693 (2006)

[3.25] {Sect. 3.4.3} H. Bach, N. Neuroth (eds.): The Properties of Optical Glass(Springer, Berlin, Heidelberg, New York, 1998)

[3.26] {Sect. 3.4.3} D. N. Nikogosyan: Properties of Optical and Laser-RelatedMaterials – A Handbook (John Wiley & Sons, Chichester, 1997)

[3.27] {Sect. 3.4.3} H. Hosono, M. Mizuguchi, L. Skuja, T. Ogawa: Fluorine-dopedSiO2 glasses for F-2 excimer laser optics: fluorine content and color-centerformation, Optics Letters 24, p.1549-1551 (1999)

[3.28] {Sect. 3.4.3} V. Liberman, M. Rothschild, J.H.C. Sedlacek, R.S. Uttaro,A. Grenville, A.K. Bates, C. VanPeski: Excimer-laser-induced degradationof fused silica and calcium fluoride for 193-nm lithographic applications,Optics Letters 24, p.58-60 (1999)

[3.29] {Sect. 3.5.0} M.H. Chiu, J.Y. Lee, D.C. Su: Complex refractive-index mea-surement based on Fresnel’s equations and the uses of heterodyne interfer-ometry, Appl Opt 38, p.4047-4052 (1999)

[3.30] {Sect. 3.5.3} B.A. Hooper, Y. Domankevitz, C.P. Lin, R.R. Anderson: Pre-cise, controlled laser delivery with evanescent optical waves, Appl Opt 38,p.5511-5517 (1999)

[3.31] {Sect. 3.5.3} A.C.R. Pipino: Ultrasensitive surface spectroscopy with aminiature optical resonator, Phys Rev Lett 83, p.3093-3096 (1999)

[3.32] {Sect. 3.5.3} S. Chang, S.S. Lee: Optical torque exerted on a sphere in theevanescent field of a circularly-polarized Gaussian laser beam, Opt Commun151, p.286-296 (1998)

[3.33] {Sect. 3.5.3} H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau,J. Mlynek: Quasi-2D gas of laser cooled atoms in a planar matter waveguide,Phys Rev Lett 81, p.5298-5301 (1998)

[3.34] {Sect. 3.5.3} V.G. Bordo, C. Henkel, A. Lindinger, H.G. Rubahn: Evanes-cent wave fluorescence spectra of Na atoms, Opt Commun 137, p.249-253(1997)

[3.35] {Sect. 3.5.3} X.H. Xu, E.S. Yeung: Direct measurement of single-moleculediffusion and photodecomposition in free solution, Science 275, p.1106-1109(1997)

[3.36] {Sect. 3.5.3} R.H. Renard: Total Reflection: A New Evaluation of the Goos-Hanchen Shift, J. Opt. Soc. Am. 54, p.1190-1197 (1964)

[3.37] {Sect. 3.6} A. Gatto, R. Thielsch, J. Heber, N. Kaiser, D. Ristau, S. Gun-ster, J. Kohlhaas, M. Marsi, M. Trovo, R. Walker, D. Garzella, M.E. Cou-prie, P. Torchio, M. Alvisi, C. Amra: High-performance deep-ultravioletoptics for free-electron lasers, Appl Opt 41, p.3236-3241 (2002)

[3.38] {Sect. 3.6} S. Walheim, E. Schaffer, J. Mlynek, U. Steiner: Nanophase-separated polymer films as high-performance antireflection coatings, Science283, p.520-522 (1999)

[3.39] {Sect. 3.6} F. Loewenthal, R. Tommasini, J.E. Balmer: Single-shot measure-ment of laser-induced damage thresholds of thin film coatings, Opt Commun152, p.168-174 (1998)

3.6 Relation Between Reflection, Absorption and Refraction 685

[3.40] {Sect. 3.6} Y.A. Uspenskii, V.E. Levashov, A.V. Vinogradov, A.I. Fedo-renko, V.V. Kondratenko, Y.P. Pershin, E.N. Zubarev, V.Y. Fedotov: High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35-50 nm,Optics Letters 23, p.771-773 (1998)

[3.41] {Sect. 3.6} S.M. Xiong, Y.D. Zhang: Optical coatings for deuterium fluoridechemical laser systems, Appl Opt 36, p.4958-4961 (1997)

[3.42] {Sect. 3.6} G. Emiliani, A. Piegari, S. De Silvestri, P. Laporta, V. Magni:Optical coatings with variable reflectance for laser mirrors, Appl. Opt. 28,p.2832-2837 (1989)

[3.43] {Sect. 3.12} T.D. Goodman, M. Mansuripur: Subtle effects of the substratein optical disk data storage systems, Appl Opt 35, p.6747-6753 (1996)

[3.44] {Sect. 3.12} Z.X. Shao: Precise and versatile formula for birefringent filters,Appl Opt 35, p.4147-4151 (1996)

[3.45] {Sect. 3.12} J.F. deBoer, T.E. Milner, M.J.C. Vangemert, J.S. Nelson:Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography, Optics Letters 22, p.934-936 (1997)

[3.46] {Sect. 3.12} F.S. Pavone, G. Bianchini, F.S. Cataliotti, T.W. Hansch,M. Inguscio: Birefringence in electromagnetically induced transparency, Op-tics Letters 22, p.736-738 (1997)

[3.47] {Sect. 3.9.4} E.A. Khazanov: Slab-based Faraday isolators and Faradaymirrors for 10-kW average laser power, Appl Opt 43, p.1907-1913 (2004)

[3.48] {Sect. 3.7} E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov,D.H. Reitze: Suppression of self-induced depolarization of high-power laserradiation in glass-based Faraday isolators, J Opt Soc Am B Opt Physics17, p.99-102 (2000)

[3.49] {Sect. 3.7} P. Denatale, L. Gianfrani, S. Viciani, M. Inguscio: Spectroscopicobservation of the Faraday effect in the far infrared, Optics Letters 22,p.1896-1898 (1997)

[3.50] {Sect. 3.7} Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe,R. Shpitalnik, B. Arad: Measurements of inverse Faraday effect and ab-sorption of circularly polarized laser light in plasmas, Phys Rev Lett 78,p.1707-1710 (1997)

[3.51] {Sect. 3.7} T. Verbiest, M. Kauranen, A. Persoons: Light-polarization-induced optical activity, Phys Rev Lett 82, p.3601-3604 (1999)

[3.52] {Sect. 3.7} E. Westin, S. Wabnitz, R. Frey, C. Flytzanis: Polarizationflip-flop operation and dissipative structure generation with nonlinear gy-rotropic resonators, Opt Commun 158, p.97-100 (1998)

[3.53] {Sect. 3.9.1} P. Baues: Huygens’ Principle in Inhomogeneous, Isotropic Me-dia and a General Integral Equation Applicable to Optical Resonators,Opto-Electr. 1, p.37-44 (1969)

[3.54] {Sect. 3.9.1} J.E. Harvey, C.L. Vernold, A. Krywonos, P.L. Thompson:Diffracted radiance: a fundamental quantity in nonparaxial scalar diffrac-tion theory, Appl Opt 38, p.6469-6481 (1999)

[3.55] {Sect. 3.9.1} Y. Takaki, H. Ohzu: Fast numerical reconstruction techniquefor high-resolution hybrid holographic microscopy, Appl Opt 38, p.2204-2211 (1999)

[3.56] {Sect. 3.9.1} J.X. Pu, H.H. Zhang, S. Nemoto: Spectral shifts and spec-tral switches of partially coherent light passing through an aperture, OptCommun 162, p.57-63 (1999)

[3.57] {Sect. 3.9.1} W.P. Huang, C.L. Xu: A Wide-Angle Vector Beam Propaga-tion Method, IEEE Photonics Technol. Lett. 4, p.1118-1120 (1992)

[3.58] {Sect. 3.9.2} C.J.R. Sheppard, P. Torok: Dependence of focal shift on Fres-nel number and angular aperture, Optics Letters 23, p.1803-1804 (1998)

686 3. Linear Interactions Between Light and Matter

[3.59] {Sect. 3.9.3} S.A. Collins: Lens-System Diffraction Integral Written inTerms of Matrix Opitcs, J. Opt. Soc. Am. 60, p.1168-1177 (1970)

[3.60] {Sect. 3.9.6} Z.P. Jiang, R. Jacquemin, W. Eberhardt: Time dependenceof Fresnel diffraction of ultrashort laser pulses by a circular aperture, ApplOpt 36, p.4358-4361 (1997)

[3.61] {Sect. 3.9.8} F. Ferri, D. Magatti, A. Gatti, E. Brambilla, L.A. Lugiato:High-resolution ghost image and ghost diffraction experiments with thermallight, Physical Review Letters 94, p.183602-1-183602-4 (2005)

[3.62] {Sect. 3.9.8} I.V. Sokolov, M.I. Kolobov: Squeezed-light source for superre-solving microscopy, Optics Letters 29, p.703-705 (2004)

[3.63] {Sect. 3.9.8} M.I. Kolobov, D. Fabre C Quantum limits on optical resolu-tion, Physical Review Letters 85, p.3789-3792 (2000)

[3.64] {Sect. 3.9.8} T.B. Pittman, Y.H. Shih, D.V. Strekalov, A.V. Sergienko:Optical imaging by means of two-photon quantum entanglement, PhysicalReview A 52, p.R3429-R3432 (1995)

[3.65] {Sect. 3.9.8} C.T. Hsieh, C.K. Lee: Cylindrical-type nanometer-resolutionlaser diffractive optical encoder, Appl Opt 38, p.4743-4750 (1999)

[3.66] {Sect. 3.9.8} G. Andersen, J. Munch, P. Veitch: Compact, holographic cor-rection of aberrated telescopes, Appl Opt 36, p.1427-1432 (1997)

[3.67] {Sect. 3.9.8} I. Leiserson, S.G. Lipson, V. Sarafis: Superresolution in far-field imaging, Optics Letters 25, p.209-211 (2000)

[3.68] {Sect. 3.9.8} F. Dorchies, J.R. Marques, B. Cros, G. Matthieussent,C. Courtois, T. Velikoroussov, P. Audebert, J.P. Geindre, S. Rebibo,G. Hamoniaux et al.: Monomode guiding of 10 (16) W/cm (2) laser pulsesover 100 Rayleigh lengths in hollow capillary dielectric tubes, Phys Rev Lett82, p.4655-4658 (1999)

[3.69] {Sect. 3.9.8} M.K. Lewis, P. Wolanin, A. Gafni, D.G. Steel: Near-field scan-ning optical microscopy of single molecules by femtosecond two-photon ex-citation, Optics Letters 23, p.1111-1113 (1998)

[3.70] {Sect. 3.9.8} J. Tominaga, T. Nakano, N. Atoda: An approach for recordingand readout beyond the diffraction limit with an Sb thin film, Appl PhysLett 73, p.2078-2080 (1998)

[3.71] {Sect. 3.9.8} A. vonPfeil, B. Messerschmidt, V. Blumel, T. Possner: Makingfast cylindrical gradient-index lenses diffraction limited by using a wave-front-correction element, Appl Opt 37, p.5211-5215 (1998)

[3.72] {Sect. 3.9.8} W.H. Yeh, L.F. Li, M. Mansuripur: Vector diffraction andpolarization effects in an optical disk system, Appl Opt 37, p.6983-6988(1998)

[3.73] {Sect. 3.9.8} A. Yoshida, T. Asakura: Propagation and focusing of Gaussianlaser beams beyond conventional diffraction limit, Opt Commun 123, p.694-704 (1996)

[3.74] {Sect. 3.9.8} M. A. Paesler, P. J. Moyer: Near-Field Optics (John Wiley &Sons, Chichester, 1996)

[3.75] {Sect. 3.9.9} B.T. Teipen, D.L. MacFarlane: Modulation transfer functionmeasurements of microjetted microlenses, Appl Opt 38, p.2040-2046 (1999)

[3.76] {Sect. 3.9.9} O. Hadar, A. Dogariu, G.D. Boreman: Angular dependence ofsampling modulation transfer function, Appl Opt 36, p.7210-7216 (1997)

[3.77] {Sect. 3.9.9} S. Makki, Z. Wang, J.R. Leger: Laser beam relaying withphase-conjugate diffractive optical elements, Appl Opt 36, p.4749-4755(1997)

[3.78] {Sect. 3.9.10} M.W. Noel, C.R. Stroud: Young’s double-slit interferometrywithin an atom, Phys Rev Lett 75, p.1252-1255 (1995)

3.9.13 Diffraction at Two-Dimensional Gratings 687

[3.79] {Sect. 3.9.13} K.X. He, M. Curley, A. Williams, J.C. Wang: Visible lightdiffraction by a monolayer periodic array of UV laser dye Bis-MSB dopedpolystyrene spheres, Opt Commun 139, p.39-42 (1997)

[3.80] {Sect. 3.9.16} M.A. Muriel, A. Carballar, J. Azana: Field distributions in-side fiber gratings, IEEE J QE-35, p.548-558 (1999)

[3.81] {Sect. 3.9.16} N.C.R. Holme, L. Nikolova, P.S. Ramanujam, S. Hvilsted: Ananalysis of the anisotropic and topographic gratings in a side-chain liquidcrystalline azobenzene polyester, Appl Phys Lett 70, p.1518-1520 (1997)

[3.82] {Sect. 3.9.16} G.I. Greisukh, S.T. Bobrov, S.A. Stepanov: Optics of Diffrac-tive and Gradient-Index Elements and Systems (SPIE Optical EngineeringPress, Bellingham, 1997); J. Turunen, F.Wyrowski: Diffractive Optics forIndustrial and Commercial Applications (Akademie Verlag, Berlin, 1997)

[3.83] {Sect. 3.9.16} H.J. Eichler, P. Gunter, D.W. Pohl: Laser-Induced DynamicGratings, Springer Ser. Opt. Sci, Vol. 50 (Springer, Berlin, Heidelberg, NewYork, Tokyo 1986)

[3.84] {Sect. 3.10} I.V. Fedotov, A.B. Fedotov, A.M. Zheltikov: Raman-resonance-enhanced composite nonlinearity of air-guided modes in hollow photonic-crystal fibers, Optics Letters 31, p.2604-2606 (2006)

[3.85] {Sect. 3.10} F.G. Omenetto, N.A. Wolchover, M.R. Wehner, M. Ross, A.Efimov, A.J. Taylor, V.V.R.K. Kumar, A.K. George, J.C. Knight, N.Y.Joly, P.S.J. Russell: Spectrally smooth supercontinuum from 350 nm to 3mu m in sub- centimeter lengths of soft-glass photonic crystal fibers, OptExpress 14, p.4928-4934 (2006)

[3.86] {Sect. 3.10} L. Lavoute, P. Roy, A. DesfargesBerthelemot, V. Kermene, S.Fevrier: Design of microstructured single-mode fiber combining large modearea and high rare earth ion concentration, Opt Express 14, p.2994-2999(2006)

[3.87] {Sect. 3.10} M.L. Hu, C.Y. Wang, Y.F. Li, L. Chai, A.M. Zheltikov: Tunablesupercontinuum generation in a high-index-step photonic- crystal fiber witha comma-shaped core, Opt Express 14, p.1942-1950 (2006)

[3.88] {Sect. 3.10} A.B. Fedotov, E.E. Serebryannikov, A.A. Ivanov, A.M.Zheltikov: Spectral transformation of femtosecond Cr:forsterite laser pulsesin a flint-glass photonic-crystal fiber, Appl Opt 45, p.6823-6830 (2006)

[3.89] {Sect. 3.10} H. Dobb, D.J. Webb, K. Kalli, A. Argyros, M.C.J. Large, M.A.vanEijkelenborg: Continuous wave ultraviolet light-induced fiber Bragggratings in few- and single-mode microstructured polymer optical fibers,Optics Letters 30, p.3296-3298 (2005)

[3.90] {Sect. 3.10} W.S. Wong, X. Peng, J.M. McLaughlin, L. Dong: Breakingthe limit of maximum effective area for robust single-mode propagation inoptical fibers, Optics Letters 30, p.2855-2857 (2005)

[3.91] {Sect. 3.10} A. Fuerbach, P. Steinvurzel, J.A. Bolger, A. Nulsen, B.J. Eggle-ton: Nonlinear propagation effects in antiresonant high-index inclusion pho-tonic crystal fibers, Optics Letters 30, p.830-832 (2005)

[3.92] {Sect. 3.10} A.D. Galea, F. Couny, S. Coupland, P.J. Roberts, H. Sabert,J.C. Knight, T.A. Birks, P.S.J. Russell: Selective mode excitation in hollow-core photonic crystal fiber, Optics Letters 30, p.717-719 (2005)

[3.93] {Sect. 3.10} C.J.S. deMatos, R.E. Kennedy, S.V. Popov, J.R. Taylor: 20-kW peak power all-fiber 1.57-mu m source based on compression in air-corephotonic bandgap fiber, its frequency doubling, and broadband generationfrom 430 to 1450 nm, Optics Letters 30, p.436-438 (2005)

[3.94] {Sect. 3.10} P. Glas, D. Fischer, M. Moenster, G. Steinmeyer, R. Iliew, C.Etrich, M. Kreitel, L.E. Nilsson, R. Koppler: Large-mode-area Nd-dopedsingle-transverse-mode dual-wavelength microstructure fiber laser, Opt Ex-press 13, p.7884-7892 (2005)

688 3. Linear Interactions Between Light and Matter

[3.95] {Sect. 3.10} S.M. Kobtsev, S.V. Smirnov: Modelling of high-power super-continuum generation in highly nonlinear, dispersion shifted fibers at CWpump, Opt Express 13, p.6912-6918 (2005)

[3.96] {Sect. 3.10} A. Huttunen, P. Torma: Effect of wavelength dependence ofnonlinearity, gain, and dispersion in photonic crystal fiber amplifiers, OptExpress 13, p.4286-4295 (2005)

[3.97] {Sect. 3.10} H.C. Nguyen, B.T. Kuhlmey, E.C. Mgi, M.C. Steel, P. Do-machuk, C.L. Smith, B.J. Eggelton: Tapered photonic crystal fibres: prop-erties, characterisation and applications, Appl. Phys. B 81, p.377-387 (2005)

[3.98] {Sect. 3.10} R. George, J.A. Harrington: Infrared transmissive, hollow plas-tic waveguides with inner Ag-AgI coatings, Appl Opt 44, p.6449-6455 (2005)

[3.99] {Sect. 3.10} T.V. Andersen, K.M. Hilligsoe, C.K. Nielsen, J. Thgersen, K.P.Hansen, S.R. Keiding, J.J. Larsen: Continuous-wave wavelength conversionin a photonic crystal fiber with two zero-dispersion wavelengths, Opt Ex-press 12, p.4113-4122 (2004)

[3.100] {Sect. 3.10} N.A. Mortensen, M.D. Nielsen, J.R. Folkenberg, A. Petersson,H.R. Simonsen: Improved large-mode-area endlessly single-mode photoniccrystal fibers, Optics Letters 28, p.393-395 (2003)

[3.101] {Sect. 3.10} M. Nurhuda, A. Suda, K. Midorikawa, M. Hatayama, K. Na-gasaka: Propagation dynamics of femtosecond laser pulses in a hollow fiberfilled with argon: constant gas pressure versus differential gas pressure, JOpt Soc Am B Opt Physics 20, p.2002-2011 (2003)

[3.102] {Sect. 3.10} K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Did-dams, B.R. Washburn, K. Weber, R.S. Windeler: Fundamental amplitudenoise limitations to supercontinuum spectra generated in a microstructuredfiber, Appl. Phys. B 77, p.269-277 (2003)

[3.103] {Sect. 3.10} D.G. Ouzounov, K.D. Moll, M.A. Foster, W.R. Zipfel, W.W.Webb, A.L. Gaeta: Delivery of nanojoule femtosecond pulses through large-core microstructured fibers, Optics Letters 27, p.1513-1515 (2002)

[3.104] {Sect. 3.10} J.H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T.M. Monro, D.J.Richardson: Investigation of Brillouin effects in small-core holey opticalfiber: lasing and scattering, Optics Letters 27, p.927-929 (2002)

[3.105] {Sect. 3.10} J.H.V. Price, W. Belardi, T.M. Monro, A. Malinowski, A.Piper, D.J. Richardson: Soliton transmission and supercontinuum gener-ation in holey fiber, using a diode pumped Ytterbium fiber source, OptExpress 10, p.382-387 (2002)

[3.106] {Sect. 3.10} A.N. Naumov, A.B. Fedotov, A.M. Zheltikov, V.V. Yakovlev,L.A. Melnikov, V.I. Beloglazov, N.B. Skibina, A.V. Shcherbakov: Enhanced((3))(X) interactions of unamplified femtosecond Cr : forsterite laser pulsesin photonic-crystal fibers, J Opt Soc Am B Opt Physics 19, p.2183-2190(2002)

[3.107] {Sect. 3.10} A.B. Fedotov, A.N. Naumov, A.M. Zheltikov, I. Bugar, D.Chorvat, D. Chorvat, A.P. Tarasevitch: von der Linde: Frequency-tunablesupercontinuum generation in photonic-crystal fibers by femtosecond pulsesof an optical parametric amplifier, J Opt Soc Am B Opt Physics 19, p.2156-2164 (2002)

[3.108] {Sect. 3.10} W.J. Wadsworth, A. OrtigosaBlanch, J.C. Knight, T.A. Birks,T.P.M. Man, P.S. Russell: Supercontinuum generation in photonic crystalfibers and optical fiber tapers: a novel light source, J Opt Soc Am B OptPhysics 19, p.2148-2155 (2002)

[3.109] {Sect. 3.10} G. Millot, J.M. Dudley: Polarization-mode dispersion measure-ments in high-birefringence fibers by means of stimulated Raman scattering,Appl Opt 41, p.2589-2591 (2002)

3.10 Waveguiding – Optical Fibers 689

[3.110] {Sect. 3.10} S. Mohri, T. Kasai, Y. Abe, Y.W. Shi, Y. Matsuura, M. Miyagi:Optical properties of end-sealed hollow fibers, Appl Opt 41, p.1251-1255(2002)

[3.111] {Sect. 3.10} M.A. van Eijkelenborg, C.J. Large M, A. Argyros, J. Zagari, S.Manos, N.A. Issa, I. Bassett, S. Fleming, R.C. McPhedran, C.M. de Sterke,N.A. Nicorovici: P Microstructured polymer optical fibre, Optics Express9, p.319-327 (2001)

[3.112] {Sect. 3.11} W.V. Meyer, A.E. Smart, R.G.W. Brown: Photon correlationand scattering: introduction to the feature issue, Appl Opt 40, p.3965-3968(2001)

[3.113] {Sect. 3.11} M.C. Jermy, A. Allen: Simulating the effects of multiple scatter-ing on images of dense sprays and particle fields, Appl Opt 41, p.4188-4196(2002)

[3.114] {Sect. 3.11.0} F. Rachet, M. Chrysos, C. GuillotNoel, Y. LeDuff: Uniquecase of highly polarized collision-induced light scattering: The very far spec-tral wing by the helium pair, Phys Rev Lett 84, p.2120-2123 (2000)

[3.115] {Sect. 3.11.0} R.L. Murry, J.T. Fourkas, W.X. Li, T. Keyes: Mechanismsof light scattering in supercooled liquids, Phys Rev Lett 83, p.3550-3553(1999)

[3.116] {Sect. 3.11.0} G.N. Constantinides, D. Gintides, S.E. Kattis, K. Kiri-aki, C.A. Paraskeva, A.C. Payatakes, D. Polyzos, S.V. Tsinopoulos, S.N.Yannopoulos: Computation of light scattering by axisymmetric nonsphericalparticles and comparison with experimental results, Appl Opt 37, p.7310-7319 (1998)

[3.117] {Sect. 3.11.0} D.D. Meyerhofer: High-intensity-laser-electron scattering,IEEE J QE-33, p.1935-1941 (1997)

[3.118] {Sect. 3.11.0} F.V. Hartemann, A.K. Kerman: Classical theory of nonlinearcompton scattering, Phys Rev Lett 76, p.624-627 (1996)

[3.119] {Sect. 3.11.0} A. Kienle, M.S. Patterson, L. Ott, R. Steiner: Determinationof the scattering coefficient and the anisotropy factor from laser Dopplerspectra of liquids including blood, Appl Opt 35, p.3404-3412 (1996)

[3.120] {Sect. 3.11.0} J.D. McKinney, M.A. Webster, K.J. Webb, A.M. Weiner:Characterization and imaging in optically scattering media by use of laserspeckle and a variable-coherence source, Optics Letters 25, p.4-6 (2000)

[3.121] {Sect. 3.11.0} L.L. Gurdev, T.N. Dreischuh, D.V. Stoyanov: Pulse backscat-tering tomography based on lidar principle, Opt Commun 151, p.339-352(1998)

[3.122] {Sect. 3.11.0} R. Weber, G. Schweiger: Photon correlation spectroscopy onflowing polydisperse fluid-particle systems: theory, Appl Opt 37, p.4039-4050 (1998)

[3.123] {Sect. 3.11.0} G.L. Fischer, R.W. Boyd, T.R. Moore, J.E. Sipe: Nonlinear-optical Christiansen filter as an optical power limiter, Optics Letters 21,p.1643-1645 (1996)

[3.124] {Sect. 3.11.1} M.Y. Sfeir, F. Wang, L.M. Huang, C.C. Chuang, J. Hone, S.P.OBrien, T.F. Heinz, L.E. Brus: Probing electronic transitions in individualcarbon nanotubes by Rayleigh scattering, Science 306, p.1540-1543 (2004)

[3.125] {Sect. 3.11.1} J.A. Sutton, J.F. Driscoll: Rayleigh scattering cross sectionsof combustion species at 266, 355, and 532 nm for thermometry applications,Optics Letters 29, p.2620-2622 (2004)

[3.126] {Sect. 3.11.0} D.B. Brayton: Small Particle Signal Characteristics of a Dual-Scatter Laser Velocimeter, Appl. Opt. 13, p.2346-2351 (1974)

[3.127] {Sect. 3.11.1} H. Naus, W. Ubachs: Experimental verification of Rayleighscattering cross sections, Optics Letters 25, p.347-349 (2000)

690 3. Linear Interactions Between Light and Matter

[3.128] {Sect. 3.11.1} F. Benabid, M. Notcutt, L. Ju, D.G. Blair: Rayleigh scatter-ing in sapphire test mass for laser interferometric gravitational-wave detec-tors: II: Rayleigh scattering induced noise in a laser interferometric-wavedetector, Opt Commun 170, p.9-14 (1999)

[3.129] {Sect. 3.11.1} J.I. Dadap, J. Shan, K.B. Eisenthal, T.F. Heinz: Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,Phys Rev Lett 83, p.4045-4048 (1999)

[3.130] {Sect. 3.11.1} C.C. Hsu, T.H. Huang, S. Liu, F.F. Yeh, B.Y. Jin, J.A. Sat-tigeri, C.W. Shiau, T.Y. Luh: Conformation of substituted poly-norbornenepolymers studied by hyper- Rayleigh scattering at 1064 nm, Chem Phys Lett311, p.355-361 (1999)

[3.131] {Sect. 3.11.1} R.H.C. Janssen, D.N. Theodorou, S. Raptis, M.G. Pa-padopoulos: Molecular simulation of static hyper-Rayleigh scattering: Acalculation of the depolarization ratio and the local fields for liquid ni-trobenzene, J Chem Phys 111, p.9711-9719 (1999)

[3.132] {Sect. 3.11.1} P. Kaatz, D.P. Shelton: Two-photon fluorescence cross-sectionmeasurements calibrated with hyper-Rayleigh scattering, J Opt Soc Am BOpt Physics 16, p.998-1006 (1999)

[3.133] {Sect. 3.11.1} J.N. Woodford, C.H. Wang, A.E. Asato, R.S.H. Liu: Hyper-Rayleigh scattering of azulenic donor-acceptor molecules at 1064 and 1907nm, J Chem Phys 111, p.4621-4628 (1999)

[3.134] {Sect. 3.11.1} S.N. Yaliraki, R.J. Silbey: Hyper-Rayleigh scattering of cen-trosymmetric molecules in solution, J Chem Phys 111, p.1561-1568 (1999)

[3.135] {Sect. 3.11.1} S. Inouye, A.P. Chikkatur, D.M. StamperKurn, J. Stenger,D.E. Pritchard, W. Ketterle: Superradiant Rayleigh scattering from a Bose-Einstein condensate, Science 285, p.571-574 (1999)

[3.136] {Sect. 3.11.1} M. Froggatt, J. Moore: High-spatial-resolution distributedstrain measurement in optical fiber with Rayleigh scatter, Appl Opt 37,p.1735-1740 (1998)

[3.137] {Sect. 3.11.1} B.W.J. McNeil, G.R.M. Robb: Collective Rayleigh scatteringfrom dielectric particles: a classical theory of the collective atomic recoillaser, Opt Commun 148, p.54-58 (1998)

[3.138] {Sect. 3.11.1} C. Desmet, V. Gusev, W. Lauriks, C. Glorieux, J. Thoen:All-optical excitation and detection of leaky Rayleigh waves, Optics Letters22, p.69-71 (1997)

[3.139] {Sect. 3.11.1} S.F. Hubbard, R.G. Petschek, K.D. Singer: Spectral contentand dispersion of hyper-Rayleigh scattering, Optics Letters 21, p.1774-1776(1996)

[3.140] {Sect. 3.11.1} O.F.J. Noordman, N.F. Vanhulst: Time-resolved hyper-Ray-leigh scattering: Measuring first hyperpolarizabilities beta of fluorescentmolecules, Chem Phys Lett 253, p.145-150 (1996)

[3.141] {Sect. 3.11.1} S.L. Shapiro, H.P. Broida: Light Scattering from Fluctuationsin Orientations of CS2 in Liquids, Phys. Rev. 154, p.129-138 (1967)

[3.142] {Sect. 3.11.1} I.P. Batra, R.H. Enns: Stimulated Thermal Rayleigh Scat-tering in Liquids, Phys. Rev. 185, p.396-399 (1969)

[3.143] {Sect. 3.11.2} K.L. vanderMolen, P. Zijlstra, A. Lagendijk, A.P. Mosk: Laserthreshold of Mie resonances, Optics Letters 31, p.1432-1434 (2006)

[3.144] {Sect. 3.11.2} G. Gouesbet: Asymptotic quantum elastic generalizedLorenz-Mie theory, Opt Commun 266, p.704-709 (2006)

[3.145] {Sect. 3.11.2} S.V. Fomichev, S.V. Popruzhenko, D.F. Zaretsky, W. Becker:Nonlinear excitation of the Mie resonance in a laser-irradiated cluster, OptExpress 11, p.2433-2439 (2003)

3.11.2 Mie Scattering 691

[3.146] {Sect. 3.11.2} H. Polaert, G. Gouesbet, G. Grehan: Laboratory determi-nation of beam-shape coefficients for use in generalized Lorenz-Mie theory,Appl Opt 40, p.1699-1706 (2001)

[3.147] {Sect. 3.11.2} M. Bass (ed.): Handbook of Optics, Vol. I, chapter 44(McGraw-Hill, New York, 1995)

[3.148] {Sect. 3.11.2} M. Alexander, F.R. Hallett: Small-angle light scattering: in-strumental design and application to particle sizing, Appl Opt 38, p.4158-4163 (1999)

[3.149] {Sect. 3.11.2} I. Delfino, M. Lepore, P.L. Indovina: Experimental tests ofdifferent solutions to the diffusion equation for optical characterization ofscattering media by time-resolved transmittance, Appl Opt 38, p.4228-4236(1999)

[3.150] {Sect. 3.11.2} N.M. Sijtsema, R.A.L. Tolboom, N.J. Dam, J.J. terMeulen:Two-dimensional multispecies imaging of a supersonic nozzle flow, OpticsLetters 24, p.664-666 (1999)

[3.151] {Sect. 3.11.2} M. Hammer, D. Schweitzer, B. Michel, E. Thamm, A. Kolb:Single scattering by red blood cells, Appl Opt 37, p.7410-7418 (1998)

[3.152] {Sect. 3.11.2} M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg: Electro-magnetic energy transport via linear chains of silver nanoparticles, OpticsLetters 23, p.1331-1333 (1998)

[3.153] {Sect. 3.11.2} A. Doicu, T. Wriedt: Computation of the beam-shape co-efficients in the generalized Lorenz-Mie theory by using the translationaladdition theorem for spherical vector wave functions, Appl Opt 36, p.2971-2978 (1997)

[3.154] {Sect. 3.11.2} Z.L. Jiang: Phase maps based on the Lorenz-Mie theory tooptimize phase Doppler particle-sizing systems, Appl Opt 36, p.1367-1375(1997)

[3.155] {Sect. 3.11.2} J. Kasparian, B. Kramer, J.P. Dewitz, S. Vajda, P. Rairoux,B. Vezin, V. Boutou, T. Leisner, W. Hubner, J.P. Wolf, et al.: Angulardependences of third harmonic generation from microdroplets, Phys RevLett 78, p.2952-2955 (1997)

[3.156] {Sect. 3.11.2} G. Mie: Beitrage zur Optik truber Medien, speziell kolloidalerMetallosungen, Ann. Phys. 25, p.377-444 (1908)

[3.157] {Sect. 3.11.4} P. J. Hendra, J.K. Agbenyega: The Raman Spectra of Poly-mers (John Wiley & Sons, Chichester, 1994)

[3.158] {Sect. 3.11.4} D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grasselli:The Handbook of Infrared and Raman Characteristic Frequencies of Or-ganic Molecules (Academic Press, Boston, San Diego, New York, 1991)

[3.159] {Sect. 3.11.4} D.J. Gardiner, P.R. Grawes: Practical Raman Spectroscopy(Springer, Berlin, Heidelberg 1989)

[3.160] {Sect. 3.11.4} R.J.H.Clark, R.E. Hester (eds.): Advances in Infrared andRaman Spectroscopy, Vols. 1-10 (Heyden, London 1972-1985)

[3.161] {Sect. 3.11.4} A. Wehr: High-resolution rotational Raman Spectra of gases(in A. Weber (ed.): Raman Spectroscopy of Gases and Liquids, Topics Curr.Phys, Vol. 11 (Springer Berlin, Heidelberg 1979)

[3.162] {Sect. 3.11.4} G. Herzberg: Molecular Spectra and Molecular Structure II.Infrared and Raman Spectra (Van Nostrand Reinhold, New York, 1945)

[3.163] {Sect. 3.11.4} A.A. Sirenko, I.A. Akimov, J.R. Fox, A.M. Clark, H.C. Li,W.D. Si, X.X. Xi: Observation of the first-order Raman scattering in SrTiO3thin films, Phys Rev Lett 82, p.4500-4503 (1999)

[3.164] {Sect. 3.11.4} N.V. Surovtsev, J. Wiedersich, V.N. Novikov, E. Rossler,E. Duval: q dependence of low-frequency Raman scattering in silica glass,Phys Rev Lett 82, p.4476-4479 (1999)

692 3. Linear Interactions Between Light and Matter

[3.165] {Sect. 3.11.4} K. Wakabayashi, K.G. Nakamura, K. Kondo, M. Yoshida:Time-resolved Raman spectroscopy of polytetrafluoroethylene under laser-driven shock compression, Appl Phys Lett 75, p.947-949 (1999)

[3.166] {Sect. 3.11.4} C. Didierjean, V. DeWaele, G. Buntinx, O. Poizat: The struc-ture of the lowest excited singlet (S-1) state of 4,4’-bipyridine: a picosecondtime-resolved Raman analysis, Chem Phys 237, p.169-181 (1998)

[3.167] {Sect. 3.11.4} F. Rabenstein, A. Leipertz: One-dimensional, time-resolvedRaman measurements in a sooting flame made with 355-nm excitation, ApplOpt 37, p.4937-4943 (1998)

[3.168] {Sect. 3.11.4} X.F. Wang, R. Fedosejevs, G.D. Tsakiris: Observation ofRaman scattering and hard X-rays in short pulse laser interaction withhigh density hydrogen gas, Opt Commun 146, p.363-370 (1998)

[3.169] {Sect. 3.11.4} H. Huang, S.Q. Li: Vibrational Raman spectrum of a degen-erate Boson gas, Opt Commun 144, p.331-339 (1997)

[3.170] {Sect. 3.11.4} E. Takahashi, Y. Matsumoto, K. Kuwahara, I. Matsushima,I. Okuda, Y. Owadano: Short Stokes pulse generation by mixed Raman gas,Opt Commun 136, p.429-432 (1997)

[3.171] {Sect. 3.11.4} K. van Helvoort, R. Fantoni, W.L. Meerts, J. Reuss: Internalrotation in CH3CD3: Raman spectroscopy of torsional overtones, Chem.Phys. Lett. 128, p.494-500 (1986)

[3.172] {Sect. 3.11.4} W. Knippers, K. Van Helvoort, S. Stolte: Vibrational over-tones of the homonuclear diatomics N2, O2, D2 observed by the spontaneousRaman effect, Chem. Phys. Lett 121, p.279-286 (1985)

[3.173] {Sect. 3.11.4} H. W. Schrotter, J. Bofilias: On the assignment of the second-order lines in the Raman spectrum of benzene, J. Mol. Struct. 3, p.242-244(1969)

[3.174] {Sect. 3.11.4} M. Katsuragawa, K. Hakuta: Raman gain measurement insolid parahydrogen, Optics Letters 25, p.177-179 (2000)

[3.175] {Sect. 3.11.4} S. Hadrich, S. Hefter, B. Pfelzer, T. Doerk, P. Jauernik,J. Uhlenbusch: Determination of the absolute Raman cross section ofmethyl, Chem Phys Lett 256, p.83-86 (1996)

[3.176] {Sect. 3.11.4} N.D. Finkelstein, A.P. Yalin, W.R. Lempert, R.B. Miles:Dispersion filter for spectral and spatial resolution of pure rotational Ramanscattering, Optics Letters 23, p.1615-1617 (1998)

[3.177] {Sect. 3.11.4} H. Yamamoto, H. Uenoyama, K. Hirai, X. Dou, Y. Ozaki:Quantitative analysis of metabolic gases by multichannel Raman spec-troscopy: use of a newly designed elliptic-spherical integration type of cellholder, Appl Opt 37, p.2640-2645 (1998)

[3.178] {Sect. 3.11.4} J. Bendtsen, F. Rasmussen, S. Brodersen: Fourier-transforminstrument for high-resolution Raman spectroscopy of gases, Appl Opt 36,p.5526-5534 (1997)

[3.179] {Sect. 3.11.4} N.D. Finkelstein, W.R. Lempert, R.B. Miles: Narrow-linewidth passband filter for ultraviolet rotational Raman imaging, OpticsLetters 22, p.537-539 (1997)

[3.180] {Sect. 3.11.4} D.F. Marran, J.H. Frank, M.B. Long, S.H. Starner, R.W. Bil-ger: Intracavity technique for improved Raman/Rayleigh imaging in flames,Optics Letters 20, p.791-793 (1995)

[3.181] {Sect. 3.11.4} B. Schrader: Special techniques and applications, in Infraredand Raman Spectroscopy (VCH, Weinheim 1993)

[3.182] {Sect. 3.11.5} H. Schwoerer, B. Liesfeld, H.P. Schlenvoigt, K.U. Amthor, R.Sauerbrey: Thomson-backscattered x rays from laser-accelerated electrons– art. no. 014802, Phys Rev Lett 9601, p.4802 (2006)

[3.183] {Sect. 3.11.5} M. Babzien, I. BenZvi, K. Kusche, I.V. Pavlishin, I.V.Pogorelsky, D.P. Siddons, V. Yakimenko, D. Cline, F. Zhou, T. Hirose, Y.

3.11.5 Thomson and Compton Scattering 693

Kamiya, T. Kumita, T. Omori, J. Urakawa, K. Yokoya: Observation of thesecond harmonic in Thomson scattering from relativistic electrons – art. no.054802, Phys Rev Lett 9605, p.4802 (2006)

[3.184] {Sect. 3.11.5} T. Omori, M. Fukuda, T. Hirose, Y. Kurihara, R. Kuroda, M.Nomura, A. Ohashi, T. Okugi, K. Sakaue, T. Saito, J. Urakawa, M. Washio,I. Yamazaki: Efficient propagation of polarization from laser photons topositrons through compton scattering and electron-positron pair creation –art. no. 114801, Phys Rev Lett 9611, p.4801 (2006)

[3.185] {Sect. 3.11.5} D.B. Blaschke, A.V. Prozorkevich, C.D. Roberts, S.M.Schmidt, S.A. Smolyansky: Pair production and optical lasers – art. no.140402, Phys Rev Lett 9614, p.402 (2006)

[3.186] {Sect. 3.11.5} N.M. Lawandy: Scattering of vacuum states by dynamicplasmon singularities: generating photons from vacuum, Optics Letters 31,p.3650-3652 (2006)

[3.187] {Sect. 3.11.5} K. Lee, Y.H. Cha, M.S. Shin, B.H. Kim, D. Kim: Temporaland spatial characterization of harmonics structures of relativistic nonlinearThomson scattering, Opt Express 11, p.309-316 (2003)

4. Nonlinear Interactions of Light and Matter Without Absorption

[4.1] {Sect. 4.3} C.Y. Fong, Y.R. Shen: Theoretical studies on the dispersion ofthe nonlinear optical susceptibilities in GaAs, InAs, and InSb, Phys. Rev.B 12, p.2325-2335 (1975)

[4.2] {Sect. 4.3} C.L. Tang, C. Flytzanis: Charge-Transfer Model of the NonlinearSusceptibilities of Polar Semiconductors, Phys. Rev. B 4, p.2520-2524 (1971)

[4.3] {Sect. 4.3} C. Flytzanis, J. Ducuing: Second-Order Optical Susceptibilitiesof III-V Semiconductors, Phys. Rev. 178, p.1218-1228 (1969)

[4.4] {Sect. 4.3} B.F. Levine: Electrodynamical Bond-Charge Calculation of Non-linear Optical Susceptibilities, Phys. Rev. Lett. 22, p.787-790 (1969)

[4.5] {Sect. 4.3} S.S. Jha, N. Bloembergen: Nonlinear Optical Susceptibilities inGroup-IV and III-V Semiconductors, Phys. Rev. 171, p.891-898 (1968)

[4.6] {Sect. 4.3} Y.R. Shen: Permutation Symmetry of Nonlinear Susceptibilitiesand Energy Relation, Phys. Rev. 167, p.818-821 (1968)

[4.7] {Sect. 4.3} P.D. Maker, T.W. Terhune: Study of Optical Effects Due to anInduced Polarization Third Order in the Electric Field Strength, Phys. Rev.137, p.A801-A818 (1965)

[4.8] {Sect. 4.3} G. Rosen, F.C. Whitmore: Experiment for Observing the Vac-uum Scattering of Light by Light, Phys. Rev. 137, p.B1357-B1359 (1965)

[4.9] {Sect. 4.3} N. Bloembergen, Y.R. Shen: Quantum-Theoretical Compari-sion of Nonlinear Susceptibilities in Parametric Media, Lasers, and RamanLasers, Phys. Rev. 133, p.A37-A49 (1964)

[4.10] {Sect. 4.3} J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan:Interactions between Light Waves in a Nonlinear Dielectric, Phys. Rev.127, p.1918-1939 (1962)

[4.11] {Sect. 4.3} D.A. Kleinman: Nonlinear Dielectric Polarization in OpticalMedia, Phys. Rev. 126, p.1977-1979 (1962)

[4.12] {Sect. 4.3} P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich: Generationof Optical Harmonics, Phys. Rev. Lett. 7, p.118-119 (1961)

[4.13] {Sect. 4.4.1} X.S. Xiao, C.X. Yang, S.M. Gao, H.X. Miao: Analysis ofultrashort-pulse second-harmonic generation in both phase- and group-velocity-matched structures, Ieee J Quantum Electron 41, p.85-93 (2005)

[4.14] {Sect. 4.4.1} T. Ishihara, K. Koshino, H. Nakashima: Second harmonic gen-eration due to quadrupole interaction in a photonic crystal slab: Angle de-

694 4. Nonlinear Interactions of Light and Matter Without Absorption

pendence and symmetry of the unit cell – art. no. 253901, Phys Rev Lett9125, p.3901 (2003)

[4.15] {Sect. 4.4.1} D.W. Kim, G.Y. Xiao, G.B. Ma: Temporal properties of thesecond-harmonic generation of a short pulse, Appl Opt 36, p.6788-6793(1997)

[4.16] {Sect. 4.4.1} D.R. White, E.L. Dawes, J.H. Marburger: Theory of Second-Harmonic Generation With High-Conversion Efficiency, IEEE J. QE-6,p.793-796 (1970)

[4.17] {Sect. 4.4.1} I.A. Kulagin, R.A. Ganeev, R.I. Tugushev, A.I. Ryasnyansky,T. Usmanov: Analysis of third-order nonlinear susceptibilities of quadraticnonlinear optical crystals, J Opt Soc Am B Opt Physics 23, p.75-80 (2006)

[4.18] {Sect. 4.4.1} C.L. Du, S.C. Ruan, Y.Q. Yu, Z.P. Wang: High-power intra-cavity second-harmonic generation of 1.34 mu m in BiB3O6 crystal, OptExpress 13, p.8591-8595 (2005)

[4.19] {Sect. 4.4.1} A. Majchrowski, J. Kisielewski, E. Michalski, K. Ozga, I.V.Kityk, T. Lukasiewicz: UV-induced two-photon absorption in BiB3O6 singlecrystals, Opt Commun 250, p.334-343 (2005)

[4.20] {Sect. 4.4.1} S. Hatano, M. Yoshimura, Y. Mori, T. Sasaki, S. Ito:Monolithic wavelength converter for ultraviolet light by use of a GdxY1-xCa4O(BO3)(3) crystal, Appl Opt 44, p.7651-7658 (2005)

[4.21] {Sect. 4.4.1} T. Harimoto, Y. Takeuchi, M. Fujita: Spectral properties ofsecond-harmonic generation at 800 nm in a BiB3O6 crystal, Opt Express12, p.811-816 (2004)

[4.22] {Sect. 4.4.1} H.Y. Shen, X.L. Meng, G. Zhang, J.J. Qin, W. Liu, L. Zhu,C.H. Huang, L.X. Huang, M. Wei: Sellmeier’s equation and the expression ofthe thermal refractive- index coefficient for a Nd0.007Gd0.993VO4 crystal,Appl Opt 43, p.955-960 (2004)

[4.23] {Sect. 4.4.1} Z.P. Wang, B. Teng, K. Fu, X.G. Xu, R.B. Song, C.L. Du, H.D.Jiang, J.Y. Wang, Y.G. Liu, Z.S. Shao: Efficient second harmonic generationof pulsed laser radiation in BiB3O6 (BIBO) crystal with different phasematching directions, Opt Commun 202, p.217-220 (2002)

[4.24] {Sect. 4.4.1} A. Brenier, I.V. Kityk, A. Majchrowski: Evaluation of Nd3+-doped BiB3O6 (BIBO) as a new potential self- frequency conversion lasercrystal, Opt Commun 203, p.125-132 (2002)

[4.25] {Sect. 4.4.1} K. Kato, E. Takaoka: Sellmeier and thermo-optic dispersionformulas for KTP, Appl Opt 41, p.5040-5044 (2002)

[4.26] {Sect. 4.4.1} K. Tanaka, H. Uchiki: Optical second-harmonic generationfrom CuGaS2 (112) bulk single crystals, Opt Commun 193, p.313-317 (2001)

[4.27] {Sect. 4.4.1} H. Kouta, Y. Kuwano: Attaining 186-nm light generation incooled beta-BaB2O4 crystal, Optics Letters 24, p.1230-1232 (1999)

[4.28] {Sect. 4.4.1} I. Shoji, H. Nakamura, K. Ohdaira, T. Kondo, R. Ito,T. Okamoto, K. Tatsuki, S. Kubota: Absolute measurement of second-order nonlinear-optical coefficients of beta-BaB2O4 for visible to ultravioletsecond-harmonic wavelengths, J Opt Soc Am B Opt Physics 16, p.620-624(1999)

[4.29] {Sect. 4.4.1} M. Tlidi, P. Mandel: Three-dimensional optical crystals andlocalized structures in cavity second harmonic generation, Phys Rev Lett83, p.4995-4998 (1999)

[4.30] {Sect. 4.4.1} S. Yu, A.M. Weiner: Phase-matching temperature shifts inblue generation by frequency doubling of femtosecond pulses in KNbO3, JOpt Soc Am B Opt Physics 16, p.1300-1304 (1999)

[4.31] {Sect. 4.4.1} G. Ghosh: Sellmeier coefficients for the birefringence and re-fractive indices of ZnGeP2 nonlinear crystal at different temperatures, ApplOpt 37, p.1205-1212 (1998)

4.4.1 Generation of the Second Harmonic 695

[4.32] {Sect. 4.4.1} M. Sheik-Bahae, M. Ebrahimzadeh: Measurements of nonlin-ear refraction in the second-order chi ((2)) materials KTiOPO4, KNbO3,beta-BaB2O4, and LiB3O5, Opt Commun 142, p.294-298 (1997)

[4.33] {Sect. 4.4.1} D.J. Armstrong, W.J. Alford, T.D. Raymond, A.V. Smith: Ab-solute measurement of the effective nonlinearities of KTP and BBO crystalsby optical parametric amplification, Appl Opt 35, p.2032-2040 (1996)

[4.34] {Sect. 4.4.1} K. Hagimoto, A. Mito: Determination of the second-ordersusceptibility of ammonium dihydrogen phosphate and alpha-quartz at 633and 1064 nm, Appl Opt 34, p.8276-8282 (1995)

[4.35] {Sect. 4.4.1} J. Jerphagnon, S.K. Kurtz: Optical Nonlinear Susceptibilities:Accurate Relative Values for Quartz, Ammonium Dihydrogen Phosphate,and Potassium Dihydrogen Phosphate, Phys. Rev. B 1, p.17391744 (1970)

[4.36] {Sect. 4.4.1} R.C. Miller, W.A. Nordland: Absolute Signs of Second-Harmonic Generation Coefficients of Piezoelectric Crystals, Phys. Rev. B2, p.4896-4902 (1970)

[4.37] {Sect. 4.4.1} R.C. Miller: Optical Second Harmonic Generation in Piezo-electric Crystals, Appl. Phys. Lett. 5, p.17-19 (1964)

[4.38] {Sect. 4.4.1} C. Samyn, T. Verbiest, A. Persoons: Second-order non-linearoptical polymers, Macromol Rapid Commun 21, p.1-15 (2000)

[4.39] {Sect. 4.4.1} W.S. Shi, Z.H. Chen, T. Zhao, H.B. Lu, Y.L. Zhou, G.Z.Yang: Second-harmonic generation in Ce : BaTiO2 nanocrystallites grownby pulsed laser deposition, J Opt Soc Am B Opt Physics 17, p.235-238(2000)

[4.40] {Sect. 4.4.1} B.F. Henson, B.W. Asay, R.K. Sander, S.F. Son, J.M. Robin-son, P.M. Dickson: Dynamic measurement of the HMX beta-delta phasetransition by second harmonic generation, Phys Rev Lett 82, p.1213-1216(1999)

[4.41] {Sect. 4.4.1} R. Masse, J.F. Nicoud, M. BagieuBeucher, C. Bourgogne:Sodium 3-methyl-4-nitrophenolate dihydrate: a crystal engineering routetowards new herringbone structures for quadratic non-linear optics, ChemPhys 245, p.365-375 (1999)

[4.42] {Sect. 4.4.1} S.N. Rashkeev, S. Limpijumnong, W.R.L. Lambrecht: Theo-retical evaluation of LiGaO2 for frequency upconversion to ultraviolet, JOpt Soc Am B Opt Physics 16, p.2217-2222 (1999)

[4.43] {Sect. 4.4.1} M. Yoshimura, H. Furuya, T. Kobayashi, K. Murase, Y. Mori,T. Sasaki: Noncritically phase-matched frequency conversion in GdxY1-xCa4O (BO3) (3) crystal, Optics Letters 24, p.193-195 (1999)

[4.44] {Sect. 4.4.1} D.Y. Zhang, H.Y. Shen, W. Liu, G.F. Zhang, W.Z. Chen,G. Zhang, R.R. Zeng, C.H. Huang, W.X. Lin, J.K. Liang: Study of thenonlinear optical properties of 7.5 mol% Nb : KTP crystals, IEEE J QE-35,p.1447-1450 (1999)

[4.45] {Sect. 4.4.1} Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, H. Hatano:Stoichiometric Mg : LiNbO3 as an effective material for nonlinear optics,Optics Letters 23, p.1892-1894 (1998)

[4.46] {Sect. 4.4.1} D. Pureur, A.C. Liu, M.J.F. Digonnet, G.S. Kino: Absolutemeasurement of the second-order nonlinearity profile in poled silica, OpticsLetters 23, p.588-590 (1998)

[4.47] {Sect. 4.4.1} T. Verbiest, S. VanElshocht, M. Kauranen, L. Hellemans,J. Snauwaert, C. Nuckolls, T.J. Katz, A. Persoons: Strong enhancement ofnonlinear optical properties through supramolecular chirality, Science 282,p.913-915 (1998)

[4.48] {Sect. 4.4.1} J. Capmany, J.G. Sole: Second harmonic generation in LaB-GeO5:Nd3+, Appl Phys Lett 70, p.2517-2519 (1997)

696 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.49] {Sect. 4.4.1} T. Fujiwara, M. Takahashi, A.J. Ikushima: Second-harmonicgeneration in germanosilicate glass poled with ArF laser irradiation, ApplPhys Lett 71, p.1032-1034 (1997)

[4.50] {Sect. 4.4.1} K. Kato: Second-harmonic and sum-frequency generation inZnGeP2, Appl Opt 36, p.2506-2510 (1997)

[4.51] {Sect. 4.4.1} Z.D. Li, B.C. Wu, G.B. Su, G.F. Huang: Blue light emissionfrom an organic nonlinear optical crystal of 4-aminobenzophenone pumpedby a laser diode, Appl Phys Lett 70, p.562-564 (1997)

[4.52] {Sect. 4.4.1} Y.C. Wu, P.Z. Fu, J.X. Wang, Z.Y. Xu, L. Zhang, Y.F. Kong,C.T. Chen: Characterization of CsB3O5 crystal for ultraviolet generation,Optics Letters 22, p.1840-1842 (1997)

[4.53] {Sect. 4.4.1} C.T. Chen, Z.Y. Xu, D.Q. Deng, J. Zhang, G.K.L. Wong,B.C. Wu, N. Ye, D.Y. Tang: The vacuum ultraviolet phase-matching char-acteristics of nonlinear optical KBe2BO3F2 crystal, Appl Phys Lett 68,p.2930-2932 (1996)

[4.54] {Sect. 4.4.1} G.S.G. Quirino, M.D.I. Castillo, J.J. SanchezMondragon,S. Stepanov, V. Vysloukh: Interferometric measurements of the photoin-duced refractive index profiles in photorefractive Bi12TiO20 crystal, OptCommun 123, p.597-602 (1996)

[4.55] {Sect. 4.4.1} W.L. Zhou, Y. Mori, T. Sasaki, S. Nakai: High-efficiency in-tracavity continuous-wave ultraviolet generation using crystals CsLiB6O10,beta P-BaB2O4 and LiB3O5, Opt Commun 123, p.583-586 (1996)

[4.56] {Sect. 4.4.1} M. Ahlheim, M. Barzoukas, P.V. Bedworth, M. Blanchardde-sce, A. Fort, Z.Y. Hu, S.R. Marder, J.W. Perry, C. Runser, M. Staehelin,et al.: Chromophores with strong heterocyclic accepters: A poled polymerwith a large electro-optic coefficient, Science 271, p.335-337 (1996)

[4.57] {Sect. 4.4.1} F.C. Zumsteg, J.D. Bierlein, T.E. Gier: KxRb1-xTiOPO4:A new nonlinear optical material, J. Appl. Phys. 47, p.4980-4985 (1976)

[4.58] {Sect. 4.4.1} K. Tanaka, A. Narazaki, K. Hirao: Large optical second-ordernonlinearity of poled WO3-TeO2 glass, Optics Letters 25, p.251-253 (2000)

[4.59] {Sect. 4.4.1} A.V. Balakin, V.A. Bushuev, N.I. Koroteev, B.I. Mantsyzov,I.A. Ozheredov, A.P. Shkurinov, D. Boucher, P. Masselin: Enhancement ofsecond-harmonic generation with femtosecond laser pulses near the photonicband edge for different polarizations of incident light, Optics Letters 24,p.793-795 (1999)

[4.60] {Sect. 4.4.1} S.J. Lin, I.D. Hands, D.L. Andrews, S.R. Meech: Opticallyinduced second harmonic generation by six-wave mixing: A novel probe ofsolute orientational dynamics, J Phys Chem A 103, p.3830-3836 (1999)

[4.61] {Sect. 4.4.1} P. LozaAlvarez, D.T. Reid, P. Faller, M. Ebrahimzadeh,W. Sibbett: Simultaneous second-harmonic generation and femtosecond-pulse compression in aperiodically poled KTiOPO4 with a RbTiOAsO4-based optical parametric oscillator, J Opt Soc Am B Opt Physics 16, p.1553-1560 (1999)

[4.62] {Sect. 4.4.1} F. Mougel, K. Dardenne, G. Aka, A. KahnHarari, D. Vivien:Ytterbium-doped Ca4GdO (BO3) (3): An efficient infrared laser and self-frequency doubling crystal, J Opt Soc Am B Opt Physics 16, p.164-172(1999)

[4.63] {Sect. 4.4.1} S. Pearl, H. Lotem, Y. Shimony, S. Rosenwaks: Optimization oflaser intracavity second-harmonic generation by a linear dispersion element,J Opt Soc Am B Opt Physics 16, p.1705-1711 (1999)

[4.64] {Sect. 4.4.1} A. Piskarskas, V. Smilgevicius, A. Stabinis, V. Jarutis,V. Pasiskevicius, S. Wang, J. Tellefsen, F. Laurell: Noncollinear second-harmonic generation in periodically poled KTiOPO4 excited by the Besselbeam, Optics Letters 24, p.1053-1055 (1999)

4.4.1 Generation of the Second Harmonic 697

[4.65] {Sect. 4.4.1} P. Wang, J.M. Dawes, P. Dekker, D.S. Knowles, J.A. Piper,B.S. Lu: Growth and evaluation of ytterbium-doped yttrium aluminum bo-rate as a potential self-doubling laser crystal, J Opt Soc Am B Opt Physics16, p.63-69 (1999)

[4.66] {Sect. 4.4.1} O.S. Brozek, V. Quetschke, A. Wicht, K. Danzmann: Highlyefficient cw frequency doubling of 854 nm GaAlAs diode lasers in an externalring cavity, Opt Commun 146, p.141-146 (1998)

[4.67] {Sect. 4.4.1} D. Fluck, P. Gunter: Efficient second-harmonic generation bylens wave-guiding in KNbO3 crystals, Opt Commun 147, p.305-308 (1998)

[4.68] {Sect. 4.4.1} C. Iaconis, I.A. Walmsley: Fundamental-harmonic phase shiftcompensation in an intracavity frequency doubled Nd:YLF laser, Opt Com-mun 149, p.61-63 (1998)

[4.69] {Sect. 4.4.1} Y. Wang, V. Petrov, Y.J. Ding, Y. Zheng, J.B. Khurgin, W.P.Risk: Ultrafast generation of blue light by efficient second-harmonic genera-tion in periodically-poled bulk and waveguide potassium titanyl phosphate,Appl Phys Lett 73, p.873-875 (1998)

[4.70] {Sect. 4.4.1} K.L. Moore, T. Donnelly: Probing nonequilibrium electrondistributions in gold by use of second-harmonic generation, Optics Letters24, p.990-992 (1999)

[4.71] {Sect. 4.4.1} A. Brenier, A. Majchrowski, E. Michalski, T. Lukasiewicz:Evaluation of GdCOB:Nd3+ for self-frequency doubling in the optimumphase matching direction, Opt Commun 217, p.395-400 (2003)

[4.72] {Sect. 4.4.1} T.V. Dolgova, A.I. Maidykovski, M.G. Martemyanov, A.A.Fedyanin, O.A. Aktsipetrov, G. Marowsky, V.A. Yakovlev, G. Mattei, N.Ohta, S. Nakabayashi: Giant optical second-harmonic generation in singleand coupled microcavities formed from one-dimensional photonic crystals,J Opt Soc Am B Opt Physics 19, p.2129-2140 (2002)

[4.73] {Sect. 4.4.2} R.A. Bartels, N.L. Wagner, M.D. Baertschy, J. Wyss, M.M.Murnane, H.C. Kapteyn: Phase-matching conditions for nonlinear fre-quency conversion by use of aligned molecular gases, Optics Letters 28,p.346-348 (2003)

[4.74] {Sect. 4.4.2} C.G. Durfee, L. Misoguti, S. Backus, H.C. Kapteyn, M.M.Murnane: Phase matching in cascaded third-order processes, J Opt SocAm B Opt Physics 19, p.822-831 (2002)

[4.75] {Sect. 4.4.2} B.A. Richman, S.E. Bisson, R. Trebino, E. Sidick, A. Jacobson:All-prism achromatic phase matching for tunable second-harmonic genera-tion, Appl Opt 38, p.3316-3323 (1999)

[4.76] {Sect. 4.4.2} H. Endoh, M. Kawaharada, E. Hasegawa: Noncritical phase-matched second-harmonic generation with an organic crystal, 4-(isopropyl-carbamoyl)nitrobenzene, Appl Phys Lett 68, p.293-295 (1996)

[4.77] {Sect. 4.4.2} R.S. Adhav, R.W. Wallace: Second Harmonic Generation in90 Phase-Matched KDP Isomorphs, IEEE J. QE-9, p.855-856 (1973)

[4.78] {Sect. 4.4.2} J.P. Feve, J.J. Zondy, B. Boulanger, R. Bonnenberger,X. Cabirol, B. Menaert, G. Marnier: Optimized blue light generation in op-tically contacted walk-off compensated RbTiOAsO4 and KTiOP1-yAsyO4,Opt Commun 161, p.359-369 (1999)

[4.79] {Sect. 4.4.2} R. Schiek, Y. Baek, G.I. Stegeman, W. Sohler: One-dimensional quadratic walking solitons, Optics Letters 24, p.83-85 (1999)

[4.80] {Sect. 4.4.2} R.J. Gehr, R.W. Kimmel, A.V. Smith: Simultaneous spatialand temporal walk-off compensation in frequency- doubling femtosecondpulses in beta-BaB2O4, Optics Letters 23, p.1298-1300 (1998)

[4.81] {Sect. 4.4.2} G.D. Boyd, D.A. Kleinman: Parametric Interaction of FocusedGaussian Light Beams, J. Appl. Phys. 39, p.3597-3639 (1968)

698 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.82] {Sect. 4.4.2} A.M. Weiner, A.M. Kanan, D.E. Leaird: High-efficiency bluegeneration by frequency doubling of femtosecond pulses in a thick nonlinearcrystal, Optics Letters 23, p.1441-1443 (1998)

[4.83] {Sect. 4.4.2} K. Mori, Y. Tamaki, M. Obara, K. Midorikawa: Second-harmonic generation of femtosecond high-intensity Ti: sapphire laser pulses,J Appl Phys 83, p.2915-2919 (1998)

[4.84] {Sect. 4.4.2} T.J. Zhang, M. Yonemura: Efficient type I second-harmonicgeneration of subpicosecond laser pulses with a series of alternating nonlin-ear and delay crystals, Appl Opt 37, p.1647-1650 (1998)

[4.85] {Sect. 4.4.2.6} A.M. Schober, M. CharbonneauLefort, M.M. Fejer: Broad-band quasi-phase-matched second-harmonic generation of ultrashort opticalpulses with spectral angular dispersion, J Opt Soc Am B Opt Physics 22,p.1699-1713 (2005)

[4.86] {Sect. 4.4.2.6} C.Q. Xu, J. Bracken, B. Chen: Intracavity wavelength con-versions employing a MgO-doped LiNbO3 quasi- phase-matched waveguideand an erbium-doped fiber amplifier, J Opt Soc Am B Opt Physics 20,p.2142-2149 (2003)

[4.87] {Sect. 4.4.2.6} A.C. Chiang, Y.Y. Lin, T.D. Wang, Y.C. Huang, J.T. Shy:Distributed-feedback optical parametric oscillation by use of a photorefrac-tive grating in periodically poled lithium niobate, Optics Letters 27, p.1815-1817 (2002)

[4.88] {Sect. 4.4.2.6} L. Barraco, A. Grisard, E. Lallier, P. Bourdon, J.P. Pocholle:Self-optical parametric oscillation in periodically poled neodymium- dopedlithium niobate, Optics Letters 27, p.1540-1542 (2002)

[4.89] {Sect. 4.4.2.6} K.W. Chang, A.C. Chiang, T.C. Lin, B.C. Wong, Y.H. Chen,Y.C. Huang: Simultaneous wavelength conversion and amplitude modula-tion in a monolithic periodically-poled lithium niobate, Opt Commun 203,p.163-168 (2002)

[4.90] {Sect. 4.4.2} J. Capmany, E. Montoya, V. Bermudez, D. Callejo, E. Dieguez,L.E. Bausa: Self-frequency doubling in Yb3+ doped periodically poledLiNbO3 : MgO bulk crystal, Appl Phys Lett 76, p.1374-1376 (2000)

[4.91] {Sect. 4.4.2} W. Shi, C.S. Fang, Z.L. Zu, Q.W. Pan, Q.T. Gu, X. Dong,H.Z. Wei, J.Z. Yu: Poling and characterization of nonlinear polymerDCNP/PEK-c thin films, Solid State Commun 113, p.483-487 (2000)

[4.92] {Sect. 4.4.2} R.G. Batchko, V.Y. Shur, M.M. Fejer, R.L. Byer: Backswitchpoling in lithium niobate for high-fidelity domain patterning and efficientblue light generation, Appl Phys Lett 75, p.1673-1675 (1999)

[4.93] {Sect. 4.4.2} C.B.E. Gawith, D.P. Shepherd, J.A. Abernethy, D.C. Hanna,G.W. Ross, P.G.R. Smith: Second-harmonic generation in a direct-bondedperiodically poled LiNbO3 buried waveguide, Optics Letters 24, p.481-483(1999)

[4.94] {Sect. 4.4.2} X.H. Gu, M. Makarov, Y.J. Ding, J.B. Khurgin, W.P. Risk:Backward second-harmonic and third-harmonic generation in a periodicallypoled potassium titanyl phosphate waveguide, Optics Letters 24, p.127-129(1999)

[4.95] {Sect. 4.4.2} I. Juwiler, A. Arie, A. Skliar, G. Rosenman: Efficient quasi-phase-matched frequency doubling with phase compensation by a wedgedcrystal in a standing-wave external cavity, Optics Letters 24, p.1236-1238(1999)

[4.96] {Sect. 4.4.2} X. Liu, L.J. Qian, F. Wise: Effect of local phase-mismatchon frequency doubling of high-power femtosecond laser pulses under quasi-phase-matched conditions, Opt Commun 164, p.69-75 (1999)

[4.97] {Sect. 4.4.2} M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czera-nowsky, G. Huber: Generation of 740 mW of blue light by intracavity fre-

4.4.2 Phase Matching 699

quency doubling with a first-order quasi-phase-matched KTiOPO4 crystal,Optics Letters 24, p.205-207 (1999)

[4.98] {Sect. 4.4.2} R. Schiek, L. Friedrich, H. Fang, G.I. Stegeman, K.R. Parames-waran, M.H. Chou, M.M. Fejer: Nonlinear directional coupler in periodicallypoled lithium niobate, Optics Letters 24, p.1617-1619 (1999)

[4.99] {Sect. 4.4.2} S. Wang, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Karls-son: First-order type II quasi-phase-matched UV generation in periodicallypoled KTP, Optics Letters 24, p.978-980 (1999)

[4.100] {Sect. 4.4.2} F. Laurell: Periodically poled materials for miniature lightsources, Opt. Mat. 11, p.235-244 (1999)

[4.101] {Sect. 4.4.2} Y.J.J. Ding, J.U. Kang, J.B. Khurgin: Theory of backwardsecond-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second-order nonlinear medium, IEEE J QE-34, p.966-974(1998)

[4.102] {Sect. 4.4.2} H. Komine, W.H. Long, J.W. Tully, E.A. Stappaerts: Quasi-phase-matched second-harmonic generation by use of a total-internal-reflec-tion phase shift in gallium arsenide and zinc selenide plates, Optics Letters23, p.661-663 (1998)

[4.103] {Sect. 4.4.2} K. Mizuuchi, K. Yamamato: Waveguide second-harmonic gen-eration device with broadened flat quasi- phase-matching response by use ofa grating structure with located phase shifts, Optics Letters 23, p.1880-1882(1998)

[4.104] {Sect. 4.4.2} S. Wang, V. Pasiskevicius, F. Laurell, H. Karlsson: Ultra-violet generation by first-order frequency doubling in periodically poledKTiOPO4, Optics Letters 23, p.1883-1885 (1998)

[4.105] {Sect. 4.4.2} J. Amin, V. Pruneri, J. Webjorn, P.S. Russell, D.C. Hanna,J.S. Wilkinson: Blue light generation in a periodically poled Ti:LiNbO3channel waveguide, Opt Commun 135, p.41-44 (1997)

[4.106] {Sect. 4.4.2} A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M.Katz, D. Eger: Green and ultraviolet quasi-phase-matched second harmonicgeneration in bulk periodically-poled KTiOPO4, Opt Commun 142, p.265-268 (1997)

[4.107] {Sect. 4.4.2} G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M.Fejer, R.L. Byer: 42%-efficient single-pass cw second-harmonic generationin periodically poled lithium niobate, Optics Letters 22, p.1834-1836 (1997)

[4.108] {Sect. 4.4.2} K. Mizuuchi, K. Yamamoto, M. Kato: Generation of ultravioletlight by frequency doubling of a red laser diode in a first-order periodicallypoled bulk LiTaO3, Appl Phys Lett 70, p.1201-1203 (1997)

[4.109] {Sect. 4.4.2} J.H. Si, G. Xu, X.C. Liu, Q.G. Yang, P.X. Ye, Z. Li, H. Ma,Y.Q. Shen, L. Qiu, J.X. Zhang, et al.: All-optical poling of a polyimide filmwith azobenzene chromophore, Opt Commun 142, p.71-74 (1997)

[4.110] {Sect. 4.4.2} S. Sonoda, I. Tsuruma, M. Hatori: Second harmonic generationin electric poled X-cut MgO- doped LiNbO3 waveguides, Appl Phys Lett70, p.3078-3080 (1997)

[4.111] {Sect. 4.4.2} A. Harada, Y. Nihei, Y. Okazaki, and H. Hyuga: Intracavityfrequency doubling of a diode-pumped 946-nm Nd:YAG laser with bulkberiodically poled MgO-LiNbO3, Opt. Lett. 22, p.805-807 (1997)

[4.112] {Sect. 4.4.2} G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M.Fejer, and R.L. Byer: 42%-efficient single-pass cw second-harmonic genera-tion in periodically poled lithium niobate, Opt. Lett. 22, p.1834-1836 (1997)

[4.113] {Sect. 4.4.2} Y. Kitaoka, K. Mizuuchi, K. Yamamoto, M. Kato, T. Sasaki:Intracavity second-harmonic generation with a periodically domain-invertedLiTaO3 device, Optics Letters 21, p.1972-1974 (1996)

700 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.114] {Sect. 4.4.2} Y.L. Lu, Y.Q. Lu, C.C. Xue, N.B. Ming: Growth of Nd3+-doped LiNbO3 optical superlattice crystals and its potential applications inself-frequency doubling, Appl Phys Lett 68, p.1467-1469 (1996)

[4.115] {Sect. 4.4.2} K. Mizuuchi, K. Yamamoto: Generation of 340-nm light by fre-quency doubling of a laser diode in bulk periodically poled LiTaO3, OpticsLetters 21, p.107-109 (1996)

[4.116] {Sect. 4.4.2} V. Pruneri, S.D. Butterworth, D.C. Hanna: Low-thresholdpicosecond optical parametric oscillation in quasi-phase-matched lithiumniobate, Appl Phys Lett 69, p.1029-1031 (1996)

[4.117] {Sect. 4.4.2} V. Pruneri, S.D. Butterworth, D.C. Hanna: Highly efficientgreen-light generation by quasi-phase- matched frequency doubling of pi-cosecond pulses from an amplified mode-locked Nd:YLF laser, Optics Let-ters 21, p.390-392 (1996)

[4.118] {Sect. 4.4.2} S. Tomaru, T. Watanabe, M. Hikita, M. Amano, Y. Shuto:Quasi-phase-matched second harmonic generation in a polymer waveguidewith a periodic poled structure, Appl Phys Lett 68, p.1760-1762 (1996)

[4.119] {Sect. 4.4.2} S. Yilmaz, S. Bauer, R. Gerhard-Multhaupt: Photothermalpoling of nonlinear optical polymer films, Appl. Phys. Lett. 64, p.2770-2772(1994)

[4.120] {Sect. 4.4.3} D. Jaque, J.J. Romero, Y.D. Huang, Z. DuLuo: Tunable greenlaser source based on frequency mixing of pump and laser radiation from aNd : YVO4 crystal operating at 1342 nm with an intracavity KTP crystal,Appl Opt 41, p.6394-6398 (2002)

[4.121] {Sect. 4.4.3} D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grund-kotter, R. Ricken, W. Sohler: Quasi-phase-matched difference-frequencygeneration in periodically poled Ti : LiNbO3 channel waveguides, OpticsLetters 24, p.896-898 (1999)

[4.122] {Sect. 4.4.3} J.A. McGuire, W. Beck, X. Wei, Y.R. Shen: Fourier-transformsum-frequency surface vibrational spectroscopy with femtosecond pulses,Optics Letters 24, p.1877-1879 (1999)

[4.123] {Sect. 4.4.3} C.Q. Wang, Y.T. Chow, W.A. Gambling, D.R. Yuan, D. Xu,G.H. Zhang, M.H. Jiang: A continuous-wave tunable solid-state blue laserbased on intracavity sum-frequency mixing and pump-wavelength tuning,Appl Phys Lett 75, p.1821-1823 (1999)

[4.124] {Sect. 4.4.3} E.V. Alieva, L.A. Kuzik, V.A. Yakovlev: Sum frequency gen-eration spectroscopy of thin organic films on silver using visible surfaceplasmon generation, Chem Phys Lett 292, p.542-546 (1998)

[4.125] {Sect. 4.4.3} G.C. Bhar, P. Kumbhakar, U. Chatterjee, A.M. Rudra, Y.Kuwano, H. Kouta: Efficient generation of 200-230-nm radiation in betabarium borate by noncollinear sum-frequency mixing, Appl Opt 37, p.7827-7831 (1998)

[4.126] {Sect. 4.4.3} R.A. Kaindl, D.C. Smith, M. Joschko, M.P. Hasselbeck, M.Woerner, T. Elsaesser: Femtosecond infrared pulses tunable from 9 to 18mu m at an 88-MHz repetition rate, Optics Letters 23, p.861-863 (1998)

[4.127] {Sect. 4.4.3} A. Nazarkin, G. Korn: Generation of self-compressed laserpulses under the condition of two- photon resonant difference-frequencymixing in gases, Opt Commun 153, p.184-190 (1998)

[4.128] {Sect. 4.4.3} V. Petrov, C. Rempel, K.P. Stolberg, W. Schade: Widelytunable continuous-wave mid-infrared laser source based on difference-frequency generation in AgGaS2, Appl Opt 37, p.4925-4928 (1998)

[4.129] {Sect. 4.4.3} J.D. Vance, C.Y. She, H. Moosmuller: Continuous-wave, all-solid-state, single-frequency 400-mW source at 589 nm based on doublyresonant sum-frequency mixing in a monolithic lithium niobate resonator,Appl Opt 37, p.4891-4896 (1998)

4.4.3 Frequency Mixing of Two Monochromatic Fields 701

[4.130] {Sect. 4.4.3} G.C. Bhar, U. Chatterjee, A.M. Rudra, P. Kumbhakar, R.K.Route, R.S. Feigelson: Generation of tunable 187.9-196-nm radiation inbeta-Ba2BO4, Optics Letters 22, p.1606-1608 (1997)

[4.131] {Sect. 4.4.3} D. Fluck, P. Gunter: Efficient generation of CW blue light bysum-frequency mixing of laser diodes in KNbO3, Opt Commun 136, p.257-260 (1997)

[4.132] {Sect. 4.4.3} J.M. Fraser, D.K. Wang, A. Hache, G.R. Allan, H.M. vanDriel:Generation of high-repetition-rate femtosecond pulses from 8 to 18 mu m,Appl Opt 36, p.5044-5047 (1997)

[4.133] {Sect. 4.4.3} H.M. Kretschmann, F. Heine, G. Huber, T. Halldorsson: All-solid-state continuous-wave doubly resonant all- intracavity sum-frequencymixer, Optics Letters 22, p.1461-1463 (1997)

[4.134] {Sect. 4.4.3} N. Umemura, K. Kato: Ultraviolet generation tunable to 0.185mu m in CsLiB6O10, Appl Opt 36, p.6794-6796 (1997)

[4.135] {Sect. 4.4.3} A. Balakrishnan, S. Sanders, S. Demars, J. Webjorn, D.W.Nam, R.J. Lang, D.G. Mehuys, R.G. Waarts, D.F. Welch: Broadly tunablelaser-diode-based mid-infrared source with up to 31 mu W of power at 4.3-mu m wavelength, Optics Letters 21, p.952-954 (1996)

[4.136] {Sect. 4.4.3} Y.B. Band, M. Trippenbach, C. Radzewicz, J.S. Krasinski:Ultra-short pulse nonlinear optics: Second harmonic generation and sumfrequency generation without group velocity mismatch broadening, J Non-linear Opt Physics Mat 5, p.477-494 (1996)

[4.137] {Sect. 4.4.3} M. Berdah, J.P. Visticot, C. Dedonderlardeux, D. Solgadi,B. Soep: Generation of picosecond VUV radiation by four-wave mixing ofnanosecond and picosecond laser radiations, Opt Commun 124, p.118-120(1996)

[4.138] {Sect. 4.4.3} R. Danielius, A. Dubietis, A. Piskarskas, G. Valiulis,A. Varanavicius: Generation of compressed 600-720-nm tunable femtosec-ond pulses by transient frequency mixing in a beta-barium borate crystal,Optics Letters 21, p.216-218 (1996)

[4.139] {Sect. 4.4.3} O. Kittelmann, J. Ringling, G. Korn, A. Nazarkin, I.V. Her-tel: Generation of broadly tunable femtosecond vacuum- ultraviolet pulses,Optics Letters 21, p.1159-1161 (1996)

[4.140] {Sect. 4.4.3} A. Shirakawa, H.W. Mao, T. Kobayashi: Highly efficient gen-eration of blue-orange femtosecond pulses from intracavity-frequency-mixedoptical parametric oscillator, Opt Commun 123, p.121-128 (1996)

[4.141] {Sect. 4.4.3} Y.K. Yap, M. Inagaki, S. Nakajima, Y. Mori, T. Sasaki: High-power fourth- and fifth-harmonic generation of a Nd: YAG laser by meansof a CsLiB6O10, Optics Letters 21, p.1348-1350 (1996)

[4.142] {Sect. 4.4.3} B. Dick, R.M. Hochstrasser: Spectroscopic and line-narrowingproperties of resonant sum and difference frequency generation, J. Chem.Phys. 78, p.3398-3409 (1983)

[4.143] {Sect. 4.4.3} J.R. Morris, Y.R. Shen: Theory of far-infrared generation byoptical mixing, Phys. Rev. A 15, p.1143-1156 (1977)

[4.144] {Sect. 4.4.3} J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan:Interactions between Light Waves in a Nonlinear Dielectric, Phys. Rev. 127,p.1918-1939 (1962)

[4.145] {Sect. 4.4.3} M. Bass, P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich:Optical Mixing, Phys. Rev. Lett. 8, p.18 (1962)

[4.146] {Sect. 4.4.3} N. Bloembergen, P. S. Pershan: Light Waves at the Boundaryof Nonlinear Media, Phys. Rev. 128, p.606-622 (1962)

[4.147] {Sect. 4.4.3} P.D. Maker, R.W. Terhune, M. Nisenoff, C.M. Savage: Effectsof Dispersion and Focusing on the Production of optical Harmonics, Phys.Rev. Lett. 8, p.21-22 (1962)

702 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.148] {Sect. 4.4.3} D. Mazzotti, P. Denatale, G. Giusfredi, C. Fort, J.A. Mitchell,L. Hollberg: Saturated-absorption spectroscopy with low-power difference-frequency radiation, Optics Letters 25, p.350-352 (2000)

[4.149] {Sect. 4.4.4} P. Buchhave, P. TidemandLichtenberg, W. Hou, U.L. Ander-sen, H. Abitan: Modelling a singly resonant, intracavity ring optical para-metric oscillator, Opt Commun 216, p.191-197 (2003)

[4.150] {Sect. 4.4.4} C.L. Tang: Tutorial on optical parametric processes and de-vices, J Nonlinear Opt Physics Mat 6, p.535-547 (1997)

[4.151] {Sect. 4.4.4} S.J. Brosnan, R.L. Byer: Optical Parametric Oscillator Thresh-old and Linewidth Studies, IEEE J. QE-15, p.415-431 (1979)

[4.152] {Sect. 4.4.4} J. H. Hunt: Optical Parametric Oscillators and Amplifiers andTheir Applications (SPIE Optical Engineering Press, London, 1997)

[4.153] {Sect. 4.4.4} C. L. Tang, L. K. Cheng: Fundamentals of Optical Paramet-ric Processes and Oscillators (Harwood Academic Publishers, Amsterdam,1995)

[4.154] {Sect. 4.4.4} L. Carrion, J.P. GirardeauMontaut: Development of a simplemodel for optical parametric generation, J Opt Soc Am B Opt Physics 17,p.78-83 (2000)

[4.155] {Sect. 4.4.4} M.H. Dunn, M. Ebrahimzadeh: Parametric generation of tun-able light from continuous-wave to femtosecond pulses, Science 286, p.1513-1517 (1999)

[4.156] {Sect. 4.4.4} Y. R. Shen: Principles of Nonlinear Optics, chapter 9 (JohnWiley & Sons, Chichester, 1984)

[4.157] {Sect. 4.4.4} J.M. Manley, H.E. Rowe: General energy relations in nonlinearreactances, Proc. IRE 47p.2115-2116 (1959)

[4.158] {Sect. 4.4.4} S. Guha: Focusing dependence of the efficiency of a singlyresonant optical parametric oscillator, Appl. Phys. B 66, p.663-675 (1998)

[4.159] {Sect. 4.4.4} P.E. Britton, H.L. Offerhaus, D.J. Richardson, P.G.R. Smith,G.W. Ross, D.C. Hanna: Parametric oscillator directly pumped by a 1.55-mu m erbium-fiber laser, Optics Letters 24, p.975-977 (1999)

[4.160] {Sect. 4.4.4} S.A. Diddams, L.S. Ma, J. Ye, J.L. Hall: Broadband opticalfrequency comb generation with a phase-modulated parametric oscillator,Optics Letters 24, p.1747-1749 (1999)

[4.161] {Sect. 4.4.4} A. Gatti, E. Brambilla, L.A. Lugiato, M.I. Kolobov: Quantumentangled images, Phys Rev Lett 83, p.1763-1766 (1999)

[4.162] {Sect. 4.4.4} V. Petrov, F. Rotermund, F. Noack, P. Schunemann: Femto-second parametric generation in ZnGeP2, Optics Letters 24, p.414-416(1999)

[4.163] {Sect. 4.4.4} F. Rotermund, V. Petrov, F. Noach, V. Pasiskevicius, J. Hell-strom, F. Laurell: Efficient femtosecond traveling-wave optical parametricamplification in periodically poled KTiOPO4, Optics Letters 24, p.1874-1876 (1999)

[4.164] {Sect. 4.4.4} F. Rotermund, V. Petrov, F. Noack, M. Wittmann, G. Korn:Laser-diode-seeded operation of a femtosecond optical parametric amplifierwith MgO : LiNbO3 and generation of 5-cycle pulses near 3 mu m, J OptSoc Am B Opt Physics 16, p.1539-1545 (1999)

[4.165] {Sect. 4.4.4} T.W. Tukker, C. Otto, J. Greve: Design, optimization, andcharacterization of a narrow-bandwidth optical parametric oscillator, J OptSoc Am B Opt Physics 16, p.90-95 (1999)

[4.166] {Sect. 4.4.4} R. Urschel, U. Bader, A. Borsutzky, R. Wallenstein: Spectralproperties and conversion efficiency of 355-nm-pumped pulsed optical para-metric oscillators of beta-barium borate with noncollinear phase matching,J Opt Soc Am B Opt Physics 16, p.565-579 (1999)

4.4.4 Parametric Amplifiers and Oscillators 703

[4.167] {Sect. 4.4.4} M. Vaupel, A. Maitre, C. Fabre: Observation of pattern for-mation in optical parametric oscillators, Phys Rev Lett 83, p.5278-5281(1999)

[4.168] {Sect. 4.4.4} Y. Yashkir, H.M. vanDriel: Passively Q-switched 1.57-mu mintracavity optical parametric oscillator, Appl Opt 38, p.2554-2559 (1999)

[4.169] {Sect. 4.4.4} M. Bode, P.K. Lam, I. Freitag, A. Tunnermann, H.A. Ba-chor, H. Welling: Continuously-tunable doubly resonant optical parametricoscillator, Opt Commun 148, p.117-121 (1998)

[4.170] {Sect. 4.4.4} L. Carrion, J.P. GirardeauMontaut: Performance of a newpicosecond KTP optical parametric generator and amplifier, Opt Commun152, p.347-350 (1998)

[4.171] {Sect. 4.4.4} I.D. Lindsay, G.A. Turnbull, M.H. Dunn, M. Ebrahimzadeh:Doubly resonant continuous-wave optical parametric oscillator pumped bya single-mode diode laser, Optics Letters 23, p.1889-1891 (1998)

[4.172] {Sect. 4.4.4} M. Scheidt, M.E. Klein, K.J. Boller: Spiking in pump enhancedidler resonant optical parametric oscillators, Opt Commun 149, p.108-112(1998)

[4.173] {Sect. 4.4.4} J.Y. Zhang, Z.Y. Xu, Y.F. Kong, C.W. Yu, Y.C. Wu: Highlyefficient, widely tunable, 10-Hz parametric amplifier pumped by frequency-doubled femtosecond Ti:sapphire laser pulses, Appl Opt 37, p.3299-3305(1998)

[4.174] {Sect. 4.4.4} R. Al-Tahtamouni, K. Bencheikh, R. Storz, K. Schneider,M. Lang, J. Mlynek, S. Schiller: Long-term stable operation and absolutefrequency stabilization of a doubly resonant parametric oscillator, Appl.Phys. B 66, p.733-739 (1998)

[4.175] {Sect. 4.4.4} T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, S.Ohshima: Characteristics of a cw monolithic KTiOPO4 optical paramet-ric oscillator, Appl. Phys. B 66, p.719-725 (1998)

[4.176] {Sect. 4.4.4} M.E. Klein, M. Scheidt, K.-J. Boller, R. Wallenstein: Dye laserpumped, continuous-wave KTP optical parametric oscillators, Appl Phys.B 66, p.727-732 (1998)

[4.177] {Sect. 4.4.4} D.-H. Lee, M.E. Klein, K.-J. Boller: Intensity noise of pump-enhanced continuous-wave optical parametric oscillators, Appl. Phys. B 66,p.747-753 (1998)

[4.178] {Sect. 4.4.4} J.L. Sorensen, E.S. Polzik: Internally pumped subthresholdOPO, Appl. Phys. B 66, p.711-718 (1998)

[4.179] {Sect. 4.4.4} J. Izawa, K. Midorikawa, M. Obara, K. Toyoda: Picosecondultraviolet optical parametric generation using a type-II phase-matchedlithium triborate crystal for an injection seed of VUV lasers, IEEE J QE-33,p.1997-2001 (1997)

[4.180] {Sect. 4.4.4} P. Rambaldi, M. Douard, B. Vezin, J.P. Wolf, D. Rytz: Broadlytunable KNbO3 OPOs pumped by Ti:sapphire lasers, Opt Commun 142,p.262-264 (1997)

[4.181] {Sect. 4.4.4} M. Scheidt, B. Beier, K.J. Boller, R. Wallenstein: Frequency-stable operation of a diode-pumped continuous- wave RbTiOAsO4 opticalparametric oscillator, Optics Letters 22, p.1287-1289 (1997)

[4.182] {Sect. 4.4.4} K.L. Vodopyanov, V. Chazapis: Extra-wide tuning range op-tical parametric generator, Opt Commun 135, p.98-102 (1997)

[4.183] {Sect. 4.4.4} T. Wang, M.H. Dunn, C.F. Rae: Polychromatic optical para-metric generation by simultaneous phase matching over a large spectralbandwidth, Optics Letters 22, p.763-765 (1997)

[4.184] {Sect. 4.4.4} S. Wu, G.A. Blake, Z.Y. Sun, J.W. Ling: Simple, high-per-formance type II beta-BaB2O4 optical parametric oscillator, Appl Opt 36,p.5898-5901 (1997)

704 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.185] {Sect. 4.4.4} A.R. Geiger, H. Hemmati, W.H. Farr, N.S. Prasad: Diodepumped optical parametric oscillator, Optics Letters 21, p.201-203 (1996)

[4.186] {Sect. 4.4.4} T.H. Jeys: Multipass optical parametric amplifier, Optics Let-ters 21, p.1229-1231 (1996)

[4.187] {Sect. 4.4.4} S.A. Reid, Y. Tang: Generation of tunable, narrow-band mid-infrared radiation through a 532-nm-pumped KTP optical parametric am-plifier, Appl Opt 35, p.1473-1477 (1996)

[4.188] {Sect. 4.4.4} M. Sueptitz, R.A. Kaindl, S. Lutgen, M. Woerner, E. Riedle:1 kHz solid state laser system for the generation of 50 fs pulses tunable inthe visible, Opt Commun 131, p.195-202 (1996)

[4.189] {Sect. 4.4.4} J.M. Boonengering, L.A.W. Gloster, W.E. Vanderveer, I.T.McKinnie, T.A. King, W. Hogervorst: Highly efficient single longitudinalmode beta-BaB2O4 optical parametric oscillator with a new cavity design,Optics Letters 20, p.2087-2089 (1995)

[4.190] {Sect. 4.4.4} J. Hebling, E.J. Mayer, J. Kuhl, R. Szipocs: Chirped mirrordispersion compensated femtosecond optical parametric oscillator, OpticsLetters 20, p.919-921 (1995)

[4.191] {Sect. 4.4.4} C. Rauscher, T. Roth, R. Laenen, A. Laubereau: Tunablefemtosecond-pulse generation by an optical parametric oscillator in the sat-uration regime, Optics Letters 20, p.2003-2005 (1995)

[4.192] {Sect. 4.4.4} M.J. Rosker, C.L. Tang: Widely tunable optical parametricoscillator using urea, J. Opt. Soc. Am. B 2, p.691-696 (1985)

[4.193] {Sect. 4.4.4} A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser: Narrow-Band Tunable Infrared Pulses with Sub-Picosecond Time Resolution, Opt.Comm. 24, p.237-242 (1978)

[4.194] {Sect. 4.4.4} A.H. Kung: Generation of tunable picosecond VUV radiation,Appl. Phys. Lett. 25, p.653-654 (1974)

[4.195] {Sect. 4.4.4} T.A. Rabson, H.J. Ruiz, P.L. Shah, F.K. Tittel: Stimu-lated parametric fluorscence induced by picosecond pump pulses, Appl.Phys.Lett. 21, p.129-131 (1972)

[4.196] {Sect. 4.4.4} K.H. Yang, P.L. Richards, Y.R. Shen: Generation of Far-Infrared Radiation by Picosecond Light Pulses in LiNbO3, Appl. Phys.Lett. 19, p.320-323 (1971)

[4.197] {Sect. 4.4.4} J. Falk, J.E. Murray: Single-Cavity Noncollinear Optical Para-metric Oscillation, Appl. Phys. Lett. 14, p.245-247 (1969)

[4.198] {Sect. 4.4.4} L.B. Kreuzer: Single Mode Oscillation of a Pulsed Singly Res-onant Optical Parametric Oscillator, Appl. Phys. Lett. 15, p.263-265 (1969)

[4.199] {Sect. 4.4.4} J.E. Bjorkholm: Some Spectral Properties of Doubly andSingly Resonant Pulsed Optical Parametric Oscillators, Appl. Phys. Lett.13, p.399-401 (1968)

[4.200] {Sect. 4.4.4} J.E. Bjorkholm: Efficient Optical Parametric Oscillation UsingDoubly and Singly Resonant Cavities, Appl. Phys. Lett. 13, p.53-56 (1968)

[4.201] {Sect. 4.4.4} R.L. Byer, S.E. Harris: Power and Bandwidth of SpontaneousParametric Emission, Phys. Rev. 168, p.1064-1068 (1968)

[4.202] {Sect. 4.4.4} T.G. Giallorenzi, C.L. Tang: Quantum Theory of SpontaneousParametric Scattering of Intense Light, Phys. Rev. 166, p.225-233 (1968)

[4.203] {Sect. 4.4.4} J.G. Edwards: Some Factors Affecting the Pumping Efficiencyof Optically Pumped Lasers, Appl. Opt. 6, p.837-843 (1967)

[4.204] {Sect. 4.4.4} S.E. Harris, M.K. Oshman, R.L. Byer: Observation of TunableOptical Parametric Fluorescence, Phys. Rev. Lett. 18, p.732-734 (1967)

[4.205] {Sect. 4.4.4} S.E. Harris: Proposed Backward Wave Oscillation in theInfrared, Appl. Phys. Lett. 9, p.114-116 (1966)

4.4.4 Parametric Amplifiers and Oscillators 705

[4.206] {Sect. 4.4.4} J. Hellstrom, V. Pasiskevicius, H. Karlsson, F. Laurell: High-power optical parametric oscillation in large-aperture periodically poledKTiOPO4, Optics Letters 25, p.174-176 (2000)

[4.207] {Sect. 4.4.4} M. Missey, V. Dominic, P. Powers, K.L. Schepler: Aperturescaling effects with monolithic periodically poled lithium niobate opticalparametric oscillators and generators, Optics Letters 25, p.248-250 (2000)

[4.208] {Sect. 4.4.4} G.M. Gibson, M. Ebrahimzadeh, M.J. Padgett, M.H. Dunn:Continuous-wave optical parametric oscillator based on periodically poledKTiOPO4 and its application to spectroscopy, Optics Letters 24, p.397-399(1999)

[4.209] {Sect. 4.4.4} J. Hellstrom, V. Pasiskevicius, F. Laurell, H. Karlsson: Effi-cient nanosecond optical parametric oscillators based on periodically poledKTP emitting in the 1.8-2.5-mu m spectral region, Optics Letters 24,p.1233-1235 (1999)

[4.210] {Sect. 4.4.4} N. OBrien, M. Missey, P. Powers, V. Dominic, K.L. Schepler:Electro-optic spectral tuning in a continuous-wave, asymmetric-duty- cycle,periodically poled LiNbO3 optical parametric oscillator, Optics Letters 24,p.1750-1752 (1999)

[4.211] {Sect. 4.4.4} U. Bader, J. Bartschke, I. Klimov, A. Borsutzky, R. Wallen-stein: Optical parametric oscillator of quasi-phasematched LiNbO3 pumpedby a compact high repetition rate single-frequency passively Q-switchedNd:YAG laser, Opt Commun 147, p.95-98 (1998)

[4.212] {Sect. 4.4.4} P.E. Britton, D. Taverner, K. Puech, D.J. Richardson, P.G.R.Smith, G.W. Ross, D.C. Hanna: Optical parametric oscillation in periodi-cally poled lithium niobate driven by a diode-pumped Q-switched erbiumfiber laser, Optics Letters 23, p.582-584 (1998)

[4.213] {Sect. 4.4.4} A. Garashi, A. Arie, A. Skliar, G. Rosenman: Continuous-waveoptical parametric oscillator based on periodically poled KTiOPO4, OpticsLetters 23, p.1739-1741 (1998)

[4.214] {Sect. 4.4.4} L. Lefort, K. Puech, S.D. Butterworth, G.W. Ross, P.G.R.Smith, D.C. Hanna, D.H. Jundt: Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate overthe 1.3 mu m to 5.3 mu m range, Opt Commun 152, p.55-58 (1998)

[4.215] {Sect. 4.4.4} P.E. Powers, K.W. Aniolek, T.J. Kulp, B.A. Richman, S.E.Bisson: Periodically poled lithium niobate optical parametric amplifierseeded with the narrow-band filtered output of an optical parametric gen-erator, Optics Letters 23, p.1886-1888 (1998)

[4.216] {Sect. 4.4.4} D.J.M. Stothard, M. Ebrahimzadeh, M.H. Dunn: Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,Optics Letters 23, p.1895-1897 (1998)

[4.217] {Sect. 4.4.4} M. Tsunekane, S. Kimura, M. Kimura, N. Taguchi,H. Inaba: Continuous-wave, broadband tuning from 788 to 1640 nm bya doubly resonant, MgO:LiNbO3 optical parametric oscillator, Appl PhysLett 72, p.3414-3416 (1998)

[4.218] {Sect. 4.4.4} S.D. Butterworth, P.G.R. Smith, D.C. Hanna: PicosecondTi:sapphire-pumped optical parametric oscillator based on periodicallypoled LiNbO3, Optics Letters 22, p.618-620 (1997)

[4.219] {Sect. 4.4.4} D.T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett,H. Karlsson, F. Laurell: Broadly tunable infrared femtosecond optical para-metric oscillator based on periodically poled RbTiOAsO4, Optics Letters22, p.1397-1399 (1997)

[4.220] {Sect. 4.4.4} S. Slyusarev, T. Ikegami, S. Ohshima: Phase-coherent opticalfrequency division by 3 of 532-nm laser light with a continuous-wave opticalparametric oscillator, Optics Letters 24, p.1856-1858 (1999)

706 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.221] {Sect. 4.4.5} S. Carrasco, M.B. Nasr, A.V. Sergienko, B.E.A. Saleh, M.C.Teich, J.P. Torres, L. Torner: Broadband light generation by noncollinearparametric downconversion, Optics Letters 31, p.253-255 (2006)

[4.222] {Sect. 4.4.5} V. Jarutis, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa: Ul-trabright femtosecond source of biphotons based on a spatial mode inverter,Optics Letters 30, p.317-319 (2005)

[4.223] {Sect. 4.4.5} P. Trojek, C. Schmid, M. Bourennane, H. Weinfurter: Compactsource of polarization-entangled photon pairs, Optics Express 12, p.276-281(2004)

[4.224] {Sect. 4.4.5} Y. Shih: Entangled biphoton source-property and preparation,Rep. Prog. Phys. 66, p.1009-1044 (2003)

[4.225] {Sect. 4.4.5} Y.-H. Kim, W.P. Grice: Generation of pulsed polarization-entangled two-photon state via temporal and spectral engineering, Journalof Modern Optics 49, p.2309-2323 (2002)

[4.226] {Sect. 4.4.5} K. Sanaka, K. Kawahara, T. Kuga: New high-efficiency sourceof photon pairs for engineering quantum entanglement, Physical ReviewLetters 24, p.5620-5623 (2001)

[4.227] {Sect. 4.4.5} C. Kurtsiefer, M. Oberparleiter, H. Weinfurter: High-efficiencyentangled photon pair collection in type-II parametric fluorescence, PhysicalReview A 64, p.023802-1-023802-4 (2001)

[4.228] {Sect. 4.4.5} P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, P.H. Eber-hard: Ultrabright source of polarization-entangled photons, Physical ReviewA 60, p.R773-R776 (1999)

[4.229] {Sect. 4.4.5} P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger: New high-intensity source of polarization-entangled photon pairs, Physical ReviewLetters 75, p.4337-4341 (1995)

[4.230] {Sect. 4.4.5} D.C. Burnham, D.L. Weinberg: Observation of simultaneityin parametric production of optical photon pairs, Physical Review Letters25, p.84-87 (1970)

[4.231] {Sect. 4.4.6} F. Ji, B.G. Zhang, E.B. Li, H.F. Li, R. Zhou, T.L. Zhang, P.Wang, J.Q. Yao: Theoretical study of the electro-optic effect of aperiodicallypoled lithium niobate in a Q-switched dual-wavelength laser, Opt Commun262, p.234-237 (2006)

[4.232] {Sect. 4.4.7} J.L. Casson, L. Wang, N.J.C. Libatique, R.K. Jain, D.A.Scrymgeour, V. Gopalan, K.T. Gahagan, R.K. Sander, J.M. Robinson:Near-IR tunable laser with an integrated LiTaO3 electro-optic deflector,Appl Opt 41, p.6416-6419 (2002)

[4.233] {Sect. 4.4.6} A.Yariv: Optical Electronics (Holt, Rinehart, Winstin, Holt-Saunders, Japan, 1985)

[4.234] {Sect. 4.4.6} B.H. Hoerman, B.M. Nichols, M.J. Nystrom, B.W. Wessels:Dynamic response of the electro-optic effect in epitaxial KNbO3, Appl PhysLett 75, p.2707-2709 (1999)

[4.235] {Sect. 4.4.8} J. Ahn, A.V. Efimov, R.D. Averitt, A.J. Taylor: Terahertzwaveform synthesis via optical rectification of shaped ultrafast laser pulses,Opt Express 11, p.2486-2496 (2003)

[4.236] {Sect. 4.4.8} C. Bosshard, I. Biaggio, StFischer, S. Follonier, P. Gunter: Cas-caded contributions to degenerate four-wave mixing in an acentric organiccrystal, Optics Letters 24, p.196-198 (1999)

[4.237] {Sect. 4.4.8} A.V. Bragas, S.M. Landi, O.E. Martinez: Laser field enhance-ment at the scanning tunneling microscope junction measured by opticalrectification, Appl Phys Lett 72, p.2075-2077 (1998)

[4.238] {Sect. 4.4.8} S. Tomic, V. Milanovic, Z. Ikonic: Optimization of nonlinearoptical rectification in quantum wells using the supersymmetric quantummechanics, Opt Commun 143, p.214-218 (1997)

4.4.8 Optical Rectification 707

[4.239] {Sect. 4.4.8} A. Nahata, A.S. Weling, T.F. Heinz: A wideband coherentterahertz spectroscopy system using optical rectification and electro-opticsampling, Appl Phys Lett 69, p.2321-2323 (1996)

[4.240] {Sect. 4.4.8} D.H. Auston: Nonlinear Spectroscopy of Picosecond Pulses,Opt. Comm. 3, p.272-276 (1971)

[4.241] {Sect. 4.4.8} J.F. Holzrichter, R.M. Macfarlane, A. L. Schawlow: Magne-tization Induced by Optical Pumping in Antiferromagnetic MnF2, Phys.Rev. Lett. 26, p.652-655 (1971)

[4.242] {Sect. 4.4.8} P.S. Pershan, J.P. van der Ziel, L.D. Malmstrom: TheoreticalDiscussion of the Inverse Faraday Effect, Raman Scattering, and RelatedPhenomena, Phys. Rev. 143, p.574-583 (1966)

[4.243] {Sect. 4.4.8} J.F. Ward: Absolute Measurement of an Optical-RectificationCoefficient in Ammonium Dihydrogen Phosphate, Phys. Rev. 143, p.569-574 (1966)

[4.244] {Sect. 4.4.8} J.P. van der Ziel, P.S. Pershan, L.D. Malmstrom: Optically-Induced Magnetization Resulting from the Inverse Faraday Effect, Phys.Rev. Lett. 15, p.190-193 (1965)

[4.245] {Sect. 4.4.8} M.Bass, P.A. Franken, J.F. Ward, G. Weinreich: Optical Rec-tification, Phys. Rev. Lett. 9, p.446-448 (1962)

[4.246] {Sect. 4.5.1} S.K. Das, S. Mukhopadhyay, N. Sinha, A. Saha, P.K. Datta,S.M. Saltiel, L.C. Andreani: Direct third harmonic generation due toquadratic cascaded processes in periodically poled crystals, Opt Commun262, p.108-113 (2006)

[4.247] {Sect. 4.5.1} G.O. Clay, A.C. Millard, C.B. Schaffer, J. AusDerAu, P.S.Tsai, J.A. Squier, D. Kleinfeld: Spectroscopy of third-harmonic generation:evidence for resonances in model compounds and ligated hemoglobin, J OptSoc Am B Opt Physics 23, p.932-950 (2006)

[4.248] {Sect. 4.5.1} R.A. Ganeev, M. Suzuki, M. Baba, H. Kuroda, I.A. Kulagin:Third-harmonic generation in air by use of femtosecond radiation in tight-focusing conditions, Appl Opt 45, p.748-755 (2006)

[4.249] {Sect. 4.5.1} S. Cavalieri, L. Fini, R. Buffa: Coherent control and third-harmonic generation: an experimental study, J Opt Soc Am B Opt Physics21, p.574-577 (2004)

[4.250] {Sect. 4.5.1} P.S. Banks, M.D. Feit, M.D. Perry: High-intensity third-harmonic generation in beta barium borate through second-order and third-order susceptibilities, Optics Letters 24, p.4-6 (1999)

[4.251] {Sect. 4.5.1} D. Yelin, Y. Silberberg, Y. Barad, J.S. Patel: Phase-matchedthird-harmonic generation in a nematic liquid crystal cell, Phys Rev Lett82, p.3046-3049 (1999)

[4.252] {Sect. 4.5.1} D. Eimerl, J.M. Auerbach, C.E. Barker, D. Milam, P.W.Milonni: Multicrystal designs for efficient third-harmonic generation, OpticsLetters 22, p.1208-1210 (1997)

[4.253] {Sect. 4.5.1} O. Pfister, J.S. Wells, L. Hollberg, L. Zink, D.A. Vanbaak,M.D. Levenson, W.R. Bosenberg: Continuous-wave frequency tripling andquadrupling by simultaneous three-wave mixings in periodically poled crys-tals: application to a two-step 1.19-10.71-mu m frequency bridge, OpticsLetters 22, p.1211-1213 (1997)

[4.254] {Sect. 4.5.1} S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M.M.Murnane, H.C. Kapteyn: 16-fs, 1-mu J ultraviolet pulses generated by third-harmonic conversion in air, Optics Letters 21, p.665-667 (1996)

[4.255] {Sect. 4.5.1} T.Y.F. Tsang: Surface-plasmon-enhanced third-harmonic gen-eration in thin silver films, Optics Letters 21, p.245-247 (1996)

708 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.256] {Sect. 4.5.1} T.J. Zhang, Y. Kato, H. Daido: Efficient third-harmonic gener-ation of a picosecond laser pulse with time delay, IEEE J QE-32, p.127-136(1996)

[4.257] {Sect. 4.5.1} G. Hilber, A. Lago, R. Wallenstein: Broadly tunable VUV/XUV-radiation generated by resonant third-order frequency conversion inKr, J. Opt. Soc. Am. B 4, p.1753-1764 (1987)

[4.258] {Sect. 4.5.1} J. Bokor, P.H. Bucksbaum, R.R. Freeman: Generation of35.5-nm coherent radiation, Opt. Lett. 8, p.217-219 (1983)

[4.259] {Sect. 4.5.1} H.B. Puell, C.R. Vidal: Optimum Conditions for NonresonantThird Harmonic Generation, IEEE J. QE-14, p.364-373 (1978)

[4.260] {Sect. 4.5.1} C.M. Bloom, G.W. Bekkers, J.F. Young, S.E. Harris: Thirdharmonic generation in phase-matched alkali metal vapors, Appl. Phys.Lett. 26, p.687-689 (1975)

[4.261] {Sect. 4.5.1} C.M. Bloom, J.F. Young, S.E. Harris: Mixed metal vaporphase matching for third-harmonic generation, Appl. Phys. Lett. 27, p.390-392 (1975)

[4.262] {Sect. 4.5.1} R.B. Miles, S.E. Harris: Optical Third-Harmonic Generationin Alkali Metal Vapors, IEEE J. QE-9, p.470-484 (1973)

[4.263] {Sect. 4.5.1} A.H. Kung, J.F. Young, G.C. Bjorklund, S.E. Harris: Gener-ation of Vacuum Ultraviolet Radiation in Phase-Matched Cd Vapor, Phys.Rev. Lett. 29, p.985-988 (1972)

[4.264] {Sect. 4.5.1} S.E. Harris, R.B. Miles: Proposed Third-Harmonic Generationin Phase-Matched Metal Vapors, Appl. Phys. Lett. 19, p.385-387 (1971)

[4.265] {Sect. 4.5.1} J.F. Young, G.C. Bjorklund, A.H. Kung, R.B. Miles, S.E. Har-ris: Third-Harmonic Generation in Phase-Matched Rb Vapor, Phys. Rev.Lett. 27, p.1551-1553 (1971)

[4.266] {Sect. 4.5.2} H.S. Kang, Y.F. Zhu: Observation of large Kerr nonlinearityat low light intensities – art. no. 093601, Phys Rev Lett 9109, p.3601 (2003)

[4.267] {Sect. 4.5.2} J.L. Tang, C.W. Chen, J.Y. Lin, Y.D. Lin, C.C. Hsu, T.H. Wei,T.H. Huang: Ultrafast motion of liquids C2H4Cl2 and C2H4Br2 studiedwith a femtosecond laser, Opt Commun 266, p.669-675 (2006)

[4.268] {Sect. 4.5.2} G. Lenz, J. Zimmermann, T. Katsufuji, M.E. Lines, H.Y.Hwang, S. Spalter, R.E. Slusher, S.W. Cheong, J.S. Sanghera, I.D. Aggar-wal: Large Kerr effect in bulk Se-based chalcogenide glasses, Optics Letters25, p.254-256 (2000)

[4.269] {Sect. 4.5.2} J.H. Cai, W. Yang, T.J. Zhou, G. Gu, Y.W. Du: Magneto-optical Kerr effect and optical properties of amorphous Co1-xSix (0.59 ⇐x ⇐ 0.77) alloy films, Appl Phys Lett 74, p.85-87 (1999)

[4.270] {Sect. 4.5.2} M. Neelakandan, D. Pant, E.L. Quitevis: Reorientational andintermolecular dynamics in binary liquid mixtures of hexafluorobenzene andbenzene: Femtosecond optical Kerr effect measurements, Chem Phys Lett265, p.283-292 (1997)

[4.271] {Sect. 4.5.2} B.I. Greene, R.C. Farrow: The subpicosecond Kerr effect inCS2, Chem. Phys. Lett. 98, p.273-276 (1983)

[4.272] {Sect. 4.5.2} J.M.Dziedzic, R.H. Stolen, A. Ashkin: Optical Kerr effect inlong fibers, Appl. Opt. 20, p.1403-1406 (1981)

[4.273] {Sect. 4.5.2} D. Waldeck, A.J. Cross, Jr, D.B. McDonald, G.R. Fleming:Picosecond pulse induced transient molecular birefringence and dichroism,J. Chem. Phys. 74, p.3381-3387 (1981)

[4.274] {Sect. 4.5.2} S.C. Cerda, J.M. Hickmann: Spatial instabilities in the propa-gation of a cylindrical beam in a Kerr medium, Opt Commun 156, p.347-349(1998)

4.5.2 Kerr Effect 709

[4.275] {Sect. 4.5.2} G. Jonusauskas, J. Oberle, E. Abraham, C. Rulliere: “Fast”amplifying optical Kerr gate using stimulated emission of organic non-lineardyes, Opt Commun 137, p.199-206 (1997)

[4.276] {Sect. 4.5.2} J.-M. Halbout, C.L. Tang: Femtosecond interferometry fornonlinear optics, Appl. Phys. Lett. 40, p.765-767 (1982)

[4.277] {Sect. 4.5.2} E.P. Ippen, C.V. Shank: Picosecond response of a high-repe-tition-rate CS2 optical Kerr gate, Appl. Phys. Lett. 26, p.92-93 (1975)

[4.278] {Sect. 4.5.2} F. Parvaneh, M. Farhadiroushan, V.A. Handerek, A.J. Rogers:Single-shot distributed optical-fiber temperature sensing by the frequency-derived technique, Optics Letters 22, p.343-345 (1997)

[4.279] {Sect. 4.5.2} D. McMorrow, W.T. Lotshaw, G.A. Kenney-Wallace: Fem-tosecond Raman-induced Kerr effect. Temporal evolution of the vibrationalnormal modes in hologenated methanes, Chem. Phys. Lett. 145, p.309-314(1988)

[4.280] {Sect. 4.5.3} Y. R. Shen: Principles of Nonlinear Optics, chapter 17 (JohnWiley & Sons, Chichester, 1984)

[4.281] {Sect. 4.5.3} T.D. Grow, A.A. Ishaaya, L.T. Vuong, A.L. Gaeta, N. Gavish,G. Fibich: Collapse dynamics of super-Gaussian beams, Opt Express 14,p.5468-5475 (2006)

[4.282] {Sect. 4.5.3} Z.Q. Hao, J. Zhang, X. Lu, T.T. Xi, Y.T. Li, X.H. Yuan,Z.Y. Zheng, Z.H. Wang, W.J. Ling, Z.Y. Wei: Spatial evolution of multiplefilaments in air induced by femtosecond laser pulses, Opt Express 14, p.773-778 (2006)

[4.283] {Sect. 4.5.3} Z. Jin, J. Zhang, M.H. Xu, X. Lu, Y.T. Li, Z.H. Wang, Z.Y.Wei, X.H. Yuan, W. Yu: Control of filamentation induced by femtosecondlaser pulses propagating in air, Opt Express 13, p.10424-10430 (2005)

[4.284] {Sect. 4.5.3} C.P. Hauri, A. Guandalini, P. Eckle, W. Kornelis, J. Biegert,U. Keller: Generation of intense few-cycle laser pulses through filamentation– parameter dependence, Opt Express 13, p.7541-7547 (2005)

[4.285] {Sect. 4.5.3} G. Mechain, C. DAmico, Y.B. Andre, S. Tzortzakis, M. Franco,B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, R. Sauerbrey: Range ofplasma filaments created in air by a multi-terawatt femtosecond laser, OptCommun 247, p.171-180 (2005)

[4.286] {Sect. 4.5.3} A. Ting, D.F. Gordon, E. Briscoe, J.R. Penano, P. Sprangle:Direct characterization of self-guided femtosecond laser filaments in air,Appl Opt 44, p.1474-1479 (2005)

[4.287] {Sect. 4.5.3} Q. Luo, J. Yu, S.A. Hosseini, W.W. Liu, B. Ferland, G. Roy,S.L. Chin: Long-range detection and length estimation of light filamentsusing extra-attenuation of terawatt femtosecond laser pulses propagating inair, Appl Opt 44, p.391-397 (2005)

[4.288] {Sect. 4.5.3} D. Subbarao: Paraxial lens approximation and self-focusingtheory, J Opt Soc Am B Opt Physics 21, p.323-329 (2004)

[4.289] {Sect. 4.5.3} M. Lontano, I.G. Murusidze: Dynamics of space-time self-focusing of a femtosecond relativistic laser pulse in an underdense plasma,Opt Express 11, p.248-258 (2003)

[4.290] {Sect. 4.5.3} M. Hatayama, A. Suda, M. Nurhuda, K. Nagasaka, K. Mi-dorikawa: Spatiotemporal dynamics of high-intensity femtosecond laserpulses propagating in argon, J Opt Soc Am B Opt Physics 20, p.603-608(2003)

[4.291] {Sect. 4.5.3} H. Kumagai, S.H. Cho, K. Ishikawa, K. Midorikawa, M. Fuji-moto, S. Aoshima, Y. Tsuchiya: Observation of the complex propagation ofa femtosecond laser pulse in a dispersive transparent bulk material, J OptSoc Am B Opt Physics 20, p.597-602 (2003)

710 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.292] {Sect. 4.5.3} K. Saravanamuttu, M.P. Andrews: Visible laser self-focusingin hybrid glass planar waveguides, Optics Letters 27, p.1342-1344 (2002)

[4.293] {Sect. 4.5.3} G. Fibich, A.L. Gaeta: Critical power for self-focusing in bulkmedia and in hollow waveguides, Optics Letters 25, p.335-337 (2000)

[4.294] {Sect. 4.5.3} K. Takahashi, R. Kodama, K.A. Tanaka, H. Hashimoto, Y.Kato, K. Mima, F.A. Weber, T.W. Barbee, L.B. DaSilva: Laser-hole boringinto overdense plasmas measured with soft x-ray laser probing, Phys RevLett 84, p.2405-2408 (2000)

[4.295] {Sect. 4.5.3} O. Buttner, M. Bauer, S.O. Demokritov, B. Hillebrands, M.P.Kostylev, B.A. Kalinikos, A.N. Slavin: Collisions of spin wave envelope soli-tons and self-focused spin wave packets in yttrium iron garnet films, PhysRev Lett 82, p.4320-4323 (1999)

[4.296] {Sect. 4.5.3} J. Tsai, A. Chiou, T.C. Hsieh, K. Hsu: One-dimensional self-focusing in photorefractive Bi12SiO20 crystal: theoretical modeling andexperimental demonstration, Opt Commun 162, p.237-240 (1999)

[4.297] {Sect. 4.5.3} M. Bauer, O. Buttner, S.O. Demokritov, B. Hillebrands,V. Grimalsky, Y. Rapoport, A.N. Slavin: Observation of spatiotemporalself-focusing of spin waves in magnetic films, Phys Rev Lett 81, p.3769-3772 (1998)

[4.298] {Sect. 4.5.3} Y.C. Chen, W.Z. Lin: Thick lens model for self-focusing inKerr medium, Appl Phys Lett 73, p.429-431 (1998)

[4.299] {Sect. 4.5.3} B. Crosignani, E. DelRe, P. Diporto, A. Degasperis: Self-focusing and self-trapping in unbiased centrosymmetric photorefractivemedia, Optics Letters 23, p.912-914 (1998)

[4.300] {Sect. 4.5.3} J.K. Ranka, A.L. Gaeta: Breakdown of the slowly varyingenvelope approximation in the self- focusing of ultrashort pulses, OpticsLetters 23, p.534-536 (1998)

[4.301] {Sect. 4.5.3} G. Tempea, T. Brabec: Theory of self-focusing in a hollowwaveguide, Optics Letters 23, p.762-764 (1998)

[4.302] {Sect. 4.5.3} C.C. Widmayer, L.R. Jones, D. Milam: Measurement of thenonlinear coefficient of carbon disulfide using holographic self-focusing,J Nonlinear Opt Physics Mat 7, p.563-570 (1998)

[4.303] {Sect. 4.5.3} F. Castaldo, D. Paparo, E. Santamato: Chaotic and hexagonalspontaneous pattern formation in the cross section of a laser beam in adefocusing Kerr-like film with single feedback mirror, Opt Commun 143,p.57-61 (1997)

[4.304] {Sect. 4.5.3} E. Esarey, P. Sprangle, J. Krall, A. Ting: Self-focusing andguiding of short laser pulses in ionizing gases and plasmas, IEEE J QE-33,p.1879-1914 (1997)

[4.305] {Sect. 4.5.3} G. Fibich, G.C. Papanicolaou: Self-focusing in the presenceof small time dispersion and nonparaxiality, Optics Letters 22, p.1379-1381(1997)

[4.306] {Sect. 4.5.3} G.S. He, M. Yoshida, J.D. Bhawalkar, P.N. Prasad: Two-photon resonance-enhanced refractive-index change and self-focusing in adye-solution-filled hollow fiber system, Appl Opt 36, p.1155-1163 (1997)

[4.307] {Sect. 4.5.3} M. Vaupel, C. Seror, R. Dykstra: Self-focusing in photorefrac-tive two-wave mixing, Optics Letters 22, p.1470-1472 (1997)

[4.308] {Sect. 4.5.3} A. Drobnik, L. Wolf: Influence of self-focusing on the operationof a neodymium glass laser, Sov. J. Quant. Electron. 8, p.274-275 (1978)

[4.309] {Sect. 4.5.3} C.R. Giuliano, J.H. Marburger: Observations of Moving Self-Foci in Sapphire, Phys. Rev. Lett. 27, p.905-908 (1971)

[4.310] {Sect. 4.5.3} M.M.T. Loy, Y.R. Shen: Correlation between Backward Stim-ulated Raman Pulse and Moving Focus in Liquids, Phys. Rev. Lett. 19,p.285-287 (1971)

4.5.3 Self-Focusing 711

[4.311] {Sect. 4.5.3} E.L. Dawes, J.H. Marburger: Computer Studies in Self-Focus-ing, Phys. Rev. 179, p.862-868 (1969)

[4.312] {Sect. 4.5.3} R.G. Brewer, C.H. Lee: Self-trapping with picosecond lightpulses, Phys. Rev. Lett. 21, p.267-270 (1968)

[4.313] {Sect. 4.5.3} J.H. Marburger, E.L. Dawes: Dynamical Formation of a Small-Scale Filament, Phys. Rev. Lett. 21, p.556-558 (1968)

[4.314] {Sect. 4.5.3} E. Garmire, R.Y. Chiao, C.H. Townes: Dynamics and Charac-teristics of the Self-Trapping of Intense Light Beams, Phys. Rev. Lett. 16,p.347-349 (1966)

[4.315] {Sect. 4.5.3} M. Hercher: Laser-Induced Damage in Transparent Media,J. Opt. Soc. Am. 54, p.563 (1964)

[4.316] {Sect. 4.5.3} A. Brodeur, C.Y. Chien, F.A. Ilkov, S.L. Chin, O.G. Kosareva,V.P. Kandidov: Moving focus in the propagation of ultrashort laser pulsesin air, Optics Letters 22, p.304-306 (1997)

[4.317] {Sect. 4.5.3} M. Mlejnek, M. Kolesik, J.V. Moloney, E.M. Wright: Opticallyturbulent femtosecond light guide in air, Phys Rev Lett 83, p.2938-2941(1999)

[4.318] {Sect. 4.5.3} M. Jain, A.J. Merriam, A. Kasapi, G.Y. Yin, S.E. Harris:Elimination of optical self-focusing by population trapping, Phys Rev Lett75, p.4385-4388 (1995)

[4.319] {Sect. 4.5.4} P. DiTrapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J.Trull, C. Conti, S. Trillo: Spontaneously generated X-shaped light bullets –art. no. 093904, Phys Rev Lett 9109, p.3904 (2003)

[4.320] {Sect. 4.5.4} N. Akhmediev, A. Ankiewicz: Solitons; Non-linear pulses andbeams (Chapman & Hall, New York, 1997)

[4.321] {Sect. 4.5.4} J. R. Taylor: Optical Solitons (Cambridge University Press,Cambridge, 1992)

[4.322] {Sect. 4.5.4} B. E. A. Saleh, M. C. Teich: Fundamentals of Photonics, chap-ter 19 (John Wiley & Sons, New York, 1991)

[4.323] {Sect. 4.5.4} T.H. Coskun, D.N. Christodoulides, Y.R. Kim, Z.G. Chen,M. Soljacic, M. Segev: Bright spatial solitons on a partially incoherent back-ground, Phys Rev Lett 84, p.2374-2377 (2000)

[4.324] {Sect. 4.5.4} Y.S. Kivshar, A. Nepomnyashchy, V. Tikhonenko, J. Chris-tou, B. LutherDavies: Vortex-stripe soliton interactions, Optics Letters 25,p.123-125 (2000)

[4.325] {Sect. 4.5.4} A.V. Buryak, V.V. Steblina, R.A. Sammut: Solitons and col-lapse suppression due to parametric interaction in bulk Kerr media, OpticsLetters 24, p.1859-1861 (1999)

[4.326] {Sect. 4.5.4} Y.S. Kivshar, T.J. Alexander, S. Saltiel: Spatial optical solitonsresulting from multistep cascading, Optics Letters 24, p.759-761 (1999)

[4.327] {Sect. 4.5.4} X. Liu, L.J. Qian, F.W. Wise: Generation of optical spatiotem-poral solitons, Phys Rev Lett 82, p.4631-4634 (1999)

[4.328] {Sect. 4.5.4} D. Mihalache, D. Mazilu, J. Dorring, L. Torner: Elliptical lightbullets, Opt Commun 159, p.129-138 (1999)

[4.329] {Sect. 4.5.4} R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg,Y. Silberberg: Dynamics of discrete solitons in optical waveguide arrays,Phys Rev Lett 83, p.2726-2729 (1999)

[4.330] {Sect. 4.5.4} J. Scheuer, M. Orenstein: Interactions and switching of spa-tial soliton pairs in the vicinity of a nonlinear interface, Optics Letters 24,p.1735-1737 (1999)

[4.331] {Sect. 4.5.4} M.F. Shih, F.W. Sheu: Photorefractive polymeric optical spa-tial solitons, Optics Letters 24, p.1853-1855 (1999)

712 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.332] {Sect. 4.5.4} L. Torner, J.P. Torres, D. Artigas, D. Mihalache, D. Mazilu:Soliton content with quadratic nonlinearities, Opt Commun 164, p.153-159(1999)

[4.333] {Sect. 4.5.4} S. Trillo, M. Haelterman: Excitation and bistability of self-trapped signal beams in optical parametric oscillators, Optics Letters 23,p.1514-1516 (1998)

[4.334] {Sect. 4.5.4} V. Kutuzov, V.M. Petnikova, V.V. Shuvalov, V.A Vysloukh:Cross-modulation coupling of incoherent soliton modes in photorefractivecrystals, Phys. Rev. E 57, p.6056-6065 (1998)

[4.335] {Sect. 4.5.4} G.S. Garciaquirino, M.D. Iturbecastillo, V.A. Vysloukh, J.J.SanchezMondragon, S.I. Stepanov, G. Lugomartinez, G.E. Torrescisneros:Observation of interaction forces between one-dimensional spatial solitonsin photorefractive crystals, Optics Letters 22, p.154-156 (1997)

[4.336] {Sect. 4.5.4} V. Kutuzov, V.M. Petnikova, V.V. Shuvalov, V.A Vysloukh:Spatial solitons and shock waves in photorefractive crystals with nonlocalnonlinearity, J. Nonlin. Opt. Phys. & Mat. 6, p.421-442 (1997)

[4.337] {Sect. 4.5.4} G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani,P. Di Porto, E. Sharp, A. Yariv: Dark Photorefractive Spatial Solitons andPhotorefractive Vortex Solitons, Phys. Rev. Lett. 74, p.1978-1982 (1995)

[4.338] {Sect. 4.5.4} M.-F. Shi, M. Segev, G.C. Valley, G. Salamo, B. Crosignani,P. Di Porto: Observation of two-dimensional steady-state photorefractivescreening solitons, Electron. Lett. 31, p.826-827 (1995)

[4.339] {Sect. 4.5.4} M.D.I. Castillo, P.A. M. Aguilar, J.J. Sanchez-Mondragon,S. Stepanov, V. Vysloukh: Spatial solitons in photorefractive Bi12TiO20with drift mechanism of nonlinearity, Appl. Phys. Lett. 64, p.408-410 (1994)

[4.340] {Sect. 4.5.4} G.C. Duree, Jr, J.L. Shultz, G.J. Salamo: Observation of Self-Trapping of an Optical Beam Due to the Photorefractive Effect, Phys. Rev.Lett. 71, p.533-536 (1993)

[4.341] {Sect. 4.5.4} F.X. Kartner, H.A. Haus: Quantum-Mechanical Stability ofSolitons and the Correspondence Principle, Phys Rev A 48, p.2361-2369(1993)

[4.342] {Sect. 4.5.4} A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius,A. Stabinis: Sum-frequency mixing of optical vortices in nonlinear crystals,Opt Commun 150, p.372-380 (1998)

[4.343] {Sect. 4.5.4} Y.S. Kivshar, J. Christou, V. Tikhonenko, B. LutherDavies,L.M. Pismen: Dynamics of optical vortex solitons, Opt Commun 152, p.198-206 (1998)

[4.344] {Sect. 4.5.5} X.Q. Yang, S.W. Qi, C.P. Zhang, K. Chen, X. Liang, G. Yang,T. Xu, Y. Han, J.G. Tian: The study of self-diffraction of mercury dithi-zonate in polymer film, Opt Commun 256, p.414-421 (2005)

[4.345] {Sect. 4.5.5} S. Brugioni, R. Meucci: Self-phase modulation in a nematicliquid crystal film induced by a low-power CO2 laser, Opt Commun 206,p.445-451 (2002)

[4.346] {Sect. 4.5.5} L.B. Au, L. Solymar, C. Dettmann, H.J. Eichler, R. Macdon-ald, J. Schwartz: Theoretical and Experimental Investigations of the Reori-entation of Liquid Crystal Molecules induced by Laser Beams, Physica A174, p.94-118 (1991)

[4.347] {Sect. 4.5.5} H.J. Eichler, R. Macdonald, C. Dettmann: Nonlinear Diffrac-tion of CW-Laserbeams by Spatial Selfphase Modulation in Nematic LiquidCrystals, Mol. Cryst. Liq. Cryst.174, p.153-168 (1989)

[4.348] {Sect. 4.5.6} J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P.S. Porto, J.R.Whinnery: Long-Transient Effects in Lasers with Inserted Liquid Samples,J. Appl. Phys. 36, p.3-8 (1965)

4.5.7 Self-Phase Modulation 713

[4.349] {Sect. 4.5.7} L. Song, W.K. Lee: Laser induced self-phase modulation innematic liquid crystals and effects of applied dc electric field, Opt Commun259, p.293-297 (2006)

[4.350] {Sect. 4.5.7} D.F. Gordon, B. Hafizi, R.F. Hubbard, J.R. Penano, P. Spran-gle, A. Ting: Asymmetric self-phase modulation and compression of shortlaser pulses in plasma channels – art. no. 215001, Phys Rev Lett 9021,p.5001 (2003)

[4.351] {Sect. 4.5.7} O.A. Kolevatova, A.N. Naumov, A.M. Zheltikov: Guiding high-intensity laser pulses through hollow fibers: self-phase modulation and cross-talk of guided modes, Opt Commun 217, p.169-177 (2003)

[4.352] {Sect. 4.5.7} A.K. Bhowmik, M. Thakur: Self-phase modulation in polydi-acetylene single crystal measured at 720-1064 nm, Optics Letters 26, p.902-904 (2001)

[4.353] {Sect. 4.5.7} F. Cattani, D. Anderson, A. Berntson, M. Lisak: Effect of self-phase modulation in chirped-pulse-amplification-like schemes, J Opt SocAm B Opt Physics 16, p.1874-1879 (1999)

[4.354] {Sect. 4.5.7} N. Karasawa, R. Morita, L. Xu, H. Shigekawa, M. Yamashita:Theory of ultrabroadband optical pulse generation by induced phase mod-ulation in a gas-filled hollow waveguide, J Opt Soc Am B Opt Physics 16,p.662-668 (1999)

[4.355] {Sect. 4.5.7} T.G. Ulmer, R.S.K. Tan, Z.P. Zhou, S.E. Ralph, R.P. Ke-nan, C.M. Verber, A.J. SpringThorpe: Two-photon absorption-induced self-phase modulation in GaAs-AlGaAs waveguides for surface-emitted second-harmonic generation, Optics Letters 24, p.756-758 (1999)

[4.356] {Sect. 4.5.7} S.F. Feldman, P.R. Staver, W.T. Lotshaw: Observation ofspectral broadening caused by self-phase modulation in highly multimodeoptical fiber, Appl Opt 36, p.617-621 (1997)

[4.357] {Sect. 4.5.7} M.D. Perry, T. Ditmire, B.C. Stuart: Self phase modulationin chirped pulse amplification, Optics Letters 19, p.2149-2151 (1994)

[4.358] {Sect. 4.5.7} Q.D. Liu, J.T. Chen, Q.Z. Wang, P.P. Ho, R.R. Alfano: Singlepulse degenerate cross phase modulation in a single mode optical fiber,Optics Letters 20, p.542-544 (1995)

[4.359] {Sect. 4.5.7} R.M. Rassoul, A. Ivanov, E. Freysz, A. Ducasse, F. Hache:Second-harmonic generation under phase-velocity and group-velocity mis-match: Influence of cascading self-phase and cross-phase modulation, OpticsLetters 22, p.268-270 (1997)

[4.360] {Sect. 4.5.8} A. Picozzi, M. Haelterman, S. Pitois, G. Millot: Incoherentsolitons in instantaneous response nonlinear media – art. no. 143906, PhysRev Lett 9214, p.3906 (2004)

[4.361] {Sect. 4.5.8} Z.H. Li, L. Li, H.P. Tian, G. Zhou, K.H. Spatschek: Chirpedfemtosecond solitonlike laser pulse form with self-frequency shift – art. no.263901, Phys Rev Lett 8926, p.3901 (2002)

[4.362] {Sect. 4.5.8} P. Grelu, F. Belhache, F. Gutty, J.M. SotoCrespo: Phase-locked soliton pairs in a stretched-pulse fiber laser, Optics Letters 27, p.966-968 (2002)

[4.363] {Sect. 4.5.8} J.E. Heebner, R.W. Boyd, Q.H. Park: SCISSOR solitons andother novel propagation effects in microresonator-modified waveguides, JOpt Soc Am B Opt Physics 19, p.722-731 (2002)

[4.364] {Sect. 4.5.8} I. Bongrand, C. Montes, E. Picholle, J. Botineau, A. Picozzi,G. Cheval, D. Bahloul: Soliton compression in Brillouin fiber lasers, OpticsLetters 26, p.1475-1477 (2001)

[4.365] {Sect. 4.5.8} N. Nishizawa, T. Goto: Characteristics of pulse trapping byuse of ultrashort soliton pulses in optical fibers across the zero-dispersionwavelength, Opt Express 10, p.1151-1159 (2002)

714 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.366] {Sect. 4.5.8} R. Avagyan, A. Daryan, S. Dashyan, D. Hovhannisyan,Z. Kalayjian, D. Meghavoryan, K. Stepanyan: Femtosecond soliton laserpulse propagation in the presence of quasi- continuous radiation through amedium with anomalous dispersion, Opt Commun 203, p.371-375 (2002)

[4.367] {Sect. 4.5.8} F.K. Abdullaev, B.B. Baizakov: Disintegration of a soliton ina dispersion-managed optical communication line with random parameters,Optics Letters 25, p.93-95 (2000)

[4.368] {Sect. 4.5.8} N. Akhmediev, A. Ankiewicz: Partially coherent solitons on afinite background, Phys Rev Lett 82, p.2661-2664 (1999)

[4.369] {Sect. 4.5.8} S.T. Cundiff, B.C. Collings, N.N. Akhmediev, J.M. SotoCre-spo, K. Bergman, W.H. Knox: Observation of polarization-locked vectorsolitons in an optical fiber, Phys Rev Lett 82, p.3988-3991 (1999)

[4.370] {Sect. 4.5.8} S. Darmanyan, A. Kobyakov, F. Lederer: Quadratic solitonsin nonconservative media, Optics Letters 24, p.1517-1519 (1999)

[4.371] {Sect. 4.5.8} M. Hanna, H. Porte, J.P. Goedgebuer, W.T. Rhodes: Solitonoptical phase control by use of is-line filters, Optics Letters 24, p.732-734(1999)

[4.372] {Sect. 4.5.8} P.S. Jian, W.E. Torruellas, M. Haelterman, S. Trillo,U. Peschel, F. Lederer: Solitons of singly resonant optical parametric os-cillators, Optics Letters 24, p.400-402 (1999)

[4.373] {Sect. 4.5.8} D. Krylov, L. Leng, K. Bergman, J.C. Bronski, J.N. Kutz:Observation of the breakup of a prechirped N-soliton in an optical fiber,Optics Letters 24, p.1191-1193 (1999)

[4.374] {Sect. 4.5.8} D. Levandovsky, M. Vasilyev, P. Kumar: Perturbation the-ory of quantum solitons: continuum evolution and optimum squeezing byspectral filtering, Optics Letters 24, p.43-45 (1999)

[4.375] {Sect. 4.5.8} A.H. Liang, H. Toda, A. Hasegawa: High-speed soliton trans-mission in dense periodic fibers, Optics Letters 24, p.799-801 (1999)

[4.376] {Sect. 4.5.8} Q.H. Park, H.J. Shin: Parametric control of soliton light trafficby cw traffic light, Phys Rev Lett 82, p.4432-4435 (1999)

[4.377] {Sect. 4.5.8} I.S. Penketh, P. Harper, S.B. Alleston, A.M. Niculae, I. Ben-nion, N.J. Doran: 10-Gbit/s dispersion-managed soliton transmission over16,500 km in standard fiber by reduction of soliton interactions, OpticsLetters 24, p.802-804 (1999)

[4.378] {Sect. 4.5.8} K. Chan, W. Cao: Generation of ultrashort fundamental soli-tons from cw light using cross-phase modulation and Raman amplificationin optical fibers, Opt Commun 158, p.159-169 (1998)

[4.379] {Sect. 4.5.8} M. Matsumoto: Instability of dispersion-managed solitons ina system with filtering, Optics Letters 23, p.1901-1903 (1998)

[4.380] {Sect. 4.5.8} P. Shum, S.F. Yu: Numerical analysis of nonlinear solitonpropagation phenomena using the fuzzy mesh analysis technique, IEEE JQE-34, p.2029-2035 (1998)

[4.381] {Sect. 4.5.8} E.L. Buckland, R.W. Boyd, A.F. Evans: Observation of aRaman-induced interpulse phase migration in the propagation of an ultra-high-bit-rate coherent soliton train, Optics Letters 22, p.454-456 (1997)

[4.382] {Sect. 4.5.8} B.C. Collings, K. Bergman, W.H. Knox: True fundamentalsolitons in a passively mode-locked short-cavity Cr4+:YAG laser, OpticsLetters 22, p.1098-1100 (1997)

[4.383] {Sect. 4.5.8} H. Hatamihanza, P.L. Chu, B.A. Malomed, G.D. Peng: Soli-ton compression and splitting in double-core nonlinear optical fibers, OptCommun 134, p.59-65 (1997)

[4.384] {Sect. 4.5.8} R.H. Stolen, L.F. Mollenauer: Observation of pulse restorationat the soliton period in optical fibers, Opt. Lett. 8, p.186-188 (1983)

4.5.8 Generation of Temporal Solitons: Soliton Pulses 715

[4.385] {Sect. 4.5.8} L.F. Mollenauer, R.H. Stolen, J.P. Gordon: Experimental Ob-servation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,Phys. Rev. Lett. 45, p.1095-1098 (1980)

[4.386] {Sect. 4.5.8} F.G. Omenetto, B.P. Luce, D. Yarotski, A.J. Taylor: Obser-vation of chirped soliton dynamics at lambda=1.55 mu m in a single-mode optical fiber with frequency-resolved optical gating, Optics Letters24, p.1392-1394 (1999)

[4.387] {Sect. 4.5.8} M. Piche, J.F. Cormier, X.N. Zhu: Bright optical soliton inthe presence of fourth-order dispersion, Optics Letters 21, p.845-847 (1996)

[4.388] {Sect. 4.5.8} C. Deangelis, M. Santagiustina, S. Wabnitz: Stability of vectorsolitons in fiber laser and transmission systems, Opt Commun 122, p.23-27(1995)

[4.389] {Sect. 4.5.8} A.E. Kaplan, P.L. Shkolnikov: Subfemtosecond high-intensityunipolar electromagnetic solitons and shock waves, J Nonlinear Opt PhysicsMat 4, p.831-841 (1995)

[4.390] {Sect. 4.5.8} S.V. Bulanov, T.Z. Esirkepov, N.M. Naumova, F. Pegoraro,V.A. Vshivkov: Solitonlike electromagnetic waves behind a superintenselaser pulse in a plasma, Phys Rev Lett 82, p.3440-3443 (1999)

[4.391] {Sect. 4.5.9} S.H. Lee, C.M. Kim: Chaotic stimulated Brillouin scatteringnear the threshold in a fiber, Optics Letters 31, p.3131-3133 (2006)

[4.392] {Sect. 4.5.9} Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z.M. Zhu, A.Schweinsberg, D.J. Gauthier, R.W. Boyd, A.L. Gaeta: Tunable all-opticaldelays via Brillouin slow light in an optical fiber – art. no. 153902, PhysRev Lett 9415, p.3902 (2005)

[4.393] {Sect. 4.5.9} H.J. Kong, D.H. Beak, D.W. Lee, S.K. Lee: Waveform preser-vation of the backscattered stimulated Brillouin scattering wave by using aprepulse injection, Optics Letters 30, p.3401-3403 (2005)

[4.394] {Sect. 4.5.9} N.A. Brilliant: Stimulated Brillouin scattering in a dual-cladfiber amplifier, J Opt Soc Am B Opt Physics 19, p.2551-2557 (2002)

[4.395] {Sect. 4.5.9} V. Grimalsky, S. Koshevaya, G. Burlak, B. Salazar: Dynamiceffects of the stimulated Brillouin scattering in fibers due to acoustic diffrac-tion, J Opt Soc Am B Opt Physics 19, p.689-694 (2002)

[4.396] {Sect. 4.5.9} C. Labaune, H.A. Baldis, B.S. Bauer, E. Schifano, B.I. Cohen:Spatial and temporal coexistence of stimulated scattering processes undercrossed-laser-beam irradiation, Phys Rev Lett 82, p.3613-3616 (1999)

[4.397] {Sect. 4.5.9} K. Otsuka, R. Kawai, Y. Asakawa, T. Fukazawa: Highly sen-sitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped microchip LiNdP4O12 laser, Optics Letters 24, p.1862-1864 (1999)

[4.398] {Sect. 4.5.9} A.A. Fotiadi, R.V. Kiyan: Cooperative stimulated Brillouinand Rayleigh backscattering process in optical fiber, Optics Letters 23,p.1805-1807 (1998)

[4.399] {Sect. 4.5.9} S. Afshaarvahid, V. Devrelis, J. Munch: Nature of intensityand phase modulations in stimulated Brillouin scattering, Phys. Rev. A 57,p.3961-3971 (1998)

[4.400] {Sect. 4.5.9} M.S. Jo, C.H. Nam: Transient stimulated Brillouin scatteringreflectivity in CS2 and SF6 under multipulse employment, Appl. Opt. 36,p.1149-1154 (1997)

[4.401] {Sect. 4.5.9} P.E. Young, M.E. Foord, A.V. Maximov, W. Rozmus: Stim-ulated Brillouin scattering in multispecies laser- produced plasmas, PhysRev Lett 77, p.1278-1281 (1996)

[4.402] {Sect. 4.5.9} T. Afsharrad, L.A. Gizzi, M. Desselberger, O. Willi: Effect offilamentation of Brillouin scattering in large underdense plasmas irradiatedby incoherent laser light, Phys Rev Lett 75, p.4413-4416 (1995)

716 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.403] {Sect. 4.5.9} R.L. Berger, B.F. Lasinski, A.B. Langdon, T.B. Kaiser, B.B.Afeyan, B.I. Cohen, C.H. Still, E.A. Williams: Influence of spatial and tem-poral laser beam smoothing on stimulated Brillouin scattering in filamen-tary laser light, Phys Rev Lett 75, p.1078-1081 (1995)

[4.404] {Sect. 4.5.9} H.J. Eichler, R. Menzel, R. Sander, M. Schulzke, J. Schwartz:SBS at different wavelengths between 308 and 725 nm, Opt. Commun. 121,p.49-54 (1995)

[4.405] {Sect. 4.5.9} H.J. Eichler, R. Konig, R. Menzel, R. Sander, J. Schwartz,H.J. Patzold: Test of Organic SBS Liquids in the IR and the UV, Int. J.Nonlinear Optics 2, p.267-270 (1993)

[4.406] {Sect. 4.5.9} N.F. Andreev, E. Khazanov, G.A. Pasmanik: Applications ofBrillouin Cells to High Repetition Rate Solid-State Lasers, IEEE J. QE-28,p.330-341 (1992)

[4.407] {Sect. 4.5.9} Yu.I. Bychkov, V.F. Losev, Yu.N. Panchenko: Experimentalinvestigation of the efficiency of phase conjugation of an XeCl laser beamby stimulated Brillouin scattering, Sov. J. Quantum. Electron. 22 p.638-640(1992)

[4.408] {Sect. 4.5.9} H.J. Eichler, R. Menzel, R. Sander, B. Smandek: ReflectivityEnhancement of Stimulated Brillouin Scattering (SBS) Liquids by Purifi-cation, Opt. Commun. 89, p.260-262 (1992)

[4.409] {Sect. 4.5.9} M.R. Osborn, M.A. O’Key: Temporal response of stimulatedBrillouin scattering phase conjugation, Opt. Comm. 94, p.346-352 (1992)

[4.410] {Sect. 4.5.9} G.K.N. Wong, M.J. Damzen: Investigations of Optical Feed-back Used to Enhance Stimulated Scattering, IEEE J. QE-26, p.139-148(1990)

[4.411] {Sect. 4.5.9} V.I. Bespalov, E.L. Bubis, O.V. Kulagin, G.A. Pasmanik, A.A.Shilov: Stimulated Brillouin scattering and stimulated thermal scattering ofmicrosecond pulses, Sov. J. Quantum Electron. 16, p.1348-1352 (1986)

[4.412] {Sect. 4.5.9} P. Narum, M.D. Skeldon, R.W. Boyd: Effect of Laser ModeStructure on Stimulated Brillouin Scattering, IEEE J. QE-22, p.2161-2167(1986)

[4.413] {Sect. 4.5.9} J.M. Vaughan: Brillouin scattering in the nematic and isotropicphases of a liquid crystal, Phys. Lett. 58A, p.325-328 (1976)

[4.414] {Sect. 4.5.9} M. Maier: Quasisteady State in the Stimulated Brillouin Scat-tering of Liquids, Phys. Rev. 166, p.113-119 (1967)

[4.415] {Sect. 4.5.9} S. Afshaarvahid, A. Heuer, R. Menzel, J. Munch: Tem-poral structure of stimulated-Brillouin-scattering reflectivity consideringtransversal-mode development – art. no. 043803, Phys Rev A 6404, p.3803(2001)

[4.416] {Sect. 4.5.9} V.T. Tikhochuk, C. Labaune, H.A. Baldis: Modeling of a stim-ulated Brillouin scattering experiment with statistical distribution of speck-les, Phys. Plasmas 3, p.3777-3785 (1996)

[4.417] {Sect. 4.5.9} R.G. Harrison, D. Yu, W. Lu, P.M. Ripley: Chaotic stimu-lated Brillouin scattering: theory and experiment, Physica D 86, p.182-188(1995)

[4.418] {Sect. 4.5.9} A. Kummrow: Hermite-gaussian theory of focused beam SBScells, Opt. Commun. 96, p.185-194 (1993)

[4.419] {Sect. 4.5.9} R. Menzel, H.J. Eichler: Computation of Stimulated BrillouinScattering (SBS) with Focussed Beams, Int. J. Nonlinear Optics 2, p.255-260 (1993)

[4.420] {Sect. 4.5.9} R. Chu, M. Kanefsky, J. Falk: Numerical study of transientstimulated Brillouin scattering, J. Appl. Phys. 71, p.4653-4658 (1992)

4.5.9 Stimulated Brillouin Scattering (SBS) 717

[4.421] {Sect. 4.5.9} R. Menzel, H.J. Eichler: Temporal and Spatial Reflectivity ofFocussed Beams in Stimulated Brillouin Scattering for Phaseconjugation,Phys. Rev. A 46, p.7139-7149 (1992)

[4.422] {Sect. 4.5.9} G.J. Crofts, M.J. Damzen: Steady-state analysis and designcriteria of two-cell stimulated Brillouin scattering systems, Opt. Comm. 81,p.237-241 (1991)

[4.423] {Sect. 4.5.9} P.H. Hu, J.A. Goldstone, S.S. Ma: Theoretical study of phaseconjugation in stimulated Brillouin scattering, J. Opt. Soc. Am. B 6, p.1813-1822 (1989)

[4.424] {Sect. 4.5.9} G.C. Valley: A Review of Stimulated Brillouin Scattering Ex-cited with a Broad-Band Pump Laser, IEEE J. QE-22, p.704-711 (1986)

[4.425] {Sect. 4.5.9} R.H. Lehmberg: Numerical study of phase conjugation in stim-ulated Brillouin scattering from an optical waveguide, J. Opt. Soc. Am. 73,p.558-566 (1983)

[4.426] {Sect. 4.5.9} R.H. Lehmberg: Numerical study of phase conjugation instimulated backscatter with pump depletion, Opt. Comm. 43, p.369-374(1982)

[4.427] {Sect. 4.5.9} A. Yariv: Quantum Theory for Parametric Interactions ofLight and Hypersound, IEEE J. QE-1, p.28-36 (1965)

[4.428] {Sect. 4.5.9} P.W. Rambo, S.C. Wilks, W.L. Kruer: Hybrid particle-in-cellsimulations of stimulated Brillouin scattering including ion-ion collisions,Phys Rev Lett 79, p.83-86 (1997)

[4.429] {Sect. 4.5.9} N.-M. Nguyen-Vo, S.J. Pfeifer: A Model of SpontaneousBrillouin Scattering as the Noise Source for Stimulated Scattering, IEEEJ. QE-29, p.508-514 (1993)

[4.430] {Sect. 4.5.9} Y. Glick, S. Sternklar: Reducing the noise in Brillouin am-plification by mode-selective phase conjugation, Opt. Lett. 17, p.662-664(1992)

[4.431] {Sect. 4.5.9} O.V. Kulagin, G.A. Pasmanik, A.A. Shilov: Amplification andphase conjugation of weak signals, Sov. Phys. Usp. 35, p.506-519 (1992)

[4.432] {Sect. 4.5.9} M. Shirasaki, H.A. Haus: Reduction of Guided-Acoustic-WaveBrillouin Scattering Noise in a Squeezer, Optics Letters 17, p.1225-1227(1992)

[4.433] {Sect. 4.5.9} R.W. Boyd, K. Rzazewski: Noise initiation on stimulated Bril-louin scattering, Phys. Rev. A 42, p.5514-5521 (1990)

[4.434] {Sect. 4.5.9} J.C. Fernandez, B.S. Bauer, K.S. Bradley, J.A. Cobble, D.S.Montgomery, R.G. Watt, B. Bezzerides, K.G. Estabrook, R. Focia, S.R.Goldman et al.: Increased saturated levels of stimulated brillouin scatteringof a laser by seeding a plasma with an external light source, Phys Rev Lett81, p.2252-2255 (1998)

[4.435] {Sect. 4.5.9} A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, M. Martinelli:Direct measurement of electrostriction in optical fibers, Optics Letters 23,p.691-693 (1998)

[4.436] {Sect. 4.5.9} M.S. Jo, C.H. Nam: Transient stimulated Brillouin scatteringreflectivity in CS2 and SF6 under multipulse employment, Appl Opt 36,p.1149-1154 (1997)

[4.437] {Sect. 4.5.9} D.C. Jones: Characterisation of liquid brillouin media at 532nm, J Nonlinear Opt Physics Mat 6, p.69-79 (1997)

[4.438] {Sect. 4.5.9} H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka,K. Yoshida: Heavy fluorocarbon liquids for a phase-conjugated stimulatedBrillouin scattering mirror, Appl Opt 36, p.3739-3744 (1997)

[4.439] {Sect. 4.5.9} H. Yoshida, M. Nakatsuka, H. Fujita, T. Sasaki, K. Yoshida:High-energy operation of a stimulated Brillouin scattering mirror in an

718 4. Nonlinear Interactions of Light and Matter Without Absorption

L-Arginine phosphate monohydrate crystal, Appl. Opt. 36, p.7783-7787(1997)

[4.440] {Sect. 4.5.9} H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka,K. Yoshida: Heavy fluorocarbon liquids for a phase-conjugated stimulatedBrillouin scattering mirror, Appl. Opt. 36, p.3739-3744 (1997)

[4.441] {Sect. 4.5.9} H.J. Eichler, R. Konig, H.-J. Patzold, J. Schwartz: SBS mirrorsfor XeCl lasers with a broad spectrum, Appl. Phys. B. 61, p.73-80 (1995)

[4.442] {Sect. 4.5.9} S.T. Animoto, R.W.F. Gross, L. Garman-DuVall, T.W. Good,J.D. Piranian: Stimulated-Brillouin-scattering properties of SnCl4, Opt.Lett. 16, p.1382-1384 (1991)

[4.443] {Sect. 4.5.9} A. Kummrow, H. Meng: Pressure dependence of stimulatedBrillouin backscattering in gases, Opt. Commun. 83, p.342-348 (1991)

[4.444] {Sect. 4.5.9} D.C. Jones, M.S. Mangir, D.A. Rockwell, J.O. White: Stimu-lated Brillouin scattering gain variation and transient effects in a CH4:Hebinary gas mixture, J. Opt. Soc. Am. B 7, p.2090-2096 (1990)

[4.445] {Sect. 4.5.9} E.L. Bubis, V.V. Vargin, L.R. Konchalina, A.A. Shilov: Studyof low-absorption media for SBS in the near-IR-spectral range, Opt. Spec-trosc. (USSR) 65, p.757-759 (1989)

[4.446] {Sect. 4.5.9} P.E. Dyer, J.S. Leggatt: Phase conjugation studies of a quasi-cw CO2 laser in liquid CS2, Opt. Comm. 74, p.124-128 (1989)

[4.447] {Sect. 4.5.9} F.E. Hovis, J.D. Kelley: Phase conjugation by stimulated Bril-louin scattering in CClF3 near the gas-liquid critical temperature, J.Opt.Soc. Am. B. 6, p.840-842 (1989)

[4.448] {Sect. 4.5.9} Y. Aoki, K. Tajima: Stimulated Brillouin scattering in a longsingle-mode fiber excited with a multimode pump laser, J. Opt. Soc. Am.B 5, p.358-363 (1988)

[4.449] {Sect. 4.5.9} M.J. Damzen, M.H.R. Hutchinson, W.A. Schroeder: DirectMeasurement of the Acoustic Decay Times of Hypersonic Waves Generatedby SBS, IEEE J. QE-23, p.328-334 (1987)

[4.450] {Sect. 4.5.9} V.M. Volynkin, K.V. Gratsianov, A.N. Kolesnikov, Yu.I.Kruzhilin, V.V. Lyubimov, S.A. Markosov, V.G. Pankov, A.I. Stepanov,S.V. Shklyarik: Reflection by stimulated Brillouin scattering mirrors basedon tetrachlorides of group IV elements, Sov. J. Quantum Electron. 15,p.1641-1642 (1985)

[4.451] {Sect. 4.5.9} D. Pohl, W. Kaiser: Time-Resolved Investigations of Stimu-lated Brillouin Scattering in Transparent and Absorbing Media: Determi-nation of Phonon Lifetimes, Phys. Rev. B 1, p.31-43 (1970)

[4.452] {Sect. 4.5.9} M.R.Osborne: Stimulated Brillouin scattering using cylindricalfocusing optics, J. Opt. Soc. Am. B 7, p.2106-2112 (1990)

[4.453] {Sect. 4.5.9} J. Munch, R.F. Wuerker, M.J. LeFebvre: Interaction lengthfor optical phase conjugation by stimulated Brillouin scattering: an experi-mental investigation, Appl. Opt. 28, p.3099-3105 (1989)

[4.454] {Sect. 4.5.9} L.P. Schelonka, C.M. Clayton: Effect of focal intensity onstimulated-Brillouin-scattering reflectivity and fidelity, Opt. Lett. 13, p.42-44 (1988)

[4.455] {Sect. 4.5.9} N.B. Baranova, B.Ya. Zel’dovich, V.V. Shkunov: Wavefrontreversal in stimulated light scattering in a focused spatially ingomogeneouspump beam, Sov. J. Quantum Electron. 8, p.559-566 (1978)

[4.456] {Sect. 4.5.9} R.A. Mullen: Multiple-Short-Pulse Stimulated Brillouin Scat-tering for Trains of 200 ps Pulses at 1.06 µm, IEEE J. QE-26, p.1299-1303(1990)

[4.457] {Sect. 4.5.9} G. Cook, K.D. Ridley: Investigation of the bandwidth depen-dent characteristics of stimulated Brillouin scattering using a modeless dyelaser, Opt Commun 130, p.192-204 (1996)

4.5.9 Stimulated Brillouin Scattering (SBS) 719

[4.458] {Sect. 4.5.9} V.F. Losev, Yu. N. Panchenko: Characteristics of stimulatedscattering of broad-band XeCl laser radiation, Quant. Electron. 25, p.448-449 (1995)

[4.459] {Sect. 4.5.9} P.C. Wait, T.P. Newson: Measurement of Brillouin scatter-ing coherence length as a function of pump power to determine Brillouinlinewidth, Opt. Commun. 117, p.142-146 (1995)

[4.460] {Sect. 4.5.9} H.J. Eichler, R. Konig, R. Menzel, H.J. Patzold, J. Schwartz:Stimulated Brillouin Scattering of Broadband XeCl-Laser Radiation byHydrocarbons Liquids, Int. J. Nonlinear Optics 2, p.247-253 (1993)

[4.461] {Sect. 4.5.9} D. Wang, G. Rivoire: Large spectral bandwidth stimulatedRayleigh-wing scattering in CS2, J. Chem. Phys.98, p.9279-9283 (1993)

[4.462] {Sect. 4.5.9} H.J. Eichler, R. Konig, R. Menzel, H.-J. Patzold, J. Schwartz:SBS-Reflection of Broadband XeCl-Excimer-Laser-Radiation: Comparisionof Suitable SBS-Liquids, J. Phys. D: Appl. Phys. 25, p.1162-1168 (1992)

[4.463] {Sect. 4.5.9} Y-S. Kuo, K. Choi, J.K. McIver: The effect of pump band-width, lens focal length and lens focal point location on Stimulated BrillouinScattering threshold and reflectivity, Opt. Comm. 80, p.233-238 (1991)

[4.464] {Sect. 4.5.9} J.-Z. Zhang, G. Chen, R.K. Chang: Pumping of stimulatedRaman scattering by stimulated Brillouin scattering within a single liquiddroplet: input laser linewidth effects, J. Opt. Soc. Am. B 7, p.108-115 (1990)

[4.465] {Sect. 4.5.9} R.A. Mullen, R.C. Lind, G.C. Valley: Observaton of stimulatedBrillouin scattering gain with a dual spectral-line pump, Opt. Comm. 63,p.123-128 (1987)

[4.466] {Sect. 4.5.9} M. Cronin-Golomb, S.-K. Kwong, A. Yariv: Multicolor passive(self-pumped) phase conjugation, Appl. Phys. Lett. 44, p.727-729 (1984)

[4.467] {Sect. 4.5.9} B.Ya. Zel’dovich, V.V. Shkunov: Influence of the group ve-locity mismatch on reproduction of the pump spectrum under stimulatedscattering conditions, Sov. J. Quantum Electron. 8, p.1505-1506 (1978)

[4.468] {Sect. 4.5.9} I.G. Zubarev, S.I. Mikahilov: Influence of parametric effectson the stimulated scattering of nonmonochromatic pump radiation, Sov. J.Quantum Electron. 8, p.1338-1344 (1978)

[4.469] {Sect. 4.5.9} V.I. Kovalev, V.I. Popovichev, V.V. Ragul’skii, F.S. Faizullov:Gain and linewidth in stimulated Brillouin scattering in gases, Sov. J. Quan-tum Electron. 2, p.69-71 (1972)

[4.470] {Sect. 4.5.9} Y.E. D’yakov: Excitation of stimulated light scattering bybroad-spectrum pumping, JETP Lett. 11p.243-246 (1970)

[4.471] {Sect. 4.5.9} A. Villafranca, J.A. Lazaro: Stimulated Brillouin scatteringgain profile characterization by interaction between two narrow-linewidthoptical sources, Opt Express 13, p.7336-7341 (2005)

[4.472] {Sect. 4.5.9} A. Heuer, C. Hanisch, R. Menzel: Low-power phase conju-gation based on stimulated Brillouin scattering in fiber amplifiers, OpticsLetters 28, p.34-36 (2003)

[4.473] {Sect. 4.5.9} M. Sjoberg, M.L. QuirogaTeixeiro, S. Galt, S. Hard: Depen-dence of stimulated Brillouin scattering in multimode fibers on beam qual-ity, pulse duration, and coherence length, J Opt Soc Am B Opt Physics 20,p.434-442 (2003)

[4.474] {Sect. 4.5.9} N. Naftali, R.M.J. Benmair, I. Peer, A. Yogev: Threshold ofstimulated Brillouin scattering by use of a solar pumped laser, Appl Opt41, p.3576-3581 (2002)

[4.475] {Sect. 4.5.9} C. Hnisch, A. Heuer, R. Menzel: Threshold reduction of stim-ulated Brillouin scattering (SBS) using fiber loop schemes, Appl. Phys. B73, p.851-854 (2001)

720 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.476] {Sect. 4.5.9} W. Jinsong, T. Weizhong, Z. Wen: Stimulated Brillouin scat-tering initiated by thermally excited acoustic waves in absorption media,Opt. Commun. 123, p.574-576 (1996)

[4.477] {Sect. 4.5.9} K. Inoue: Brillouin threshold in an optical fiber with bedirec-tional pump lights, Opt. Comm. 120, p.34-38 (1995)

[4.478] {Sect. 4.5.9} M.T. Duignan, B.J. Feldman, W.T. Whitney: Theshold reduc-tion for stimulated Brillouin scattering using a multipass Herriott cell, J.Opt. Soc. Am. B. 9, p.548-559 (1992)

[4.479] {Sect. 4.5.9} N.F. Andreev, V.I. Bespalov, M.A. Dvoretsky, G.A. Pasmanik:Phase Conjugation of Single Photons, IEEE J. QE-25, p.346-350 (1989)

[4.480] {Sect. 4.5.9} M. Maier, G. Renner: Transient Threshold Power of StimulatedBrillouin Raman Scattering, Phys. Lett. A 34, p.299-300 (1971)

[4.481] {Sect. 4.5.9} A. Heuer, R. Menzel: Phase conjugating SBS-mirror for lowpowers and reflectivities above 90 % in an internally tapered optical fiber,Opt. Lett. 23, p.834-836 (1998)

[4.482] {Sect. 4.5.9} D.C. Jones, M.S. Mangir, D.A. Rockwell: A stimulated Bril-louin scattering phase-conjugate mirror having a peak-power threshold<100 W, Opt. Comm. 123, p.175-181 (1996)

[4.483] {Sect. 4.5.9} A.M. Scott, W.T. Whitney: Characteristics of a Brillouin ringresonator used for phase conjugation at 2.1µm, J.Opt. Soc. Am. B 12,p.1634-1641 (1995)

[4.484] {Sect. 4.5.9} G.K.N. Wong, M.J. Damzen: Enhancement of the phase-conjugate stimulated Brillouin scattering process using optical feedback,J. Mod. Opt. 35, p.483-490 (1988)

[4.485] {Sect. 4.5.9} B. Kralikova, J. Skala, P. Straka, H. Turcicova: Image restora-tion in a highly non-steady-state regime of stimulated Brillouin scatteringin a photodissociation iodine laser, Optics Letters 22, p.766-768 (1997)

[4.486] {Sect. 4.5.9} V.F. Losev, Y.N. Panchenko: Spectral and spatial selection ofXeCl laser radiation by an SBS mirror, Opt Commun 136, p.31-34 (1997)

[4.487] {Sect. 4.5.9} P.C. Wait, K. Desouza, T.P. Newson: A theoretical comparisonof spontaneous Raman and Brillouin based fibre optic distributed temper-ature sensors, Opt Commun 144, p.17-23 (1997)

[4.488] {Sect. 4.5.9} H.J. Eichler, S. Heinrich, J. Schwartz: Self-starting short-pulseXeCl laser with a stimulated Brillouin scattering mirror, Optics Letters 21,p.1909-1911 (1996)

[4.489] {Sect. 4.5.9} D.L. Carrroll, R. Johnson, S.J. Pfeifer, R.H. Moyer: Experi-mental investigations of stimulated Brillouin scattering beam combination,J. Opt. Soc. Am. B 9, p.2214-2224 (1992)

[4.490] {Sect. 4.5.9} D.J. Gauthier, R.W. Boyd: Phase-conjugate Fizeau interfer-ometer, Opt. Lett. 14, p.323-325 (1989)

[4.491] {Sect. 4.5.9} R.H. Moyer, M. Valley, M.C. Cimolino: Beam combinationthrough stimulated Brillouin scattering, J. Opt. Soc. Am. B 5, p.2473-2489(1988)

[4.492] {Sect. 4.5.9} R.P. Drake, R.G. Watt, K. Estabrook: Onset and Saturation ofthe Spectral Intensity of Stimulated Brillouin Scattering in InhomogeneousLaser-Produced Plasmas, Phys. Rev. Lett. 77, p.79-82 (1996)

[4.493] {Sect. 4.5.9} R.G. Watt, J. Cobble, D.F. DuBois, J.C. Fenandez, H.A. Rose,R.P. Drake, B.S. Bauer: Dependence of stimulated Brillouin scattering onfocusing optic F number in long scale-length plasmas, Phys. Plasmas 3,p.1091-1095 (1996)

[4.494] {Sect. 4.5.10} W. Kaiser, M. Maier: Stimulated Rayleigh Brillouin andRaman-spectroscopy, in Laser Handbook, ed. by F.T Arecci, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972) p. 1077

4.5.10 Stimulated Thermal Brillouin Scattering (STBS) 721

[4.495] {Sect. 4.5.10} R.M. Herman, M.A. Gray: Theoretical Prediction of the Stim-ulated Thermal Rayleigh Scattering in Liquids, Phys. Rev. Lett. 19, p.824-828 (1967)

[4.496] {Sect. 4.5.11} G. Olbrechts, K. Wostyn, K. Clays, A. Persoons: High-frequency demodulation of multiphoton fluorescence in long-wavelengthhyper-Rayleigh scattering, Optics Letters 24, p.403-405 (1999)

[4.497] {Sect. 4.5.11} T. Latz, F. Aupers, V.M. Baev, P.E. Toschek: Emission spec-trum of a multimode dye laser with frequency-shifted feedback for the sim-ulation of Rayleigh scattering, Opt Commun 156, p.210-218 (1998)

[4.498] {Sect. 4.5.11} M.M. Denariez-Roberge, G. Giuliani: High-power single-mode laser operation using stimulated Rayleigh scattering, Opt. Lett. 6,p.339-3341 (1981)

[4.499] {Sect. 4.5.11} Y. Carmel, J. Ivers, R.E. Kribel, J. Nation: Intense CoherentCherenkov Radiation Due to the Interaction of a Relativistic Electron Beamwith a Slow-Wave Structure, Phys. Rev. Lett. 33, p.1278-1282 (1974)

[4.500] {Sect. 4.5.11} W.H. Lowdermilk, N. Bloembergen: Stimulated Concentra-tion Scattering in the Binary-Gas Mixtures Xe-He and SF6-He, Phys. Rev.A 5, p.1423-1443 (1972)

[4.501] {Sect. 4.5.11} R.H. Pantell, G. Soncini, H.E. Puthoff: Stimulated Photon-Electron Scattering, IEEE J. QE-4, p.905-907 (1968)

[4.502] {Sect. 4.5.11} D.H. Rank, C.W. Cho, N.D. Foltz, T.A. Wiggins: StimulatedThermal Rayleigh Scattering, Phys. Rev. Lett. 19, p.828-830 (1967)

[4.503] {Sect. 4.5.11} N. Bloembergen, P. Lallemand: Complex intensity-dependentindex of refraction, frequency broadening of stimulated Raman lines, andstimulated Rayleigh scattering, Phys. Rev. Lett. 16, p.81-84 (1966)

[4.504] {Sect. 4.5.12} R.Y. Chiao, P.L. Kelley, E. Garmire: Stimulated Four-PhotonInteraction and ist Influence on Stimulated Rayleigh-Wing Scattering, Phys.Rev. Lett. 17, p.1158-1161 (1966)

[4.505] {Sect. 4.5.13.0} J. J. Laserna: Modern Techniques in Raman Spectroscopy((John Wiley & Sons, Chichester, 1996)

[4.506] {Sect. 4.5.13.0} G. Marowsky, V.V. Smirnov (eds.): Coherent Raman Spec-troscopy, Springer Proc. Phys, Vol. 63 (Springer, Berlin, Heidelberg 1992)

[4.507] {Sect. 4.5.13.0} D.A. Long: The polarizability and hyperpolarizability ten-sors, in Nonlinear Raman Spectroscopy and Ist Chemical Applications, ed.by W. Kiefer, D. A. Long (Reidel, Dordrecht 1982)

[4.508] {Sect. 4.5.13.0} W. Kiefer: Recent techniques in Raman-spectroscopy (Adv.Infrared and Raman Spectroscopy 3, 1 (Heyden, London 1977)

[4.509] {Sect. 4.5.13.0} J. Loader: Basic Laser Raman Spectroscopy (Hey-den/Sadtler, London 1970)

[4.510] {Sect. 4.5.13.0} J. R. Downey, G. J. Janz: Digital methods in Raman spec-troscopy (Adv. Infrared and Raman Spectroscopy 1, 1-34, Heyden, London1975)

[4.511] {Sect. 4.5.13.0} C.S. Wang: The stimulated Raman process, in QuantumElectronics: A Treatise, Vol. 1, ed. by H. Rabin, C.L. Tang (Academic, NewYork 1975) Chap. 7

[4.512] {Sect. 4.5.13.1} C. Rousseaux, L. Gremillet, M. Casanova, P. Loiseau, M.R.LeGloahec, S.D. Baton, F. Amiranoff, J.C. Adam, A. Heron: Transient de-velopment of backward stimulated Raman and Brillouin scattering on apicosecond time scale measured by subpicosecond Thomson diagnostic –art. no. 015001, Phys Rev Lett 9701, p.5001 (2006)

[4.513] {Sect. 4.5.13.1} K.S. Abedin: Stimulated Brillouin scattering in single-modetellurite glass fiber, Opt Express 14, p.11766-11772 (2006)

[4.514] {Sect. 4.5.13.1} H.X. Vu, L. Yin, D.F. DuBois, B. Bezzerides, E.S. Dodd:Nonlinear spectral signatures and spatiotemporal behavior of stimulated

722 4. Nonlinear Interactions of Light and Matter Without Absorption

raman scattering from single laser speckles – art. no. 245003, Phys RevLett 9524, p.5003 (2005)

[4.515] {Sect. 4.5.13.1} D. Homoelle, K.D. Moll, A.L. Gaeta, R.W. Boyd: Conicalthree-photon-excited stimulated hyper-Raman scattering – art. no. 011802,Phys Rev A 7201, p.1802 (2005)

[4.516] {Sect. 4.5.13.1} H. Lee, G.P. Agrawal: Suppression of stimulated Brillouinscattering in optical fibers using fiber Bragg gratings, Opt Express 11,p.3467-3472 (2003)

[4.517] {Sect. 4.5.13.1} M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, C.Ozkul, F. Sanchez: Evidence of Brillouin scattering in an ytterbium-dopeddouble-clad fiber laser, Optics Letters 27, p.1294-1296 (2002)

[4.518] {Sect. 4.5.13.1} V.I. Kovalev, R.G. Harrison: The dynamics of a SBS fi-bre laser: the nature of periodic spiking at harmonics of the fundamentaloscillation frequency, Opt Commun 204, p.349-354 (2002)

[4.519] {Sect. 4.5.13.1} Y.D. Zhang, P.B. Kelly, I.M. Kennedy: Resonant Raman-scattering measurements of trichloroethene in a thermal boundary layer,Appl Opt 41, p.2962-2972 (2002)

[4.520] {Sect. 4.5.13.1} F.A. Starikov, G.G. Kochemasov: Novel phenomena atstimulated Brillouin scattering of vortex laser beams, Opt Commun 193,p.207-215 (2001)

[4.521] {Sect. 4.5.13.1} V.V. Spirin, J. Kellerman, P.L. Swart, A.A. Fotiadi: Inten-sity noise in SBS with injection locking generation of Stokes seed signal,Opt Express 14, p.8328-8335 (2006)

[4.522] {Sect. 4.5.13.1} E.C. Honea, A. Ogura, D.R. Peale, C. Felix, C.A. Mur-ray, K. Raghavachari, W.O. Sprenger, M.F. Jarrold, W.L. Brown: Struc-tures and covalescence behavior of size-selected silicon nanoclusters studiedby surface-plasmon-polariton enhanced Raman spectroscopy, J Chem Phys110, p.12161-12172 (1999)

[4.523] {Sect. 4.5.13.1} V. Krylov, I. Fischer, V. Bespalov, D. Staselko, A. Rebane:Transient stimulated Raman scattering in gas mixtures, Optics Letters 24,p.1623-1625 (1999)

[4.524] {Sect. 4.5.13.1} A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser: Gen-eration of multiple phase-locked Stokes and anti-Stokes components in animpulsively excited Raman medium, Phys Rev Lett 83, p.2560-2563 (1999)

[4.525] {Sect. 4.5.13.1} V.E. Roman, J. Popp, M.H. Fields, W. Kiefer: Minorityspecies detection in aerosols by stimulated anti-Stokes-Raman scatteringand external seeding, Appl Opt 38, p.1418-1422 (1999)

[4.526] {Sect. 4.5.13.1} O.M. Sarkisov, D.G. Tovbin, V.V. Lozovoy, F.E. Gostev,A.A. Titov, S.A. Antipin, S.Y. Umanskiy: Femtosecond Raman-inducedpolarisation spectroscopy of coherent rotational wave packets: D-2, N-2 andNO2, Chem Phys Lett 303, p.458-466 (1999)

[4.527] {Sect. 4.5.13.1} A.S. Grabtchikov, D.E. Gakhovich, A.G. Shvedko, V.A.Orlovich, K.J. Witte: Observation of solitary waves with different phasebehavior in stimulated Raman forward scattering, Phys Rev Lett 81, p.5808-5811 (1998)

[4.528] {Sect. 4.5.13.1} S. Klewitz, S. Sogomonian, M. Woerner, S. Herminghaus:Stimulated Raman scattering of femtosecond Bessel pulses, Opt Commun154, p.186-190 (1998)

[4.529] {Sect. 4.5.13.1} S. Sogomonian, G. Grigorian, K. Grigorian: Parametric sup-pression of Raman gain in coherent Raman probe scattering, Opt Commun152, p.351-354 (1998)

[4.530] {Sect. 4.5.13.1} F. Vaudelle, J. Gazengel, G. Rivoire: Experimental studyof the laser and stimulated Raman scattering wave phases by a nonlinearimaging method, Opt Commun 149, p.84-88 (1998)

4.5.13 Stimulated Raman Techniques 723

[4.531] {Sect. 4.5.13.1} L. Deng, W.R. Garrett, M.G. Payne, D.Z. Lee: Observationof broadband forward hyper-Raman emission with high intensity focusedlaser beams, Opt Commun 142, p.253-256 (1997)

[4.532] {Sect. 4.5.13.1} M. Ozaki, E. Ehrenfreund, R.E. Benner, T.J. Barton,K. Yoshino, Z.V. Vardeny: Dispersion of resonant Raman scattering in pi-conjugated polymers: Role of the even parity excitons, Phys Rev Lett 79,p.1762-1765 (1997)

[4.533] {Sect. 4.5.13.1} M.R. Perrone, V. Piccinno: On the benefits of astigmatic fo-cusing configurations in stimulated Raman scattering processes, Opt Com-mun 133, p.534-540 (1997)

[4.534] {Sect. 4.5.13.1} M.R. Perrone, V. Piccinno, G. Denunzio, V. Nassisi: Depen-dence of rotational and vibrational Raman scattering on focusing geometry,IEEE J QE-33, p.938-944 (1997)

[4.535] {Sect. 4.5.13.1} F. Vaudelle, J. Gazengel, G. Rivoire: Experimental studiesof the spatial coherence of forward stimulated Raman scattering in densematerials, Opt Commun 134, p.559-568 (1997)

[4.536] {Sect. 4.5.13.1} B.H. Bairamov, A. Aydinli, I.V. Bodnar, Y.V. Rud, V.K.Nogoduyko, V.V. Toporov: High power gain for stimulated Raman ampli-fication in CuAlS2, J Appl Phys 80, p.5564-5569 (1996)

[4.537] {Sect. 4.5.13.1} M. Hofmann, H. Graener: Time resolved incoherent anti-Stokes Raman spectroscopy of dichloromethane, Chem Phys 206, p.129-137(1996)

[4.538] {Sect. 4.5.13.1} V. Krylov, A. Rebane, O. Ollikainen, D. Erni, U. Wild:Stimulated Raman scattering in hydrogen by frequency- doubled amplifiedfemtosecond Ti:sapphire laser pulses, Optics Letters 21, p.381-383 (1996)

[4.539] {Sect. 4.5.13.1} V. Krylov, A. Rebane, D. Erni, O. Ollikainen, U. Wild,V. Bespalov, D. Staselko: Stimulated Raman amplification of femtosecondpulses in hydrogen gas, Optics Letters 21, p.2005-2007 (1996)

[4.540] {Sect. 4.5.13.1} A. Lau, M. Pfeiffer, A. Kummrow: Subpicosecond two-dimensional Raman spectroscopy applying broadband nanosecond laserradiation, Chem Phys Lett 263, p.435-440 (1996)

[4.541] {Sect. 4.5.13.1} K.T. Tsen, E.D. Grann, S. Guha, J. Menendez: Electron-phonon interactions in solid C-60 studied by transient picosecond Ramanspectroscopy, Appl Phys Lett 68, p.1051-1053 (1996)

[4.542] {Sect. 4.5.13.1} A.I. Vodchitz, V.P. Kozich, P.A. Apanasevich, V.A.Orlovich: Correlations between the intensities of pump, depleted pump andStokes waves in superbroadband stimulated Raman scattering, Opt Com-mun 125, p.243-249 (1996)

[4.543] {Sect. 4.5.13.1} B.F. Henson, G.V. Hartland, V.A. Venturo, R.A. Hertz,P.M. Felker: Stimulated Raman spectroscopy in the xx region of isotopi-cally substituted benzene dimers: evidence for symmetrically inequivalentbenzene moieties, Chem. Phys. Lett. 176, p.91-98 (1991)

[4.544] {Sect. 4.5.13.1} J.W. Nibler, J.J. Yang: Nonlinear Raman spectroscopy ofgases, Ann. Rev. Phys. Chem. 38, p.349-381 (1987)

[4.545] {Sect. 4.5.13.1} J. Chesnoy: Determination of the modulation regime forvibrational dephasing. Demonstration on the critical Raman broadening innitrogen, Chem. Phys. Lett. 125, p.267-271 (1986)

[4.546] {Sect. 4.5.13.1} G.M. Gale, P. Guyot-Sionnest, W.Q. Zheng: Direct Pi-cosecond Determination of the Character of Vibrational Line-Broadening inLiquids, Opt. Comm. 58, p.395-399 (1986)

[4.547] {Sect. 4.5.13.1} M.L. Geirnaer, G.M. Gale: Time-resolved coherent spec-troscopy of binary liquid systems: Methyl iodide in carbon disulphide,Chem. Phys. 86, p.205-211 (1984)

724 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.548] {Sect. 4.5.13.1} I.A. Walmsley, M.G. Raymer: Observation of MacroscopicQuantum Fluctuations in Stimulated Raman Scattering, Phys. Rev. Lett.50, p.962-965 (1983)

[4.549] {Sect. 4.5.13.1} J. Eggleston, R.L. Byer: Steady State Stimulated RamanScattering by a Multimode Laser, IEEE J. QE16, p.850-853 (1980)

[4.550] {Sect. 4.5.13.1} R. Frey, F. Pradere: High-efficiency narrow-linewidth Ra-man amplification and spectral compession, Opt. Lett. 5, p.374-376 (1980)

[4.551] {Sect. 4.5.13.1} J.P. Heritage, D.L. Allara: Surface picosecond Raman gainspectra of a molecular monolayer, Chem. Phys. Lett. 74, p.507-510 (1980)

[4.552] {Sect. 4.5.13.1} B.F. Levine, C.G. Bethea, A.R. Tretola, M. Korngor: Stim-ulated Raman scattering from 20-A layers of silicon on sapphire, Appl. Phys.Lett. 37, p.595-597 (1980)

[4.553] {Sect. 4.5.13.1} J.B. Grun, A.K. McQuillan, B.P. Stoicheff: Intensity andGain Measurements on the Stimulated Raman Emission in Liquid O2 andN2, Phys. Rev. 180p.61-68 (1969)

[4.554] {Sect. 4.5.13.1} D. von der Linde, M. Maier, W. Kaiser: QuantitativeInvestigations of the Stimulated Raman Effect Using Subnanosecond LightPulses, Phys. Rev. 178, p.11-17 (1969)

[4.555] {Sect. 4.5.13.1} N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova:Controlled Stimulated Raman Amplification and Oscillation in HydrogenGas, IEEE J. QE-3, p.197-201 (1967)

[4.556] {Sect. 4.5.13.1} E.E. Hagenlocker, R.W. Minck, W.G. Rado: Effects ofPhonon Lifetime on Stimulated Optical Scattering in Gases, Phys. Rev.154, p.226-233 (1967)

[4.557] {Sect. 4.5.13.1} P. Lallemand, P. Simova, G. Bret: Pressure-Induced LineShift and Collisional Narrowing in Hydrogen Gas Determined by StimulatedRaman Emission, Phys. Rev. Lett. 17, p.1239-1241 (1966)

[4.558] {Sect. 4.5.13.1} D. Cotter, D.C. Hanna, R. Wyatt: Infrared StimulatedRaman Generation Effects of Gain Focussing on Threshold and TuningBehaviour, Appl. Phys. 8, p.333-340 (1975)

[4.559] {Sect. 4.5.13.1} XC. Rousseaux, G. Malka, J.L. Miquel, F. Amiranoff, S.D.Baton, P. Mounaix: Experimental validation of the linear theory of stimu-lated Raman scattering driven by a 500-fs laser pulse in a preformed un-derdense plasma (vol 74, pg 4655, 1995), Phys Rev Lett 76, p.4649 (1996)

[4.560] {Sect. 4.5.13.1} J.C. van den Heuvel, F.J.M. van Putten, R.J.L. Lerou:The Stimulated Raman Scattering Threshold for a Nondiffraction-LimitedPump Beam, IEEE J. QE-28, p.1930-1936 (1992)

[4.561] {Sect. 4.5.13.1} J.C. van den Heuvel: Numerical Modeling of StimulatedRaman Scattering in an Astigmatic Focus, IEEE J. QE-28, p.378-385 (1992)

[4.562] {Sect. 4.5.13.1} B. Dick: Response funcition theory of time-resolved CARSand CSRS of rotating molecules in liquids under general polarization con-ditions, Chem. Phys. 113, p.131-147 (1987)

[4.563] {Sect. 4.5.13.1} S.A. Akhmanov, Yu. E. D’yakov, L.I. Pavlov: Statisticalphenomena in Raman scattering stimulated by a broad-band pump, Sov.Phys. JETP 39, p.249-258 (1974)

[4.564] {Sect. 4.5.13.1} R.R. Alfano, S.L. Shapiro: Explanation of a Transient Ra-man Gain Anomaly, Phys. Rev. A 2p.2376-2379 (1970)

[4.565] {Sect. 4.5.13.1} R.L. Carman, F. Shimizu, C.S. Wang, N. Bloembergen:Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,Phys. Rev. A 2, p.60-72 (1970)

[4.566] {Sect. 4.5.13.1} Y.R. Shen, N. Bloembergen: Theory of Stimulated Brillouinand Raman Scattering, Phys. Rev. 137, p.A1787-A1805 (1965)

4.5.13 Stimulated Raman Techniques 725

[4.567] {Sect. 4.5.13.1} M.N. Shkunov, W. Gellermann, Z.V. Vardeny: Amplifiedresonant Raman scattering in conducting polymer thin films, Appl PhysLett 73, p.2878-2880 (1998)

[4.568] {Sect. 4.5.13.1} A.S. Jeevarajan, L.D. Kispert, G. Chumanov, C. Zhou,T.M. Cotton: Resonance Raman study of carotenoid cation radicals, ChemPhys Lett 259, p.515-522 (1996)

[4.569] {Sect. 4.5.13.1} S. Nakashima, T. Kitagawa, J.S. Olson: Time-resolved res-onance Raman study of intermediates generated after photodissociation ofwild-type and mutant CO-myoglobins, Chem Phys 228, p.323-336 (1998)

[4.570] {Sect. 4.5.13.1} T.L. Gustafson, J.F. Palmer, D.M. Roberts: The structureof S1 diphenylbutadiene: UV resonance Raman and picosecond transientRaman studies, Chem. Phys. Lett. 127, p.505-511 (1986)

[4.571] {Sect. 4.5.13.1} S. Koshihara, T. Kobayashi: Time-resoved resonance Ra-man spectrum of chrysene in the S1 and T1 states, J. Chem. Phys. 85,p.1211-1219 (1986)

[4.572] {Sect. 4.5.13.1} R. Wilbrandt, N.-H. Jensen, F.W. Langkilde: Time-resolvedresonance Raman spectrum of all-trans-diphenylbutadiene in the lowest ex-cited singlet state, Chem. Phys. Lett. 111, p.123-127 (1984)

[4.573] {Sect. 4.5.13.1} H. Hamaguchi, Ch. Kato, M. Tasumi: Observation of tran-sient resonance Raman spectra of the S1 state of trans-stilbene, Chem.Phys. Lett. 100, p.3-7 (1983)

[4.574] {Sect. 4.5.13.1} L.Y. Cao, B. Nabet, J.E. Spanier: Enhanced raman scat-tering from individual semiconductor nanocones and nanowires – art. no.157402, Phys Rev Lett 9615, p.7402 (2006)

[4.575] {Sect. 4.5.13.1} Z.H. Zhou, F.T. Xiao, L. Liu, G. Wang, Z.Z. Xu: Prob-ing single-molecule by surface-enhanced resonance Raman scattering withlinearly and circularly polarized laser, Opt Commun 251, p.209-215 (2005)

[4.576] {Sect. 4.5.13.1} K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld:Surface-enhanced non-linear Raman scattering at the single-molecule level,Chem Phys 247, p.155-162 (1999)

[4.577] {Sect. 4.5.13.1} S.M. Nie, S.R. Emery: Probing single molecules and singlenanoparticles by surface-enhanced Raman scattering, Science 275, p.1102-1106 (1997)

[4.578] {Sect. 4.5.13.1} S.M. Nie, S.R. Emery: Probing single molecules and singlenanoparticles by surface-enhanced Raman scattering, Science 275, p.1102-1106 (1997)

[4.579] {Sect. 4.5.13.1} V.E. Roman, J. Popp, M.H. Fields, W. Kiefer: Species iden-tification of multicomponent microdroplets by seeding stimulated Ramanscattering, J Opt Soc Am B Opt Physics 16, p.370-375 (1999)

[4.580] {Sect. 4.5.13.1} G. Zikratov, F.Y. Yueh, J.P. Singh, O.P. Norton, R.A.Kumar, R.L. Cook: Spontaneous anti-Stokes Raman probe for gas temper-ature measurements in industrial furnaces, Appl Opt 38, p.1467-1475 (1999)

[4.581] {Sect. 4.5.13.1} T. Dreier, B. Lange, J. Wolfrum, M. Zahn: Determina-tion of Temperature and Concentration of Molecular Nitrogen, Oxygen andMethane with Coherent Anti-Stokes Raman Scattering, Appl. Phys. B 45,p.183-190 (1988)

[4.582] {Sect. 4.5.13.1} B.F. Levine, C.V. Shank, J.P. Heritage: Surface VibrationalSpectroscopy Using Stimulated Raman Scattering, IEEE J. QE-15, p.1418-1432 (1979)

[4.583] {Sect. 4.5.13.1} T.R. Loree, R.C. Sze, D.L. Barker, P.B. Scott: New Linesin the UV: SRS of Excimer Laser Wavelengths, IEEE J. QE-15, p.337-342(1979)

[4.584] {Sect. 4.5.13.1} A. DeMartino, R. Frey, F. Pradere: Tunable Far InfraredGeneration in Hydrogen Fluoride, Opt. Comm. 27, p.262-266 (1978)

726 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.585] {Sect. 4.5.13.1} V. Wilke, W. Schmidt: Tunable UV-Radiation by Stimu-lated Raman Scattering in Hydrogen, Appl. Phys. 16, p.151-154 (1978)

[4.586] {Sect. 4.5.13.1} R. Frey, F. Pradere, J. Ducuing: Tunable Far-InfraredRaman Generation, Opt. Comm. 23, p.65-68 (1977)

[4.587] {Sect. 4.5.13.1} R.L. Byer: A 16-µm Source for Laser Isotope Enrichment,IEEE J. QE-12, p.732-739 (1976)

[4.588] {Sect. 4.5.13.1} D. von der Linde, A. Laubereau, W, Kaiser: MolecularVibrations in Liquids: Direct Measurement of the Molecular DephasingTime; Determination of the Shape of Picosecond Light Pulses, Phys. Rev.Lett. 26, p.954-957 (1971)

[4.589] {Sect. 4.5.13.1} L. Beardmore, H.G.M. Edwards, D.A. Long, T.K. Tan:Raman spectroscopic measurements of temperature in a natural gas/airflame, in Lasers in Chemistry, ed. by M.A. West (Elsevier, Amsterdam1977)

[4.590] {Sect. 4.5.13.1} M.J. Everett, A. Lal, D. Gordon, K. Wharton, C.E. Clay-ton, W.B. Mori, C. Joshi: Evolution of stimulated Raman into stimulatedCompton scattering of laser light via wave breaking of plasma waves, PhysRev Lett 74, p.1355-1358 (1995)

[4.591] {Sect. 4.5.13.1} M.L. Geirnaert, G.M. Gale, C. Flytzanis: Time-ResolvedSpectroscopy of Vibrational Overtones and Two-Phonon States, Phys. Rev.Lett. 52, p.815-818 (1984)

[4.592] {Sect. 4.5.13.1} D.S. Bethune, J.R. Lankard, P.P. Sorokin: Time-resolvedinfrared spectral photography, Opt. Lett. 4, p.103-105 (1979)

[4.593] {Sect. 4.5.13.4} E.R. Andresen, H.N. Paulsen, V. Birkedal, J. Thogersen,S.R. Keiding: Broadband multiplex coherent anti-Stokes Raman scatteringmicroscopy employing photonic-crystal fibers, J Opt Soc Am B Opt Physics22, p.1934-1938 (2005)

[4.594] {Sect. 4.5.13.4} E. Gershgoren, R.A. Bartels, J.T. Fourkas, R. Tobey, M.M.Murnane, H.C. Kapteyn: Simplified setup for high-resolution spectroscopythat uses ultrashort pulses, Optics Letters 28, p.361-363 (2003)

[4.595] {Sect. 4.5.13.4} J.W. Schopf, A.B. Kudryavtsev, D.G. Agresti, T.J.Wdowiak, A.D. Czaja: Laser-Raman spectroscopy (Communication aris-ing): Images of the Earth’s earliest fossils? Reply, Nature 420, p.477 (2002)

[4.596] {Sect. 4.5.13.4} J.D. Pasteris, B. Wopenka: Laser-Raman spectroscopy(Communication arising): Images of the Earth’s earliest fossils?, Nature420, p.476-477 (2002)

[4.597] {Sect. 4.5.13.4} B. vonVacano, T. Buckup, M. Motzkus: Highly sensitivesingle-beam heterodyne coherent anti-Stokes Raman scattering, Optics Let-ters 31, p.2495-2497 (2006)

[4.598] {Sect. 4.5.13.4} M.C. Weikl, F. Beyrau, J. Kiefer, T. Seeger, A. Leipertz:Combined coherent anti-Stokes Raman spectroscopy and linear Ramanspectroscopy for simultaneous temperature and multiple species measure-ments, Optics Letters 31, p.1908-1910 (2006)

[4.599] {Sect. 4.5.13.4} M. Cui, M. Joffre, J. Skodack, J.P. Ogilvie: InterferometricFourier transform coherent anti-Stokes Raman scattering, Opt Express 14,p.8448-8458 (2006)

[4.600] {Sect. 4.5.13.4} E.M. Vartiainen, H.A. Rinia, M. Muller, M. Bonn: Directextraction of Raman line-shapes from congested CARS spectra, Opt Ex-press 14, p.3622-3630 (2006)

[4.601] {Sect. 4.5.13.4} S. Roy, T.R. Meyer, J.R. Gord: Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond mod-eless dye laser, Optics Letters 30, p.3222-3224 (2005)

4.5.13 Stimulated Raman Techniques 727

[4.602] {Sect. 4.5.13.4} L.A. Carreira, M.L. Horowitz: CARS in condensed media,in Non-Linear Raman Spectroscopy and Ist Chemical Applications, ed. byW. Kiefer, D.A. Long (reidel, Dordrecht 1982) p 367

[4.603] {Sect. 4.5.13.4} E.K. Gustafson, R.L. Byer: High-resolution CARS-spectro-scopy, in Laser Spectroscopy VI, ed. by H.P. Weber, W. Luthy, SpringerSer. Opt. Sci, Vol. 40 (Springer, Berlin, Heidelberg 1983) p. 326

[4.604] {Sect. 4.5.13.4} J. Bood, P.E. Bengtsson, M. Alden: Stray light rejectionin rotational coherent anti-Stokes Raman spectroscopy by use of a sodium-seeded flame, Appl Opt 37, p.8392-8396 (1998)

[4.605] {Sect. 4.5.13.4} J.C. Kirkwood, D.J. Ulness, A.C. Albrecht, M.J. Stimson:Raman spectrograms in fifth order coherent Raman scattering: The sequen-tial CARS process in liquid benzene, Chem Phys Lett 293, p.417-422 (1998)

[4.606] {Sect. 4.5.13.4} M.Schmitt, G. Knopp, A. Materny, W. Kiefer: The Applica-tion of Femtosecond Time-Resolved Coherent Anti-Stokes Raman Scatter-ing for the Investigation of Ground and Excited State Molecular Dynamicsof Molecules in the Gas Phase, J. Phys. Chem. A 102, p.4059-4065 (1998)

[4.607] {Sect. 4.5.13.4} E.J. Beiting: Coherent anti-Stokes Raman scattering veloc-ity and translational temperature measurements in resistojets, Appl Opt36, p.3565-3576 (1997)

[4.608] {Sect. 4.5.13.4} J.W. Hahn, C.W. Park, S.N. Park: Broadband coherentanti-Stokes Raman spectroscopy with a modeless dye laser, Appl Opt 36,p.6722-6728 (1997)

[4.609] {Sect. 4.5.13.4} M. Schmitt, G. Knopp, A. Materny, W. Kiefer: Femtosecondtime-resolved coherent anti-Stokes Raman scattering for the simultaneousstudy of ultrafast ground and excited state dynamics: Iodine vapour, ChemPhys Lett 270, p.9-15 (1997)

[4.610] {Sect. 4.5.13.4} G.W. Baxter, M.J. Johnson, J.G. Haub, B.J. Orr: OPOCARS: Coherent anti-Stokes Raman spectroscopy using tunable opti-cal parametric oscillators injection-seeded by external-cavity diode lasers,Chem Phys Lett 251, p.211-218 (1996)

[4.611] {Sect. 4.5.13.4} K. Ravichandran, Y. Bai, T.R. Fletcher: Techniques forstimulated Raman excitation and CARS detection of radicals created byphotodissociation, Chem Phys Lett 261, p.261-266 (1996)

[4.612] {Sect. 4.5.13.4} P.P. Yaney, J.W. Parish: Coherent anti-Stokes Raman scat-tering measurements of N- 2 (X, v) at low pressures corrected for stimulatedRaman scattering, Appl Opt 35, p.2659-2664 (1996)

[4.613] {Sect. 4.5.13.4} B. Dick: Response function theory of time-resolved CARSandn CSRS of rotating molecules in liquids under general polarization con-ditions, Chem. Phys. 113, p.131-147 (1987)

[4.614] {Sect. 4.5.13.4} T. Hattori, A. Terasaki, T. Kobayashi: Coherent StokesRaman scattering with incoherent light for vibrational-dephasing-time mea-surement, Phys. Rev. A 35, p.715-724 (1987)

[4.615] {Sect. 4.5.13.4} H. Graener, A. Laubereau, J.W. Nibler: Picosecond coher-ent anti-Stokes Raman spectroscopy of molecules in free jet expansions,Opt. Lett. 9, p.165-167 (1984)

[4.616] {Sect. 4.5.13.4} E. Gustafson, R.L. Byer: Transit Time Linewidth Limita-tions in CW CARS Spectroscopy, Appl Phys B 28, p.85-86 (1982)

[4.617] {Sect. 4.5.13.4} E.K. Gustafson, R.L. Byer, J.C. Mcdaniel: High ResolutionContinuous Wave Coherent Anti Stokes Raman Spectroscopy in a Super-sonic Jet, Optics Letters 7, p.434-436 (1982)

[4.618] {Sect. 4.5.13.4} Ch. Jung, A. Lau, H.-J. Weigmann, W. Werncke, M. Pfeif-fer: Interpretation of resonance CARS and Shpolskii spectra with calculatedmolecular geometries, vibrational frequences and relative intensities: Chry-

728 4. Nonlinear Interactions of Light and Matter Without Absorption

sene in its lowest excited singlet and triplet state, Chem. Phys. 72, p.327-336(1982)

[4.619] {Sect. 4.5.13.4} S.A. Druet, J.P.E. Taran: CARS Spectroscopy, Prog.Quant. Electr. Vol. 7, p.1-72 (1981)

[4.620] {Sect. 4.5.13.4} F. Moya, S.A.J. Druet, J.P.E. Taran: Rotation-vibrationspectroscopy of gases by CARS, in Laser Spectroscopy II, ed. by S. Haroche,J.C. Pebay-Peyroula, T.W. Hansch, S.E. Harris, Lecture Notes Phys, Vol.43 (Springer, Berlin, Heidelberg 1975) p. 66

[4.621] {Sect. 4.5.13.4} J.W. Nibler, G.V. Knighten: Coherent anti-Stokes Ramanspectroscopy, in Raman Spectroscopy of Gases and Liquids,ed. by A. Weber,Topics Curr. Phys, Vol. 11 (Springer, Berlin, Heidelberg 1979) Chap. 7

[4.622] {Sect. 4.5.13.4} A. Zumbusch, G.R. Holtom, X.S. Xie: Three-dimensionalvibrational imaging by coherent anti-Stokes Raman scattering, Phys RevLett 82, p.4142-4145 (1999)

[4.623] {Sect. 4.5.13.4} L. Ujj, F. Jager, A. Popp, G.H. Atkinson: Vibrationalspectrum of the K-590 intermediate in the bacteriorhodopsin photocycleat room temperature: Picosecond time-resolved resonance coherent anti-Raman spectroscopy, Chem Phys 212, p.421-436 (1996)

[4.624] {Sect. 4.5.13.5} T.J. Vikers: Quantitative resonance Raman spectroscopy,Appl. Spectrosc. Rev. 26, p.341 (1991)

[4.625] {Sect. 4.5.13.5} M.D. Levenson: Feasibility of Measuring the NonlinearIndex of Refraction by Third-Order Frequency Mixing, IEEE J. QE-10,p.110-115 (1974)

[4.626] {Sect. 4.5.14} B. Y. Zel’dovich, N. Pilipettshii: Principles in Phase Conju-gation (Springer, Heidelberg, New York, 1985)

[4.627] {Sect. 4.5.14} R. A. Fischer: Optical Phase Conjugation (Academic Press,San Diego, 1983)

[4.628] {Sect. 4.5.14} R.W. Hellwarth: Optical beam phase conjugation by stimu-lated backscattering, Opt. Eng. 21, p.257-262 (1982)

[4.629] {Sect. 4.5.14} Q. Gong, Y. Huang, J. Yang: Mechanism of optical phaseconjugation by stimulated Brillouin scattering, Phys. Rev. A 39, p.1227-1234 (1989)

[4.630] {Sect. 4.5.14} A. Ed. Brignon: Huignard JP Phase Conjugate Laser Optics,John Wiley & Sons , p. (2004)

[4.631] {Sect. 4.5.14} D.A. Rockwell: A Review of Phase-Conjugate Solid-StateLasers, IEEE J. QE-24, p.1124-1140 (1988)

[4.632] {Sect. 4.5.14} N G. Basov, V F. Efimkov, I G. Zubarev, A.V. Kotov, S.I.Mikhailov, and M. G.Smirnov: Inversion of wavefront in SMBS of a depo-larized pump, JETP Lett. 28, p.197-201 (1978)

[4.633] {Sect. 4.5.14} G. Gbur, E. Wolf: Phase conjugation with random fields andwith deterministic and random scatterers, Optics Letters 24, p.10-12 (1999)

[4.634] {Sect. 4.5.14} G.G. Kochemasov, F.A. Starikov: Novel features of phaseconjugation at SBS of beams passed through an ordered phase plate, OptCommun 170, p.161-174 (1999)

[4.635] {Sect. 4.5.14} D.C. Jones, G. Cook, K.D. Ridley, A.M. Scott: High reflec-tivity phase conjugation in the visible spectrum using stimulated Brillouinscattering in alkanes, J Nonlinear Opt Physics Mat 7, p.331-344 (1998)

[4.636] {Sect. 4.5.14} A.A. Offenberger, D.C. Thompson, R. Fedosejevs, B. Har-wood, J. Santiago, H.R. Manjunath: Experimental and Modeling Studies ofa Brillouin Amplifier, IEEE J. QE-29, p.207-216 (1993)

[4.637] {Sect. 4.5.14} J.J. Maki, W.V. Davis, R.W. Boyd: Phase conjugation usingthe surface nonlinearity of a dense potassium vapor, Phys. Rev. A. 46,p.7155-7161 (1992)

4.5.14 Optical Phase Conjugation via Stimulated Scattering 729

[4.638] {Sect. 4.5.14} R. Saxena, P. Yeh: Mutually pumped phase conjugation inKerr media and the effects of external seeding, J. Opt. Soc. Am. B 7, p.326-334 (1990)

[4.639] {Sect. 4.5.14} V.N. Blashuk, B.Ya. Zel’dovich, V.N. Krasheninnikov, N.A.Mel’nikov, N.F. Pilipetskii, V.V. Ragul’skii, V.V. Shkunov: SBS wave frontreversal for the depolarized light-theory and experiment, Opt. Comm. 27,p.137-141 (1978)

[4.640] {Sect. 4.5.14} A. Yariv: Phase Conjugate Optics and Real-Time Holography,IEEE J. QE-14, p.650-660 (1978)

[4.641] {Sect. 4.5.14} B.Ya. Zel’dovich, V.V. Shkupov: Reversal of wave front oflight in the case of depolarized pumping, Sov. Phys. JETP 48, p.214-219(1978)

[4.642] {Sect. 4.5.14} G.G. Kochemasov, V.D. Nikolaev: Reproduction of the spa-tial amplitude and phase distributions of a pump beam in stimulated Bril-louin scattering, Sov. J. Quantum Electron. 7, p.60-63 (1977)

[4.643] {Sect. 4.5.14} E. Bochove: Theory of a variable aperture phase conjugatemirror with application to an optical cavity, J. Appl. Phys. 59, p.3360-3362(1986)

[4.644] {Sect. 4.5.14} P. Suni, J. Falk: Theory of phase conjugation by stimulatedBrillouin scattering, J. Opt. Soc. Am. B 3, p.1681-1691 (1986)

[4.645] {Sect. 4.5.14} N.B. Baranova, B.Ya. Zel’dovich: Wavefront reversal offocused beams (theory of stimulated Brillouin backscattering), Sov. J.Quantum Electron. 10, p.555-560 (1980)

[4.646] {Sect. 4.5.14} R.W. Hellwarth: Theory of phase conjugation by stimulatedscattering in a waveguide, J. Opt. Soc. Am. 68, p.1050-1056 (1978)

[4.647] {Sect. 4.5.14} B.Ya. Zel’dovich, V.V. Shkunov: Limits of existance of wave-front reversal in stimulated light scattering, p.15-20 (1978)

[4.648] {Sect. 4.5.14} G.G. Kochemasov, V.D. Nikolaev: Reproduction of the spa-tial amplitude and phase distributions of a pump beam in stimulated Bril-louin scattering, Sov. J. Quantum Electron. 7, p.60-63 (1977)

[4.649] {Sect. 4.5.14} R.G. Harrison, V.I. Kovalev, W.P. Lu, D.J. Yu: SBS self-phase conjugation of CWNd : YAG laser radiation in an optical fibre, OptCommun 163, p.208-211 (1999)

[4.650] {Sect. 4.5.14} H. Naruse, M. Tateda: Trade-off between the spatial andthe frequency resolutions in measuring the power spectrum of the Brillouinbackscattered light in an optical fiber, Appl Opt 38, p.6516-6521 (1999)

[4.651] {Sect. 4.5.14} E. Peral, A. Yariv: Degradation of modulation and noisecharacteristics of semiconductor lasers after propagation in optical fiberdue to a phase shift induced by stimulated Brillouin scattering, IEEE JQE-35, p.1185-1195 (1999)

[4.652] {Sect. 4.5.14} H.J. Eichler, J. Kunde, B. Liu: Quartz fibre phase conjugatorswith high fidelity and reflectivity, Opt. Comm. 139, p.327-334 (1997)

[4.653] {Sect. 4.5.14} Ch. Lorattanasane, K.Kikuchi: Desing of Long-Distance Opti-cal Transmission Systems Using Midway Optical Phase Conjugation, IEEEPhot. Techn. Lett. 7, p.1375-1377 (1995)

[4.654] {Sect. 4.5.14} S. Wabnitz: Nonlinear Enhancement and Optimization ofPhase-Conjugation Efficiency in Optical Fibers, IEEE Phot. Techn. Lett.7, p.652-654 (1995)

[4.655] {Sect. 4.5.14} M. Yu, G.P. Agrawal, C.J. McKinstrie: Effect of ResidualDispersion in the Phase-Conjugation Fiber on Dispersion Compensationin Optical Communication Systems, IEEE Phot. Techn. Lett. 7, p.932-934(1995)

730 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.656] {Sect. 4.5.14} X. Zhang, F. Ebskamp, B.F. Jorgensen: Long-Distance Trans-mission Over Standard Fiber by Use of Mid-Way Phase Conjugation, IEEEPhot. Techn. Lett. 7, p.819-821 (1995)

[4.657] {Sect. 4.5.14} P. Shalev, St. Jackel, R. Lallouz, A. Borenstein: Low-threshold phase conjugate mirrors based on position-insensitive taperedwaveguides, Opt. Eng. 33, p.278-284 (1994)

[4.658] {Sect. 4.5.14} W. Wu, P. Yeh, S. Chi: Phase Conjugation by Four-WaveMixing in Single-Mode Fibers, IEEE J. QE-6, p.1448-1450 (1994)

[4.659] {Sect. 4.5.14} E.P. Ippen, R.H. Stolen: Stimulated Brillouin scattering inoptical fibers, Appl. Phys. Lett. 21, p.539-541 (1972)

[4.660] {Sect. 4.5.14} V.I. Kovalev, R.G. Harrison: Temporally stable continuous-wave phase conjugation by stimulated Brillouin scattering in optical fiberwith cavity feedback, Optics Letters 30, p.1375-1377 (2005)

[4.661] {Sect. 4.5.14} S. Jackel, P. Shalev, R. Lallouz: Experimental and theoreticalinvestigation of statistical fluctuations in phase conjugate mirror reflectivity,Opt. Comm. 101, p.411-415 (1993)

[4.662] {Sect. 4.5.14} M.S. Mangir, D.A. Rockwell: 4.5-J Brilloin phase-conjugatemirror producing excellent mear-and far-field fidelity, J. Opt. Soc. Am. B10, p.1396-1400 (1993)

[4.663] {Sect. 4.5.14} C.B. Dane, W.A. Neuman, L.A. Hackel: Pulse-shape depen-dence of stimulated-Brillouin-scattering phase-conjugation fidelity for highinput energies, Opt. Lett. 17, p.1271-1273 (1992)

[4.664] {Sect. 4.5.14} R.W.F. Gross, S.T. Amimoto, L.Garman-Du Vall: Gain andphase-conjugation fidelity of a four-wave Brillouin mirror based on methane,Opt. Lett. 16, p.94-96 (1991)

[4.665] {Sect. 4.5.14} J.J. Ottusch, D.A. Rockwell: Stimulated Brillouin scatteringphase-conjugation fidelity fluctuations, Opt. Lett. 16, p.369-371 (1991)

[4.666] {Sect. 4.5.14} I.Yu. Anikeev, D.A. Glazkov, A.A. Gordeev, I.G. Zubarev,S.I. Mikhailov: Polarization and aperture losses in systems with phase con-jugation mirrors, Int. J. Optoelectron. 4, p.489-500 (1989)

[4.667] {Sect. 4.5.14} V.N. Alekseev, V.V. Golubev, D.I. Dmitriev, A.N. Zhilin,V.V. Lyubimov, A.A. Mak, V.I. Reshetnikov, V.S. Sirazetdinov, A.D. Stari-kov: Investigation of wavefront reversal in a phosphate glass laser amplifierwith a 12-cm output aperture, Sov. J. Quantum Electron. 17, p.455-458(1987)

[4.668] {Sect. 4.5.14} P. Suni, J. Falk: Measurements of stimulated Brillouin scat-tering phase-conjugate fidelity, Opt. Lett. 12, p.838-840 (1987)

[4.669] {Sect. 4.5.14} R.L. Abrams, C.R. Giuliano, J.F. Lam: On the equality ofstimulated Brillouin scattering reflectivity to conjugate reflectivity of a weakprobe beam, Opt. Lett. 6, p.131-132 (1981)

[4.670] {Sect. 4.5.14} B.Ya. Zel’dovich, T.V. Yakovleva: Small-scale distortions inwavefront reversal of a beam with incomplete spatial modulation (stim-ulated Brillouin backscattering, theory), Sov. J. Quantum Electron. 10,p.181-186 (1980)

[4.671] {Sect. 4.5.14} V. Wang, C.R. Giuliano: Correction of phase aberrations viastimulated Brillouin scattering, Opt. Lett. 2, p.4-6 (1978)

[4.672] {Sect. 4.5.14} M. Ostermeyer, A. Heuer, R. Menzel: 27 Watt Average Out-put Power with 1.2*DL Beam Quality from a Single Rod Nd:YAG-Laserwith Phase Conjugating SBS-Mirror, IEEE J. QE-34, p.372-377 (1998)

[4.673] {Sect. 4.5.14} H.L. Offerhaus, H.P. Godfried, W.J. Witteman: Al solid-statediode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugatemirror, Opt. Comm. 128, p.61-65 (1996)

4.5.14 Optical Phase Conjugation via Stimulated Scattering 731

[4.674] {Sect. 4.5.14} C.B. Dane, L.E. Zapata, W.A. Neumann, M.A. Norton, L.A.Hackel: Design and Operation of a 150 W Near Diffraction-Limited LaserAmplifier with SBS Wavefront Correction, IEEE J. QE-31, p.148-163 (1995)

[4.675] {Sect. 4.5.14} H.J. Eichler, A. Haase, R. Menzel: 100 Watt Average Out-put Power 1.2*Diffraction Limited Beam From Pulsed Neodym Single RodAmplifier with SBS-Phaseconjugation, IEEE J. QE-31, p.1265-1269 (1995)

[4.676] {Sect. 4.5.14} I.C. Khoo, H. Li, P.G. LoPresti, Y. Liang: Observation ofoptical limiting and backscattering of nanosecond laser pulses in liquid-crystal fibers, Opt. Lett. 19, p.530-532 (1994)

[4.677] {Sect. 4.5.14} D.S. Sumida, C.J. Jones, R.A. Rockwell: An 8.2 J Phase Con-jugating Solid-State Laser Coherently Combining Eight Parallel Amplifiers,IEEE J. QE-30, p.2617-2627 (1994)

[4.678] {Sect. 4.5.14} O.V. Kulagin, G.A. Pasmanik, A.A. Shilov: Amplification andphase conjugation of weak signals, Sov. Phys. Usp. 35, p.506-519 (1992)

[4.679] {Sect. 4.5.14} O.V. Kulagin, P.B. Potlov, A.A. Shilov: Phase conjugationof microsecond pulses by forward Brillouin scattering, Sov. J. QuantumElectron. 22, p.1012-1015 (1992)

[4.680] {Sect. 4.5.14} G.J. Crofts, M.J. Damzen: Experimental and theoretical in-vestigation of two-cell stimulated-Brillouin-scattering systems, J. Opt. Soc.Am. B 8, p.2282-2288 (1991)

[4.681] {Sect. 4.5.14} I.D. Carr, D.C. Hanna: Performance of a Nd:YAG Oscilla-tor/Amplifier with Phase-Conjugation via Stimulated Brillouin Scattering,Appl. Phys. B 36, p.83-92 (1985)

[4.682] {Sect. 4.5.14} D.T. Hon: Applications of wavefront reversal by stimulatedBrillouin scattering, Opt. Eng. 21, p.252-256 (1982)

[4.683] {Sect. 4.5.14} M. Slatkine, I.J. Bigio, B.J. Feldman, R.A. Fisher: Efficientphase conjugation of an ultraviolet XeF laser beam by stimulated Brillouinscattering, Opt. Lett. 7, p.108-110 (1982)

[4.684] {Sect. 4.5.14} V.F. Efimkov, I.G. Zubarev, A.V. Kotov, A.B. Mironov, S.I.Mikhailov, M.G. Smirnov: Investigations of systems for obtaining shorthigh-power pulses by wavefront reversal of the radiation in a stimulatedBrillouin scattering mirror, Sov. J. Quant. Electron. 10, p.211-214 (1980)

[4.685] {Sect. 4.5.14} T. Omatsu, N. Hayashi, H. Watanabe, A. Hasegawa,M. Tateda: Tunable, visible phase conjugator with a saturable-amplifierpolymer laser dye, Optics Letters 23, p.1432-1434 (1998)

[4.686] {Sect. 4.5.14} V.S. Sudarshanam, M. Croningolomb, P.R. Hemmer, M.S.Shahriar: Turbulence-aberration correction with high-speed high-gain op-tical phase conjugation in sodium vapor, Optics Letters 22, p.1141-1143(1997)

[4.687] {Sect. 4.5.14} D. Udaiyan, K.S. Syed, R.P.M. Green, D.H. Kim, M.J.Damzen: Transient modelling of double-pumped phase conjugation in in-verted Nd:YAG, Opt Commun 133, p.596-604 (1997)

[4.688] {Sect. 4.5.14} A. Grunnetjepsen, C.L. Thompson, W.E. Moerner: Sponta-neous oscillation and self-pumped phase conjugation in a photorefractivepolymer optical amplifier, Science 277, p.549-552 (1997)

[4.689] {Sect. 4.5.14} I.C. Khoo, H. Li, Y. Liang: Self-starting optical phase conju-gation in dyed nematic liquid crystals with a stimulated thermal-scatteringeffect, Opt. Lett. 18, p.1490-1492 (1993)

[4.690] {Sect. 4.5.14} S.A. Korol’kov, A.V. Mamaev, V.V. Shkunov: Mutual phaseconjugation of temporally nonoverlapping optical beams, Sov. J. QuantumElectron. 22, p.861-864 (1992)

[4.691] {Sect. 4.5.14} I.C. Winkler, M.A. Norton, Adaptive phase compensation ina Raman look-through configuration, Opt. Lett. 14, p.69-71 (1989)

732 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.692] {Sect. 4.5.14} R.C. Desai, M.D. Levenson, J.A. Barker: Forced Rayleighscattering: Thermal and acoustic effects in phase-conjugate wave-front gen-eration, Phys. Rev. A 27, p.1968-1976 (1983)

[4.693] {Sect. 4.6} E. Constant, D. Garzella, P. Breger, E. Mevel, C. Dorrer,C. LeBlanc, F. Salin, P. Agostini: Optimizing high harmonic generationin absorbing gases: Model and experiment, Phys Rev Lett 82, p.1668-1671(1999)

[4.694] {Sect. 4.6} C.G. Durfee, A.R. Rundquist, S. Backus, C. Herne, M.M. Mur-nane, H.C. Kapteyn: Phase matching of high-order harmonics in hollowwaveguides, Phys Rev Lett 83, p.2187-2190 (1999)

[4.695] {Sect. 4.6} K. Midorikawa, Y. Tamaki, J. Itatani, Y. Nagata, M. Obara:Phase-matched high-order harmonic generation by guided intense femtosec-ond pulses, IEEE J Sel Top Quantum Electr 5, p.1475-1485 (1999)

[4.696] {Sect. 4.6} A. Rundquist, C.G. Durfee, Z.H. Chang, C. Herne, S. Backus,M.M. Murnane, H.C. Kapteyn: Phase-matched generation of coherent softX-rays, Science 280, p.1412-1415 (1998)

[4.697] {Sect. 4.6} Z.H. Chang, A. Rundquist, H.W. Wang, M.M. Murnane, H.C.Kapteyn: Generation of coherent soft X rays at 2.7 nm using high harmonics,Phys Rev Lett 79, p.2967-2970 (1997)

[4.698] {Sect. 4.6} I.P. Christov, M.M. Murnane, H.C. Kapteyn: High-harmonicgeneration of attosecond pulses in the “single-cycle” regime, Phys Rev Lett78, p.1251-1254 (1997)

[4.699] {Sect. 4.6} B.K. Dey, B.M. Deb: A theoretical study of the high-order har-monics of a 200 nm laser from H-2 and HeH+, Chem Phys Lett 276, p.157-163 (1997)

[4.700] {Sect. 4.6} S. Meyer, H. Eichmann, T. Menzel, S. Nolte, B. Wellegehausen,B.N. Chichkov, C. Momma: Phase-matched high-order difference-frequencymixing in plasmas, Phys Rev Lett 76, p.3336-3339 (1996)

[4.701] {Sect. 4.6} H. Ono, Y. Harato: Higher-order optical nonlinearity observedin host-guest liquid crystals, J Appl Phys 85, p.676-680 (1999)

[4.702] {Sect. 4.6} Y.S. Lee, M.C. Downer: Reflected fourth-harmonic radiationfrom a centrosymmetric crystal, Optics Letters 23, p.918-920 (1998)

[4.703] {Sect. 4.6} A.V. Balakin, D. Boucher, E. Fertein, P. Masselin, A.V. Pakulev,A.Y. Resniansky, A.P. Shkurinov, N.I. Koroteev: Experimental observationof the interference of three- and five-wave mixing processes into the signalof second harmonic generation in bacteriorhodopsin solution, Opt Commun141, p.343-352 (1997)

[4.704] {Sect. 4.6} C.C. Tian, P.Q. Wang, T.H. Sun: Generation of tunable coherentVUV radiation by four-wave sum-mixing in Ne, Opt Commun 132, p.248-250 (1996)

[4.705] {Sect. 4.6} C.L. Zhan, D.Q. Zhang, D.B. Zhu, D.Y. Wang, Y.J. Li, D.H. Li,Z.Z. Lu, L.Z. Zhao, Y.X. Nie: Third- and fifth-order optical nonlinearities ina new stilbazolium derivative, J Opt Soc Am B Opt Physics 19, p.369-375(2002)

[4.706] {Sect. 4.6} C. Altucci, R. Bruzzese, D. DAntuoni, C. deLisio, S. Solimeno:Harmonic generation in gases by use of Bessel-Gauss laser beams, J OptSoc Am B Opt Physics 17, p.34-42 (2000)

[4.707] {Sect. 4.6} J.C. Kirkwood, A.C. Albrecht, D.J. Ulness: Fifth-order nonlinearRaman processes in molecular liquids using quasi-cw noisy light. I. Theory,J Chem Phys 111, p.253-271 (1999)

[4.708] {Sect. 4.6} Y. Tanimura: Fifth-order two-dimensional vibrational spec-troscopy of a Morse potential system in condensed phases, Chem Phys 233,p.217-229 (1998)

4.6 Higher Order Nonlinear Effects 733

[4.709] {Sect. 4.6} D. Sarkisyan, G. Torosyan, K. Pokhsrarian, K. Petrossian: Fifthharmonic generation and measurements of the 7th order correlation vapor,Opt Commun 127, p.205-209 (1996)

[4.710] {Sect. 4.6} Th. Tsang: Third- and fifth-harmonic generation at the inter-faces of glass and liquids, Phys. Rev. A 54, p.5454-5457 (1996)

[4.711] {Sect. 4.6} K. Tominaga, K. Yoshihara: Fifth order optical response of liquidCS2 observed by ultrafast nonresonant six-wave mixing, Phys Rev Lett 74,p.3061-3064 (1995)

[4.712] {Sect. 4.6} J. Reintjes, R.C. Eckardt, C.Y. She, N.E. Karangelen, R.C.Elton, R.A. Andrews: Generation of Coherent Radiation at 53.2 nm byFifth-Harmonic Conversion, Phys. Rev. Lett. 37, p.1540-1543 (1976)

[4.713] {Sect. 4.6} J. Reintjes, C.Y. She, R.C. Eckardt, N.E. Karangelen, R.A.Andrews, R.C. Elton : Seventh harmonic conversion of mode-locked laserpulses to 38.0 nm, Appl. Phys. Lett. 30, p.480-482 (1977)

[4.714] {Sect. 4.6} X.M. Tong, S.I. Chu: Theoretical study of multiple high-orderharmonic generation by intense ultrashort pulsed laser fields: A new gener-alized pseudospectral time-dependent method, Chem Phys 217, p.119-130(1997)

[4.715] {Sect. 4.6} M. Geissler, G. Tempea, A. Scrinzi, M. Schnurer, F. Krausz,T. Brabec: Light propagation in field-ionizing media: Extreme nonlinearoptics, Phys Rev Lett 83, p.2930-2933 (1999)

[4.716] {Sect. 4.6} D.B. Milosevic, A.F. Starace: Magnetic-field-induced intensityrevivals in harmonic generation, Phys Rev Lett 82, p.2653-2656 (1999)

[4.717] {Sect. 4.6} H.J. Shin, D.G. Lee, Y.H. Cha, K.H. Hong, C.H. Nam: Genera-tion of nonadiabatic blueshift of high harmonics in an intense femtosecondlaser field, Phys Rev Lett 83, p.2544-2547 (1999)

[4.718] {Sect. 4.6} G. vandeSand, J.M. Rost: Irregular orbits generate higher har-monics, Phys Rev Lett 83, p.524-527 (1999)

[4.719] {Sect. 4.6} P. Salieres, P. Antoine, A. deBohan, M. Lewenstein: Temporaland spectral tailoring of high-order harmonics, Phys Rev Lett 81, p.5544-5547 (1998)

[4.720] {Sect. 4.6} R. Zerne, C. Altucci, M. Bellini, M.B. Gaarde, T.W. Hansch,A. LHuillier, C. Lynga, C.G. Wahlstrom: Phase-locked high-order harmonicsources, Phys Rev Lett 79, p.1006-1009 (1997)

[4.721] {Sect. 4.6} V.V. Goloviznin, P.W. van Amersfort: Generation of ultrahighharmonics with a two-stage free electron laser and a seed laser, Phys. Rev.E 55, p.6002-6010 (1997)

[4.722] {Sect. 4.6} D. Descamps, C. Lynga, J. Norin, A. LHuillier, C.G. Wahlstrom,J.F. Hergott, H. Merdji, P. Salieres, M. Bellini, T.W. Hansch: Extremeultraviolet interferometry measurements with high-order harmonics, OpticsLetters 25, p.135-137 (2000)

[4.723] {Sect. 4.6} A. Ishizawa, K. Inaba, T. Kanai, T. Ozaki, H. Kuroda: High-order harmonic generation from a solid surface plasma by using a picosecondlaser, IEEE J QE-35, p.60-65 (1999)

[4.724] {Sect. 4.6} B. Sheehy, J.D.D. Martin, L.F. DiMauro, P. Agostini, K.J.Schafer, M.B. Gaarde, K.C. Kulander: High harmonic generation at longwavelengths, Phys Rev Lett 83, p.5270-5273 (1999)

[4.725] {Sect. 4.6} C. deLisio, C. Altucci, C. Beneduce, R. Bruzzese, F. DeFilippo,S. Solimeno, M. Bellini, A. Tozzi, G. Tondello, E. Pace: Analysis of efficientgeneration and spatial intensity profiles of high-order harmonic beams pro-duced at high repetition rate, Opt Commun 146, p.316-324 (1998)

[4.726] {Sect. 4.6} A. Goehlich, U. Czarnetzki, H.F. Dobele: Increased efficiency ofvacuum ultraviolet generation by stimulated anti-Stokes Raman scatteringwith Stokes seeding, Appl Opt 37, p.8453-8459 (1998)

734 4. Nonlinear Interactions of Light and Matter Without Absorption

[4.727] {Sect. 4.6} G. Sommerer, E. Mevel, J. Hollandt, D. Schulze, P.V. Nickles,G. Ulm, W. Sandner: Absolute photon number measurement of high-orderharmonics in the extreme UV, Opt Commun 146, p.347-355 (1998)

[4.728] {Sect. 4.6} D.M. Chambers, S.G. Preston, M. Zepf, M. Castrocelin, M.H.Key, J.S. Wark, A.E. Dangor, A. Dyson, D. Neely, P.A. Norreys: Imagingof high harmonic radiation emitted during the interaction of a 20 TW laserwith a solid target, J Appl Phys 81, p.2055-2058 (1997)

[4.729] {Sect. 4.6} P. Gibbon: High-order harmonic generation in plasmas, IEEE JQE-33, p.1915-1924 (1997)

[4.730] {Sect. 4.6} R. Hassner, W. Theobald, S. Niedermeier, H. Schillinger, R.Sauerbrey: High-order harmonics from solid targets as a probe for high-density plasmas, Optics Letters 22, p.1491-1493 (1997)

[4.731] {Sect. 4.6} B.F. Shen, W. Yu, G.H. Zeng, Z.Z. Xu: High order harmonicgeneration due to nonlinear Thomson scattering, Opt Commun 136, p.239-242 (1997)

[4.732] {Sect. 4.6} M.P. Bogdanov, S.A. Dimakov, A.V. Gorlanov, D.A. Gory-achkin, A.M. Grigorev, V.M. Irtuganov, V.P. Kalinin, S.I. Klimentev, I.M.Kozlovskaya, I.B. Orlova, et al.: Correction of segmented mirror aberra-tions by phase conjugation and dynamic holography, Opt Commun 129,p.405-413 (1996)

[4.733] {Sect. 4.6} I.P. Christov, J. Zhou, J. Peatross, A. Rundquist, M.M. Mur-nane, H.C. Kapteyn: Nonadiabatic effects in high-harmonic generation withultrashort pulses, Phys Rev Lett 77, p.1743-1746 (1996)

[4.734] {Sect. 4.6} T. Ditmire, E.T. Gumbrell, R.A. Smith, J.W.G. Tisch, D.D.Meyerhofer, M.H.R. Hutchinson: Spatial coherence measurement of soft x-ray radiation produced by high order harmonic generation, Phys Rev Lett77, p.4756-4759 (1996)

[4.735] {Sect. 4.6} T.D. Donnelly, T. Ditmire, K. Neuman, M.D. Perry, R.W.Falcone: High-order harmonic generation in atom clusters, Phys Rev Lett76, p.2472-2475 (1996)

[4.736] {Sect. 4.6} Y. Kobayashi, O. Yoshihara, Y. Nabekawa, K. Kondo, S. Watan-abe: Femtosecond measurement of high-order harmonic pulse width andelectron recombination time by field ionization, Optics Letters 21, p.417-419 (1996)

[4.737] {Sect. 4.6} I. Mercer, E. Mevel, R. Zerne, A. LHuillier, P. Antoine, C.G.Wahlstrom: Spatial mode control of high-order harmonics, Phys Rev Lett77, p.1731-1734 (1996)

[4.738] {Sect. 4.6} Y. Nagata, K. Midorikawa, M. Obara, K. Toyoda: High-orderharmonic generation by subpicosecond KrF excimer laser pulses, OpticsLetters 21, p.15-17 (1996)

[4.739] {Sect. 4.6} P.A. Norreys, M. Zepf, S. Moustaizis, A.P. Fews, J. Zhang,P. Lee, M. Bakarezos, C.N. Danson, A. Dyson, P. Gibbon, et al.: Efficientextreme UV harmonics generated from picosecond laser pulse interactionswith solid targets, Phys Rev Lett 76, p.1832-1835 (1996)

[4.740] {Sect. 4.6} J. Zhou, J. Peatross, M.M. Murnane, H.C. Kapteyn: Enhancedhigh-harmonic generation using 25 fs laser pulses, Phys Rev Lett 76, p.752-755 (1996)

[4.741] {Sect. 4.6} S. Varro, F. Ehlotzky: Higher harmonic generation at metalsurfaces by powerful femtosecond laser pulses, Phys. Rev. A 54, p.3245-3249 (1996)

[4.742] {Sect. 4.6} S.E. Harris: Generation of Vacuum-Ultraviolet and Soft-X-RayRadiation Using High-Order Nonlinear Optical Polarizabilities, Phys. Rev.Lett. 31, p.341-344 (1973)

4.6 Higher Order Nonlinear Effects 735

[4.743] {Sect. 4.6} A.H. Kung, J.F. Young, S.E. Harris: Generation of 1182-A ra-diation in phase-matched mixtures of inert gases, Appl. Phys. Lett. 22,(Erratum: 28, 239 (1976))p.301-302 (1973)

[4.744] {Sect. 4.7} J. V. Moloney (ed.): Nonlinear Optical Materials (Springer, NewYork, Berlin, Heidelberg, 1998)

[4.745] {Sect. 4.7} G. P. Agrawal: Nonlinear Fiber Optics (Academic Press, SanDiego, London, Boston, 1995)

[4.746] {Sect. 4.7} C. T. Chen: Development of New Nonlinear Optical Crystals inthe Borate Series (Harwood Academic Publishers, Chur, 1993)

[4.747] {Sect. 4.7} V. G. Dmitriev, G. Gurzadyan: Handbook of Nonlinear OpticalCrystals (DA Information Services, Pty, Ltd, Australia, 1997)

[4.748] {Sect. 4.7} Y. Shuto, S. Tomaru, M. Hikita, M. Amano: Optical IntensityModulators Using Diazo-Dye-Substituted Polymer Channel Waveguides,IEEE J. QE-31, p.1451-1460 (1995)

[4.749] {Sect. 4.7} R.W. Hellwarth, A. Owyoung, N. George: Origin of the Nonlin-ear Refractive Index of Liquid CCl4, Phys. Rev. A 4, p.2342-2347 (1971)

[4.750] {Sect. 4.7} S. Chandrasekhar: Liquid Crystals 2nd ed. (Cambridge Univer-sity Press, Cambridge, 1992)

[4.751] {Sect. 4.7} I.-C. Khoo, S.-T. Wu: Optics and Nonlinear Optics of LiquidCrystals (World Scientific, Singapore, New Jersey, London, Hong Kong,1993)

[4.752] {Sect. 4.7} Y. Reznikov, O. Ostroverkhova, K.D. Singer, J.H. Kim, S. Ku-mar, O. Lavrentovich, B. Wang, J.L. West: Photoalignment of liquid crystalsby liquid crystals, Phys Rev Lett 84, p.1930-1933 (2000)

[4.753] {Sect. 4.7} J.E. Stockley, G.D. Sharp, K.M. Johnson: Fabry-Perot etalonwith polymer cholesteric liquid-crystal mirrors, Optics Letters 24, p.55-57(1999)

[4.754] {Sect. 4.7} Y. Tabe, N. Shen, E. Mazur, H. Yokoyama: Simultaneous ob-servation of molecular tilt and azimuthal angle distributions in sponta-neously modulated liquid-crystalline Langmuir monolayers, Phys Rev Lett82, p.759-762 (1999)

[4.755] {Sect. 4.7} D.V. Wick, T. Martinez, M.V. Wood, J.M. Wilkes, M.T.Gruneisen, V.A. Berenberg, M.V. Vasilev, A.P. Onokhov, L.A. Beres-nev: Deformed-helix ferroelectric liquid-crystal spatial light modulator thatdemonstrates high diffraction efficiency and 370-line pairs mm resolution,Appl Opt 38, p.3798-3803 (1999)

[4.756] {Sect. 4.7} M. Saito, N. Matsumoto, J. Nishimura: Measurement of thecomplex refractive-index spectrum for birefringent and absorptive liquids,Appl Opt 37, p.5169-5175 (1998)

[4.757] {Sect. 4.7} S.D. Durbin, S.M. Arakelian, Y.R. Shen: Optical-Field-InducedBirefringence and Freedericksz Transition in a Nematic Liquid Crystal,Phys. Rev. Lett. 47, p.1411-1414 (1981)

[4.758] {Sect. 4.7} E.G. Hanson, Y.R. Shen, G.K.L. Wong: Optical-field-inducedrefractive indices and orientational relaxation times in a homologous seriesof isotropic nematic substances, Phys. Rev. 14, p.1281-1289 (1976)

[4.759] {Sect. 4.7} R.A. Mullen, J.N. Matossian: Quenching optical breakdown withan applied electric field, Opt. Lett. 15, p.601-603 (1990)

736 5. Nonlinear Interactions of Light and Matter with Absorption

5. Nonlinear Interactions of Light and Matter with Absorption

[5.1] {Sect. 5.2} M. Colice, F. Schlottau, K.H. Wagner: Broadband radio-frequency spectrum analysis in spectral-hole-burning media, Appl Opt 45,p.6393-6408 (2006)

[5.2] {Sect. 5.2} F. Schlottau, M. Colice, K.H. Wagner, W.R. Babbitt: Spectralhole burning for wideband, high-resolution radio-frequency spectrum anal-ysis, Optics Letters 30, p.3003-3005 (2005)

[5.3] {Sect. 5.2} H. Talon, L. Fleury, J. Bernard, M. Orrit: Fluorescence excita-tion of single molecules, J. Opt. Soc. Am. B 9, p.825-827 (1992)

[5.4] {Sect. 5.2} L.L. Wald, E.L. Hahn, M. Lukac: Variation of the Pr3+ nuclearquadrupole resonance spectrum across the inhomogeneous optical line inPr3+:LaF3, J. Opt. Soc. Am. B 9, p.789-793 (1992)

[5.5] {Sect. 5.2} K.-P. Muller, D. Haarer: Spectral Diffusion of Optical Transi-tions in Doped Polymer Glasses below 1 K, Phys. Rev. Lett. 66, p.2344-2347(1991)

[5.6] {Sect. 5.2} W. Kaiser, A. Seilmeier: Redistribution of Vibrational Energyin Solution, Ber. Bunsenges. Phys. Chem.91, p.1201-1205 (1987)

[5.7] {Sect. 5.2} A.B. Myers, M.O. Trulson, J.A. Pardoen, C. Heeremans,J. Lugtenburg, R.A. Methies: Absolute resonance Raman intensities demon-strat that the spectral broadening induced by the beta-ionone ring in retinalis homogeneous, J. Chem. Phys. 84, p.633-640 (1986)

[5.8] {Sect. 5.2} J.R. Morgan, M.A. El-Sayed: Temperature dependence of thehomogeneous linewidth of the 5D0-7F0 transition of Eu3+ in amorphoushosts at high temperatures, Chem. Phys. Lett. 84, p.213-216 (1981)

[5.9] {Sect. 5.2} A.P. Marchetti, W.C. McColgin, J.H. Eberly: InhomogeneousBroadening and Excited-Vibrational-State Lifetimes in Low-TemperatureOrganic Mixed Crystals, Phys. Rev. Lett. 35, p.387-390 (1975)

[5.10] {Sect. 5.2} D.W. Vahey: Effects of spectral cross relaxation and collisionaldephasing on the absorption of light by organic-dye solutions, Phys. Rev.A 10, p.1578-1590 (1974)

[5.11] {Sect. 5.3.1} J.F. Giuliani: Saturable Absorption and Q Switching in aTriphenylmethene Dye, J. Appl. Phys. 43, p.1290-1291 (1972)

[5.12] {Sect. 5.3.1} E.G. Arthurs, D.J. Bradley, A.G. Roddie: Photoisomer Gener-ation and Absorption Relaxation in the Mode-Locking Dye 3,3’-Diethyloxa-dicarbocynaine Iodide, Opt. Comm. 8, p.118-123 (1973)

[5.13] {Sect. 5.3.1} B.H. Soffer: Giant Pulse Laser Operation by a Passive, Re-versible Bleachable Absorber, J. Appl. Phys. 35, p.2551 (1964)

[5.14] {Sect. 5.3.1} H.S. Loka, S.D. Benjamin, P.W.E. Smith: Optical Character-ization of Low-Temperature-Grown GaAs for Ultrafast All-Optical Switch-ing Devices, IEEE J. QE-34, p.1426-1436 (1998)

[5.15] {Sect. 5.3.2} R. BurlotLoison, J.L. Doualan, P. LeBoulanger, T.P.J. Han,H.G. Gallagher, R. Moncorge, G. Boulon: Excited-state absorption of Er3+-doped LiNbO3, J Appl Phys 85, p.4165-4170 (1999)

[5.16] {Sect. 5.3.2} F.Z. Henari, H. Manaa, K.P. Kretsch, W.J. Blau, H. Rost,S. Pfeiffer, A. Teuschel, H. Tillmann, H.H. Horhold: Effective stimulatedemission and excited state absorption measurements in the phenylene-vinyl-ene oligomer (1,4-bis- (Alpha-cyanostyryl)-2,5-dimethoxybenzene)), ChemPhys Lett 307, p.163-166 (1999)

[5.17] {Sect. 5.3.2} N.V. Kuleshov, A.V. Podlipensky, V.G. Shcherbitsky, A.A.Lagatsky, V.P. Mikhailov: Excited-state absorption in the range of pumpingand laser efficiency of Cr4+:forsterite, Optics Letters 23, p.1028-1030 (1998)

5.3.2 Transient Absorption: Excited State Absorption (ESA) 737

[5.18] {Sect. 5.3.2} M.F. Hazenkamp, H.U. Gudel, S. Kuck, G. Huber, W. Rauw,D. Reinen: Excited state absorption and laser potential of Mn5+-dopedLi3PO4, Chem Phys Lett 265, p.264-270 (1997)

[5.19] {Sect. 5.3.2} H. Miyasaka, T. Nobuto, A. Itaya, N. Tamai, M. Irie: Picosec-ond laser photolysis studies on a photochromic dithienylethene in solutionand in crystalline phases, Chem Phys Lett 269, p.281-285 (1997)

[5.20] {Sect. 5.3.2} D.K. Palit, A.V. Sapre, J.P. Mittal: Picosecond studies onthe electron transfer from pyrene and perylene excited singlet states toN-hexadecyl pyridinium chloride, Chem Phys Lett 269, p.286-292 (1997)

[5.21] {Sect. 5.3.2} K.V. Yumashev, N.V. Kuleshov, P.V. Prokoshin, A.M. Mal-yarevich, V.P. Mikhailov: Excited state absorption of Cr4+ ion in forsterite,Appl Phys Lett 70, p.2523-2525 (1997)

[5.22] {Sect. 5.3.2} R. Moncorge, H. Manaa, F. Deghoul, Y. Guyot, Y. Kalisky,S.A. Pollack, E.V. Zharikov, M. Kokta: Saturable and excited state ab-sorption measurements in Cr4+:LuAG single crystals, Opt Commun 132,p.279-284 (1996)

[5.23] {Sect. 5.3.2} R. Sander, V. Herrmann, R. Menzel: Transient AbsorptionSpectra and Bleaching of 4-n-Pentyl-4-Cyanoterphenyl in Cyclohexane –Determination of Cross Sections and Recovery Times, J. Chem. Phys. 104,p.4390-4395 (1996)

[5.24] {Sect. 5.3.2} H.J. Eichler, R. Macdonald, R. Menzel, R. Sander: Ex-cited State absorption of 5CB (4’-n-pentyl-4-cyanobiphenyl) in cyclohexane,Chem. Phys. 195, p.381-386 (1995)

[5.25] {Sect. 5.3.2} R. Menzel, H. Lueck: Conformation Dependent Excited StateAbsorptions of 3,3”,5,5”-Tetramethyl -Para-Terphenyl, Chem. Phys. 124,p.417-424 (1988)

[5.26] {Sect. 5.3.2} F.E. Doany, E.J. Heilweil, R. Moore, R.M. Hochstrasser:Picosecond study of an intermediate in the trans to cis isomerization path-way of stiff stilbene, J. Chem. Phys. 80, p.201-206 (1984)

[5.27] {Sect. 5.3.2} R. Menzel, W. Rapp: Excited Singlet- and Triplet-Absorptionsof Pentaphene, Chem. Phys. 89, p.445-455 (1984)

[5.28] {Sect. 5.3.2} V. Sundstrom, T. Gillbro: Dynamics of the isomerization oftrans-stilbene in n-alcohols studied by ultraviolet picosecond absorption re-covery, Chem. Phys. Lett. 109, p.538-543 (1984)

[5.29] {Sect. 5.3.2} D.W. Boldridge, G.W. Scott: Excited state spectroscopy of1,5-naphthyridine: Identification of the lowest energy excited singlet stateas 1Bg (1nPI*), J. Chem. Phys. 79, p.3639-3644 (1983)

[5.30] {Sect. 5.3.2} T. Sugawara, H. Iwamura, N. Nakashima, K. Yoshihara: Tran-sient absorption spectra of the excited states of triptycene and 3-acetyl-triptycene, Chem. Phys. Lett. 101, p.303-306 (1983)

[5.31] {Sect. 5.3.2} M. Sumitani, K. Yoshihara: Direct Observation of the Ratefor Cis-Trans and Trans-Cis Photoisomerization of Stilbene with PicosecondLaser Photolysis, Bull. Chem. Soc. Japan 55, p.85-89 (1982)

[5.32] {Sect. 5.3.2} F.E. Doany, B.I. Greene, R.M. Hochstrasser: Excitation energyeffects in the photophysics of trans-stilbene in solution, Chem. Phys. Lett.75, p.206-208 (1980)

[5.33] {Sect. 5.3.2} B.I. Greene, R.M. Hochstrasser, R. Weisman: Picosecond dy-namics of the photoisomerization of trans-stilbene under collision-free con-ditions, J. Chem. Phys. 71, p.544-545 (1979)

[5.34] {Sect. 5.3.2} K. Yoshihara, A. Namiki, M. Sumitami, N. Nakashima:Picosecond flash photolysis of cis- and trans-stilbene. Observation of anintense intramolecular charge-resonance transition, J. Chem. Phys. 71,p.2892-2895 (1979)

738 5. Nonlinear Interactions of Light and Matter with Absorption

[5.35] {Sect. 5.3.2} O. Teschke, E.P. Ippen, G.R. Holtom: Picosecond dynamicsof the singlet excited state of trans-and cis-stilbene, Chem. Phys. Lett. 52,p.233-235 (1977)

[5.36] {Sect. 5.3.2} D.S. Kliger, A.C. Albrecht: Nanosecond Excited-State Polar-ized Absorption Spectroscopy of Anthracene in the Visible Region, J. Chem.Phys. 50, p.4109-4111 (1969)

[5.37] {Sect. 5.3.2} A. Muller, E. Pfluger: Laser-flashspectroscopy of cryptocya-nine, Chem. Phys. Lett. 2, p.155-159 (1968)

[5.38] {Sect. 5.3.2} A. Muller: Kinetische Laser-Blitzspektroskopie organischerMolekule, Z. Naturforsch. 23, p.946-949 (1968)

[5.39] {Sect. 5.3.2} J.R. Novak, M.W. Windsor: Laser photolysis and spectroscopy:a new technique for the study of rapid reactions in the nanosecond timerange, Proc. Roy. Soc. A. 308, p.95-110 (1968)

[5.40] {Sect. 5.3.3} J. Barroso, A. Costela, I. Garciamoreno, R. Sastre: Wavelengthdependence of the nonlinear absorption properties of laser dyes in solid andliquid solutions, Chem Phys 238, p.257-272 (1998)

[5.41] {Sect. 5.3.3} M. Samoc, A. Samoc, B. LutherDavies, H. Reisch, U. Scherf:Saturable absorption in poly (indenofluorene): A picket-fence polymer,Optics Letters 23, p.1295-1297 (1998)

[5.42] {Sect. 5.3.3} S.H. Yim, D.R. Lee, B.K. Rhee, D. Kim: Nonlinear absorptionof Cr4+:YAG studied with lasers of different pulsewidths, Appl Phys Lett73, p.3193-3195 (1998)

[5.43] {Sect. 5.3.3} M. Wittmann, R. Rotermund, R. Weigand, A. Penzkofer:Saturable absorption and absorption recovery of indocyanine green J-aggregates in water, Appl. Phys. B 66, p.453-459 (1998)

[5.44] {Sect. 5.3.3} S. Oberlander, D. Leupold: Instantaneous fluorescence quan-tum yield of organic molecular systems: information content of ist intensitydependence, J. Luminesc. 59, p.125-133 (1994)

[5.45] {Sect. 5.3.3} R. Menzel, P. Witte: Recovery Time of the Bleached S1 – Sn– Absorption of Para-Terphenyl in Solution.Recovery Time of the BleachedS1 – Sn – Absorption of Para-Terphenyl in Solution, Chem. Phys. Lett. 164,p.27-32 (1989)

[5.46] {Sect. 5.3.3} R. Menzel, D. Leupold: Nonlinear Absorptions of Cryptocya-nine, Chem. Phys. Lett. 65, p.120-126 (1979)

[5.47] {Sect. 5.3.3} J.L. Hall, C. Borde: Measurement of Methane Hyperfine Struc-ture Using Laser Saturated Absorption, Phys. Rev. Lett. 30, p.1101-1104(1973)

[5.48] {Sect. 5.3.3} M. Hercher: An Analysis of Saturable Absorbers, Appl. Opt.6, p.947-954 (1967)

[5.49] {Sect. 5.3.3} A. Peda’el, R. Daisy, M. Horowitz, B. Fischer: Beam coupling-induced transparency in a bacteriorhodopsin-based saturable absorber, Opt.Lett. 23, p.1173-1175 (1998)

[5.50] {Sect. 5.3.3} F.E. Hernandez, W. Shensky, I. Cohanoschi, D.J. Hagan, E.W.VanStryland: Viscosity dependence of optical limiting in carbon black sus-pensions, Appl Opt 41, p.1103-1107 (2002)

[5.51] {Sect. 5.3.3} S.C. Pu, M.J. Yang, C.C. Hsu, C.W. Lai, C.C. Hsieh, S.H. Lin,Y.M. Cheng, P.T. Chou: The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots, Small 2,p.1308-1313 (2006)

[5.52] {Sect. 5.3.3} D.V. Kartashov, A.V. Kirsanov, A.M. Kiselev, A.N. Stepanov,N.N. Bochkarev, Y.N. Ponomarev, B.A. Tikhomirov: Nonlinear absorptionof intense femtosecond laser radiation in air, Opt Express 14, p.7552-7558(2006)

5.3.3 Nonlinear Transmission 739

[5.53] {Sect. 5.3.3} C.P. Singh, K.S. Bindra, B. Jain, S.M. Oak: All-opticalswitching characteristics of metalloporphyrins, Opt Commun 245, p.407-414 (2005)

[5.54] {Sect. 5.3.3} G.S. He, Q.D. Zheng, C.G. Lu, P.N. Prasad: Two- and three-photon absorption based optical limiting and stabilization using a liquiddye, Ieee J Quantum Electron 41, p.1037-1043 (2005)

[5.55] {Sect. 5.3.3} M. Chen, C.F. Li, Y.D. Zhang, M. Xu, S.J. Ma, W.B. Wang,Y.X. Xia: Optical limiter with an organic solution sandwiched between apolymer slab and a polymer grating, Appl Opt 44, p.4976-4979 (2005)

[5.56] {Sect. 5.3.3} J.H. Xu, G.C. LaRocca, F. Bassani, D. Wang, J.Y. Gao: Elec-tromagnetically induced one-photon and two-photon transparency in rubid-ium atoms, Opt Commun 216, p.157-164 (2003)

[5.57] {Sect. 5.3.3} O. Lammel, A. Penzkofer, T. Tsuboi: Picosecond laser sat-urable absorption studies on F-2(-) colour centres in LiF crystal, Opt Com-mun 206, p.389-400 (2002)

[5.58] {Sect. 5.3.3} P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K.L. Tan: Electronicstructure and optical limiting behavior of carbon nanotubes, Phys Rev Lett82, p.2548-2551 (1999)

[5.59] {Sect. 5.3.3} B. Dupuis, C. Michaut, I. Jouanin, J. Delaire,P. Robin, P. Feneyrou, V. Dentan: Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting,Chem Phys Lett 300, p.169-176 (1999)

[5.60] {Sect. 5.3.3} D. Leupold, H. Stiel, J. Ehlert, F. Nowak, K. Teuchner,B. Voigt, M. Bandilla, B. Ucker, H. Scheer: Photophysical characteriza-tion of the B800-depleted light harvesting complex B850 of Rhodobactersphaeroides Implication to the ultrafast energy transfer 800-580 nm, Chem.Phys. Lett. 301, p.537-545 (1999)

[5.61] {Sect. 5.3.3} G.S. He, C. Weder, P. Smith, P.N. Prasad: Optical powerlimiting and stabilization based on a novel polymer compound, IEEE JQE-34, p.2279-2285 (1998)

[5.62] {Sect. 5.3.3} M.P. Joshi, J. Swiatkiewicz, F.M. Xu, P.N. Prasad: Energytransfer coupling of two-photon absorption and reverse saturable absorptionfor enhanced optical power limiting, Optics Letters 23, p.1742-1744 (1998)

[5.63] {Sect. 5.3.3} W. Lozano, C.B. deAraujo, L.H. Acioli, Y. Messaddeq: Neg-ative nonlinear absorption in Er3+-doped fluoroindate glass, J Appl Phys84, p.2263-2267 (1998)

[5.64] {Sect. 5.3.3} S.R. Mishra, H.S. Rawat, M. Laghate: Nonlinear absorptionand optical limiting IN metalloporphyrins, Opt Commun 147, p.328-332(1998)

[5.65] {Sect. 5.3.3} M. Pittman, P. Plaza, M.M. Martin, Y.H. Meyer: Subpicosec-ond reverse saturable absorption in organic and organometallic solutions,Opt Commun 158, p.201-212 (1998)

[5.66] {Sect. 5.3.3} M. Brunel, F. Chaput, S.A. Vinogradov, B. Campagne,M. Canva, J.P. Boilot, A. Brun: Reverse saturable absorption in palladiumand zinc tetraphenyltetrabenzoporphyrin doped xerogels, Chem Phys 218,p.301-307 (1997)

[5.67] {Sect. 5.3.3} G.S. He, L.X. Yuan, J.D. Bhawalkar, P.N. Prasad: Opticallimiting, pulse reshaping, and stabilization with a nonlinear absorptive fibersystem, Appl Opt 36, p.3387-3392 (1997)

[5.68] {Sect. 5.3.3} G.S. He, G.C. Xu, P.N. Prasad, B.A. Reinhardt, J.C. Bhatt,A.G. Dillard: Two photon absorption and optical limiting properties of novelorganic compounds, Optics Letters 20, p.435-437 (1995)

740 5. Nonlinear Interactions of Light and Matter with Absorption

[5.69] {Sect. 5.3.3} R.I. Ghauharali, M. Muller, A.H. Buist, T.S. Sosnowski, T.B.Norris, J. Squier, G.J. Brakenhoff: Optical saturation measurements of flu-orophores in solution with pulsed femtosecond excitation and two- dimen-sional CCD camera detection, Appl Opt 36, p.4320-4328 (1997)

[5.70] {Sect. 5.3.4} V.A. Zuikov, A.A. Kalachev, V.V. Samartsev, A.M. Shegeda:Two-color optical superradiance and other coherent effects in the resonantpropagation of a laser pulse in a LaF3 : Pr3+ crystal, Laser Phys 10, p.364-367 (2000)

[5.71] {Sect. 5.3.4} P. Goy, J.M. Raimond, M. Gross, S. Haroche: Observation ofCavity-Enhanced Single-Atom Spontaneous Emission, Phys. Rev. Lett. 50,p.1903-1906 (1983)

[5.72] {Sect. 5.3.4} A. Szabo: Laser-Induced Fluorescence-Line Narrowing inRuby, Phys. Rev. Lett. 25, p.924-926 (1970)

[5.73] {Sect. 5.3.5} W.E. Moerner (ed.): Persistent Spectral Hole-Burning: Scienceand Applications, Topics Curr. Phys, Vol. 44 (Springer, Berlin, Heidelberg1988)

[5.74] {Sect. 5.3.5} M. Nogami, Y. Abe, K. Hirao, D.H. Cho: Room temperaturepersistent spectra hole burning in Sm2+-doped silicate glasses prepared bythe sol-gel process, Appl. Phys. Lett. 66, p.2952-2954 (1995)

[5.75] {Sect. 5.3.5} Y.-I. Pan, Y.-Y. Zhao, Y.Yin, L.-b. Chen, R.-s. Wang, F.-m.Li: The observation of photoproducts and multiple photon-gated spectralhole burning in a donor-acceptor and a donor1+donor2-acceptor system,Opt. Comm. 119, p.538-544 (1995)

[5.76] {Sect. 5.3.5} R.B. Altmann, I. Renge, L. Kador, D. Haarer: Dipole mo-ment differences of nonpolar dyes in polymeric matrices: Stark effect andphotochemical hole burning. I, J. Chem. Phys. 97, p.5316-5322 (1992)

[5.77] {Sect. 5.3.5} W.P. Ambrose, A.J. Sievers: Persistent infrared spectral holeburning of the fundamental stretching mode of SH- in alkali halides, J. Opt.Soc. Am. B 9, p.753-762 (1992)

[5.78] {Sect. 5.3.5} S. Arnold, J. Comunale: Room-temperature microparticle-based persistent hole-burning spectroscopy, J. Opt. Soc. Am. B 9, p.819-824(1992)

[5.79] {Sect. 5.3.5} Th. Basche, W.P. Ambrose, W.E. Moerner: Optical spectraand kinetics of single impurity molecules in a polymer: spectral diffusion andpersistent spectral hole burning, J. Opt. Soc. Am. B 9, p.829-836 (1992)

[5.80] {Sect. 5.3.5} R.L. Cone, P.C. Hansen, M.J.M. Leask: Eu3+ optically de-tected nuclear quadrupole resonance in stoichiometric europium vanadate,J. Opt. Soc. Am. B 9, p.779-783 (1992)

[5.81] {Sect. 5.3.5} R. Hirschmann, J. Friedrich: Hole burning of long-chain molec-ular aggregates: homogeneous line broadening, spectral-diffusion broaden-ing, and pressure broadening, J. Opt. Soc. Am. B 9, p.811-815 (1992)

[5.82] {Sect. 5.3.5} H. Inoue, T. Iwamoto, A. Makishima, M. Ikemoto, K. Horie:Preperation and properties of sol-gel thin films with porphins, J. Opt. Soc.Am. B 9, p.816-818 (1992)

[5.83] {Sect. 5.3.5} L. Kummerl, H. Wolfrum, D. Haarer: Hole Burning withChelate Complexes of Quinizarin in Alcohol Glasses, J. Phys. Chem. 96,p.10688-10693 (1992)

[5.84] {Sect. 5.3.5} S.P. Love, C.E. Mungan, A.J. Sievers: Persistant infrared spec-tral hole burning of Tb3+ in the glasslike mixed crystal Ba1-x-yLaxTbyF2+x+y, J. Opt. Soc. Am. B 9, p.794-799 (1992)

[5.85] {Sect. 5.3.5} C.E. Mungan, A.J. Sievers: Persistent infrared spectral holeburning of the fundamental stretching mode of SH- in alkali halides, J. Opt.Soc. Am. B 9, p.746-752 (1992)

5.3.5 Spectral Hole Burning 741

[5.86] {Sect. 5.3.5} D. Redman, S. Brown, S.C. Rand: Origin of persistent holeburning of N-V centers in diamond, J. Opt. Soc. Am. B 9, p.768-774 (1992)

[5.87] {Sect. 5.3.5} R.J. Reeves, R.M. Macfarlane: Persistent spectral hole burninginduced by ion motion in DaF2:Pr3+:D- and SrF2:Pr3+:D- crystals, J. Opt.Soc. Am. B 9, p.763-767 (1992)

[5.88] {Sect. 5.3.5} I. Renge: Relationship between electron-phonon coupling andintermolecular interaction parameters in dye-doped organic glasses, J. Opt.Soc. Am. B 9, p.719-723 (1992)

[5.89] {Sect. 5.3.5} W. Richter, M. Lieberth, D. Haarer: Frequency dependenceof spectral diffusion in hole-burning systems: resonant effects of infraredradiation, J. Opt. Soc. Am. B 9, p.715-718 (1992)

[5.90] {Sect. 5.3.5} N.E. Rigby, N.B. Manson: Spectral hole burning in emerald,J. Opt. Soc. Am. B 9, p.775-778 (1992)

[5.91] {Sect. 5.3.5} B. Sauter, Th. Basche, C. Brauchle: Temperature-dependentspectral hole-burning study of dye-surface and mixed matrix-dye-surfacesystems, J. Opt. Soc. Am. B 9, p.804-810 (1992)

[5.92] {Sect. 5.3.5} L. Shu, G.J. Small: Mechanism of nonphotochemical hole burn-ing: Cresyl Violet in polyvinyl alcohol films, J. Opt. Soc. Am. B 9, p.724-732(1992)

[5.93] {Sect. 5.3.5} L. Shu, G.J. Small: Dispersive kinetics of nonphotochemicalhole burning and spontaneous hole filling: Cresyl Violet in polyvinyl films,J. Opt. Soc. Am. B 9, p.733-737 (1992)

[5.94] {Sect. 5.3.5} L. Shu, G.J. Small: Laser-induced hole filling: Cresyl Violet inpolyvinyl alcohol films, J. Opt. Soc. Am. B 9, p.738-745 (1992)

[5.95] {Sect. 5.3.5} D. Wang, L. Hu, H. He, J. Rong, J. Xie, J. Zhang: Systemsof organic photon-gated photochemical hole burning, J. Opt. Soc. Am. B 9,p.800-803 (1992)

[5.96] {Sect. 5.3.5} L. Kador, S. Jahn, D. Haarer: Contributions of the electrostaticand the dispersion interaction to the solvent shift in a dye-polymer system,as investigated by hole-burning spectroscopy, Phys. Rev. B 41, p.12215-12228 (1990)

[5.97] {Sect. 5.3.5} A. Renn, A.J. Meixner, U.P. Wild: II. Diffraction Properties oftwo Spectrally Adjacent Holograms, J. Chem. Phys. 91, p.2748-2755 (1990)

[5.98] {Sect. 5.3.5} U.P. Wild, A. Renn, C. De Caro, S. Bernet: Spectral holeburning and molecular computing, Appl. Opt. 29, p.4329-4331 (1990)

[5.99] {Sect. 5.3.5} P.C. Becker, H.L. Fragnito, J.Y Bigot, C.H. Brito Cruz, R.L.Fork, C.V. Shank: Femtosecond Photon Echos from Molecules in Solution,Phys. Rev. Lett. 63, p.505-507 (1989)

[5.100] {Sect. 5.3.5} C.H. BritoCruz, J.P. Gordon, P.C. Becker, R.L. Fork, C.V.Shank: Dynamics of Spectral Hole Burning, IEEE J. QE-24, p.261-266(1988)

[5.101] {Sect. 5.3.5} M. Joffre, D. Hulin, A. Migus, A. Antonietti, C. Benoit a laGuillaume, N. Peyghambarian, M. Lindberg, S.W. Koch: Coherent effectsin pump-probe spectroscopy of excitons, Opt. Lett. 13, p.276-278 (1988)

[5.102] {Sect. 5.3.5} B. Fluegel, N. Peyghambarian, G. Olbright, M. Lindberg, S.W.Koch, M. Joffre, D. Hulin, A. Migus, A. Antonietti: Femtosecond Studies ofCoherent Transients in Semiconductors, Phys. Rev. Lett. 59, p.2588-2591(1987)

[5.103] {Sect. 5.3.5} M. Maier: Persistant Spectral Holes in External Fields, Appl.Phys. B 41, p.73-90 (1986)

[5.104] {Sect. 5.3.5} A.U. Jalmukhambetov, I.S. Osad’ko: Dependence of photo-chemical and photophysical hole burning on laser intensity, Chem. Phys.77, p.247-255 (1983)

742 5. Nonlinear Interactions of Light and Matter with Absorption

[5.105] {Sect. 5.3.5} J. Friedrich, D. Haarer: Transient features of optical bleachingas studies by photochemical hole burning and fluorescence line narrowing,J.Chem. Phys. 76, p.61-68 (1982)

[5.106] {Sect. 5.3.5} R.W. Olson, H.W.H. Lee, F.G. Patterson, M.D. Fayer: Non-photochemical hole burning and antihole production in the mixed molecularcrystal pentacene in benzoic acid, J. Chem. Phys. 77, p.2283-2289 (1982)

[5.107] {Sect. 5.3.5} H. de Vries, D.A. Wiersma: Photophysical and photochemicalmolecular hole burning theory, J. Chem. Phys. 72, p.1851-1863 (1980)

[5.108] {Sect. 5.3.5} J. Friedrich, D. Haarer: Phonon selective low temperaturephotochemistry in alcohol glasses, Chem. Phys. Lett. 74, p.503-506 (1980)

[5.109] {Sect. 5.3.5} R. M. Macfarlane, R. M. Shelby: Photochemical and Popula-tion Hole Burning in the Zero-Phonon Line of a Color Center F3+ in NaF,Phys. Rev. Lett. 42, p.788-791 (1979)

[5.110] {Sect. 5.3.5} J.M. Hayes, G.J. Small: Non-photochemical hole burning andimpurity site relaxation processes in organic glasses, Chem. Phys. 27, p.151-157 (1978)

[5.111] {Sect. 5.3.5} C.L. Tang, H. Statz, G.A. DeMars, D.T. Wilson: SpectralProperties of a Single-Mode Ruby Laser: Evidence of Homogeneous Broad-ening of the Zero-Phonon Lines in Solids, Phys. Rev. 136, p.A1-A8 (1964)

[5.112] {Sect. 5.3.5} R.T. Brundage, W.M. Yen: Low-temperature homogeneouslinewidths of Yb3+ in inorganic glasses, Phys. Rev. B 4, p.4436-4438 (1986)

[5.113] {Sect. 5.3.5} A.I.M. Dicker, L.W. Johnson, S. Volker, J.H. van der Waals:Homogeneous linewidth and optical dephasing of the S1-S0 transition ofmagnesium porphin in an n-octane crystal: A study by transient and pho-tochemical hole-burning, Chem. Phys. Lett. 100, p.8-14 (1983)

[5.114] {Sect. 5.3.5} L.A. Rebane, A.A. Gorokhovskii, J.V. Kikas: Low-Temperature Spectroscopy of Organic Molecules in Solids by PhotochemicalHole Burning, Appl. Phys. B 29, p.235-250 (1982)

[5.115] {Sect. 5.3.5} A.I.M. Dicker, J. Dobkowski, S. Volker: Optical dephasing ofthe S1-S0 transition of free-base porphin in an n-decane host studied byphotochemical hole-burning: a case of slow exchange, Chem. Phys. Lett.84, p.415-420 (1981)

[5.116] {Sect. 5.3.5} J.R. Morgan, M.A. El-Sayed: Temperature dependence of thehomogeneous linewidth of the 5D0-7F0 transition of Eu3+ in amorphoushosts at high temperatures, Chem. Phys. Lett. 84, p.213-216 (1981)

[5.117] {Sect. 5.3.5} S. Volker, R.M. Macfarlane: Laser photochemistry and hole-burning of chlorin in crystalline n-alkanes at low temperatures, J. Chem.Phys. 73, p.4476-4482 (1980)

[5.118] {Sect. 5.3.5} J. Hegarty, W.M. Yen: Optical Homogeneous Linewidths ofPr+ in BeF2 and GeO2 Glasses, Phys. Rev. Lett. 43, p.1126-1130 (1979)

[5.119] {Sect. 5.3.5} R.M. Shelby, R.M. Macfarlane: Population hole-burning usinga triplet reservoir: S1-S0 transition of zinc porphin in n-octane, Chem. Phys.Lett. 64, p.545-549 (1979)

[5.120] {Sect. 5.3.5} S. Voelker, R.M. Macfarlane: Photochemical hole-burning invibronic bands of the S1-S0 transition of free-base porphin in an n-octanecrystal, Chem. Phys. Lett. 61, p.421-425 (1979)

[5.121] {Sect. 5.3.5} S. Voelker, R.M. Macfarlane: Frequency shift and dephasing ofthe S1-S0 transition of free-base porphin in an n-octane crystal as a functionof temperature, Chem. Phys. Lett. 53, p.8-13 (1979)

[5.122] {Sect. 5.3.5} P. Avouris, A. Campion, M.A. El-Sayed: Variations in homo-geneous fluorescence linewidth and electron-phonon coupling within an in-homogeneous spectral profile, J. Chem. Phys. 67, p.3397-3398 (1977)

5.3.5 Spectral Hole Burning 743

[5.123] {Sect. 5.3.5} A.A. Gorokhovski, L.A. Rebane: The Termperature Broaden-ing of Purely Electronic Lines by the Hole Burning Technique, Opt. Comm.20, p.144-146 (1977)

[5.124] {Sect. 5.3.5} A.P. Marchetti, M. Scozzafava, R.H. Young: Site selection,hole burning, and Stark effect on resorufin in poly (methyl methacrylate),Chem. Phys. Lett. 51, p.424-426 (1977)

[5.125] {Sect. 5.3.5} P.M. Selzer, D.L. Huber, D.S. Hamilton, W.M. Yen, M.J.Weber: Anomoulous Fluorescence Linewidth Behavior in Eu3+-Doped Sil-icate Glass, Phys. Rev. Lett. 36, p.813-816 (1976)

[5.126] {Sect. 5.3.5} A.P. Marchetti, W.C. McColgin, J.H. Eberly: InhomogeneousBroadening and Excited-Vibrational-State Lifetimes in Low-TemperatureOrganic Mixed Crystals, Phys. Rev. Lett. 35, p.387-390 (1975)

[5.127] {Sect. 5.3.5} M. Ishikawa, Y. Maruyama: Femtosecond spectral hole-burning of crystal violet in methanol. New evidence for ground state con-formers, Chem. Phys. Lett. 219, p.416-420 (1994)

[5.128] {Sect. 5.3.5} H.J. Bakker, P.C.M. Planken, L. Kuipers, A. Lagendijk:Ultrafast infrared saturation spectroscopy of chloroform, bromeform, andiodoform, J. Chem. Phys. 94, p.1730-1739 (1991)

[5.129] {Sect. 5.3.5} D. Blanchard, D.A. Gilmore, T.L. Brack, H. Lemaire,D. Hughes, G.H. Atkinson: Picosecond time-resolved absorption and fluo-rescence in the bacteriorhodopsin photocycle: vibrationally-excited species,Chem. Phys. 154, p.155-170 (1991)

[5.130] {Sect. 5.3.5} T.L. Brack, G.H. Atkinson: Vibrationally Excited Retinal inthe Bacteriorhodopsin Photocycle: Picosecond Time-Resolved Anti-StokesResonance Raman Scattering, J. Phys. Chem. 95, p.2351-2356 (1991)

[5.131] {Sect. 5.3.5} T. Elsaesser, W. Kaiser: Vibrational and vibronic relaxation oflarge polyatomic molecules in liquids, Annu. Rev. Phys. Chem. 42, p.83-107(1991)

[5.132] {Sect. 5.3.5} H. Graener, G. Seifert, A. Laubereau: New Spectroscopy ofWater Using Tunable Picosecond Pulses in the Infrared, Phys. Rev. Lett.66, p.2092-2095 (1991)

[5.133] {Sect. 5.3.5} H.-J. Hubner, M. Worner, W. Kaiser, A. Seilmeier: Subpi-cosecond vibrational relaxation of skeletal modes in polyatomic molecules,Chem. Phys. Lett. 182, p.315-320 (1991)

[5.134] {Sect. 5.3.5} A. Mokhtari, A. Chebira, J. Chesnoy: Subpicosecond fluores-cence dynamics of dye molecules, J. Opt. Soc. Am. B 7, p.1551-1557 (1990)

[5.135] {Sect. 5.3.5} U. Sukowski, A. Seilmeier, T. Elsaesser, S.F. Fischer: Picosec-ond energy transfer of vibrationally hot molecules in solution: Experimentalstudies and theoretical analysis, J. Chem. Phys. 93, p.4094-4101 (1990)

[5.136] {Sect. 5.3.5} G. Angel, R. Gagel, A. Laubereau: Femtosecond polarizationspectroscopy of liquid dye solutions, Chem. Phys. 131, p.129-134 (1989)

[5.137] {Sect. 5.3.5} G. Angel, R. Gagel, A. Laubereau: Femtosecond relaxationdynamics in the electronic ground state of dye molecules studied by polariza-tion-dependent amplification spectroscopy, Chem. Phys. Lett. 156, p.169-174 (1989)

[5.138] {Sect. 5.3.5} H. Graener, T.Q. Ye, A. Laubereau: Ultrafast vibrational pre-dissociation of hydrogen bonds: Mode selective infrared photochemistry inliquids, J. Chem. Phys. 91, p.1043-1046 (1989)

[5.139] {Sect. 5.3.5} H. Graener, T.Q. Ye, A. Laubereau: Ultrafast dynamics ofhydrogen bonds directly observed by time-resolved infrared spectroscopy,J. Chem. Phys. 90, p.3413-3416 (1989)

[5.140] {Sect. 5.3.5} F. Laermer, T. Elsaesser, W. Kaiser: Ultrashort vibronic andthermal relaxation of dye molecules after femtosecond ultraviolet excitation,Chem. Phys. Lett. 156, p.381-386 (1989)

744 5. Nonlinear Interactions of Light and Matter with Absorption

[5.141] {Sect. 5.3.5} A. Mokhtari, J. Chesnoy, A. Laubereau: Femtosecond time-and frequency-resolved fluorescence spectroscopy of a dye molecule, Chem.Phys. Lett. 155, p.593-598 (1989)

[5.142] {Sect. 5.3.5} A. Mokhtari, L. Fini, J. Chesnoy: Ultrafast conformation equi-libration in triphenyl methane dyes analyzed by time resolved induced pho-toabsorption, J. Chem. Phys. 87, p.3429-3435 (1987)

[5.143] {Sect. 5.3.5} M.J. Rosker, F.W. Wise, C.L. Tang: Femtosecond RelaxationDynamics of Large Molecules, Phys. Rev. Lett. 57, p.321-324 (1986)

[5.144] {Sect. 5.3.6} J. Ehlert, H. Stiel, K. Teuchner: A numerical solver for rateeuqations and photon transport equations in nonlinear laser spectroscopy,Comp. Phys. Commun.124p.330-339 (2000)

[5.145] {Sect. 5.3.6} Stiel, Teuschner, Leupold, Oberlander, Ehlert, Jahnke: Com-puter Aided Laser-Spectroscopic Characterization and Handling of Molec-ular Excited States, Intell. Instr. Comp. 9, p.79-88 (1991)

[5.146] {Sect. 5.3.6} R. Menzel: Modelling Excited State Absorption (ESA) Mea-surements Including the Photophysical Hole Burning Effect with RateEquations, Mol. Phys. 68, p.161-180 (1989)

[5.147] {Sect. 5.3.6} C.J. Bardeen, J.S. Cao, F.L.H. Brown, K.R. Wilson: Usingtime-dependent rate equations to describe chirped pulse excitation in con-densed phases, Chem Phys Lett 302, p.405-410 (1999)

[5.148] {Sect. 5.3.8} Y.C. Shen, P. Hess: Real-time detection of laser-induced tran-sient gratings and surface acoustic wave pulses with a Michelson interfer-ometer, J Appl Phys 82, p.4758-4762 (1997)

[5.149] {Sect. 5.3.8} N. Tamai, T. Asahi, H. Masuhara: Intersystem crossing ofbenzophenone by femtosecond transient grating spectroscopy, Chem. Phys.Lett. 198, p.413-418 (1992)

[5.150] {Sect. 5.4.0} T.W. Hansch, H. Walther: Laser spectroscopy and quantumoptics, Rev. Mod. Phys. 71, p.242-252 (1999)

[5.151] {Sect. 5.4.0} L. Mandel: Quantum Effects in one-photon and two-photoninterference, Rev. Mod. Phys. 71, p.274-282 (1999)

[5.152] {Sect. 5.4.0} A. Zeilinger: Experiment and the foundations of quantumphysics, Rev. Mod. Phys. 71, p.288-296 (1999)

[5.153] {Sect. 5.4.0} J. Mlynek, W. Lange, H. Harde, H. Burggraf: High-resolutioncoherence spectroscopy using pulse trains, Phys. Rev. A24, p.1099-1102(1989)

[5.154] {Sect. 5.4.0} J. Mlynek, W. Lange: A simple method of observing coherentground state transients, Opt. Comm. 30, p.337-340 (1979)

[5.155] {Sect. 5.4.0} J.C. Bergquist, S.A. Lee, J.L. Hall: Saturated Absorption withSpatially Separated Laser Fiels: Observation of Optical ”Ramsey” Fringes,Phys. Rev. Lett. 38, p.159-161 (1977)

[5.156] {Sect. 5.4.0} M.M. Salour, C. Cohen-Tannoudji: Observation of Ramsey”sInterference Fringes in the Profile of Doppler-Free Two-Photon Resonances,Phys. Rev. Lett. 38, p.757-760 (1977)

[5.157] {Sect. 5.4.0} R.G. Brewer, A.Z. Genack: Optical Coherent Transients byLaser Frequency Switching, Phys. Rev. Lett. 36, p.959-962 (1976)

[5.158] {Sect. 5.4.0} M.E. Kaminsky, R.T. Hawkins, F.V. Kovalski, A.L. Schawlow:Identification of Absorption Lines by Modulated Lower-Level Population:Spectrum of Na2, Phys. Rev. Lett. 36, p.671-673 (1976)

[5.159] {Sect. 5.4.0} A. Schenzle, R.G. Brewer: Optical coherent transients: Gen-eralized two-level solutions, Phys. Rev. A 14, p.1756-1765 (1976)

[5.160] {Sect. 5.4.0} R. Teets, R. Feinberg, T.W. Hansch, A.L. Schawlow: Simplifi-cation of Spectra by Polarization Labeling, Phys. Rev. Lett. 37, p.683-686(1976)

5.4 Coherent Resonant Interaction 745

[5.161] {Sect. 5.4.0} C. Wieman, T.W. Hansch: Doppler-Free Laser PolarizationSpectroscopy, Phys. Rev. A 36, p.1170-1173 (1976)

[5.162] {Sect. 5.4.0} F. Biraben, B. Cagnac, G. Grynberg: Paschen-Back Effecton the 3S-4D Two-Photon Transition in Sodium Vapor, Phys. Lett. 48 A,p.469-470 (1974)

[5.163] {Sect. 5.4.0} R.G. Brewer, R.L. Shoemaker, S. Stenhom: Collision-InducedOptical Double Resonance, Phys. Rev. Lett. 33, p.63-66 (1974)

[5.164] {Sect. 5.4.0} W. P. Schleich, E. Mayr: Quantum Optics in Phase Space(John Wiley & Sons, Chichester, 1997)

[5.165] {Sect. 5.4.1} R.M. Macfarlane, Y. Sun, P.B. Sellin, R.L. Cone: Optical de-coherence in Er3+-doped silicate fiber: Evidence for coupled spin-elastictunneling systems – art. no. 033602, Phys Rev Lett 9603, p.3602 (2006)

[5.166] {Sect. 5.4.1} M.U. Staudt, S.R. HastingsSimon, M. Afzelius, D. Jaccard,W. Tittel, N. Gisin: Investigations of optical coherence properties in anerbium-doped silicate fiber for quantum state storage, Opt Commun 266,p.720-726 (2006)

[5.167] {Sect. 5.4.1} C.M. Liebig, W.M. Dennis: Optical dephasing in saturable-absorbing organic dye IR140, Appl Opt 45, p.2072-2076 (2006)

[5.168] {Sect. 5.4.1} K. Watanabe, N. Takagi, Y. Matsumoto: Direct time-domainobservation of ultrafast dephasing in adsorbate- substrate vibration underthe influence of a hot electron bath: Cs adatoms on Pt(111) – art. no.057401, Phys Rev Lett 9205, p.7401 (2004)

[5.169] {Sect. 5.4.1} J. Forstner, C. Weber, J. Danckwerts, A. Knorr: Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots – art.no. 127401, Phys Rev Lett 9112, p.7401 (2003)

[5.170] {Sect. 5.4.1} J.R. Guest, T.H. Stievater, G. Chen, E.A. Tabak, B.G. Orr,D.G. Steel, D. Gammon, D.S. Katzer: Near-field coherent spectroscopy andmicroscopy of a quantum dot system, Science 293, p.2224-2227 (2001)

[5.171] {Sect. 5.4.1} C.H. Grossman, J.J. Schwendiman: Ultrashort dephasing-timemeasurements in Nile Blue polymer films, Optics Letters 23, p.624-626(1998)

[5.172] {Sect. 5.4.1} K. Holliday, C. Wie, M. Croci, U.P. Wild: Spectral hole-burning measurements of optical dephasing between 2-300 K in Sm2+ dopedsubstitutionally disordered microcrystals, J. Luminesc. 53, p.227-230 (1992)

[5.173] {Sect. 5.4.1} R. van den Berg, A. Visser, S. Volker: Optical dephasing inorganic glasses between 0.3 and 20 K. A hole-burning study of resorufin andfree-base porphin, Chem. Phys. Lett. 144, p.105-113 (1988)

[5.174] {Sect. 5.4.1} Y.J. Yan, S. Mukamel: Electronic dephasing, vibrational re-laxation, and solvent friction in molecular nonlinear optical line shapes,J. Chem. Phys. 89, p.5160-5176 (1988)

[5.175] {Sect. 5.4.1} T. Hattori, T. Kobayashi: Femtosecond dephasing in a polydi-acetylene film observed by degenerate four-wave mixing with an incoherentnanosecond laser, J. Luminesc. 38, p.326-328 (1987)

[5.176] {Sect. 5.4.1} M.N. Sapozhnikov: Dephasing, vibronic relaxation and homo-geneous spectra of porphyrins in amorphous matrices by selective excitationof luminescence and hole burning, Chem. Phys. Lett. 136, p.192-198 (1987)

[5.177] {Sect. 5.4.1} S. Volker: Optical linewidth and dephasing of organic amor-phous and semi-crystalline solids studied by hole burning, J. Luminesc. 36,p.251-262 (1987)

[5.178] {Sect. 5.4.1} M. Fujiwara, R. Kuroda: Measurement of ultrafast dephasingtime of Cresyl Fast Violet in cellulose by photon echoes with incoherentlight, J. Opt. Soc. Am. B 2, p.1634-1639 (1985)

746 5. Nonlinear Interactions of Light and Matter with Absorption

[5.179] {Sect. 5.4.1} A.M. Weiner, S. De Silvestri, E.P. Ippen: Three-pulse scatter-ing for femtosecond dephasing studies: theory and experiment, J. Opt. Soc.Am. B. 2, p.654-662 (1985)

[5.180] {Sect. 5.4.1} T.P. Carter, B.L. Fearey, J.M. Hayes, G.J. Small: Optical de-phasing of cresyl violet in a polyvinyl alcohol polymer by non-photochemicalhole burning, Chem. Phys. Lett. 102, p.272-276 (1983)

[5.181] {Sect. 5.4.1} J. Brickmann, P. Russegger: Dephasing in isolated one-dimen-sional quantum systems, Chem. Phys. 68, p.369-375 (1982)

[5.182] {Sect. 5.4.1} A.I.M. Dicker, J. Dobkowski, S. Volker: Optical dephasing ofthe S1-S0 transition of free-base porphin in an n-decane host studied byphotochemical hole-burning: a case of slow exchange, Chem. Phys. Lett.84, p.415-420 (1981)

[5.183] {Sect. 5.4.1} D. von der Linde, A. Laubereau, W, Kaiser: MolecularVibrations in Liquids: Direct Measurement of the Molecular DephasingTime; Determination of the Shape of Picosecond Light Pulses, Phys. Rev.Lett. 26, p.954-957 (1971)

[5.184] {Sect. 5.4.1} W. Langbein, J.M. Hvam, R. Zimmermann: Time-resolvedspeckle analysis: A new approach to coherence and dephasing of opticalexcitations in solids, Phys Rev Lett 82, p.1040-1043 (1999)

[5.185] {Sect. 5.4.1} O.V. Prezhdo, P.J. Rossky: Relationship between quantumdecoherence times and solvation dynamics in condensed phase chemical sys-tems, Phys Rev Lett 81, p.5294-5297 (1998)

[5.186] {Sect. 5.4.1} G. Stock, W. Domcke: Detection of ultrafast molecular-excited-state dynamics with time- and frequency-resolved pump-probe spec-troscopy, Phys. Rev. A 45, p.3032-3040 (1992)

[5.187] {Sect. 5.4.1} G. Cerullo, G. Lanzani, M. Muccini, C. Taliani, S. DeSil-vestri: Real-time vibronic coupling dynamics in a prototypical conjugatedoligomer, Phys Rev Lett 83, p.231-234 (1999)

[5.188] {Sect. 5.4.1} K. Furuya, E. Koto, T. Ogawa: Direct observation of IVRunder white light excitation: Fluorescence spectra of p-difluorobenzene bycontrolled electron impact, Chem Phys Lett 253, p.87-91 (1996)

[5.189] {Sect. 5.4.1} T. Matsumoto, K. Ueda, M. Tomita: Femtosecond vibrationalrelaxation measurement of azulene using temporally incoherent light, Chem.Phys. Lett. 191, p.627-632 (1992)

[5.190] {Sect. 5.4.1} K.-P. Muller, D. Haarer: Spectral Diffusion of Optical Transi-tions in Doped Polymer Glasses below 1 K, Phys. Rev. Lett. 66, p.2344-2347(1991)

[5.191] {Sect. 5.4.1} Y.M. Engel, R.D. Levine: Vibration-vibration resonance condi-tions in intramolecular classical dynamics of triatomic and larger molecules,Chem. Phys. Lett. 164, p.270-278 (1989)

[5.192] {Sect. 5.4.1} A. Amirav: Rotational and vibrational energy effect on energy-resolved emission of anthracene and 9-cyanoanthracene, Chem. Phys. 124,p.163-175 (1988)

[5.193] {Sect. 5.4.1} G.A. Bickel, D.R. Demmer, G.W. Leach, St.C. Wallace: Mode-and symmetry-specific, picosecond intramolecular vibrational redistributionin 1-methylindole, Chem. Phys. Lett. 145, p.423-428 (1988)

[5.194] {Sect. 5.4.1} R. Parson: Classical-quantum correspondence in vibrationalenergy relaxation of nonlinear systems, J. Chem. Phys. 89, p.262-271 (1988)

[5.195] {Sect. 5.4.1} B.J. Orr, I.W.M. Smith: Collision-Induced Vibrational EnergyTransfer in Small Polyatomic Molecules, J. Phys. Chem. 91, p.6106-6119(1987)

[5.196] {Sect. 5.4.1} A. Amirav, J. Jortner, S. Okajima, E.C. Lim: Manifestationof intramolecular vibrational energy redistribution on electronic relaxationin large molecules, Chem. Phys. Lett. 126, p.487-494 (1986)

5.4.1 Dephasing Time T2 747

[5.197] {Sect. 5.4.1} D.B. Moss, Ch.S. Parmenter: A Time-Resolved Fluores-cence Observation of Intramolecular Vibrationally Redistribution withinthe Channel Three Region of S1 Benzene, J. Phys. Chem. 90, p.1011-1014(1986)

[5.198] {Sect. 5.4.1} P.O.J. Scherer, A. Seilmeier, W. Kaiser: Ultrafast intra- andintermolecular energy transfer in solutions after selective infrared excitation,J. Chem. Phys. 83, p.3948-3957 (1985)

[5.199] {Sect. 5.4.1} A.M. Weiner, E.P. Ippen: Femtosecond excited state relaxationof dye molecules in solution, Chem. Phys. Lett. 114, p.456-460 (1985)

[5.200] {Sect. 5.4.1} Th. Kulp, R.Ruoff, G. Stewart, J.D. McDonald: Intramolecularvibrational relaxation in 1,4 dioxane, J. Chem. Phys. 80, p.5359-5364 (1984)

[5.201] {Sect. 5.4.1} G. Stewart, R. Ruoff, Th. Kulp, J.D. McDonald: Intramolecu-lar vibrational relaxation in dimethyl ether, J. Chem. Phys. 80, p.5353-5358(1984)

[5.202] {Sect. 5.4.1} A.J. Taylor, D.J. Erskine, C.L. Tang: Femtosecond vibrationalrelaxation of large organic molecules, Chem. Phys. Lett. 103, p.430-435(1984)

[5.203] {Sect. 5.4.1} H. Graener, H.R. Telle, A. Lauberau: Applications of Picosec-ond and Sub-Picosecond Spectroscopy, p.393-401 (1983)

[5.204] {Sect. 5.4.1} W. Zinth, C. Kolmeder, B. Benna, A. Irgens-Defregger, S.F.Fischer, W. Kaiser: Fast and exceptionally slow vibrational energy transferin acetylene and phenylacetylene in solution, J. Chem. Phys.78, p.3916-3921(1983)

[5.205] {Sect. 5.4.1} D. Reiser, A. Laubereau: Vibrational Relaxation of DyeMolecules Investigated by Ultrafast Induced Dichroism, Appl. Phys. B 27,p.115-122 (1982)

[5.206] {Sect. 5.4.1} A. Zewail, W. Lambert, P. Felker, J. Perry, W. Warren: LaserProbing of Vibrational Energy Redistribution and Dephasing, J. Phys.Chem. 86, p.1184-1192 (1982)

[5.207] {Sect. 5.4.1} G. Venzl, S.F. Fischer: The effect of localized modes on radi-ationless electronic transitions. II. Dependence on impurity concentration,J. Chem. Phys. 74, p.1887-1892 (1981)

[5.208] {Sect. 5.4.1} W. Zinth, H.-J. Polland, A. Lauberau, W. Kaiser: New Resultson Ultrafast Coherent Excitation of Molecular Viibrations in Liquids, Appl.Phys. B 26, p.77-88 (1981)

[5.209] {Sect. 5.4.1} A. Laubereau, W. Kaiser: Vibrational dynamics of liquids andsolids investigated by picosecond light pulses, Rev. Mod. Phys. 50, p.607-685(1978)

[5.210] {Sect. 5.4.1} C.V. Shank, E.P. Ippen, O. Teschke: Sub-picosecond relaxationof large organic molecules in solution, Chem. Phys. Lett. 45, p.291-294(1977)

[5.211] {Sect. 5.4.1} A. Laubereau: Picosecond phase relaxation of the fundamentalvibrational mode of liquid nitrogen, Chem. Phys. Lett. 27, p.600-602 (1974)

[5.212] {Sect. 5.4.1} D.W. Vahey: Effects of spectral cross relaxation and collisionalsephasing on the absorption of light by organic-dye solutions, Phys. Rev. A10, p.1578-1590 (1974)

[5.213] {Sect. 5.4.1} A. Laubereau, L. Kirschner, W. Kaiser: Direct observationin intermolecular transfer of vibrational energy in liquids, Opt. Comm. 9,p.182-185 (1973)

[5.214] {Sect. 5.4.2} Z.G. Yi, D.A. Micha, J. Sund: Density matrix theory andcalculations of nonlinear yields of CO photodesorbed from Cu (001) bylight pulses, J Chem Phys 110, p.10562-10575 (1999)

[5.215] {Sect. 5.4.2} P. Yeh: Two-Wave Mixing in Nonlinear Media, IEEE J. QE-25,p.484-519 (1989)

748 5. Nonlinear Interactions of Light and Matter with Absorption

[5.216] {Sect. 5.4.2} P. Yeh: Exact solution of a nonlinear model of two-wave mixingin Kerr media, J. Opt. Soc. Am. B 3, p.747-750 (1986)

[5.217] {Sect. 5.4.3} A. Schulzgen, R. Binder, M.E. Donovan, T. Lindberg,K. Wundke, H.M. Gibbs, G. Khitrova, N. Peyghambarian: Direct obser-vation of excitonic Rabi oscillations in semiconductors, Phys Rev Lett 82,p.2346-2349 (1999)

[5.218] {Sect. 5.4.3} O. Kittelmann, J. Ringling, A. Nazarkin, G. Korn, I.V. Hertel:Direct observation of coherent medium response under the condition of two-photon excitation of krypton by femtosecond UV-laser pulses, Phys RevLett 76, p.2682-2685 (1996)

[5.219] {Sect. 5.4.3} R.M. Williams, J.M. Papanikolas, J. Rathje, S.R. Leone:Quantum-state-resolved 2-level femtosecond rotational coherence spectro-scopy: Determination of rotational constants at medium and high J in Li-2,a simple diatomic system, Chem Phys Lett 261, p.405-413 (1996)

[5.220] {Sect. 5.4.3} C. Wunderlich, E. Kobler, H. Figger, T.W. Hansch: Light-induced molecular potentials, Phys Rev Lett 78, p.2333-2336 (1997)

[5.221] {Sect. 5.4.3} Y. R. Shen: Principles of Nonlinear Optics, chapter 13 (JohnWiley & Sons, Chichester, 1984)

[5.222] {Sect. 5.4.3} R.F. Loring, Y.J. Yan, S. Mukamel: Time-resolved fluorescenceand hole-burning line shapes of solvated molecules: Longitudinal dielectricrelaxation and vibrational dynamics, J. Chem. Phys. 87, p.5840-5857 (1987)

[5.223] {Sect. 5.4.3} M.N. Sapozhnikov: Hole burning in the spectra of moleculesin amorphous solids: The hole shape and ist dependence on laser frequency,power, irradiation time and temperature, Chem. Phys. Lett. 135, p.398-406(1987)

[5.224] {Sect. 5.4.3} B. Jackson, R. Silbey: Theoretical description of photochemicalhole burning in soft glasses, Chem. Phys. Lett. 99, p.331-334 (1983)

[5.225] {Sect. 5.4.3} J. Klafter, R. Silbey: A conjecture of nonphotochemical holeburning in organic glasses, J. Chem. Phys. 75, p.3973-3976 (1981)

[5.226] {Sect. 5.4.3} A. v. Jena, H.E. Lessing: Coherent Coupling Effects in Pi-cosecond Absorption Experiments, Appl. Phys. 19, p.131-144 (1979)

[5.227] {Sect. 5.4.3} D.H. Schirrmeister, V. May: Strong-field approach to ultrafastpump-probe spectra: Dye molecules in solution, Chem Phys 220, p.1-13(1997)

[5.228] {Sect. 5.4.4} T.K. Yee, T.K. Gustafson: Diagrammatic analysis of the den-sity operator for nonlinear optical calculations: Pulsed and cw responses,Phys. Rev. A 18, p.1597-1617 (1978)

[5.229] {Sect. 5.4.4} Y. R. Shen: Principles of Nonlinear Optics, chapter 2 (JohnWiley & Sons, Chichester, 1984)

[5.230] {Sect. 5.4.4} P. Salieres, B. Carre, L. LeDeroff, F. Grasbon, G.G. Paulus,H. Walther, R. Kopold, W. Becker, D.B. Milosevic, A. Sanpera, M. Lewen-stein: Feynman’s path-integral approach for intense-laser-atom interactions,Science 292, p.902-905 (2001)

[5.231] {Sect. 5.4.5} H.C. Torrey: Transient Nutations in Nuclear Magnetic Reso-nance, Phys. Rev. 76, p.1059-1068 (1949)

[5.232] {Sect. 5.4.5} R.G. DeVoe, R.G. Brewer: Experimental Test of the OpticalBloch Equations for Solids, Phys. Rev. Lett. 50, p.1269-1272 (1983)

[5.233] {Sect. 5.4.5} R.G. Brewer, R.L. Shoemaker: Optical Free Induction Decay,Phys. Rev. A 6, p.2001-2007 (1972)

[5.234] {Sect. 5.4.5} R.G. Brewer, R.L. Shoemaker: Photo Echo and Optical Nu-tation in Molecules, Phys. Rev. Lett. 27, p.631-634 (1971)

[5.235] {Sect. 5.4.5} G.B. Hocker, C.L. Tang: Observation of the Optical TransientNutation Effect, Phys. Rev. Lett. 21, p.591-594 (1968)

5.4.5 Damped Rabi Oscillation and Optical Nutation 749

[5.236] {Sect. 5.4.5} C.L. Tang, H. Statz: Optical Analog of the Transient NutationEffect, Appl. Phys. Lett. 10, p.145-147 (1967)

[5.237] {Sect. 5.4.5} I.I. Rabi: Space Quantization in a Gyrating Magnetic Field,Phys. Rev. 51, p.652-654 (1937)

[5.238] {Sect. 5.4.6} T. Aoki, G. Mohs, M. KuwataGonokami, A.A. Yamaguchi:Influence of exciton-exciton interaction on quantum beats, Phys Rev Lett82, p.3108-3111 (1999)

[5.239] {Sect. 5.4.6} M. Joschko, M. Woerner, E. Elsaesser, E. Binder, R. Hey,H. Kostial, K. Ploog: Heavy-light hole quantum beats in the band-to-bandcontinuum of GaAs observed in 20 femtosecond pump-probe experiments,Phys Rev Lett 78, p.737-740 (1997)

[5.240] {Sect. 5.4.6} S. Savikhin, D.R. Buck, W.S. Struve: Oscillating anisotropiesin a bacteriochlorophyll protein: Evidence for quantum beating betweenexciton levels, Chem Phys 223, p.303-312 (1997)

[5.241] {Sect. 5.4.6} C. Leichtle, I.S. Averbukh, W.P. Schleich: Generic structureof multilevel quantum beats, Phys Rev Lett 77, p.3999-4002 (1996)

[5.242] {Sect. 5.4.6} H. Bitto: Dynamics of S1 acetone studied with single rotorvibronic level resolution, Chem. Phys. 186, p.105-118 (1994)

[5.243] {Sect. 5.4.6} H. Bitto, J.R. Huber: Molecular quantum beat spectroscopy,Opt. Commun. 80, p.184-198 (1990)

[5.244] {Sect. 5.4.6} A. Mokhtari, A. Chebira, J. Chesnoy: Subpicosecond fluores-cence dynamics of dye molecules, J. Opt. Soc. Am. B 7, p.1551-1557 (1990)

[5.245] {Sect. 5.4.6} A.E.A. Mokhtari, J. Chesnoy: Terahertz Fluorescence Quan-tum Beats in a Dye Solution, IEEE J. QE-25, p.2528-2531 (1989)

[5.246] {Sect. 5.4.6} S. Saikan, T. Nakabayashi, Y. Kanematsu, A. Imaoka: Obser-vation of vibronic quantum beat in dye-doped polymers using femtosecondaccumulated photon echo, J. Chem. Phys. 89, p.4609-4612 (1988)

[5.247] {Sect. 5.4.6} P. Schmidt, H. Bitto, J.R. Huber: Excited state dipole mo-ments in a polyatomic molecule determined by Stark quantum beat spec-troscopy, J. Chem. Phys. 88, p.696-704 (1988)

[5.248] {Sect. 5.4.6} R. Leonhardt, W. Holzapfel, W. Zinth, W. Kaiser: Tera-hertz quantum beats in molecular liquids, Chem. Phys. Lett. 133, p.373-377(1987)

[5.249] {Sect. 5.4.6} N. Ochi, H. Watanabe, S. Tsuchiya: Rotationally ResolvedLaser-Induced Fluorescence and Zeeman Quantum Beat Spectroscopy ofthe V1B2 State of Jet-Cooled CS2, Chem. Phys. 113, p.271-285 (1987)

[5.250] {Sect. 5.4.6} M.Dubs, J.Muhlbach, H.Bitto, P.Schmidt, J.R.Huber: Hyper-fine quantum beats and Zeeman spectroscopy in the polyatomic moleculepropynal HCxCCHO, J. Chem. Phys. 83, p.3755-3767 (1985)

[5.251] {Sect. 5.4.6} W. Lange, J. Mlynek: Quantum Beats in Transmission byTime-Resolved Polarization Spectroscopy, Phys. Rev. Lett. 40, p.1373-1375(1978)

[5.252] {Sect. 5.4.6} A. Laubereau, G. Wochner, W. Kaiser: Collective Beating ofMolecular Vibrations in Liquids on the Picosecond Time Scale, Opt. Comm.17, p.91-94 (1976)

[5.253] {Sect. 5.4.6} S. Haroche, J.A. Paisner, A.L. Schawlow: Hyperfine QuantumBeats Observed in Cs Vapor under Pulsed Dye Laser Excitation, Phys. Rev.Lett. 30, p.948-951 (1973)

[5.254] {Sect. 5.4.6} H.R. Schlossberg, A. Javan: Saturation Behavior of a Doppler-Broadened Transition Involving Levels with Closely Spaced Structure, Phys.Rev. 150, p.267-284 (1966)

[5.255] {Sect. 5.4.7} W.A. Hugel, M.F. Heinrich, M. Wegener, Q.T. Vu, L. Banyai,H. Haug: Photon echoes from semiconductor band-to-band continuum tran-

750 5. Nonlinear Interactions of Light and Matter with Absorption

sitions in the regime of Coulomb quantum kinetics, Phys Rev Lett 83,p.3313-3316 (1999)

[5.256] {Sect. 5.4.7} L. Menager, I. Lorgere, J.L. LeGouet, R.K. Mohan, S. Kroll:Time-domain Fresnel-to-Fraunhofer diffraction with photon echoes, OpticsLetters 24, p.927-929 (1999)

[5.257] {Sect. 5.4.7} R.K. Mohan, U. Elman, M.Z. Tian, S. Kroll: Regenerationof photon echoes with amplified photon echoes, Optics Letters 24, p.37-39(1999)

[5.258] {Sect. 5.4.7} P. Hamm, M. Lim, R.M. Hochstrasser: Non-Markovian dynam-ics of the vibrations of ions in water from femtosecond infrared three-pulsephoton echoes, Phys Rev Lett 81, p.5326-5329 (1998)

[5.259] {Sect. 5.4.7} B.Z. Luo, U. Elman, S. Kroll, R. Paschotta, A. Tropper: Am-plification of photon echo signals by use of a fiber amplifier, Optics Letters23, p.442-444 (1998)

[5.260] {Sect. 5.4.7} T. Wang, C. Greiner, T.W. Mossberg: Experimental observa-tion of photon echoes and power-efficiency analysis in a cavity environment,Optics Letters 23, p.1736-1738 (1998)

[5.261] {Sect. 5.4.7} J.P. Likforman, M. Joffre, V. Thierrymieg: Measurement ofphoton echoes by use of femtosecond Fourier-transform spectral interfer-ometry, Optics Letters 22, p.1104-1106 (1997)

[5.262] {Sect. 5.4.7} R.M. Macfarlane, T.L. Harris, Y. Sun, R.L. Cone, R.W. Equall:Measurement of photon echoes in Er:Y2SiO5 at 1.5 mu m with a diode laserand an amplifier, Optics Letters 22, p.871-873 (1997)

[5.263] {Sect. 5.4.7} C.W. Rella, A. Kwok, K. Rector, J.R. Hill, H.A. Schwettman,D.D. Dlott, M.D. Fayer: Vibrational echo studies of protein dynamics, PhysRev Lett 77, p.1648-1651 (1996)

[5.264] {Sect. 5.4.7} S.B. Altner, S. Bernet, A. Renn, E.S. Maniloff, F.R. Graf, U.P.Wild: Spectral hole burning and holography VI: Photon echoes from cwspectrally programmed holograms in a Pr3+:Y2SiO5 crystal, Opt. Comm.120, p.103-111 (1995)

[5.265] {Sect. 5.4.7} P.C. Becker, H.L. Fragnito, J.Y Bigot, C.H. Brito Cruz, R.L.Fork, C.V. Shank: Femtosecond Photon Echos from Molecules in Solution,Phys. Rev. Lett. 63, p.505-507 (1989)

[5.266] {Sect. 5.4.7} S. Saikan, T. Nakabayashi, Y. Kanematsu, N. Tato: Fourier-transform spectroscopy in dye-doped polymers using the femtosecond accu-mulated photon echo, Phys. Rev. B 38, p.7777-7781 (1988)

[5.267] {Sect. 5.4.7} M. Berg, C.A. Walsh, L.R. Narasimhan, M.D. Fayer: Picosec-ond photon echo and optical hole burning studies of chromophores in organicglasses, J. Luminesc. 38, p.9-14 (1987)

[5.268] {Sect. 5.4.7} S. Saikan, A. Fujiwara. T Kushida, Y. Kato: High-FrequencyHeterodyned Detection of Picosecond Accumulated Photon Echoes, Jpn. J.Appl. Phys.26, p.L941-L943 (1987)

[5.269] {Sect. 5.4.7} S. Saikan, H. Miyamoto, Y. Tosaki, A. Fujiwara: Optical-density effect in heterodyne-detected accumulated photon echo, Phys. Rev.B 36, p.5074-5077 (1987)

[5.270] {Sect. 5.4.7} C.A. Walsh, M. Berg, L.R. Narasimhan, M.D. Fayer: A picosec-ond photon echo study of a chromophore in an organic glass: Temperaturedependence and comparision to nonphotochemical hole burning, J. Chem.Phys. 86, p.77-87 (1987)

[5.271] {Sect. 5.4.7} L.W. Molenkamp, D.A. Wiersma: Optical dephasing in organicamorphous systems. A photon echo and hole-burning study of pentacene inpolymethylmethacrylate, J. Chem. Phys. 83, p.1-9 (1985)

5.4.7 Photon Echoes 751

[5.272] {Sect. 5.4.7} S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka: Accu-mulated photon echoes with incoherent light in Nd3+-doped silicate glass,Phys. Rev. A 29, p.2286-2289 (1984)

[5.273] {Sect. 5.4.7} R. Beach, S.R. Hartmann: Incoherent Photon Echoes, Phys.Rev. Lett. 53, p.663-666 (1984)

[5.274] {Sect. 5.4.7} H. Nakatsuka, M. Tomita, M. Fujiwara, S. Asaka: Subpicosec-ond Photon Echoes by Using Nanosecond Laser Pulses, Opt. Comm. 52,p.150-152 (1984)

[5.275] {Sect. 5.4.7} R.G. DeVoe, R.G. Brewer: Experimental Test of the OpticalBloch Equations for Solids, Phys. Rev. Lett. 50, p.1269-1272 (1983)

[5.276] {Sect. 5.4.7} H.W.H. Lee, F.G. Patterson, R.W. Olson, D.A. Wiersma, M.D.Fayer: Temperature-dependent dephasing of delocalized dimer states of pen-tacene in p-terphanyl: Picosecond photon echo experiments, Chem. Phys.Lett. 90, p.172-177 (1982)

[5.277] {Sect. 5.4.7} K. Duppen, L.W. Molenkamp, J.B.W. Morsink, D.A.Wiersma, H.P. Trommsdorff: Optical dephasing in a glass-like system: Aphoton echo study of pentacene in benzoic acid, Chem. Phys. Lett. 84,p.421-424 (1981)

[5.278] {Sect. 5.4.7} M. Fujita, H. Nakatsuka, H. Nakanishi, M. Matsuoka: Back-ward Echo in Two-Level Systems, Phys. Rev. Lett. 42, p.974-977 (1979)

[5.279] {Sect. 5.4.7} T.M. Mossberg, R. Kachru, S.R. Hartmann, A.M. Flusberg:Echoes in gaseous media. A generalized theory of rephasing phenomena,Phys. Rev. A 20, p.1976-1996 (1979)

[5.280] {Sect. 5.4.7} S.C. Rand, A. Wokaun, R.G. DeVoe, R.G. Brewer: Magic-Angle Line Narrowing in Optical Spectroscopy, Phys. Rev. Lett. 43, p.1868-1871 (1979)

[5.281] {Sect. 5.4.7} S.R. Hartmann: H-3-Photon, Spin, and Raman Echoes, IEEEJ. QE-4, p.802-807 (1968)

[5.282] {Sect. 5.4.7} C.K.N. Patel, R.E. Slusher: Photon echoes in gases, Phys. Rev.Lett. 20, p.1087-1089 (1968)

[5.283] {Sect. 5.4.7} I.D. Abella, N.A. Kurnit, S.R. Hartmann: Photon Echoes,Phys. Rev. 141, p.391-406 (1966)

[5.284] {Sect. 5.4.7} N.A. Kurnit, I.D. Abella, S.R. Hartmann: Observation of aPhoton Echo, Phys. Rev. Lett. 13, p.567-568 (1964)

[5.285] {Sect. 5.4.7} E.L. Hahn: Spin echoes, Phys. Rev. 80, p.580-594 (1950)[5.286] {Sect. 5.4.7} S.R. Hartmann: Photon echoes. In Lasers and Light, Readings

from Scientific American (Freeman, San Francisco 1969) S. 303[5.287] {Sect. 5.4.7} S.M. Zakharov, E.A. Manykin: Simultaneous optical image

processing by photon echoes, Int. J. Optoelectron. 9, p.333-338 (1994)[5.288] {Sect. 5.4.7} R. Yano, N. Uesugi: Demonstration of partial erasing of pi-

cosecond temporal optical data by use of accumulated photon echoes, OpticsLetters 24, p.1753-1755 (1999)

[5.289] {Sect. 5.4.8} H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Ko-rterik, N.F. vanHulst, T.F. Krauss, L. Kuipers: Real-space observation ofultraslow light in photonic crystal waveguides – art. no. 073903, Phys RevLett 9407, p.3903 (2005)

[5.290] {Sect. 5.4.8} M. Blaauboer, B.A. Malomed, G. Kurizki: Spatiotempo-rally localized multidimensional solitons in self-induced transparency media,Phys Rev Lett 84, p.1906-1909 (2000)

[5.291] {Sect. 5.4.8} S.E. Harris, L.V. Hau: Nonlinear optics at low light levels,Phys Rev Lett 82, p.4611-4614 (1999)

[5.292] {Sect. 5.4.8} M. Muller, V.P. Kalosha, J. Herrmann: 2 pi-pulse laser usingan intracavity quantum-well absorber, Opt Commun 150, p.147-152 (1998)

752 5. Nonlinear Interactions of Light and Matter with Absorption

[5.293] {Sect. 5.4.8} P.R. Berman, J.M. Levy, R.G. Brewer: Coherent optical tran-sient study of molecular collisions: Theory and observations, Phys. Rev. A11, p.1668-1688 (1975)

[5.294] {Sect. 5.4.8} M.M.T. Loy: Observation of Population Inversion by OpticalAdiabatic Rapid Passage, Phys. Rev. Lett. 32, p.814-817 (1974)

[5.295] {Sect. 5.4.8} M.D. Crisp: Adiabatic-Following Approximation, Phys. Rev.A 8, p.2128-2135 (1973)

[5.296] {Sect. 5.4.8} D. Grischkowsky, E. Courtens, J.A. Armstrong: Observationof Self-Steepening of Optical Pulses with Possible Shock Formation, Phys.Rev. Lett. 31, p.422-425 (1973)

[5.297] {Sect. 5.4.8} D. Grischkowsky: Adiabatic Following and Slow Optical PulsePropagation in Rubidium Vapor, Phys. Rev. A 7, p.2096-2102 (1973)

[5.298] {Sect. 5.4.8} R.E. Slusher, H.M. Gibbs: Self-Induced Transparenca inAtomic Rubidium, Phys. Rev. A 5, p.1634-1659 (1972)

[5.299] {Sect. 5.4.8} D. Grischkowsky: Self-Focusing of Light by Potassium Vapor,Phys. Rev. Lett. 24, p.866-869 (1970)

[5.300] {Sect. 5.4.8} S.L. McCall, E.L. Hahn: Self-Induced Transparency, Phys.Rev. 183, p.457-485 (1969)

[5.301] {Sect. 5.4.8} E.B. Treacy: Adiabatic Inversion with Light Pulses, Phys.Lett. 27A, p.421-422 (1968)

[5.302] {Sect. 5.4.8} S.L. McCall, E.L. Hahn: Self-Induced Transparency by PulsedCoherent Light, Phys. Rev. Lett. 18, p.908-911 (1967)

[5.303] {Sect. 5.4.8} Y. R. Shen: Principles of Nonlinear Optics, chapter 21 (JohnWiley & Sons, Chichester, 1984)

[5.304] {Sect. 5.4.9} S. Ozcelik, I. Ozcelik, D.L. Akins: Superradiant lasing fromJ-aggregated molecules adsorbed onto colloidal silver, Appl Phys Lett 73,p.1949-1951 (1998)

[5.305] {Sect. 5.4.9} F. Haake, H. King, G. Schroder, J. Haus, R. Glauber, F. Hopf:Macroscopic Quantum Fluctuations in Superfluorescence, Phys. Rev. Lett.42, p.1740-1743 (1979)

[5.306] {Sect. 5.4.9} D. Polder, M.F.H. Schuurmans, Q.H.F. Vrehen: Superfluores-cence: Quantum-mechanical derivation of Maxwell-Bloch description withfluctuating field source, Phys. Rev. A 19, p.1192-1203 (1979)

[5.307] {Sect. 5.4.9} Q.H.F. Vrehen, M.F.H. Schuurmans: Direct Measurement ofthe Effective Initial Tipping Angle in Superfluorescence, Phys. Rev. Lett.42, p.224-227 (1979)

[5.308] {Sect. 5.4.9} R. Glauber, F. Haake: The Initiation of Superfluorescence,Phys. Rev. Lett. 68A, p.29-32 (1978)

[5.309] {Sect. 5.4.9} H.M. Gibbs, Q.H.F. Vrehen, H.M.J. Hikspoors: Single-PulseSuperfluorescence in Cesium, Phys. Rev. Lett. 39, p.547-549 (1977)

[5.310] {Sect. 5.4.9} J.C. MacGillivray, M.S. Field: Theory of superradiance in anextended, optically thick medium, Phys. Rev. A 14, p.1169-1189 (1976)

[5.311] {Sect. 5.4.9} R. Bonifacio, L.A. Lugiato: Cooperative radiation processes intwo-level systems: Superfluorescence, Phys. Rev. A 11, p.1507-1521 (1975)

[5.312] {Sect. 5.4.9} N. Bloembergen, R.V. Pound: Radiation Damping in MagneticResonance Experiments, Phys. Rev. 95, p.8-12 (1954)

[5.313] {Sect. 5.4.10} E.S. Fry, X. Li, D. Nikonov, G.G. Padmabandu, M.O. Scully,A.V. Smith, F.K. Tittel, C. Wang, S.R. Wilkinson, S.Y. Zhu: AtomicCoherence Effects within the Sodium D1 Line: Lasing without Inversionvia Population Trapping, Phys. Rev. Lett. 70, p.3235-3246 (1993)

[5.314] {Sect. 5.4.10} M.O. Scully: Enhancement of the Index of Refraction viaQuantum Coherence, Phys. Rev. Lett. 67, p.1855-1858 (1991)

[5.315] {Sect. 5.4.10} S.E. Harris: Lasers without Inversion: Interferencee ofLifetime-Broadened Resonaces, Phys. Rev. Lett. 62, p.1033-1036 (1989)

5.4.10 Amplification Without Inversion 753

[5.316] {Sect. 5.4.10} Y. Rostovtsev, S. Trendafilov, A. Artemiev, K. Kapale, G.Kurizki, M.O. Scully: Numerical experiments on free-electron lasers withoutinversion – art. no. 214802, Phys Rev Lett 9021, p.4802 (2003)

[5.317] {Sect. 5.4.10} P.S. Bhatia, G.R. Welch, M.O. Scully: Laser amplificationwithout population inversion on the D-1 line of the Cs atom with semicon-ductor diode lasers, J Opt Soc Am B Opt Physics 18, p.1587-1596 (2001)

[5.318] {Sect. 5.4.10} X.M. Hu, J.S. Peng: Squeezed cascade lasers without andwith inversion, Opt Commun 154, p.203-216 (1998)

[5.319] {Sect. 5.4.10} J.T. Manassah, B. Gross: Amplification without inversionin an extended optically dense open Lambda-system, Opt Commun 148,p.404-416 (1998)

[5.320] {Sect. 5.4.10} B. Sherman, G. Kurizki, D.E. Nikonov, M.O. Scully: Univer-sal classical mechanism of free-electron lasing without inversion, Phys RevLett 75, p.4602-4605 (1995)

[5.321] {Sect. 5.4.10} J. Mompart, R. Corbalan, R. Vilaseca: Lasing without in-version in the V-type three-level system under the two-photon resonancecondition, Opt Commun 147, p.299-304 (1998)

[5.322] {Sect. 5.4.10} C. Fort, F.S. Cataliotti, T.W. Hansch, M. Inguscio,M. Prevedelli: Gain without inversion on the cesium D-1 line, Opt Commun139, p.31-34 (1997)

[5.323] {Sect. 5.4.10} S.Q. Gong, S.D. Du, Z.Z. Xu: Nonlinear theory of lasing withor without inversion in a simple three-level atomic system, Opt Commun130, p.249-254 (1996)

[5.324] {Sect. 5.4.10} J.B. Khurgin, E. Rosencher: Practical aspects of lasing with-out inversion in various media, IEEE J QE-32, p.1882-1896 (1996)

[5.325] {Sect. 5.4.10} D.E. Nikonov, B. Sherman, G. Kurizki, M.O. Scully: Las-ing without inversion in Cherenkov free-electron lasers, Opt Commun 123,p.363-371 (1996)

[5.326] {Sect. 5.4.10} G.G. Padmabandu, G.R. Welch, I.N. Shubin, E.S. Fry, D.E.Nikonov, M.D. Lukin, M.O. Scully: Laser oscillation without populationinversion in a sodium atomic beam, Phys Rev Lett 76, p.2053-2056 (1996)

[5.327] {Sect. 5.4.10} A.S. Zibrov, M.D. Lukin, D.E. Nikonov, L. Hollberg, M.O.Scully, V.L. Velichansky, H.G. Robinson: Experimental demonstration oflaser oscillation without population inversion via quantum interference inRb, Phys Rev Lett 75, p.1499-1502 (1995)

[5.328] {Sect. 5.4.10} A. Nottelmann, C. Peters, W. Lange: Inversionless Amplifi-cation of Picosecond Pulses due to Zeeman Coherence, Phys. Rev. Lett. 70,p.1783-1786 (1993)

[5.329] {Sect. 5.4.10} M.O. Scully, S.-Y. Zhu: Degenerate Quantum-Beat Laser:Lasing without Inversion and Inversion without Lasing, Phys. Rev. Lett.62, p.2813-2816 (1989)

[5.330] {Sect. 5.4.10} M. Kauert, P.C. Stoller, M. Frenz, J. Ricka: Absolute mea-surement of molecular two-photon absorption cross- sections using a fluo-rescence saturation technique, Opt Express 14, p.8434-8447 (2006)

[5.331] {Sect. 5.4.10} G.B. Xu, X.G. Xu, Z. Zhao, D.W. Hu, Z.S. Shao, H.J. Liu,Y.P. Tian: Two-photon excitation properties of a class of novel organic dyechloride, Opt Commun 260, p.292-297 (2006)

[5.332] {Sect. 5.4.10} K.R. Allakhverdiev, T. Baykara, S. Joosten, E. Gunay, A.A.Kaya, A. Kulibekov, A. Seilmeier, E.Y. Salaev: Anisotropy of two-photonabsorption in gallium selenide at 1064 nm, Opt Commun 261, p.60-64 (2006)

[5.333] {Sect. 5.4.10} S.L. Zhou, X. Zhao, X.Q. Sun, X.F. Cheng: Theoretical stud-ies of one- and two-photon absorption properties for symmetric moleculesbased on bis(Stilbene)diethylene, J Theor Comput Chem 5, p.535-542(2006)

754 5. Nonlinear Interactions of Light and Matter with Absorption

[5.334] {Sect. 5.4.10} P.C. Ray, Z. Sainudeen: Very large infrared two-photon ab-sorption cross section of asymmetric zinc porphyrin aggregates: Role ofintermolecular interaction and donor-acceptor strengths, J Phys Chem A110, p.12342-12347 (2006)

[5.335] {Sect. 5.4.10} X.B. Zhang, J.K. Feng, A.M. Ren, C.C. Sun: Theoreticalstudy of two-photon absorption properties of a series of ferrocene-basedchromophores, J Phys Chem A 110, p.12222-12230 (2006)

[5.336] {Sect. 5.4.10} D.S. Correa, S.L. Oliveira, L. Misoguti, S.C. Zilio, R.F.Aroca, C.J.L. Constantino, C.R. Mendonca: Investigation of the two-photonabsorption cross-section in perylene tetracarboxylic derivatives: Nonlinearspectra and molecular structure, J Phys Chem A 110, p.6433-6438 (2006)

[5.337] {Sect. 5.4.10} L. Antonov, K. Kamada, D. Nedeltcheva, K. Ohta, F.S.Kamounah: Gradual change of one- and two-photon absorption proper-ties in solution- Protonation of 4-N,N-dimethylamino-4’-aminoazobenzene,J Photochem Photobiol A Chem 181, p.274-282 (2006)

[5.338] {Sect. 5.4.10} M.J. Paterson, J. Kongsted, O. Christiansen, K.V. Mikkelsen,C.B. Nielsen: Two-photon absorption cross sections: An investigation ofsolvent effects. Theoretical studies on formaldehyde and water – art. no.184501, J Chem Phys 125, p.84501 (2006)

[5.339] {Sect. 5.4.10} M. Drobizhev, N.S. Makarov, Y. Stepanenko, A. Rebane:Near-infrared two-photon absorption in phthalocyanines: Enhancement oflowest gerade-gerade transition by symmetrical electron-accepting substitu-tion – art. no. 224701, J Chem Phys 124, p.24701 (2006)

[5.340] {Sect. 5.4.10} C.B. Nielsen, S. Rettrup, S.P.A. Sauer: Two-photon absorp-tion cross sections: An investigation of the accuracy of calculated absoluteand relative values – art. no. 114108, J Chem Phys 124, p.14108 (2006)

[5.341] {Sect. 5.4.10} R. Fortrie, H. Chermette: Two-photon absorption strength: Anew tool for the quantification of two-photon absorption – art. no. 204104,J Chem Phys 124, p.4104 (2006)

[5.342] {Sect. 5.4.10} J.L. Humphrey, D. Kuciauskas: Charge transfer enhancestwo-photon absorption in transition metal porphyrins, J Am Chem Soc128, p.3902-3903 (2006)

[5.343] {Sect. 5.4.10} J. Fu, O.V. Przhonska, L.A. Padilha, D.J. Hagan,E.W. VanStryland, K.D. Belfield, M.V. Bondar, Y.L. Slominsky, A.D.Kachkovski: Two-photon anisotropy: Analytical description and molecularmodeling for symmetrical and asymmetrical organic dyes, Chem Phys 321,p.257-268 (2006)

[5.344] {Sect. 5.4.10} S.L. Oliveira, D.S. Correa, L. DeBoni, L. Misoguti, S.C.Zilio, C.R. Mendonca: Two-photon absorption cross-section spectrum ofa pi-conjugated polymer obtained using the white-light continuum Z-scantechnique – art. no. 021911, Appl Phys Lett 88, p.21911 (2006)

[5.345] {Sect. 5.4.10} A. Selle, C. Kappel, M.A. Bader, G. Marowsky, K. Winkler,U. Alexiev: Picosecond-pulse-induced two-photon fluorescence enhancementin biological material by application of grating waveguide structures, OpticsLetters 30, p.1683-1685 (2005)

[5.346] {Sect. 5.4.10} P.C. Ray, J. Leszczynski: Two-photon absorption and firstnonlinear optical properties of ionic octupolar molecules: Structure-functionrelationships and solvent effects, J. Phys. Chem. A 109, p.6689-6696 (2005)

[5.347] {Sect. 5.4.10} G.S. He, Q.D. Zheng, P.N. Prasad, R. Helgeson, F. Wudl:Nonlinear optical stabilization of 1064-nm laser pulses with a two- photonabsorbing liquid-dye salt system, Appl Opt 44, p.3560-3564 (2005)

[5.348] {Sect. 5.4.10} S. Soria, T. Katchalski, E. Teitelbaum, A.A. Friesem, G.Marowsky: Enhanced two-photon fluorescence excitation by resonant grat-ing waveguide structures, Optics Letters 29, p.1989-1991 (2004)

5.4.10 Amplification Without Inversion 755

[5.349] {Sect. 5.4.10} J. Balaji, C.S. Reddy, S.K. Kaushalya, S. Maiti: Microfluoro-metric detection of catecholamines with multiphoton- excited fluorescence,Appl Opt 43, p.2412-2417 (2004)

[5.350] {Sect. 5.4.10} G. McConnell, G.L. Smith, J.M. Girkin, A.M. Gurney, A.I.Ferguson: Two-photon microscopy of fura-2-loaded cardiac myocytes withan all- solid-state tunable and visible femtosecond laser source, Optics Let-ters 28, p.1742-1744 (2003)

[5.351] {Sect. 5.4.10} C. Gorling, U. Leinhos, K. Mann: Self-trapped exciton lumi-nescence and repetition rate dependence of two-photon absorption in CaF2at 193 nm, Opt Commun 216, p.369-378 (2003)

[5.352] {Sect. 5.4.10} A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel,N. Mamardashvili, A. Rebane: Enhancement of two-photon absorption intetrapyrrolic compounds, J Opt Soc Am B Opt Physics 20, p.321-332 (2003)

[5.353] {Sect. 5.4.10} Z. Liu, Q. Fang, D. Wang, D. Cao, G. Xue, W. Yu, H. Lei:Trivalent boron as an acceptor in donor-?-acceptor-type commpounds forsingle- and two-photon excited fluorescence, Chem. Eur. J. 9, p.5074-5084(2003)

[5.354] {Sect. 5.4.10} J.H. Si, J.R. Qiu, J.Y. Guo, G.D. Qian, M.Q. Wang, K. Hirao:Photoinduced birefringence of azodye-doped materials by a femtosecondlaser, Appl Opt 42, p.7170-7173 (2003)

[5.355] {Sect. 5.4.10} P.F. Tian, W.S. Warren: Ultrafast measurement of two-photon absorption by loss modulation, Optics Letters 27, p.1634-1636(2002)

[5.356] {Sect. 5.4.10} J.Y. Ye, M.T. Myaing, T.B. Norris, T. Thomas, J. Baker:Biosensing based on two-photon fluorescence measurements through opticalfibers, Optics Letters 27, p.1412-1414 (2002)

[5.357] {Sect. 5.4.10} R. Schroeder, B. Ullrich: Absorption and subsequent emissionsaturation of two-photon excited materials: theory and experiment, OpticsLetters 27, p.1285-1287 (2002)

[5.358] {Sect. 5.4.10} P. Markowicz, C. Friend, Y.Z. Shen, J. Swiatkiewicz, P.N.Prasad, O. Toader, S. John, R.W. Boyd: Enhancement of two-photon emis-sion in photonic crystals, Optics Letters 27, p.351-353 (2002)

[5.359] {Sect. 5.4.10} G.S. He, T.C. Lin, P.N. Prasad: New technique for degener-ate two-photon absorption spectral measurements using femtosecond con-tinuum generation, Opt Express 10, p.566-574 (2002)

[5.360] {Sect. 5.4.10} L. Mees, J.P. Wolf, G. Gouesbet, G. Grehan: Two-photonabsorption and fluorescence in a spherical micro-cavity illuminated by usingtwo laser pulses: numerical simulations, Opt Commun 208, p.371-375 (2002)

[5.361] {Sect. 5.4.10} G.Y. Zhou, D. Wang, X.M. Wang, X.G. Xu, Z.S. Shao, M.H.Jiang: Properties of picosecond two-photon-absorption induced amplifiedspontaneous emission and cavity lasing of a new organic dye PSPS, OptCommun 202, p.221-225 (2002)

[5.362] {Sect. 5.4.10} J. Palero, W. Garcia, C. Saloma: Two-color (Two-photon)excitation fluorescence with two confocal beams and a Raman shifter, OptCommun 211, p.65-71 (2002)

[5.363] {Sect. 5.4.10} F.-J. Kao, Y.-M. Wang, J.-C. Chen, P.-C. Cheng, R.-W.Chen, B.-L. Lin: Micro-spectroscopy of chloroplasts in protoplasts fromArabidopsis thaliana under single- and multi-photon excitations, Journalof Luminescence 98, p.107-114 (2002)

[5.364] {Sect. 5.4.10} G.Y. Zhou, D. Wang, X.Q. Yu, Y. Ren, X.G. Xu, X.F. Cheng,Z.S. Shao, M.H. Jiang: Two-photon-absorption and upconverted superradi-ance properties of organic dye HEASPS-doped linear homogeneous polymerat several wavelengths, J Opt Soc Am B Opt Physics 19, p.1141-1144 (2002)

756 5. Nonlinear Interactions of Light and Matter with Absorption

[5.365] {Sect. 5.4.10} G.Y. Zhou, D. Wang, S.J. Yang, X.G. Xu, Y. Ren, Z.S.Shao, M.H. Jiang, Y.P. Tian, F.Y. Hao, S.L. Li, P.F. Shi: Studies on thetwo-photon pumped upconverted fluorescence and superradiance of a neworganic dye material in solutions, Appl Opt 41, p.6371-6374 (2002)

[5.366] {Sect. 5.4.10} T. Alexander, C.D. Tran: Simultaneous measurement ofone- and two-photon excited fluorescence from a single sample: a detectionmethod for oligonucleotides, Appl Opt 41, p.2285-2291 (2002)

[5.367] {Sect. 5.4.10} C. Wang, X.M. Wang, Z.S. Shao, X. Zhao, G.Y. Zhou, D.Wang, Q. Fang: Studies on the lasing properties of a new two-photon ab-sorbing material HEASPI, Opt Commun 192, p.315-322 (2001)

[5.368] {Sect. 5.4.10} D.A. Oulianov, I.V. Tomov, A.S. Dvornikov, P.M. Rentzepis:Observations on the measurement of two-photon absorption cross- section,Opt Commun 191, p.235-243 (2001)

[5.369] {Sect. 5.4.10} C. Wang, X.M. Wang, Z.S. Shao, X.A. Zhao, G.Y. Zhou,D. Wang, Q. Fang, M.H. Jiang: Optical properties of a new two-photonabsorbing chromophore, Appl Opt 40, p.2475-2478 (2001)

[5.370] {Sect. 5.5} P. Kaatz, D.P. Shelton: Two-photon fluorescence cross-sectionmeasurements calibrated with hyper-Rayleigh scattering, J Opt Soc Am BOpt Physics 16, p.998-1006 (1999)

[5.371] {Sect. 5.5} E.J. Sanchez, L. Novotny, X.S. Xie: Near-field fluorescence mi-croscopy based on two-photon excitation with metal tips, Phys Rev Lett82, p.4014-4017 (1999)

[5.372] {Sect. 5.5} M. Sonnleitner, G.J. Schutz, T. Schmidt: Imaging individualmolecules by two-photon excitation, Chem Phys Lett 300, p.221-226 (1999)

[5.373] {Sect. 5.5} E.R. Thoen, E.M. Koontz, M. Joschko, P. Langlois, T.R. Schi-bli, F.X. Kartner, E.P. Ippen, L.A. Kolodziejski: Two-photon absorption insemiconductor saturable absorber mirrors, Appl Phys Lett 74, p.3927-3929(1999)

[5.374] {Sect. 5.5} K.R. Allakhverdiev: Two-photon absorption of femtosecond laserpulses in GaS crystals, Opt Commun 149, p.64-66 (1998)

[5.375] {Sect. 5.5} C.V. Bindhu, S.S. Harilal, A. Kurian, V.P.N. Nampoori, C.P.G.Vallabhan: Two and three photon absorption in rhodamine 6G methanolsolutions using pulsed thermal lens technique, J Nonlinear Opt Physics Mat7, p.531-538 (1998)

[5.376] {Sect. 5.5} M.A. Bopp, Y. Jia, G. Haran, E.A. Morlino, R.M. Hochstrasser:Single-molecule spectroscopy with 27 fs pulses: Time-resolved experimentsand direct imaging of orientational distributions, Appl Phys Lett 73, p.7-9(1998)

[5.377] {Sect. 5.5} G.S. He, R. Signorini, P.N. Prasad: Two-photon-pumped fre-quency-upconverted blue losing in Coumarin dye solution, Appl Opt 37,p.5720-5726 (1998)

[5.378] {Sect. 5.5} M. Reeves, M. Musculus, P. Farrell: Confocal, two-photon laser-induced fluorescence technique for the detection of nitric oxide, Appl Opt37, p.6627-6635 (1998)

[5.379] {Sect. 5.5} J. Swiatkiewicz, P.N. Prasad, B.A. Reinhardt: Probing two-photon excitation dynamics using ultrafast laser pulses, Opt Commun 157,p.135-138 (1998)

[5.380] {Sect. 5.5} K.L. Vodopyanov, S.B. Mirov, V.G. Voevoolin, P.G. Schune-mann: Two-photon absorption in GaSe and CdGeAs2, Opt Commun 155,p.47-50 (1998)

[5.381] {Sect. 5.5} Z.P. Chen, D.L. Kaplan, K. Yang, J. Kumar, K.A. Marx, S.K.Tripathy: Two-photon-induced fluorescence from the phycoerythrin protein,Appl Opt 36, p.1655-1659 (1997)

5.5 Two-Photon and Multiphoton Absorption 757

[5.382] {Sect. 5.5} C. Dorrer, F. Nez, B. deBeauvoir, L. Julien, F. Biraben: Accuratemeasurement of the 2 (3)S (1)-3 (3)D (1) two-photon transition frequencyin helium: New determination of the 2 (3)S (1) Lamb shift, Phys Rev Lett78, p.3658-3661 (1997)

[5.383] {Sect. 5.5} J.E. Ehrlich, X.L. Wu, L.Y.S. Lee, Z.Y. Hu, H. Rockel, S.R.Marder, J.W. Perry: Two-photon absorption and broadband optical limitingwith bis-donor stilbenes, Optics Letters 22, p.1843-1845 (1997)

[5.384] {Sect. 5.5} Y.C. Guo, Q.Z. Wang, N. Zhadin, F. Liu, S. Demos, D. Calistru,A. Tirksliunas, A. Katz, Y. Budansky, P.P. Ho, et al.: Two-photon excita-tion of fluorescence from chicken tissue, Appl Opt 36, p.968-970 (1997)

[5.385] {Sect. 5.5} E.J. Larson, L.A. Friesen, C.K. Johnson: An ultrafast one-photon and two-photon transient absorption study of the solvent-dependentphotophysics in all-trans retinal, Chem Phys Lett 265, p.161-168 (1997)

[5.386] {Sect. 5.5} T. Munakata, T. Sakashita, M. Tsukakoshi, J. Nakamura: Finestructure of the two-photon photoemission from benzene adsorbed on Cu(111), Chem Phys Lett 271, p.377-380 (1997)

[5.387] {Sect. 5.5} G. Robertson, D. Armstrong, M.J.P. Dymott, A.I. Ferguson,G.L. Hogg: Two-photon fluorescence microscopy with a diode-pumped Cr:LiSAF laser, Appl Opt 36, p.2481-2483 (1997)

[5.388] {Sect. 5.5} T. Plakhotnik, D. Walser, A. Renn, U.P. Wild: Light inducedsingle molecule frequency shift, Phys Rev Lett 77, p.5365-5368 (1996)

[5.389] {Sect. 5.5} P.S. Weitzman, U. Osterberg: Two-photon absorption and pho-toconductivity in photosensitive glasses, J Appl Phys 79, p.8648-8655 (1996)

[5.390] {Sect. 5.5} R. De Salvo, A.A. Said, D.J. Hagan, E.W. Van Stryland,M. Sheik-Bahae: Infrared to Ultraviolet Measurements of Two-Photon Ab-sorption and n2 in Wide Bandgap Solids, IEEE J. QE-32, p.1324-1333(1996)

[5.391] {Sect. 5.5} T. Plakhotnik, D. Walser, M. Pirotta, A. Renn, U.P. Wild: Non-linear spectroscopy on a single quantum system: Two- photon absorptionof a single molecule, Science 271, p.1703-1705 (1996)

[5.392] {Sect. 5.5} C. Xu, J. Guild, W.W. Webb, W. Denk: Determination of ab-solute two-photon excitation cross sections by in situ second-order autocor-relation, Optics Letters 20, p.2372-2374 (1995)

[5.393] {Sect. 5.5} K. Danzmann, K. Grutzmacher, B. Wende: Doppler-free two-photon polarization spectroscopy measurement of the Stark-broadened pro-file of the hydrogen L alpha line in a dense plasma, Phys. Rev. Lett. 57,p.2151-2153 (1986)

[5.394] {Sect. 5.5} B.M. Pierce, R.R. Birge: The Effects of Laser Pulsewidth andMolecular Lifetime on the Experimental Determination of One-Photon andTwo-Photon Excitation Spectra, IEEE J. QE-19, p.826-833 (1983)

[5.395] {Sect. 5.5} S. Chu, A.P. Mills, Jr.: Excitation of the Positronium 1 3S1-23S1Two-Photon Transition, Phys. Rev. Lett. 48, p.1333-1337 (1982)

[5.396] {Sect. 5.5} G.I. Bekov, E.P. Vidolova-Angelova, L.N. Ivanov, V.S. Letokhov,V.I. Mishin: Double-Excited Narrow Autoionization States of YtterbiumAtom, Opt. Comm. 35, p.194-198 (1980)

[5.397] {Sect. 5.5} B.P. Stoicheff, E. Weinberger: Frequency Shifts, Line Broad-enings, and Phase-Interference Effects in Rb**+Rb Collisions, Measuredby Doppler-Free Two-Photon Spectroscopy, Phys. Rev. Lett. 44, p.733-736(1980)

[5.398] {Sect. 5.5} B.P. Stoicheff, E. Weinberger: Doppler-free two-photon absorp-tion spectrum of rubidium, Can. J. Phys. 57, p.2143-2154 (1979)

[5.399] {Sect. 5.5} K.C. Harvey, B.P. Stoicheff: Fine Structure of the n2D Series inRubidium near the Ionization Limit, Phys. Rev. Lett. 38, p.537-540 (1977)

758 5. Nonlinear Interactions of Light and Matter with Absorption

[5.400] {Sect. 5.5} R. Teets, J. Eckstein, T.W. Hansch: Coherent Two-Photon Ex-citation by Multiple Light Pulses, Phys. Rev. Lett. 38, p.760-764 (1977)

[5.401] {Sect. 5.5} P.F. Liao, G.C. Bjorklund: Polarization Rotation Induced byResonant Two-Photon Dispersion, Phys. Rev. Lett. 36, p.584-587 (1976)

[5.402] {Sect. 5.5} M.G. Littman, M.L. Zimmerman, T.W. Ducas, R.R. Freeman,D. Kleppner: Stucture of Sodium Rydberg States in Weak to Strong ElectricFields, Phys. Rev. Lett. 36, p.788-791 (1976)

[5.403] {Sect. 5.5} T.W. Hansch, K.C. Harvey, G. Meisel, A.L. Schawlow: Two-Photon Spectroscopy of Na 3s-4d Without Doppler Broadening Using aCW Dye Laser, Opt. Comm. 11, p.50-53 (1974)

[5.404] {Sect. 5.5} M.D. Levenson, N. Bloembergen: Observation of Two-PhotonAbsorption without Doppler Broadening on the 3S-5S Transition in SodiumVapor, Phys. Rev. Lett. 32, p.645-648 (1974)

[5.405] {Sect. 5.5} W.M. McClain: Excited State Symmetry Assignment ThroughPolarized Two-Photon Absorption Studies of Fluids, J. Chem. Phys. 55,p.2789-2796 (1971)

[5.406] {Sect. 5.5} W.H. Glenn: Theory of the Two-Photon Absorption-Fluorescence Method of Pulswidth Measurement, IEEE J. QE-6, p.510-515(1970)

[5.407] {Sect. 5.5} T.R. Bader, A. Gold: Polarization Dependence of Two-PhotonAbsorption in Solids, Phys. Rev. 171, p.997-1003 (1968)

[5.408] {Sect. 5.5} M.W. Hamilton, D.S. Elliott: Second order interference in twophoton absorption, J. Mod. Opt. 43, p.1765-1771 (1965)

[5.409] {Sect. 5.5} W. Kaiser, C.G.B. Garrett: Two-Photon Excitation in CaF2:Eu2+, Phys. Rev. Lett. 7, p.229-231 (1961)

[5.410] {Sect. 5.5} M. Goppert-Mayer: Uber Elementarakte mit zwei Quanten-sprungen, Ann. Phys.9, p.273-294 (1931)

[5.411] {Sect. 5.5} M. Bellini, A. Bartoli, T.W. Hansch: Two-photon Fourier spec-troscopy with femtosecond light pulses, Optics Letters 22, p.540-542 (1997)

[5.412] {Sect. 5.5} V. Blanchet, C. Nicole, M.A. Bouchene, B. Girard: Temporalcoherent control in two-photon transitions: From optical interferences toquantum interferences, Phys Rev Lett 78, p.2716-2719 (1997)

[5.413] {Sect. 5.5} H.-B. Fei, M. Jost, S. Popescu, B.E.A. Saleh, M.C. Teich:Entanglement-Induced Two-Photon Transparency, Phys. Rev. Lett. 78,p.1679-1682 (1997)

[5.414] {Sect. 5.5} W. Rudolph, M. Sheikbahae, A. Bernstein, L.F. Lester: Fem-tosecond autocorrelation measurements based on two- photon photocon-ductivity in ZnSe, Optics Letters 22, p.313-315 (1997)

[5.415] {Sect. 5.5} S.A. Slattery, D.N. Nikogosyan: Long-period fiber grating in-scription under high-intensity 352 nm femtosecond irradiation: Three-photon absorption and energy deposition in cladding, Opt Commun 255,p.81-90 (2005)

[5.416] {Sect. 5.5} P.P. Markowicz, G.S. He, P.N. Prasad: Direct four-photon ex-citation of amplified spontaneous emission in a nonlinear organic chro-mophore, Optics Letters 30, p.1369-1371 (2005)

[5.417] {Sect. 5.5} A.K. Dharmadhikari, B. Roy, S. Roy, J.A. Dharmad-hikari, A. Mishra, G.R. Kumar: Higher-order optical nonlinearities in 4’-dimethylamino-N-methyl-4- stilbazolium tosylate, Opt Commun 235, p.195-200 (2004)

[5.418] {Sect. 5.5} H. Wabnitz, L. Bittner, A.R.B. deCastro, R. Dohrmann, P.Gurtler, T. Laarmann, W. Laasch, J. Schulz, A. Swiderski, K. vonHaeften,T. Moller, B. Faatz, A. Fateev, J. Feldhaus, C. Gerth, U. Hahn, E. Saldin,E. Schneidmiller, K. Sytchev, K. Tiedtke, R. Treusch, M. Yurkov: Multiple

5.5 Two-Photon and Multiphoton Absorption 759

ionization of atom clusters by intense soft X-rays from a free-electron laser,Nature 420, p.482-485 (2002)

[5.419] {Sect. 5.5} J. Pe?ina, E.A. Saleh B, M.C. Teich: Multiphoton absorptioncross section and virtual-state spectroscopy for the entangled n-photonstate, Physical Review A 57, p.3972-3986 (1998)

[5.420] {Sect. 5.5} P. Langlois, E.P. Ippen: Measurement of pulse asymmetry bythree-photon-absorption autocorrelation in a GaAsP photodiode, OpticsLetters 24, p.1868-1870 (1999)

[5.421] {Sect. 5.5} C. Majumder, O.D. Jayakumar, R.K. Vatsa, S.K. Kulshreshtha,J.P. Mittal: Multiphoton ionisation of acetone at 355 nm: a time-of-flightmass spectrometry study, Chem Phys Lett 304, p.51-59 (1999)

[5.422] {Sect. 5.5} A. Volkmer, K. Wynne, D.J.S. Birch: Near-infrared excitationof alkane ultra-violet fluorescence, Chem Phys Lett 299, p.395-402 (1999)

[5.423] {Sect. 5.5} M.A. Baig, M. Yaseen, A. Nadeem, R. Ali, S.A. Bhatti: Three-photon excitation of strontium Rydberg levels, Opt Commun 156, p.279-284(1998)

[5.424] {Sect. 5.5} D.J. Maas, D.I. Duncan, R.B. Vrijen, W.J. Vanderzande, L.D.Noordam: Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses, Chem Phys Lett 290, p.75-80 (1998)

[5.425] {Sect. 5.5} H. Shim, M.G. Liu, H.B. Chang, G.I. Stegeman: Four-photonabsorption in the single-crystal polymer bis (paratoluene) sulfonate, OpticsLetters 23, p.430-432 (1998)

[5.426] {Sect. 5.5} M. Castillejo, M. Martin, R. Denalda, J. Solis: Nanosecond ver-sus picosecond near UV multiphoton dissociation of ketene, Chem PhysLett 268, p.465-470 (1997)

[5.427] {Sect. 5.5} J. Thogersen, J.D. Gill, H.K. Haugen: Stepwise multiphotonexcitation of the 4f (2)5d configuration in Nd3+:YLF, Opt Commun 132,p.83-88 (1996)

[5.428] {Sect. 5.5} J.D. Bhawalkar, G.S. He, P.N. Prasad: Three-photon inducedupconverted fluorescence from an organic compound: application to opticalpower limiting, Opt. Comm. 119, p.587-590 (1995)

[5.429] {Sect. 5.5} M. Hippler, M. Quack, R. Schwarz, G. Seyfang, S. Matt,T. Mark: Infrared multiphoton excitation, dissociation and ionization ofC-60, Chem Phys Lett 278, p.111-120 (1997)

[5.430] {Sect. 5.5} N.P. Lockyer, J.C. Vickerman: Single photon and femtosecondmultiphoton ionisation of the dipeptide valyl-valine, Int J Mass Spectrom197, p.197-209 (2000)

[5.431] {Sect. 5.5} M.J. DeWitt, R.J. Levis: Observing the transition from amultiphoton-dominated to a field-mediated ionization process for poly-atomic molecules in intense laser fields, Phys Rev Lett 81, p.5101-5104(1998)

[5.432] {Sect. 5.5} J. Wei, B. Zhang, L. Fang, L.D. Zhang, J.Y. Cai: REMPItime-of-flight mass spectra of C2H7N isomers, Opt Commun 156, p.331-336 (1998)

[5.433] {Sect. 5.5} K.W.D. Ledingham, C. Kosmidis, S. Georgiou, S. Couris, R.P.Singhal: A comparison of the femto-, pico- and nano-second multiphotonionization and dissociation processes of NO2 at 248 and 496 nm, ChemPhys Lett 247, p.555-563 (1995)

[5.434] {Sect. 5.5} T. Baumert, M. Grosser, R. Thalweiser, G. Gerber: FemtosecondTime-Resolved Molecular Multphoton-Ionisation: The Na2 System, Phys.Rev. Lett. 67, p.3753-3756 (1991)

[5.435] {Sect. 5.5} N.Tan-no, k. Ohkawara, H. Inaba: Coherent Transient Multi-photon Scattering in a Resonant Two-Level System, Phys. Rev. Lett. 46,p.1282-1285 (1981)

760 5. Nonlinear Interactions of Light and Matter with Absorption

[5.436] {Sect. 5.5} P. A. Schulz, Aa. S. Sudbo, E. R. Grant, Y. R. Shen, Y. T. Lee:Multiphoton dissociation of SF6 by a molecular beam method, J. Chem.Phys. 72p.4985-4995 (1980)

[5.437] {Sect. 5.5} J. G. Black, P. Kolodner, M. J. Schulz, E. Yablonovitch, N.Bloembergen Collisionless multiphoton energy deposition and dissociationof SF6, Phys. Rev. A 19, p.704-716 (1979)

[5.438] {Sect. 5.5} P. Esherick, J.A. Armstrong, R.W. Dreyfus, J.J. Wynne: Multi-photon Ionization Spectroscopy of High-Lying, Even-Parity States in Cal-cium, Phys. Rev. Lett. 36, p.1296-1299 (1976)

[5.439] {Sect. 5.5} D.K. Sharma, J. Stevenson, G.J. Hoytink: The photo-ionizationof mono- and di-sodium tetracene in 2-MTHF at room temperature bynanosecond ruby laser pulses, Chem. Phys. Lett. 29, p.343-348 (1974)

[5.440] {Sect. 5.5} o Geppert-Mayer M Ueber Elementarakte mit zwei Quanten-sprngen, Ann. Phys. 9, p.273-295 (1931)

[5.441] {Sect. 5.6} F. Legare, I.V. Litvinyuk, P.W. Dooley, F. Quere, A.D. Ban-drauk, D.M. Villeneuve, P.B. Corkum: Time-resolved double ionization withfew cycle laser pulses – art. no. 093002, Phys Rev Lett 9109, p.3002 (2003)

[5.442] {Sect. 5.6} M. Rodriguez, R. Sauerbrey, H. Wille, L. Woste, T. Fujii, Y.B.Andre, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kaspar-ian, E. Salmon, J. Yu, J.P. Wolf: Triggering and guiding megavolt dischargesby use of laser-induced ionized filaments, Optics Letters 27, p.772-774 (2002)

[5.443] {Sect. 5.6} V. Sturm, R. Noll: Laser-induced breakdown spectroscopy ofgas mixtures of air, CO2, N- 2, and C3H8 for simultaneous C, H, O, and Nmeasurement, Appl Opt 42, p.6221-6225 (2003)

[5.444] {Sect. 5.6} I.G. Dors, C.G. Parigger: Computational fluid-dynamic modelof laser-induced breakdown in air, Appl Opt 42, p.5978-5985 (2003)

[5.445] {Sect. 5.6} V. Detalle, M. Sabsabi, L. StOnge, A. Hamel, R. Heon: In-fluence of Er:YAG and Nd:YAG wavelengths on laser-induced breakdownspectroscopy measurements under air or helium atmosphere, Appl Opt 42,p.5971-5977 (2003)

[5.446] {Sect. 5.6} V.I. Babushok, F.C. DeLucia, P.J. Dagdigian, M.J. Nusca, A.W.Miziolek: Kinetic modeling of the laser-induced breakdown spectroscopyplume from metallic lead, Appl Opt 42, p.5947-5962 (2003)

[5.447] {Sect. 5.6} D.M. Simanovskii, H.A. Schwettman, H. Lee, A.J. Welch: Mid-infrared optical breakdown in transparent dielectrics – art. no. 107601, PhysRev Lett 9110, p.7601 (2003)

[5.448] {Sect. 5.6} Y.L. Chen, J.W.L. Lewis: Visualization of laser-induced break-down and ignition, Opt Express 9, p.360-372 (2001)

[5.449] {Sect. 5.6} C.H. Fan, J.P. Longtin: Modeling optical breakdown in di-electrics during ultrafast laser processing, Appl Opt 40, p.3124-3131 (2001)

[5.450] {Sect. 5.6} N. Akozbek, M. Scalora, C.M. Bowden, S.L. Chin: White-lightcontinuum generation and filamentation during the propagation of ultra-short laser pulses in air, Opt Commun 191, p.353-362 (2001)

[5.451] {Sect. 5.6} M. Li, S. Menon, J.P. Nibarger, G.N. Gibson: Ultrafast electrondynamics in femtosecond optical breakdown of dielectrics, Phys Rev Lett82, p.2394-2397 (1999)

[5.452] {Sect. 5.6} M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann,G. Mourou, W. Kautek, F. Krausz: Femtosecond optical breakdown in di-electrics, Phys Rev Lett 80, p.4076-4079 (1998)

[5.453] {Sect. 5.6} J. Noack, D.X. Hammer, G.D. Noojin, B.A. Rockwell, A. Vo-gel: Influence of pulse duration on mechanical effects after laser-inducedbreakdown in water, J Appl Phys 83, p.7488-7495 (1998)

5.6 Photoionization and Optical Breakdown (OBD) 761

[5.454] {Sect. 5.6} E.N. Glezer, C.B. Schaffer, N. Nishimura, E. Mazur: Minimallydisruptive laser-induced breakdown in water, Optics Letters 22, p.1817-1819(1997)

[5.455] {Sect. 5.6} V.E. Peet, R.V. Tsubin: Multiphoton ionization and opticalbreakdown of xenon in annular laser beams, Opt Commun 134, p.69-74(1997)

[5.456] {Sect. 5.6} I.C.E. Turcu, M.C. Gower, P. Huntington: Measurement of KrFlaser breakdown threshold in gases, Opt Commun 134, p.66-68 (1997)

[5.457] {Sect. 5.6} T. Yagi, Y.S. Huo: Laser-induced breakdown in H-2 gas at 248nm, Appl Opt 35, p.3183-3184 (1996)

[5.458] {Sect. 5.6} A. Kummrow: Effect of optical breakdown on stimulated Bril-louin scattering in focused beam cells, J. Opt. Soc. Am. B 12, p.1006-1011(1995)

[5.459] {Sect. 5.6} R.A. Mullen: Multiple-Short-Pulse Stimulated Brillouin Scat-tering for Trains of 200 ps Pulses at 1.06 µm, IEEE J. QE-26, p.1299-1303(1990)

[5.460] {Sect. 5.6} R.A. Mullen, J.N. Matossian: Quenching optical breakdown withan applied electric field, Opt. Lett. 15, p.601-603 (1990)

[5.461] {Sect. 5.6} Y.S. Huo, A.J. Alcock, O.L. Bourne: A Time-Resolved Studyof Sub-Nanosecond Pulse Generation by the Combined Effects of Stimu-lated Brillouin Scattering and Laser-Induced Breakdown, Appl. Phys. B38, p.125-129 (1985)

[5.462] {Sect. 5.6} S.B. Papernyi, V.F. Petrov, V.A. Serebryakov, V.R. Startsev:Competition between stimulated Brillouin scattering and optical breakdownin argon, Sov. J. Quantum Electron. 13, p.293-297 (1983)

[5.463] {Sect. 5.6} N. Bloembergen: Laser-Induced Electric Breakdown in Solids,IEEE J. QE-10, p.375-386 (1974)

[5.464] {Sect. 5.6} P.N. Voronov, G.A. Delone, N.B. Delone: Multiphoton Ioniza-tion of Atoms. II. Ionization of Krypton by Ruby-Laser Radiation, Sov.Phys. JETP 24, p.1122-1135 (1967)

[5.465] {Sect. 5.6} H. Nakano, T. Nishikawa, N. Uesugi: Strongly enhanced softx-ray emission at 8 nm from plasma on a neodymium-doped glass surfaceheated by femtosecond laser pulses, Appl Phys Lett 72, p.2208-2210 (1998)

[5.466] {Sect. 5.6} M. Schnurer, C. Spielmann, P. Wobrauschek, C. Streli, N.H.Burnett, C. Kan, K. Ferencz, R. Koppitsch, Z. Cheng, T. Brabec et al.:Coherent 0.5-keV X-ray emission from helium driven by a sub-10-fs laser,Phys Rev Lett 80, p.3236-3239 (1998)

[5.467] {Sect. 5.6} Z.Z. Xu, Y.S. Wang, K. Zhai, X.X. Li, Y.Q. Liu, X.D. Yang, Z.Q.Zhang, W.Q. Zhang: Direct experimental evidence of influence of ionizationson high-order harmonic generation, Opt Commun 158, p.89-92 (1998)

[5.468] {Sect. 5.6} M. Yoshida, Y. Fujimoto, Y. Hironaka, K.G. Nakamura,K. Kondo, M. Ohtani, H. Tsunemi: Generation of picosecond hard x rays bytera watt laser focusing on a copper target, Appl Phys Lett 73, p.2393-2395(1998)

[5.469] {Sect. 5.6} V.G. Babaev, M.S. Dzhidzhoev, V.M. Gordienko, M.A. Joukov,A.B. Savelev, V.Y. Timoshenko, A.A. Shashkov, R.V. Volkov: X-ray pro-duction and second harmonic generation by superintense femtosecond laserpulses in the solids with restricted thermal conduction, J Nonlinear OptPhysics Mat 6, p.495-505 (1997)

[5.470] {Sect. 5.6} A. Behjat, J. Lin, G.J. Tallents, A. Demir, M. Kurkcuoglu,C.L.S. Lewis, A.G. MacPhee, S.P. Mccabe, P.J. Warwick, D. Neely, et al.:The effects of multi-pulse irradiation on X-ray laser media, Opt Commun135, p.49-54 (1997)

762 5. Nonlinear Interactions of Light and Matter with Absorption

[5.471] {Sect. 5.6} T. Ditmire, R.A. Smith, R.S. Marjoribanks, G. Kulcsar, M.H.R.Hutchinson: X-ray yields from Xe clusters heated by short pulse high inten-sity lasers, Appl Phys Lett 71, p.166-168 (1997)

[5.472] {Sect. 5.6} C. Kan, N.H. Burnett, C.E. Capjack, R. Rankin: Coherent XUVgeneration from gases ionized by several cycle optical pulses, Phys Rev Lett79, p.2971-2974 (1997)

[5.473] {Sect. 5.6} W.P. Leemans, R.W. Schoenlein, P. Volfbeyn, A.H. Chin, T.E.Glover, P. Balling, M. Zolotorev, K.J. Kim, S. Chattopadhyay, C.V. Shank:Interaction of relativistic electrons with ultrashort laser pulses: Generationof femtosecond X-rays and microprobing of electron beams, IEEE J QE-33,p.1925-1934 (1997)

[5.474] {Sect. 5.6} O. Meighan, A. Gray, J.P. Mosnier, W. Whitty, J.T. Costello,C.L.S. Lewis, A. Macphee, R. Allott, I.C.E. Turcu, A. Lamb: Short-pulse,extreme-ultraviolet continuum emission from a table-top laser plasma lightsource, Appl Phys Lett 70, p.1497-1499 (1997)

[5.475] {Sect. 5.6} J.F. Pelletier, M. Chaker, J.C. Kieffer: Soft x-ray emission pro-duced by a sub-picosecond laser in a single- and double-pulse scheme, JAppl Phys 81, p.5980-5983 (1997)

[5.476] {Sect. 5.6} P. Celliers, L.B. DaSilva, C.B. Dane, S. Mrowka, M. Norton,J. Harder, L. Hackel, D.L. Matthews, H. Fiedorowicz, A. Bartnik, et al.:Optimization of x-ray sources for proximity lithography produced by a highaverage power Nd:glass laser, J Appl Phys 79, p.8258-8268 (1996)

[5.477] {Sect. 5.6} B.N. Chichkov, C. Momma, A. Tunnermann, S. Meyer, T. Men-zel, B. Wellegehausen: Hard-x-ray radiation from short-pulse laser-producedplasmas, Appl Phys Lett 68, p.2804-2806 (1996)

[5.478] {Sect. 5.6} M. Fraenkel, A. Zigler, Y. Horowitz, A. Ludmirsky, S. Maman,E. Moshe, Z. Henis, S. Eliezer: Optimal x-ray source development in thespectral range 4- 14 angstrom using a Nd:YAG high power laser, J ApplPhys 80, p.5598-5603 (1996)

[5.479] {Sect. 5.6} M. Schnurer, P.V. Nickles, M.P. Kalachnikov, W. Sandner, R.Nolte, P. Ambrosi, J.L. Miquel, A. Dulieu, A. Jolas: Characteristics of hardx-ray emission from subpicosecond laser-produced plasmas, J Appl Phys 80,p.5604-5609 (1996)

[5.480] {Sect. 5.6} R.C. Spitzer, T.J. Orzechowski, D.W. Phillion, R.L. Kauffman,C. Cerjan: Conversion efficiencies from laser-produced plasmas in the ex-treme ultraviolet regime, J Appl Phys 79, p.2251-2258 (1996)

[5.481] {Sect. 5.6} D.H. Gill, A.A. Dougal: Breakdown Minima due to Electron-impact Ionization in Super-High-Pressure Gases Irradiated by a FocusedGiant-Pulse Laser, Phys. Rev. Lett. 15, p.845-847 (1965)

[5.482] {Sect. 5.6} N.S. Kim, A. Djaoui, M.H. Key, D. Neely, S.G. Preston, M. Zepf,C.G. Smith, J.S. Wark, J. Zhang, A.A. Offenberger: Extreme ultraviolet lineemission at 24.7 nm from Li-like nitrogen plasma produced by a short KrFexcimer laser pulse, Appl Phys Lett 69, p.884-886 (1996)

[5.483] {Sect. 5.6} E.E.B. Campbell, K. Hansen, K. Hoffmann, G. Korn, M. Tchap-lyguine, M. Wittmann, I.V. Hertel: From above threshold ionization to sta-tistical electron emission: The laser pulse-duration dependence of C-60 pho-toelectron spectra, Phys Rev Lett 84, p.2128-2131 (2000)

[5.484] {Sect. 5.6} E.D. Lancaster, K.L. McNesby, R.G. Daniel, A.W. Miziolek:Spectroscopic analysis of fire suppressants and refrigerants by laser- inducedbreakdown spectroscopy, Appl Opt 38, p.1476-1480 (1999)

[5.485] {Sect. 5.6} M. Saito, S. Izumida, K. Onishi, J. Akazawa: Detection efficiencyof microparticles in laser breakdown water analysis, J Appl Phys 85, p.6353-6357 (1999)

5.6 Photoionization and Optical Breakdown (OBD) 763

[5.486] {Sect. 5.6} M. Nishiura, M. Sasao, M. Bacal: H- laser photodetachment at1064, 532, and 355 nm in plasma, J Appl Phys 83, p.2944-2949 (1998)

[5.487] {Sect. 5.6} D.X. Hammer, R.J. Thomas, G.D. Noojin, B.A. Rockwell, P.K.Kennedy, W.P. Roach: Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media, IEEE J QE-32, p.670-678(1996)

[5.488] {Sect. 5.6} S. Chelkowski, P.B. Corkum, A.D. Bandrauk: FemtosecondCoulomb explosion imaging of vibrational wave functions, Phys Rev Lett82, p.3416-3419 (1999)

[5.489] {Sect. 5.6} O. Baghdassarian, B. Tabbert, G.A. Williams: Luminescencecharacteristics of laser-induced bubbles in water, Phys Rev Lett 83, p.2437-2440 (1999)

[5.490] {Sect. 5.6} L. Koller, M. Schumacher, J. Kohn, S. Teuber, J. Tigges-baumker, K.H. MeiwesBroer: Plasmon-enhanced multi-ionization of smallmetal clusters in strong femtosecond laser fields, Phys Rev Lett 82, p.3783-3786 (1999)

[5.491] {Sect. 5.6} M. Frenz, F. Konz, H. Pratisto, H.P. Weber, A.S. Silenok, V.I.Konov: Starting mechanisms and dynamics of bubble formation induced bya Ho:Yttrium aluminum garnet laser in water, J Appl Phys 84, p.5905-5912(1998)

[5.492] {Sect. 5.6} A.B. Fedotov, N.I. Koroteev, A.N. Naumov, D.A. Sidorovbiryu-kov, A.M. Zheltikov: Coherent four-wave mixing in a laser-preproducedplasma: Optical frequency conversion and two-dimensional mapping ofatoms and ions, J Nonlinear Opt Physics Mat 6, p.387-410 (1997)

[5.493] {Sect. 5.6} Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Cook, P.K.Kennedy, D.X. Hammer, B.A. Rockwell, C.R. Thompson: Theory and sim-ulation on the threshold of water breakdown induced by focused ultrashortlaser pulses, IEEE J QE-33, p.127-137 (1997)

[5.494] {Sect. 5.6} D. Giulietti, L.A. Gizzi, A. Giulietti, A. Macchi, D. Teychenne,P. Chessa, A. Rousse, G. Cheriaux, J.P. Chambaret, G. Darpentigny: Ob-servation of solid-density laminar plasma transparency to intense 30 fem-tosecond laser pulses, Phys Rev Lett 79, p.3194-3197 (1997)

[5.495] {Sect. 5.6} N. Tsuda, J. Yamada: Observation of forward breakdown mech-anism in high- pressure argon plasma produced by irradiation by an excimerlaser, J Appl Phys 81, p.582-586 (1997)

[5.496] {Sect. 5.6} D.E. Hinkel, E.A. Williams, C.H. Still: Laser beam deflectioninduced by transverse plasma flow, Phys Rev Lett 77, p.1298-1301 (1996)

[5.497] {Sect. 5.6} F.H. Loesel, M.H. Niemz, J.F. Bille, T. Juhasz: Laser-inducedoptical breakdown on hard and soft tissues and its dependence on the pulseduration: Experiment and model, IEEE J QE-32, p.1717-1722 (1996)

[5.498] {Sect. 5.6} J.D. Moody, B.J. Macgowan, D.E. Hinkel, W.L. Kruer, E.A.Williams, K. Estabrook, R.L. Berger, R.K. Kirkwood, D.S. Montgomery,T.D. Shepard: First optical observation of intensity dependent laser beamdeflection in a flowing plasma, Phys Rev Lett 77, p.1294-1297 (1996)

[5.499] {Sect. 5.6} M. Welling, R.I. Thompson, H. Walther: Photodissociation ofMgC60 (+) complexes generated and stored in a linear ion trap, Chem PhysLett 253, p.37-42 (1996)

[5.500] {Sect. 5.6} P. Gibbon, R. Forster: Short-pulse laser-plasma interactions,Plasma.Phys. Control. Fusion 38, p.769-793 (1996)

[5.501] {Sect. 5.6} Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright: Laser-inducedbreakdown versus self-focusing for focused picosecond pulses in water,Optics Letters 20, p.1958-1960 (1995)

[5.502] {Sect. 5.6} P.K. Kennedy, S.A. Boppart, D.X. Hammer, B.A. Rockwell,G.D. Noojin, W.P. Roach: A first-order model for computation of laser-

764 5. Nonlinear Interactions of Light and Matter with Absorption

induced breakdown thresholds in ocular and aqueous media. 2. Comparisonto experiment, IEEE J QE-31, p.2250-2257 (1995)

[5.503] {Sect. 5.6} P.K. Kennedy: A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. 1. Theory,IEEE J QE-31, p.2241-2249 (1995)

[5.504] {Sect. 5.6} T.X. Phuoc: Laser spark ignition: experimental determinationof laser-induced breakdown thresholds of combustion gases, Opt Commun175, p.419-423 (2000)

[5.505] {Sect. 5.6} D.X. Hammer, E.D. Jansen, M. Frenz, G.D. Noojin, R.J.Thomas, J. Noack, A. Vogel, B.A. Rockwell, A.J. Welch: Shielding proper-ties of laser-induced breakdown in water for pulse durations from 5 ns to125 fs, Appl Opt 36, p.5630-5640 (1997)

[5.506] {Sect. 5.6} D.X. Hammer, G.D. Noojin, R.J. Thomas, C.E. Clary, B.A.Rockwell, C.A. Toth, W.P. Roach: Intraocular laser surgical probe for mem-brane disruption by laser-induced breakdown, Appl Opt 36, p.1684-1693(1997)

[5.507] {Sect. 5.7} E. Gaizauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis,H. Misawa: Discrete damage traces from filamentation of Gauss-Besselpulses, Optics Letters 31, p.80-82 (2006)

[5.508] {Sect. 5.7} H. Krol, L. Gallais, C. GrezesBesset, J.Y. Natoli, M. Comman-dre: Investigation of nanoprecursors threshold distribution in laser- damagetesting, Opt Commun 256, p.184-189 (2005)

[5.509] {Sect. 5.7} R. Chow, M. Runkel, J.R. Taylor: Laser damage testing of smalloptics for the National Ignition Facility, Appl Opt 44, p.3527-3531 (2005)

[5.510] {Sect. 5.7} C.W. Carr, H.B. Radousky, S.G. Demos: Wavelength depen-dence of laser-induced damage: Determining the damage initiation mecha-nisms – art. no. 127402, Phys Rev Lett 9112, p.7402 (2003)

[5.511] {Sect. 5.7} A. During, M. Commandre, C. Fossati, B. Bertussi, J.Y. Natoli,J.L. Rullier, H. Bercegol, P. Bouchut: Integrated photothermal microscopeand laser damage test facility for in-situ investigation of nanodefect induceddamage, Opt Express 11, p.2497-2501 (2003)

[5.512] {Sect. 5.7} L. Gallais, J.Y. Natoli: Optimized metrology for laser-damagemeasurement: application to multiparameter study, Appl Opt 42, p.960-971(2003)

[5.513] {Sect. 5.7} L. Gallais, J.Y. Natoli, C. Amra: Statistical study of single andmultiple pulse laser-induced damage in glasses, Opt Express 10, p.1465-1474(2002)

[5.514] {Sect. 5.7} S.G. Demos, M. Staggs, K. Minoshima, J. Fujimoto: Character-ization of laser induced damage sites in optical components, Opt Express10, p.1444-1450 (2002)

[5.515] {Sect. 5.7} J.Y. Natoli, L. Gallais, H. Akhouayri, C. Amra: Laser-induceddamage of materials in bulk, thin-film, and liquid forms, Appl Opt 41,p.3156-3166 (2002)

[5.516] {Sect. 5.7} S.G. Demos, M. Staggs: Application of fluorescence microscopyfor noninvasive detection of surface contamination and precursors to laser-induced damage, Appl Opt 41, p.1977-1983 (2002)

[5.517] {Sect. 5.7} M. Grisham, G. Vaschenko, C.S. Menoni, J.J. Rocca, Y.P. Per-shyn, E.N. Zubarev, D.L. Voronov, V.A. Sevryukova, V.V. Kondratenko,A.V. Vinogradov, I.A. Artioukov: Damage to extreme-ultraviolet Sc/Si mul-tilayer mirrors exposed to intense 46.9-nm laser pulses, Optics Letters 29,p.620-622 (2004)

[5.518] {Sect. 5.7} E.J. Takahashi, H. Hasegawa, Y. Nabekawa, K. Midorikawa:High-throughput, high-damage-threshold broadband beam splitter for high-

5.7 Optical Damage 765

order harmonics in the extreme-ultraviolet region, Optics Letters 29, p.507-509 (2004)

[5.519] {Sect. 5.7} Y. Fu, H.F. Wang, R.Y. Shi, J.X. Cheng: Characterization ofphotodamage in coherent anti-Stokes Raman scattering microscopy, OptExpress 14, p.3942-3951 (2006)

[5.520] {Sect. 5.7} S.Z. Xu, T.Q. Jia, H.Y. Sun, C.B. Li, X. Li, D.H. Feng, J.R. Qiu,Z.Z. Xu: Mechanisms of femtosecond laser-induced breakdown and damagein MgO, Opt Commun 259, p.274-280 (2006)

[5.521] {Sect. 5.7} S.G. Demos, M. Staggs, M.R. Kozlowski: Investigation of pro-cesses leading to damage growth in optical materials for large-aperturelasers, Appl Opt 41, p.3628-3633 (2002)

[5.522] {Sect. 5.7} S. Tzortzakis, B. Lamouroux, A. Chiron, S.D. Moustaizis, D.Anglos, M. Franco, B. Prade, A. Mysyrowicz: Femtosecond and picosecondultraviolet laser filaments in air: experiments and simulations, Opt Commun197, p.131-143 (2001)

[5.523] {Sect. 5.7} R. M. Wood: Laser Damage in Optical Materials (SPIE OpticalEngineering Press, London, 1990)

[5.524] {Sect. 5.7} E.S. Bliss: Pulse Duration Dependence of Laser Damage Mech-anisms, Opto-Electr. 3, p.99-108 (1971)

[5.525] {Sect. 5.7} F. Loewenthal, R. Tommasini, J.E. Balmer: Single-shot measure-ment of laser-induced damage thresholds of thin film coatings, Opt Commun152, p.168-174 (1998)

[5.526] {Sect. 5.7} A.C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou:Short-pulse laser damage in transparent materials as a function of pulseduration, Phys Rev Lett 82, p.3883-3886 (1999)

[5.527] {Sect. 5.7} F. Dahmani, A.W. Schmid, J.C. Lambropoulos, S. Burns: De-pendence of birefringence and residual stress near laser-induced cracks infused silica on laser fluence and on laser-pulse number, Appl Opt 37, p.7772-7784 (1998)

[5.528] {Sect. 5.7} S. Papernov, A. Schmid, F. Dahmani: Laser damage in polymerwaveguides driven purely by a nonlinear, transverse scattering process, OptCommun 147, p.112-116 (1998)

[5.529] {Sect. 5.7} Y. Zhao, Z.C. Feng, Y. Liang, H.W. Sheng: Laser-induced col-oration of WO3, Appl Phys Lett 71, p.2227-2229 (1997)

[5.530] {Sect. 5.7} J.P. Feve, B. Boulanger, G. Manier, H. Albrecht: Repetition ratedependence of gray-tracking in KTiOPO4 during second-harmonic genera-tion at 532 nm, Appl. Phys. Lett. 70, p.277-279 (1997)

[5.531] {Sect. 5.7} B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W.Shore, M.D. Perry: Nanosecond-to-femtosecond laser-induced breakdownin dielectrics, Phys. Rev. B 53, p.1749-1761 (1996)

[5.532] {Sect. 5.7} V. Pruneri, P.G. Kazansky, J. Webjorn, P.St.J. Russell, D.C.Hanna: Self-organized light-induced scattering in periodically poled lithiumniobate, Appl. Phys. Lett. 67, p.1957-1959 (1995)

[5.533] {Sect. 5.7} M.P. Scripsick, D.N. Lolacono, J. Rottenberg, S.H. Goellner,L.E. Halliburton, F.K. Hopkins: Defects responsible for gray tracks in flux-grown KTiOPO4, Appl. Phys. Lett. 66, p.34283430 (1995)

[5.534] {Sect. 5.7} B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D.Perry: Laser-Induced Damage in Dielectrics with Nanosecond to Subpi-cosecond Pulses, Phys. Rev. Lett. 74, p.2248-2251 (1995)

[5.535] {Sect. 5.7} B. Boulanger, M.M. Fejer, R. Blachman, P.F. Bordui: Study ofKTiOPO4 gray-tracking at 1064, 532, and 355 nm, Appl. Phys. Lett. 65,p.2401-2403 (1994)

766 5. Nonlinear Interactions of Light and Matter with Absorption

[5.536] {Sect. 5.7} M.P. Scripsick, G.J. Edwards, L.E. Halliburton, R.F. Belt, G.M.Loiacono: Effect of crystal growth on Ti3+ centers in KTiOPO4, J. Appl.Phys. 76, p.773-776 (1994)

[5.537] {Sect. 5.7} G.M. Loiacono, D.N. Loiacono, T. McGee, M. Babb: Laser dam-age formation in KTiOPO4 and KTiOAsO4 crystals: Grey tracks, J. Appl.Phys. 72, p.2705-2712 (1992)

[5.538] {Sect. 5.7} J.C. Jacco, D.R. Rockafellow, E.A. Teppo: Bulk-darkeningthreshold of flux-grown KTiOPO4, Opt. Lett. 16, p.1307-1309 (1991)

[5.539] {Sect. 5.7} J.K. Tyminski: Photorefractive damage in KTP used as second-harmonic generator, J. Appl. Phys. 70, p.5570-5576 (1991)

[5.540] {Sect. 5.7} G.A. Magel, M.M. Fejer, R.L. Byer: Quase-phase-matchedsecond-harmonic generation of blue light in periodically poled LiNbO3,Appl. Phys. Lett. 56, p.108-110 (1990)

[5.541] {Sect. 5.7} K.E. Montgomery, F.P. Milanovich: High-laser-damage-threshold potassium dihydrogen phosphate crystals, J. Appl. Phys. 68,p.3979-3982 (1990)

[5.542] {Sect. 5.7} S.C. Jones, P. Braunlich, R.T. Casper, X.-A. Shen, P. Kelly:Recent progress on laser-induced modifications and intrinsic bulk damageof wide-gap optical materials, Opt. Eng. 28, p.1039-1068 (1989)

[5.543] {Sect. 5.7} D.A. Bryan, R.R. Rice, R. Gerson, H.E. Tomaschke, K.L.Sweeney, L.E. Halliburton: Magnesium-doped lithium niobate for higheroptical power applications, Opt. Eng. 24, p.138-143 (1985)

[5.544] {Sect. 5.7} N. Bloembergen: Role of Cracks, Pores, and Absorbing Inclu-sions on Laser Induced Damage Threshold at Surfaces of Transparent Di-electrics, Appl. Opt. 12, p.661-664 (1973)

[5.545] {Sect. 5.7} N.L. Boling, G. Dube: Laser-induced inclusion damage at sur-faces of transparent dielectrics, Appl. Phys. Lett. 23, p.658-660 (1973)

[5.546] {Sect. 5.7} N.L. Boling, M.D. Crisp, G. Dube: Laser Induced Surface Dam-age, Appl. Opt. 12, p.650-660 (1973)

[5.547] {Sect. 5.7} M.D. Crisp, N.L. Boling, G. Dube: Importance of Fresnel reflec-tions in laser surface damage transparent dielectrics, Appl. Phys. Lett. 21,p.364-366 (1972)

[5.548] {Sect. 5.7} R.W. Hopper, D.R. Uhlmann: Mechanism of Inclusion Damagein Laser Glass, J. Appl. Phys. 41, p.4023-4037 (1970)

[5.549] {Sect. 5.7} W.G. Wagner, H.A. Haus, J.H. Marburger: Large-Scale Self-Trapping of Optical Beams in the Paraxial Ray Approximation, Phys. Rev.175, p.256-266 (1968)

[5.550] {Sect. 5.7} M. Castillejo, S. Couris, E. Koudoumas, M. Martin: Ionizationand fragmentation of aromatic and single-bonded hydrocarbons with 50 fslaser pulses at 800 nm, Chem Phys Lett 308, p.373-380 (1999)

[5.551] {Sect. 5.7} S. Wennmalm, R. Rigler: On death numbers and survival timesof single dye molecules, J Phys Chem B 103, p.2516-2519 (1999)

[5.552] {Sect. 5.7} M. Castillejo, S. Couris, E. Lane, M. Martin, J. Ruiz: Laserphotodissociation of ketene at 230 nm, Chem Phys 232, p.353-360 (1998)

[5.553] {Sect. 5.7} S. Popov: Dye photodestruction in a solid-state dye laser witha polymeric gain medium, Appl Opt 37, p.6449-6455 (1998)

[5.554] {Sect. 5.7} T. Shibata, T. Suzuki: Photofragment ion imaging with fem-tosecond laser pulses, Chem Phys Lett 262, p.115-119 (1996)

[5.555] {Sect. 5.7} R.K. Talukdar, M. Hunter, R.F. Warren, J.B. Burkholder, A.R.Ravishankara: UV laser photodissociation of CF2ClBr and CF2Br2 at 298K: Quantum yields of Cl, Br, and CF2, Chem Phys Lett 262, p.669-674(1996)

5.7 Optical Damage 767

[5.556] {Sect. 5.7} D.M. Burland, F. Carmona, J. Pacansky: The photodissociationof s-tetrazine and dimethyl-s-tetrazine, Chem. Phys. Lett. 56, p.221-226(1978)

[5.557] {Sect. 5.7} S. Link, C. Burda, M.B. Mohamed, B. Nikoobakht, M.A. El-Sayed: Laser photothermal melting and fragmentation of gold nanorods:Energy and laser pulse-width dependence, J Phys Chem A 103, p.1165-1170(1999)

[5.558] {Sect. 5.7} A. Saemann, K. Eidmann: X-ray emission from metallic (Al)and dielectric (glass) targets irradiated by intense ultrashort laser pulses,Appl Phys Lett 73, p.1334-1336 (1998)

[5.559] {Sect. 5.7} I.M. Hodge: Physical aging in polymer glasses, Science 267,p.1945-1947 (1995)

[5.560] {Sect. 5.7} A.J. Campillo, S.L. Shapiro, B.R. Suydam: Relationship of self-focusing to spatial instability modes, Appl. Phys. Lett. 24, p.178-180 (1974)

[5.561] {Sect. 5.7} A.J. Campillo, S.L. Shapiro, B.R. Suydam: Periodic breakup ofoptical beams due to self-focusing, Appl. Phys. Lett. 23, p.628-630 (1973)

[5.562] {Sect. 5.7} M.M.T. Loy, Y.R. Shen: Study of Self-Focusing and Small-ScaleFilaments of Light in Nonlinear Media, IEEE J. QE-9, p.409-422 (1973)

[5.563] {Sect. 5.7} E.L. Kerr: Filamentary Tracks Formed in Transparent OpticalGalss by Laser Beam Self-Focusing. II. Theoretical Analysis, Phys. Rev. A4, p.1195-1218 (1971)

[5.564] {Sect. 5.7} E.L. Dawes, J.H. Marburger: Computer Studies in Self-Focusing,Phys. Rev. 179, p.862-868 (1969)

[5.565] {Sect. 5.8} D. Bauerle: Laser Processing and Chemistry (Springer, Berlin,Heidelberg, New York, 1996)

[5.566] {Sect. 5.8} R.Ifflander: Solid-State Lasers for Materials Processing (Sprin-ger, Heidelberg, Berlin, New York, 2001)

[5.567] {Sect. 5.8} J. C. Miller (ed.): Laser Ablation (Springer, Berlin, Heidelberg,New York, 1994)

[5.568] {Sect. 5.8} M. Haag, H. Hugel, C.E. Albright, S. Ramasamy: CO2 laser lightabsorption characteristics of metal powders, J Appl Phys 79, p.3835-3841(1996)

[5.569] {Sect. 5.8} A.F.H. Kaplan: An analytical model of metal cutting with alaser beam, J Appl Phys 79, p.2198-2208 (1996)

[5.570] {Sect. 5.8} C.J. Nonhof: Material processing with Nd-lasers, Electrochem.Publ. 34p.128 (1988)

[5.571] {Sect. 5.8} H. Dachraoui, W. Husinsky: Thresholds of plasma formationin silicon identified by optimizing the ablation laser pulse form – art. no.107601, Phys Rev Lett 9710, p.7601 (2006)

[5.572] {Sect. 5.8} G. Vaschenko, A.G. Etxarri, C.S. Menoni, J.J. Rocca, O. Hem-berg, S. Bloom, W. Chao, E.H. Anderson, D.T. Attwood, Y. Lu, B. Parkin-son: Nanometer-scale ablation with a table-top soft x-ray laser, Optics Let-ters 31, p.3615-3617 (2006)

[5.573] {Sect. 5.8} J.S. Yahng, B.H. Chon, C.H. Kim, S.C. Jeoung, H.R. Kim: Non-linear enhancement of femtosecond laser ablation efficiency by hybridizationwith nanosecond laser, Opt Express 14, p.9544-9550 (2006)

[5.574] {Sect. 5.8} J. Ren, M. Kelly, L. Hesselink: Laser ablation of silicon in waterwith nanosecond and femtosecond pulses, Optics Letters 30, p.1740-1742(2005)

[5.575] {Sect. 5.8} J. Konig, S. Nolte, A. Tunnermann: Plasma evolution duringmetal ablation with ultrashort laser pulses, Opt Express 13, p.10597-10607(2005)

[5.576] {Sect. 5.8} M. Ostermeyer, P. Kappe, R. Menzel, S. Sommer, F. Dausinger:Laser drilling in thin materials with bursts of ns-pulses generated by stimu-

768 5. Nonlinear Interactions of Light and Matter with Absorption

lated Brillouin scattering (SBS), Appl Phys A Mat Sci Process 81, p.923-927(2005)

[5.577] {Sect. 5.8} D. Perez, L.J. Lewis: Ablation of solids under femtosecond laserpulses – art. no. 255504, Phys Rev Lett 8925, p.5504 (2002)

[5.578] {Sect. 5.8} Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, Z.X.Zhou: Single femtosecond pulse holography using polymethyl methacrylate,Opt Express 10, p.1173-1178 (2002)

[5.579] {Sect. 5.8} C. Hahn, T. Lippert, A. Wokaun: Comparison of the ablationbehavior of polymer films in the IR and UV with nanosecond and picosecondpulses, J Phys Chem B 103, p.1287-1294 (1999)

[5.580] {Sect. 5.8} T.E. Itina, W. Marine, M. Autric: Nonstationary effects inpulsed laser ablation, J Appl Phys 85, p.7905-7908 (1999)

[5.581] {Sect. 5.8} J. Muramoto, I. Sakamoto, Y. Nakata, T. Okada, M. Maeda:Influence of electric field on the behavior of Si nanoparticles generated bylaser ablation, Appl Phys Lett 75, p.751-753 (1999)

[5.582] {Sect. 5.8} D. Sands, F.X. Wagner, P.H. Key: Evidence for a thermal mech-anism in excimer laser ablation of thin film ZnS on Si, J Appl Phys 85,p.3855-3859 (1999)

[5.583] {Sect. 5.8} A. Cavalleri, K. SokolowskiTinten, J. Bialkowski, D. vonder-Linde: Femtosecond laser ablation of gallium arsenide investigated withtime- of-flight mass spectroscopy, Appl Phys Lett 72, p.2385-2387 (1998)

[5.584] {Sect. 5.8} C. Egami, Y. Kawata, Y. Aoshima, H. Takeyama, F. Iwata,O. Sugihara, M. Tsuchimori, O. Watanabe, H. Fujimura, N. Okamoto:Visible-laser ablation on a nanometer scale using urethane-urea copolymers,Opt Commun 157, p.150-154 (1998)

[5.585] {Sect. 5.8} T.W. Hodapp, P.R. Fleming: Modeling topology formation dur-ing laser ablation, J Appl Phys 84, p.577-583 (1998)

[5.586] {Sect. 5.8} H. Schmidt, J. Ihlemann, B. WolffRottke, K. Luther, J. Troe:Ultraviolet laser ablation of polymers: spot size, pulse duration, and plumeattenuation effects explained, J Appl Phys 83, p.5458-5468 (1998)

[5.587] {Sect. 5.8} J. Zhang, K. Sugioka, K. Midorikawa: Direct fabrication of mi-crogratings in fused quartz by laser-induced plasma-assisted ablation witha KrF excimer laser, Optics Letters 23, p.1486-1488 (1998)

[5.588] {Sect. 5.8} T.G. Barton, H.J. Foth, M. Christ, K. Hormann: Interaction ofholmium laser radiation and cortical bone: Ablation and thermal damagein a turbid medium, Appl Opt 36, p.32-43 (1997)

[5.589] {Sect. 5.8} D.J. Krajnovich: Near-threshold photoablation characteristicsof polyimide and poly (ethylene terephthalate), J Appl Phys 82, p.427-435(1997)

[5.590] {Sect. 5.8} X. Liu, D. Du, G. Mourou: Laser ablation and micromachiningwith ultrashort laser pulses, IEEE J QE-33, p.1706-1716 (1997)

[5.591] {Sect. 5.8} L.V. Zhigilei, B.J. Garrison: Velocity distributions of moleculesejected in laser ablation, Appl Phys Lett 71, p.551-553 (1997)

[5.592] {Sect. 5.8} G.B. Blanchet, C.R. Fincher: Laser ablation: Selective unzippingof addition polymers, Appl Phys Lett 68, p.929-931 (1996)

[5.593] {Sect. 5.8} C.G. Gill, T.M. Allen, J.E. Anderson, T.N. Taylor, P.B. Kelly,N.S. Nogar: Low-power resonant laser ablation of copper, Appl Opt 35,p.2069-2082 (1996)

[5.594] {Sect. 5.8} W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann,F. Krausz: Laser ablation of dielectrics with pulse durations between 20 fsand 3 ps, Appl Phys Lett 69, p.3146-3148 (1996)

[5.595] {Sect. 5.8} C. Momma, B.N. Chichkov, S. Nolte, F. vonAlvensleben,A. Tunnermann, H. Welling, B. Wellegehausen: Short-pulse laser ablationof solid targets, Opt Commun 129, p.134-142 (1996)

5.8 Laser Material Processing 769

[5.596] {Sect. 5.8} M.A. Shannon, B. Rubinsky, R.E. Russon: Mechanical stresspower measurements during high-power laser ablation, J Appl Phys 80,p.4665-4672 (1996)

[5.597] {Sect. 5.8} J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R. Houbertz,G. Domann, J. Schulz, C. Cronauer, L. Frohlich, M. Popall: Femtosecondlaser-induced two-photon polymerization of inorganic- organic hybrid ma-terials for applications in photonics, Optics Letters 28, p.301-303 (2003)

[5.598] {Sect. 5.8} M. Ams, G.D. Marshall, M.J. Withford: Study of the influence offemtosecond laser polarisation on direct writing of waveguides, Opt Express14, p.13158-13163 (2006)

[5.599] {Sect. 5.8} A.Y. Vorobyev, C.L. Guo: Femtosecond laser nanostructuringof metals, Opt Express 14, p.2164-2169 (2006)

[5.600] {Sect. 5.8} A.K. Das: Laser direct writing polymeric single-mode waveguidedevices with a rib structure, Appl Opt 42, p.1236-1243 (2003)

[5.601] {Sect. 5.8} J.M. FitzGerald, A. Pique, D.B. Chrisey, P.D. Rack, M. Zeleznik,R.C.Y. Auyeung, S. Lakeou: Laser direct writing of phosphor screens forhigh-definition displays, Appl Phys Lett 76, p.1386-1388 (2000)

[5.602] {Sect. 5.8} L.D. Wang, H.S. Kwok: Pulsed laser deposition of organic thinfilms, Thin Solid Films 363, p.58-60 (2000)

[5.603] {Sect. 5.8} M.C. Wanke, O. Lehmann, K. Muller, Q.Z. Wen, M. Stuke:Laser rapid prototyping of photonic band-gap microstructures, Science 275,p.1284-1286 (1997)

[5.604] {Sect. 5.8} R.L. Gordon, G.W. Forbes: Gaussian beams with optimal focalproperties, Opt Commun 124, p.195-201 (1996)

[5.605] {Sect. 5.8} D.H. Lowndes, D.B. Geohegan, A.A. Puretzky, D.P. Norton,C.M. Rouleau: Synthesis of novel thin-film materials by pulsed laser depo-sition, Science 273, p.898-903 (1996)

[5.606] {Sect. 5.8} R.W. Mcgowan, D.M. Giltner, S.A. Lee: Light force cooling, fo-cusing, and nanometer-scale deposition of aluminum atoms, Optics Letters20, p.2535-2537 (1995)

[5.607] {Sect. 5.8} O. Lehmann, M. Stuke: Laser-driven movement of three-dimen-sional microstructures generated by laser rapid prototyping, Science 270,p.1644-1646 (1995)

[5.608] {Sect. 5.8} B. Dragnea, B. Bourguignon: Photoinduced effects in UV lasermelting of Si in UHV, Phys Rev Lett 82, p.3085-3088 (1999)

[5.609] {Sect. 5.8} E.N. Sobol, M.S. Kitai, N. Jones, A.P. Sviridov, T. Milner, B.J.F.Wong: Heating and structural alterations in cartilage under laser radiation,IEEE J QE-35, p.532-539 (1999)

[5.610] {Sect. 5.8} C.W. Siders, A. Cavalleri, K. SokolowskiTinten, C. Toth, T. Guo,M. Kammler, M.H. vonHoegen, K.R. Wilson, D. vonderLinde, C.P.J. Barty:Detection of nonthermal molting by ultrafast X-ray diffraction, Science 286,p.1340-1342 (1999)

[5.611] {Sect. 5.8} S.C. Chen, C.P. Grigoropoulos, H.K. Park, P. Kerstens, A.C.Tam: Photothermal displacement measurement of transient melting andsurface deformation during pulsed laser heating, Appl Phys Lett 73, p.2093-2095 (1998)

[5.612] {Sect. 5.8} M. Ii, T.P. Duffey, J. Mazumder: Spatially and temporally re-solved temperature measurements of plasma generated in percussion drillingwith a diode-pumped Nd: YAG laser, J Appl Phys 84, p.4122-4127 (1998)

[5.613] {Sect. 5.8} V.V. Gupta, H.J. Song, J.S. Im: Numerical analysis of excimer-laser-induced melting and solidification of thin Si films, Appl Phys Lett 71,p.99-101 (1997)

770 5. Nonlinear Interactions of Light and Matter with Absorption

[5.614] {Sect. 5.8} XD. Lacroix, G. Jeandel: Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser, J ApplPhys 81, p.6599-6606 (1997)

[5.615] {Sect. 5.8} J. Xie, A. Kar: Mathematical modeling of melting during lasermaterials processing, J Appl Phys 81, p.3015-3022 (1997)

[5.616] {Sect. 5.8} N. Arnold: Temperature distributions and their evolution innon- planar energy beam microprocessing: A fast algorithm, J Appl Phys80, p.1291-1298 (1996)

[5.617] {Sect. 5.8} B.A. Mehmetli, K. Takahashi, S. Sato: Direct measurement ofreflectance from aluminum alloys during CO2 laser welding, Appl Opt 35,p.3237-3242 (1996)

[5.618] {Sect. 5.8} S. Nettesheim, R. Zenobi: Pulsed laser heating of surfaces:Nanosecond timescale temperature measurement using black body radia-tion, Chem Phys Lett 255, p.39-44 (1996)

[5.619] {Sect. 5.8} S. Sato, K. Takahashi, B. Mehmetli: Polarization effects of ahigh-power CO2 laser beam on aluminum alloy weldability, J Appl Phys79, p.8917-8919 (1996)

[5.620] {Sect. 5.8} P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel: Ab initiomolecular dynamics simulation of laser melting of silicon, Phys Rev Lett77, p.3149-3152 (1996)

[5.621] {Sect. 5.8} K. Murakami, H.C. Gerritsen, H. van Brug, F. Bijkerk, F.W.Saris, M.J. van der Wiel: Pulsed-Laser-Irradiated Silicon Studied by Time-Resolved X-Ray Absorption (90-300 eVI, Phys. Rev. Lett. 56, p.655-658(1986)

[5.622] {Sect. 5.8} I.W. Boyd, S.C. Moss, T.F. Bogges, A.L. Smirl: Temporallyresolved imaging of silicon surfaces melted with intense picosecond 1-µmlaser pulses, Appl. Phys. Lett. 46, p.366-368 (1985)

[5.623] {Sect. 5.8} M.C. Downer, R.L. Fork, C.V. Shank: Femtosecond imaging ofmelting and evaporation at a photoexcited silicon surface, J. Opt. Soc. Am.B 2, p.595-599 (1985)

[5.624] {Sect. 5.8} P.H. Bucksbaum, J. Bokor: Rapid Melting and Regrowth Veloc-ities in Silicon Heated by Ultraviolet Picosecond Laser Pulses, Phys. Rev.Lett. 53, p.182-185 (1984)

[5.625] {Sect. 5.8} S. Williamson, G. Mourou, J.C.M. Li: Time-Resolved Laser-Induced Phase Transformation in Aluminium, Phys. Rev. Lett. 52, p.2364-2367 (1984)

[5.626] {Sect. 5.8} C.V. Shank, R. Yen, C. Hirlimann: Femtosecond-Time-ResolvedSurface Structural Dynamics of Optically Excited Silicon, Phys. Rev. Lett.51, p.900-902 (1983)

[5.627] {Sect. 5.8} S. Sato, H. Ashida, T. Arai, Y.W. Shi, Y. Matsuura, M. Miyagi:Vacuum-cored hollow waveguide for transmission of high-energy, nanosec-ond Nd : YAG laser pulses and its application to biological tissue ablation,Optics Letters 25, p.49-51 (2000)

[5.628] {Sect. 5.8} S.R. Farrar, D.C. Attril, M.R. Dickinson, T.A. King, A.S.Blinkhorn: Etch rate and spectroscopic ablation studies of Er:YAG laser-irradiated dentine, Appl Opt 36, p.5641-5646 (1997)

[5.629] {Sect. 5.8} G.H. Pettit, M.N. Ediger: Corneal-tissue absorption coefficientsfor 193- and 213-nm ultraviolet radiation, Appl Opt 35, p.3386-3391 (1996)

[5.630] {Sect. 5.8} P.T. Staveteig, J.T. Walsh: Dynamic 193-nm optical propertiesof water, Appl Opt 35, p.3392-3403 (1996)

[5.631] {Sect. 5.8} J.K. Kou, V. Zhakhovskii, S. Sakabe, K. Nishihara, S. Shimizu,S. Kawato, M. Hashida, K. Shimizu, S. Bulanov, Y. Izawa et al.: AnisotropicCoulomb explosion of C-60 irradiated with a high-intensity femtosecondlaser pulse, J Chem Phys 112, p.5012-5020 (2000)

5.8 Laser Material Processing 771

[5.632] {Sect. 5.8} K.W.D. Ledingham, I. Spencer, T. McCanny, R.P. Singhal,M.I.K. Santala, E. Clark, I. Watts, F.N. Beg, M. Zepf, K. Krushelnick etal.: Photonuclear physics when a multiterawatt laser pulse interacts withsolid targets, Phys Rev Lett 84, p.899-902 (2000)

[5.633] {Sect. 5.8} A. Talebpour, A.D. Bandrauk, S.L. Chin: Fragmentation of ben-zene in an intense Ti : sapphire laser pulse, Laser Phys 10, p.210-215 (2000)

[5.634] {Sect. 5.8} M.K. Grimes, A.R. Rundquist, Y.S. Lee, M.C. Downer: Exper-imental identification of “vacuum heating” at femtosecond-laser-irradiatedmetal surfaces, Phys Rev Lett 82, p.4010-4013 (1999)

[5.635] {Sect. 5.8} H. Kwak, K.C. Chou, J. Guo, H.W.K. Tom: Femtosecond laser-induced disorder of the (1 x 1)-relaxed GaAs (110) surface, Phys Rev Lett83, p.3745-3748 (1999)

[5.636] {Sect. 5.8} M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky,A.M. Rubenchik: Ultrashort-pulse laser machining of dielectric materials,J Appl Phys 85, p.6803-6810 (1999)

[5.637] {Sect. 5.8} A. Saemann, K. Eidmann, I.E. Golovkin, R.C. Mancini, E. An-dersson, E. Forster, K. Witte: Isochoric heating of solid aluminum by ultra-short laser pulses focused on a tamped target, Phys Rev Lett 82, p.4843-4846 (1999)

[5.638] {Sect. 5.8} H. Jelinkova, J. Sulc, P. Cerny, Y.W. Shi, Y. Matsuura,M. Miyagi: High-power Nd : YAG laser picosecond pulse delivery by apolymer-coated silver hollow-glass waveguide, Optics Letters 24, p.957-959(1999)

[5.639] {Sect. 5.8} Y. Matsuura, K. Hanamoto, S. Sato, M. Miyagi: Hollow-fiber de-livery of high-power pulsed Nd : YAG laser light, Optics Letters 23, p.1858-1860 (1998)

[5.640] {Sect. 5.8} P. Dainesi, J. Ihlemann, P. Simon: Optimization of a beamdelivery system for a short-pulse KrF laser used for material ablation, ApplOpt 36, p.7080-7085 (1997)

[5.641] {Sect. 5.8} H. Pratisto, M. Frenz, M. Ith, H.J. Altermatt, E.D. Jansen,H.P. Weber: Combination of fiber-guided pulsed erbium and holmium laserradiation for tissue ablation under water, Appl Opt 35, p.3328-3337 (1996)

[5.642] {Sect. 5.8} B. Richou, I. Schertz, I. Gobin, J. Richou: Delivery of 10-MWNd:YAG laser pulses by large-core optical fibers: Dependence of the laser-intensity profile on beam propagation, Appl Opt 36, p.1610-1614 (1997)

[5.643] {Sect. 5.8} A. Baum, P.J. Scully, M. Basanta, C.L.P. Thomas, P.R. Fielden,N.J. Goddard, W. Perrie, P.R. Chalker: Photochemistry of refractive indexstructures in poly(Methyl methacrylate) by femtosecond laser irradiation,Optics Letters 32, p.190-192 (2007)

[5.644] {Sect. 5.8} L. Shah, M.E. Fermann, J.W. Dawson, C.P.J. Barty: Micro-machining with a 50 W, 50 mu J, sub-picosecond fiber laser system, OptExpress 14, p.12546-12551 (2006)

[5.645] {Sect. 5.8} Y. Cheng, K. Sugioka, K. Midorikawa: Freestanding opticalfibers fabricated in a glass chip using femtosecond laser micromachiningfor lab-on-a-chip application, Opt Express 13, p.7225-7232 (2005)

[5.646] {Sect. 5.8} D. Day, M. Gu: Microchannel fabrication in PMMA based onlocalized heating by nanojoule high repetition rate femtosecond pulses, OptExpress 13, p.5939-5946 (2005)

[5.647] {Sect. 5.8} L. Shah, J. Tawney, M. Richardson, K. Richardson: Self-focusingduring femtosecond micromachining of silicate glasses, Ieee J Quantum Elec-tron 40, p.57-68 (2004)

[5.648] {Sect. 5.8} G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli,R. Ramponi, P. Laporta, S. DeSilvestri: Femtosecond micromachining of

772 5. Nonlinear Interactions of Light and Matter with Absorption

symmetric waveguides at 1.5 mu m by astigmatic beam focusing, OpticsLetters 27, p.1938-1940 (2002)

[5.649] {Sect. 5.8} W.S.O. Rodden, S.S. Kudesia, D.P. Hand, J.D.C. Jones: A com-prehensive study of the long pulse Nd : YAG laser drilling of multi-layercarbon fibre composites, Opt Commun 210, p.319-328 (2002)

[5.650] {Sect. 5.8} T.E. Dimmick, G. Kakarantzas, T.A. Birks, P.S. Russell: Carbondioxide laser fabrication of fused-fiber couplers and tapers, Appl Opt 38,p.6845-6848 (1999)

[5.651] {Sect. 5.8} S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patenta-laki, P. Papakonstantinou, N.A. Vainos, C. Fotakis: Etching and printingof diffractive optical microstructures by a femtosecond excimer laser, ApplOpt 38, p.2301-2308 (1999)

[5.652] {Sect. 5.8} D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann,E.E.B. Cambell: Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials, Appl Phys Lett 72,p.1442-1444 (1998)

[5.653] {Sect. 5.8} T.H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur: Microstruc-turing of silicon with femtosecond laser pulses, Appl Phys Lett 73, p.1673-1675 (1998)

[5.654] {Sect. 5.8} T. Hessler, M. Rossi, R.E. Kunz, M.T. Gale: Analysis and opti-mization of fabrication of continuous-relief diffractive optical elements, ApplOpt 37, p.4069-4079 (1998)

[5.655] {Sect. 5.8} K. Baba, K. Hayashi, I. Syuaib, K. Yamaki, M. Miyagi: Write-once optical data storage media with large reflectance change with metal-island films, Appl Opt 36, p.2421-2426 (1997)

[5.656] {Sect. 5.8} G.P. Behrmann, M.T. Duignan: Excimer laser micromachiningfor rapid fabrication of diffractive optical elements, Appl Opt 36, p.4666-4674 (1997)

[5.657] {Sect. 5.8} X.M. Wang, J.R. Leger, R.H. Rediker: Rapid fabrication ofdiffractive optical elements by use of image-based excimer laser ablation,Appl Opt 36, p.4660-4665 (1997)

[5.658] {Sect. 5.8} P.A. Atanasova, V.P. Manolov: Laser cutting of wire-woundresistors: Theory and experiments, J Appl Phys 80, p.2003-2008 (1996)

[5.659] {Sect. 5.8} W. Chalupczak, C. Fiorini, F. Charra, J.M. Nunzi, P. Raimond:Efficient all-optical poling of an azo-dye copolymer using a low power laser,Opt Commun 126, p.103-107 (1996)

[5.660] {Sect. 5.8} K.M. Davis, K. Miura, N. Sugimoto, K. Hirao: Writing wave-guides in glass with a femtosecond laser, Optics Letters 21, p.1729-1731(1996)

[5.661] {Sect. 5.8} S. Lazare, J. Lopez, J.M. Turlet, M. Kufner, S. Kufner,P. Chavel: Microlenses fabricated by ultraviolet excimer laser irradiationof poly (methyl methacrylate) followed by styrene diffusion, Appl Opt 35,p.4471-4475 (1996)

[5.662] {Sect. 5.8} T. Schuster, H. Kuhn, A. Raiber, T. Abeln, F. Dausinger,H. Hugel, M. Klaser, G. Mullervogt: High-precision laser cutting of high-temperature superconductors, Appl Phys Lett 68, p.2568-2570 (1996)

[5.663] {Sect. 5.8} Y.Y. Tsui, R. Fedosejevs, C.E. Capjack: Vaporization of alu-minum by 50 ps KrF laser pulses, J Appl Phys 80, p.509-512 (1996)

[5.664] {Sect. 5.8} B. Bescos, H. Buchenau, R. Hoch, H.J. Schmidtke, G. Gerber:Femtosecond laser ionization of CdTe clusters, Chem Phys Lett 285, p.64-70(1998)

[5.665] {Sect. 5.9.1} D. Maystre: Diffraction Gratings (SPIE Optical EngineeringPress, London, 1993)

5.9.1 Induced Amplitude and Phase Gratings 773

[5.666] {Sect. 5.9.1} H.J. Eichler, P. Gunter, D.W. Pohl: Laser-Induced DynamicGratings, Springer Ser. Opt. Sci, Vol. 50 (Springer, Berlin, Heidelberg, NewYork, Tokyo 1986)

[5.667] {Sect. 5.9.1} V.A. Zuikov, A.A. Kalachev, V.V. Samartsev, I.V. Negrashov,A.K. Rebane, I. Gallus, O. Ollikainen, U.P. Wild: Spatial and spectral prop-erties of nonequilibrium population gratings induced in a resonant mediumby femtosecond pulses, Laser Phys 10, p.368-371 (2000)

[5.668] {Sect. 5.9.1} Y. Tang, J.P. Schmidt, S.A. Reid: Nanosecond transient grat-ing studies of jet-cooled NO2, J Chem Phys 110, p.5734-5744 (1999)

[5.669] {Sect. 5.9.1} N.C.R. Holme, L. Nikolova, P.S. Ramanujam, S. Hvilsted: Ananalysis of the anisotropic and topographic gratings in a side-chain liquidcrystalline azobenzene polyester, Appl Phys Lett 70, p.1518-1520 (1997)

[5.670] {Sect. 5.9.1} M.J. Damzen, Y. Matsumoto, G.J. Crofts, R.P.M. Green:Bragg-selectivity of a volume gain grating, Opt Commun 123, p.182-188(1996)

[5.671] {Sect. 5.9.1} D. Trivedi, P. Tayebati, M. Tabat: Measurement of largeelectro-optic coefficients in thin films of strontium barium niobate(Sr0.6Ba0.4Nb2O6), Appl Phys Lett 68, p.3227-3229 (1996)

[5.672] {Sect. 5.9.1} A. Belendez, A. Fimia, L. Carretero, F. Mateos: Self-inducedphase gratings due to the inhomogeneous structure of acrylamide pho-topolymer systems used as holographic recording materials, Appl Phys Lett67, p.3856-3858 (1995)

[5.673] {Sect. 5.9.1} P.R. Hemmer, D.P. Katz, J. Donoghue, M. Croningolomb, M.S.Shahriar, P. Kumar: Efficient low-intensity optical phase conjugation basedon coherent population trapping in sodium, Optics Letters 20, p.982-984(1995)

[5.674] {Sect. 5.9.1} R. Macdonald, H. Danlewski: Self induced optical gratings innematic liquid crystals with a feedback mirror, Optics Letters 20, p.441-443(1995)

[5.675] {Sect. 5.9.1} F.W. Deeg, M.D. Fayer: Analysis of complex molecular dy-namics in an organic liquid by polarization selective subpicosecond transientgrating experiments, J. Chem. Phys. 91, p.2269-2279 (1989)

[5.676] {Sect. 5.9.1} I. McMichael, P. Yeh, P. Beckwith: Nondegenerate two-wavemixing in ruby, Opt. Lett. 13, p.500-502 (1988)

[5.677] {Sect. 5.9.1} A. Marcano, O.F. Garcia-Golding, R.Rojas F.: Pump-powerdependences of thermal-grating and electronic components of a polarizationspectroscopy signal from dye solutions, J. Opt. Soc. Am. B 3, p.3-7 (1986)

[5.678] {Sect. 5.9.1} I.-C. Khoo, R. Normandin: The mechanism and Dynamics ofTransient Thermal Grating Diffraction in Nematic Liquid Crystal Films,IEEE J. QE-21, p.329-335 (1985)

[5.679] {Sect. 5.9.1} G. Eyring, M.D. Fayer: A picosecond holographic grating ap-proach to molecular dynamics in oriented liquid crystal films, J. Chem.Phys. 81, p.4314-4321 (1984)

[5.680] {Sect. 5.9.1} K.A. Nelson, R. Casalegno, R.J. Dwayne Miller, M.D. Fayer:Laser-induced excited state and ultrasonic wave gratings: Amplitude andphase grating contributions to diffraction, J. Chem. Phys. 77, p.1144-1152(1982)

[5.681] {Sect. 5.9.1} J.R. Andrews, R.M. Hochstrasser: Transient grating effectsin resonant four-wave mixing experiment, Chem. Phys. Lett. 76, p.213-217(1980)

[5.682] {Sect. 5.9.1} H.J. Eichler, G. Enterlein, D. Langhans: Investigation of theSpatial Coherence of a Laser Beam by a Laser-Induced Grating Method,Appl. Phys. 23, p.299-302 (1980)

774 5. Nonlinear Interactions of Light and Matter with Absorption

[5.683] {Sect. 5.9.1} H.J. Eichler, U. Klein, D. Langhans: Coherence Time Mea-surement of Picosecond Pulses by a Light-Induced Grating Method, Appl.Phys. 21, p.215-219 (1980)

[5.684] {Sect. 5.9.1} J.R. Salcedo, A.E. Siegman: Laser Induced PhotoacousticGrating Effects in Molecular Crystals, IEEE J. QE-15, p.250-258 (1979)

[5.685] {Sect. 5.9.1} A. v. Jena, H.E. Lessing: Theory of laser-induced amplitudeand phase gratings including photoselection, orientational relaxation andpopulation kinetics, Opt. Quant. Electr. 11, p.419-439 (1979)

[5.686] {Sect. 5.9.1} J.R. Salcedo, A.E. Siegman, D.D. Dlott, M.D. Fayer: Dynam-ics of Energy Transport in Molecular Crystals: The Picosecond Transient-Grating Method, Phys. Rev. Lett. 41, p.131-134 (1978)

[5.687] {Sect. 5.9.1} D.W. Phillion, D.J. Kuizenga, A.E. Siegman: Subnanocecondrelaxation time measurements using a transient induced grating method,Appl. Phys. Lett. 27, p.85-87 (1975)

[5.688] {Sect. 5.9.1} H. Eichler, G. Salje, H. Stahl: Thermal diffusion measurementsusing spatially periodic temperature distributions induced by laser light,J. Appl. Phys. 44, p.5383-5388 (1973)

[5.689] {Sect. 5.9.1} H. Eichler, G. Enterlein, P. Glozbach, J. Munschau, H. Stahl:Power Requirements and Resolution of Real-Time Holograms in SaturableAbsorbers and Absorbing Liquids, Appl. Opt. 11, p.372-375 (1972)

[5.690] {Sect. 5.9.1} P. Delaye, G. Roosen: Evaluation of a photorefractive two-beam coupling novelty filter, Opt Commun 165, p.133-151 (1999)

[5.691] {Sect. 5.9.1} A. Pecchia, M. Laurito, P. Apai, M.B. Danailov: Studies oftwo-wave mixing of very broad-spectrum laser light in BaTiO3, J Opt SocAm B Opt Physics 16, p.917-923 (1999)

[5.692] {Sect. 5.9.1} Y. Tomita, S. Matsushima: Photorefractive beam couplingbetween orthogonally polarized light beams by linear dichroism in Cu-dopedpotassium sodium strontium barium niobate, J Opt Soc Am B Opt Physics16, p.111-116 (1999)

[5.693] {Sect. 5.9.1} A. Brignon, I. Bongrand, B. Loiseaux, J.P. Huignard: Signal-beam amplification by two-wave mixing in a liquid-crystal light valve, OpticsLetters 22, p.1855-1857 (1997)

[5.694] {Sect. 5.9.1} S. Maccormack, G.D. Bacher, J. Feinberg, S. OBrien, R.J.Lang, M.B. Klein, B.A. Wechsler: Powerful, diffraction-limited semiconduc-tor laser using photorefractive beam coupling, Optics Letters 22, p.227-229(1997)

[5.695] {Sect. 5.9.1} P. Yeh: Two-Wave Mixing in Nonlinear Media, IEEE J. QE-25,p.484-519 (1989)

[5.696] {Sect. 5.9.1} I. McMichael, P. Yeh, P. Beckwith: Nondegenerate two-wavemixing in ruby, Opt. Lett. 13, p.500-502 (1988)

[5.697] {Sect. 5.9.1} C.V. Heer: Small-signal gain generated by two pump waves ina nonlinear medium, Opt. Lett. 6, p.549-551 (1981)

[5.698] {Sect. 5.9.1} J.E. Heebner, R.S. Bennink, R.W. Boyd, R.A. Fisher: Conver-sion of unpolarized light to polarized light with greater than 50% efficiencyby photorefractive two-beam coupling, Optics Letters 25, p.257-259 (2000)

[5.699] {Sect. 5.9.1} A. Brignon, J.P. Huignard, M.H. Garrett, I. Mnushkina: Spa-tial beam cleanup of a Nd:YAG laser operating at 1.06 mu m with two-wavemixing in Rh:BaTiO3, Appl Opt 36, p.7788-7793 (1997)

[5.700] {Sect. 5.9.1} A. Takada, M. Croningolomb: Laser beam cleanup with pho-torefractive two-beam coupling, Optics Letters 20, p.1459-1461 (1995)

[5.701] {Sect. 5.9.2} S.V. Rao, N.K.M.N Srinivas, D.N. Rao, L. Giribabu, B.G.Maiya, R. Philip, G.R. Kumar: Excited state dynamics in tetra tolyl por-phyrins studied using degenerate four wave mixing with incoherent lightand ps pulses, Opt Commun 192, p.123-133 (2001)

5.9.2 Four-Wave Mixing (FWM) 775

[5.702] {Sect. 5.9.2} P.C. deSouza, G. Nader, T. Catunda, M. Muramatsu, R.J.Horowicz: Transient four-wave mixing in saturable media with a nonlinearrefractive index, Opt Commun 163, p.44-48 (1999)

[5.703] {Sect. 5.9.2} F. DiTeodoro, E.F. McCormack: The effect of laser bandwidthon the signal detected in two-color, resonant four-wave mixing spectroscopy,J Chem Phys 110, p.8369-8383 (1999)

[5.704] {Sect. 5.9.2} K. Morishita, Y. Higuchi, T. Okada: Infrared laser spectro-scopic imaging based on degenerate four-wave- mixing spectroscopy com-bined with frequency-upconversion detection, Optics Letters 24, p.688-690(1999)

[5.705] {Sect. 5.9.2} J.A. Hudgings, K.Y. Lan: Step-tunable all-optical wavelengthconversion using cavity-enhanced four-wave mixing, IEEE J QE-34, p.1349-1355 (1998)

[5.706] {Sect. 5.9.2} H.B. Liao, R.F. Xiao, H. Wang, K.S. Wong, G.K.L. Wong:Large third-order optical nonlinearity in Au:TiO2 composite films measuredon a femtosecond time scale, Appl Phys Lett 72, p.1817-1819 (1998)

[5.707] {Sect. 5.9.2} K.P. Lor, K.S. Chiang: Theory of nondegenerate four-wavemixing in a birefringent optical fibre, Opt Commun 152, p.26-30 (1998)

[5.708] {Sect. 5.9.2} P. Ewart, P.G.R. Smith, R.B. Williams: Imaging of tracespecies distributions by degenerate four- wave mixing: diffraction effects,spatial resolution, and image referencing, Appl Opt 36, p.5959-5968 (1997)

[5.709] {Sect. 5.9.2} A. Brignon, G. Feugnet, J.P. Huignard, J.P. Pocholle: Effi-cient degenerate four wave mixing in a diode pumped microchip Nd:YVO4amplifier, Optics Letters 20, p.548-550 (1995)

[5.710] {Sect. 5.9.2} A. Brignon, J.P. Huignard: Continuous wave operation of sat-urable gain degenerate four wave mixing in a Nd:YVO4 amplifier, OpticsLetters 20, p.2096-2098 (1995)

[5.711] {Sect. 5.9.2} G.J. Crofts, R.P.M. Green, M.J. Damzen: Investigation ofmultipass geometries for efficient degenerate four-wave mixing in Nd:YAG,Opt. Lett. 17, p.920-922 (1992)

[5.712] {Sect. 5.9.2} W.M. Dennis, W. Blau, D.J. Bradley: Picosecond degeneratefour-wave mixing in soluble polydiacetylenes, Appl. Phys. Lett. 47, p.200-202 (1985)

[5.713] {Sect. 5.9.2} D.G. Steel, J.F. Lam: Two-Photon Coherent-Transient Mea-surement of the Nonradiative Collisionless Dephasing Rate in SF6 viaDoppler-Free Degenerate Four-Wave Mixing, Phys. Rev. Lett. 43, p.1588-1591 (1979)

[5.714] {Sect. 5.9.2} T. Yajima, H. Souma, Y. Ishida: Study of ultra-fast relaxationprocesses by resonant Rayleigh-type optical mixing. II. Experiment on dyesolutions, Phys. Rev. A 17, p.324-334 (1978)

[5.715] {Sect. 5.9.2} A. Yariv, D.M. Pepper: Amplified reflection, phase conjuga-tion, and oscillation in degenerate Four-wave mixing, Opt. Lett. 1, p.16-18(1977)

[5.716] {Sect. 5.9.2} R.L. Carman, R.Y. Chiao, P.L. Kelley: Observation of De-generate Stimulated Four-Photon Interaction and Four-Wave ParametricAmplification, Phys. Rev. Lett. 17, p.1281-1283 (1966)

[5.717] {Sect. 5.9.2} R.I. Thompson, L. Marmet, B.P. Stoicheff: Effect of coun-terintuitive time delays in nonlinear mixing, Optics Letters 25, p.120-122(2000)

[5.718] {Sect. 5.9.2} Y.H. Ahn, J.S. Yahng, J.Y. Sohn, K.J. Yee, S.C. Hohng, J.C.Woo, D.S. Kim, T. Meier, S.W. Koch, Y.S. Lim et al.: From exciton reso-nance to frequency mixing in GaAs multiple quantum wells, Phys Rev Lett82, p.3879-3882 (1999)

776 5. Nonlinear Interactions of Light and Matter with Absorption

[5.719] {Sect. 5.9.2} V.P. Kalosha, J. Herrmann: Formation of optical subcyclepulses and full Maxwell-Bloch solitary waves by coherent propagation ef-fects, Phys Rev Lett 83, p.544-547 (1999)

[5.720] {Sect. 5.9.2} H. Watanabe, T. Omatsu, T. Hirose, A. Hasegawa, M. Tateda:Highly efficient degenerate four-wave mixing with multipass geometries in apolymer laser dye saturable amplifier, Optics Letters 24, p.1620-1622 (1999)

[5.721] {Sect. 5.9.2} O.L. Antipov, A.S. Kuzhelev, D.V. Chausov: Nondegeneratefour-wave-mixing measurements of a resonantly induced refractive-indexgrating in a Nd:YAG amplifier, Optics Letters 23, p.448-450 (1998)

[5.722] {Sect. 5.9.2} M.J. LaBuda, J.C. Wright: Vibrationally enhanced four-wavemixing in 1,8-nonadiyne, Chem Phys Lett 290, p.29-35 (1998)

[5.723] {Sect. 5.9.2} H. Palm, F. Merkt: Generation of tunable coherent extremeultraviolet radiation beyond 19 eV by resonant four-wave mixing in argon,Appl Phys Lett 73, p.157-159 (1998)

[5.724] {Sect. 5.9.2} K.S. Chiang, K.P. Lor, Y.T. Chow: Nondegenerate four-wavemixing in a birefringent optical fiber pumped by a dye laser, Optics Letters22, p.510-512 (1997)

[5.725] {Sect. 5.9.2} L. Deng, W.R. Garrett, M.G. Payne, D.Z. Lee: Observationof a critical concentration in laser-induced transparency and multiphotonexcitation and ionization in rubidium, Optics Letters 21, p.928-930 (1996)

[5.726] {Sect. 5.9.2} W. Schmid, T. Vogtmann, M. Schwoerer: A modulation tech-nique fo rmeasuring the optical susceptibility x5 by degenerate four-wavemixing, Opt. Comm. 121, p.55-62 (1995)

[5.727] {Sect. 5.9.2} U.P. Wild, A. Renn: Spectral hole burning and holographicimage storage, Mol. Cryst. Liq. Cryst. 183, p.119-129 (1990)

[5.728] {Sect. 5.9.2} R. Beach, D. DeBeer, S.R. Hartmann: Time-delayed four-wavemixing using intense incoherent light, Phys. Rev. A 32, p.3467-3474 (1985)

[5.729] {Sect. 5.9.2} F. Vallee, S.C. Wallace, J. Lukasik: Tunable Coherent VacuumUltraviolet Generation in Carbon Monoxide in the 1150 A Range, Opt.Comm. 42, p.148-150 (1982)

[5.730] {Sect. 5.9.2} M.D. Duncan, P. Oesterlin, F. Konig, R.L. Byer: Observa-tion of saturation broadening of the coherent anti-Stokes Raman spectrum(CARS) of Acetylene in a pulsed molecular beam, Chem. Phys. Lett. 80,p.253-256 (1981)

[5.731] {Sect. 5.9.2} Y. Prior, A.R. Bogdan, M. Dagenais, N. Bloembergen:Pressure-Induced Extra Resonances in Four-Wave Mixing, Phys. Rev. Lett.46, p.111-114 (1981)

[5.732] {Sect. 5.9.2} J.-L. Oudar, R.W. Smith, Y.R. Shen: Polarization-sensitivecoherent anti-Stokes Raman spectroscopy, Appl. Phys. Lett. 34, p.758-760(1979)

[5.733] {Sect. 5.9.2} M.A. Henesian, L. Kulevskii, R.L. Byer: cw high resolutionCARS spectroscopy of the Q (ny1) Raman line of methane, J. Chem. Phys.65, p.5530-5531 (1976)

[5.734] {Sect. 5.9.2} J.W. Nibler, J.R. McDonald, A.B. Harvey: CARS Measure-ment of Vibrational Temperatures in Electric Discharges, Opt. Comm. 18,p.371-373 (1976)

[5.735] {Sect. 5.9.2} D.M. Bloom, J.R. Yardley, J.F. Young, S.E. Harris: Infraredup-conversion with resonantly two-photon pumped metal vapors, Appl.Phys. Lett. 24, p.427-428 (1974)

[5.736] {Sect. 5.9.2} S.D. Kramer, F.G. Parsons, N. Bloembergen: Interferenceof third-order light mixing and second-harmonic excitation generation inCuCl, Phys. Rev. B 9, p.1853-1856 (1974)

[5.737] {Sect. 5.9.2} R.R. Alfano, S.L. Shapiro: Explanation of a Transient RamanGain Anomaly, Phys. Rev. A 2p.2376-2379 (1970)

5.9.2 Four-Wave Mixing (FWM) 777

[5.738] {Sect. 5.9.2} R.R. Alfano, S.L. Shapiro: Emission in the Region 4000 to7000 A via Four-Photon Coupling in Glass, Phys. Rev. Lett. 24, p.584-587(1970)

[5.739] {Sect. 5.9.2} M.W. Bowers, R.W. Boyd: Phase locking via Brillouin-enhanc-ed four-wave-mixing phase conjugation, IEEE J QE-34, p.634-644 (1998)

[5.740] {Sect. 5.9.2} A.M. Scott, K.D. Ridley: Effect of signal frequency on four-wave mixing through stimulated Brillouin scattering, Opt. Lett. 15, p.1267-1269 (1990)

[5.741] {Sect. 5.9.2} K.D. Ridley, A.M. Scott: Comparison between theory andexperiment in self-pumped Brillouin-enhanced four-wave mixing, J. Opt.Soc. Am. B 6, p.1701-1708 (1989)

[5.742] {Sect. 5.9.2} W.A. Schroeder, M.J. Damzen, M.H.R. Hutchinson: Polariza-tion-Decoupled Brillouin-Enhanced Four-Wave Mixing, IEEE J. QE-25,p.460-469 (1989)

[5.743] {Sect. 5.9.2} A.M. Scott, K.D. Ridley: A review of Brillouin-enhanced-four-wave-mixing, IEEE J. QE-25, p.438-459 (1989)

[5.744] {Sect. 5.9.2} D.E. Watkins, K.D. Ridley, A.M. Scott: Self-pumped four-wave mixing using backward and forward Brillouin scattering, J. Opt. Soc.Am. B 6, p.1693-1700 (1989)

[5.745] {Sect. 5.9.2} A.M. Scott, P. Waggott: Low-intensity phase conjugation byself-pumped Brillouin-induced four-wave mixing, J. Mod. Opt. 35, p.473-481(1988)

[5.746] {Sect. 5.9.2} Y. Ojima, T. Omatsu: Phase conjugation of pico-second pulsesby four wave mixing in a Nd:YVO4 slab amplifier, Opt Express 13, p.3506-3512 (2005)

[5.747] {Sect. 5.9.2} T. Bach, M. Jabinsek, P. Gunter, A.A. Grabar, I.M. Stoika,Y.M. Vysochanskii: Self pumped optical phase conjugation at 1.06 mu min Te-doped Sn2P2S6, Opt Express 13, p.9890-9896 (2005)

[5.748] {Sect. 5.9.2} X.W. Xia, D. Hsiung, P.S. Bhatia, M.S. Shahriar, T.T. Grove,P.R. Hemmer: Polarization selective motional holeburning for high effi-ciency, degenerate optical phase conjugation in rubidium, Opt Commun191, p.347-351 (2001)

[5.749] {Sect. 5.9.2} G. Urushibata, Y. Tamaki, M. Obara: Generation of highlyefficient self-pumped phase conjugation femtosecond pulse using photore-fractive BaTiO3 : CO crystal, Opt Commun 196, p.281-284 (2001)

[5.750] {Sect. 5.9.2} J. Minch, S.L. Chuang: Dual-pump four-wave mixing in adouble-mode distributed feedback laser, J Opt Soc Am B Opt Physics 17,p.53-62 (2000)

[5.751] {Sect. 5.9.2} C.X. Yang: Propagation and self-pumped phase conjugationof femtosecond laser pulses in BaTiO3, J Opt Soc Am B Opt Physics 16,p.871-877 (1999)

[5.752] {Sect. 5.9.2} D.H. Yu, J.H. Lee, J.S. Chang: Theory of forward degeneratefour-wave mixing in two-level saturable absorbers, J Opt Soc Am B OptPhysics 16, p.1261-1268 (1999)

[5.753] {Sect. 5.9.2} M.A. Dugan, A.C. Albrecht: Radiation-matter oscillations andspectal line narrowing in field-correlated four-wave mixing. I. Theory, Phys.Rev. A 43, p.3877-3921 (1991)

[5.754] {Sect. 5.9.2} P. Yeh: Exact solution of a nonlinear model of two-wave mixingin Kerr media, J. Opt. Soc. Am. B 3, p.747-750 (1986)

[5.755] {Sect. 5.9.2} B.S. Wherrett, A.L. Smirl, Th.F. Boggess: Theory of Degener-ate Four-Wave Mixing in Picosecond Excitation-Probe Experiments, IEEEJ. QE-19, p.680-689 (1983)

[5.756] {Sect. 5.9.2} P. Ye, Y.R. Shen: Transient four-wave mixing and coherenttransient optical phenomena, Phys. Rev. A 25, p.2183-2199 (1982)

778 5. Nonlinear Interactions of Light and Matter with Absorption

[5.757] {Sect. 5.9.2} J.-L. Oudar, Y.R. Shen: Nonlinear spectroscopy by multires-onant four-wave mixing, Phys. Rev. A 22, p.1141-1158 (1980)

[5.758] {Sect. 5.9.2} R.W. Hellwarth: Theory of phase conjugation by stimulatedscattering in a waveguide, J. Opt. Soc. Am. 68, p.1050-1056 (1978)

[5.759] {Sect. 5.9.2} T.K. Yee, T.K. Gustafson: Diagrammatic analysis of the den-sity operator for nonlinear optical calculations: Pulsed and cw responses,Phys. Rev. A 18, p.1597-1617 (1978)

[5.760] {Sect. 5.9.2} Y. R. Shen: Principles of Nonlinear Optics, chapter 14 (JohnWiley & Sons, Chichester, 1984)

[5.761] {Sect. 5.9.2} M. Lobel, P.M. Petersen, P.M. Johansen: Physical origin oflaser frequency scanning induced by photorefractive phase-conjugate feed-back, J Opt Soc Am B Opt Physics 16, p.219-227 (1999)

[5.762] {Sect. 5.9.2} S. Hannemann, U. Hollenstein, E.J. vanDuijn, W. Ubachs:Production of narrowband tunable extreme-ultraviolet radiation by non-collinear resonance-enhanced four-wave mixing, Optics Letters 30, p.1494-1496 (2005)

[5.763] {Sect. 5.9.2} D.M. Pepper: Nonlinear optical phase conjugation, Opt. Eng.21, p.156-183 (1982)

[5.764] {Sect. 5.9.2} A. Yariv: Phase Conjugate Optics and Real-Time Holography,IEEE J. QE-14, p.650-660 (1978)

[5.765] {Sect. 5.9.2} M. Gower, D. Proch (ed.): Optical Phase Conjugation(Springer, Berlin, Heidelberg, New York, 1994)

[5.766] {Sect. 5.9.2} J. I. Sakai: Phase Conjugate Optics (McGraw-Hill, New York,1992)

[5.767] {Sect. 5.9.2} B. Y. Zel’dovich, N. Pilipettshii: Principles in Phase Conjuga-tion (Springer, Heidelberg, Berlin, New York, 1985)

[5.768] {Sect. 5.9.2} Z.D. Xu, Y.F. Liu, Y. Xiang, J. Yang, S.J. You, W.L. She: Op-tical phase conjugation property in azo-doped nematic liquid-crystal film,Acta Phys Sin Chinese Ed 48, p.2283-2288 (1999)

[5.769] {Sect. 5.9.2} A. Brignon, S. Senac, J.L. Ayral, J.P. Huignard: Rhodium-doped barium titanate phase-conjugate mirror for an all-solid- state, high-repetition-rate, diode-pumped Nd:YAG master-oscillator power amplifierlaser, Appl Opt 37, p.3990-3995 (1998)

[5.770] {Sect. 5.9.2} G.S. He, P.N. Prasad: Phase-conjugation property of one-photon pumped backward stimulated emission from a lasing medium, IEEEJ QE-34, p.473-481 (1998)

[5.771] {Sect. 5.9.2} M. Lobel: Wavelength selectivity of the complex grating struc-ture formed in a photorefractive phase conjugator, J Appl Phys 84, p.3483-3490 (1998)

[5.772] {Sect. 5.9.2} A. Miniewicz, S. Bartkiewicz, J. Parka: Optical phase con-jugation in dye-doped nematic liquid crystal, Opt Commun 149, p.89-95(1998)

[5.773] {Sect. 5.9.2} W.L. She, W.K. Lee: Crystal-air interface enhanced self-pumped phase conjugation in photorefractive crystals, Opt Commun 146,p.249-252 (1998)

[5.774] {Sect. 5.9.2} A. Brignon, J.P. Huignard, M.H. Garrett, I. Mnushkina: Self-pumped phase conjugation in rhodium-doped BaTiO3 with 1.06-mu mnanosecond pulses, Optics Letters 22, p.215-217 (1997)

[5.775] {Sect. 5.9.2} R. Gutierrezcastrejon, K.M. Hung, T.J. Hall: Spatial evolutionof the phase in resonant degenerate four- wave mixing, Opt Commun 138,p.227-234 (1997)

[5.776] {Sect. 5.9.2} R.K. Mohan, C.K. Subramanian: Transient phase conjugationin dye-doped polymer saturable absorbers, Opt Commun 144, p.322-330(1997)

5.9.2 Four-Wave Mixing (FWM) 779

[5.777] {Sect. 5.9.2} P.P. Vasilev, I.H. White: Phase-conjugation broad area twin-contact semiconductor laser, Appl Phys Lett 71, p.40-42 (1997)

[5.778] {Sect. 5.9.2} A. Costela, I. Garciamoreno: Degenerate four-wave mixingin phenylbenzimidazole proton-transfer laser dyes, Chem Phys Lett 249,p.373-380 (1996)

[5.779] {Sect. 5.9.2} R.P.M. Green, G.J. Crofts, M.J. Damzen: Novel method fordouble phase conjugation in gain media, Opt Commun 124, p.488-492 (1996)

[5.780] {Sect. 5.9.2} C. Medrano, M. Zgonik, P. Bernasconi, P. Gunter: Phase con-jugation in optical communication links with photorefractive Fe:KNbO3,Opt Commun 128, p.177-184 (1996)

[5.781] {Sect. 5.9.2} Y. Yang, H. Fei, Z. Wei, Q. Yang, G. Shun, L. Han: Phaseconjugation in methyl orange doped polyvinyl alcohol film by DFWM basedon excited state absorption, Opt. Comm. 123p.189-194 (1996)

[5.782] {Sect. 5.9.2} S. Brulisauer, D. Fluck, C. Solcia, T. Pliska, P. Gunter: Non-destructive waveguide loss-measurement method using self-pumped phaseconjugation for optimum end-fire coupling, Optics Letters 20, p.1773-1775(1995)

[5.783] {Sect. 5.9.2} G.R. Gray, D.H. Detienne, G.P. Agrawal: Mode locking insemiconductor lasers by phase-conjugate optical feedback, Optics Letters20, p.1295-1297 (1995)

[5.784] {Sect. 5.9.2} S. Miyanaga, H. Ohtateme, K. Kawano, H. Fujiwara: Excited-state absorption and pump propagation effects on optical phase conjugationin a saturable absorber, J. Opt. Soc. Am. B 10, p.1069-1076 (1993)

[5.785] {Sect. 5.9.2} Ch. Egami, K. Nakagawa, H. Fujiwara: Efficient Optical PhaseConjugation in Methyl-Orange-Doped Polyvinyl Alcohol Film, Jpn. J. Appl.Phys. 31, p.2937-2940 (1992)

[5.786] {Sect. 5.9.2} S.S. Alimpiev, I.V. Mel’nikov, V.S. Nersisyan, S.M. Nikiforov,B.G. Sartakov: Phase conjugation of CO2 laser radiation in cryogenic liq-uids, Sov. J. Quantum Electron. 20, p.1507-1512 (1990)

[5.787] {Sect. 5.9.2} V.I. Bespalov, A.A. Betin, E.A. Zhukov, O.V. Mitropol’sky,N.Yu. Rusov: Phase Conjugation of CO2 Laser Radiation in a Medium withThermal Nonlinearity, IEEE J. QE-25, p.360-367 (1989)

[5.788] {Sect. 5.9.2} Y. Tomita, R. Yahalom, A. Yariv: Phase shift and cross talkof a self-pumped phase-conjugate mirror, Opt. Comm. 73, p.413-418 (1989)

[5.789] {Sect. 5.9.2} I.M. Bel’dyugin, M.V. Zolotarev, S.E. Kireev, A.I. Odintsov:Copper vapor laser with a self-pumped wavefront-reversing mirror, Sov. J.Quantum Electron. 16, p.535-537 (1986)

[5.790] {Sect. 5.9.2} R.G. Caro, M.C. Gower: Phase conjugation of KrF laser radi-ation, Opt. Lett. 6, p.557-559 (1981)

[5.791] {Sect. 5.9.2} B.J. Feldman, R.A. Fisher, S.L. Shapiro: Ultraviolet phaseconjugation, Opt. Lett. 6, p.84-86 (1981)

[5.792] {Sect. 5.9.2} R.W. Hellwarth: Generation of time-reversed wave fronts bynonlinear refraction, J. Opt. Soc. Am. 67, p.1-3 (1977)

[5.793] {Sect. 5.9.2} B.Ya. Zel’dovich, V.I. Popovicher, V.V. Ragul’skii, F.S. Faizul-low: Connection between the wavefronts of the reflected and the excitinglight in stimulated Mandel’shtam-Brillouin scattering, Sov. Phys. JETP 15,p.109-112 (1972)

[5.794] {Sect. 5.9.2} H.C. Barr, S.J. Berwick, P. Mason: Six-wave forward scatteringof short-pulse laser light at relativistic intensities, Phys Rev Lett 81, p.2910-2913 (1998)

[5.795] {Sect. 5.9.2} I.D. Hands, S.J. Lin, S.R. Meech, D.L. Andrews: A quan-tum electrodynamical treatment of second harmonic generation throughphase conjugate six-wave mixing: Polarization analysis, J Chem Phys 109,p.10580-10586 (1998)

780 5. Nonlinear Interactions of Light and Matter with Absorption

[5.796] {Sect. 5.9.2} J.N. Sweetser, J.L. Durant, R. Trebino: Ultrafast spectroscopyof high-lying excited states via eight-wave mixing, Opt Commun 150, p.180-184 (1998)

[5.797] {Sect. 5.9.2} A.B. Myers, R.M. Hochstrasser: Comparison of Four-WaveMixing Techniques for Studying Orientational Relaxation, IEEE J. QE-22,p.1482-1492 (1986)

[5.798] {Sect. 5.9.2} M. Golombok, G.A. Kenney-Wallace, S.C. Wallace: PulsedLaser Studies of Molecular Interactions and Reorientation of CS2 in OrganicLiquids via Phase Conjugation, J. Phys. Chem. 89, p.5160-5167 (1985)

[5.799] {Sect. 5.9.2} H.C. Praddaude, D.W. Scudder, B. Lax: Coherent four-wavescattering in plasmas – application to plasma diagnostics, Appl. Phys. Lett.35, p.766-768 (1979)

[5.800] {Sect. 5.9.2} L.A. Rahn, L.J. Zych, P.L. Mattern: Background-Free CARSStudies of Carbon Monoxide in a Flame, Opt. Comm. 30, p.249-252 (1979)

[5.801] {Sect. 5.9.2} T. Yajima, H. Souma, Y. Ishida: Study of ultra-fast relaxationprocesses by resonant Rayleigh-type optical mixing. II. Experiment on dyesolutions, Phys. Rev. A 17, p.324-334 (1978)

[5.802] {Sect. 5.9.2} R.T. Hodgson, P.P. Sorokin, J.J. Wynne: Tunable CoherentVacuum-Ultraviolet Generation in Atomic Vapors, Phys. Rev. Lett. 32,p.343-346 (1974)

[5.803] {Sect. 5.9.3} J.H. Liu, V. Petrov, U. Griebner, F. Noack, H.J. Zhang, J.Y.Wang, M.H. Jiang: Optical bistability in the operation of a continuous-wavediode- pumped Yb:LuVO4 laser, Opt Express 14, p.12183-12187 (2006)

[5.804] {Sect. 5.9.3} J. Houlihan, D. Goulding, T. Busch, C. Masoller, G. Huyet:Experimental investigation of a bistable system in the presence of noise anddelay – art. no. 050601, Phys Rev Lett 9205, p.601 (2004)

[5.805] {Sect. 5.9.3} J.M. Oh, D.H. Lee: Strong optical bistability in a simple L-band tunable erbium-doped fiber ring laser, Ieee J Quantum Electron 40,p.374-377 (2004)

[5.806] {Sect. 5.9.3} M.A. Noginov, B.D. Lucas, M. Vondrova: Optical bistabilityin a Cr : LiSrGaF6 laser, J Opt Soc Am B Opt Physics 19, p.1999-2006(2002)

[5.807] {Sect. 5.9.3} H.M. Gibbs, S.L.McCall, T.N.C. Venkatesan, A.C. Gossard,A. Passner, W. Wiegmann: Optical bistability in semiconductors, Appl.Phys. Lett. 35, p.451-453 (1979)

[5.808] {Sect. 5.9.3} A. Kuditcher, M.P. Hehlen, C.M. Florea, K.W. Winick, S.C.Rand: Intrinsic bistability of luminescence and stimulated emission in Yb-and Tm-doped glass, Phys Rev Lett 84, p.1898-1901 (2000)

[5.809] {Sect. 5.9.3} S. Coen, M. Haelterman: Competition between modulationalinstability and switching in optical bistability, Optics Letters 24, p.80-82(1999)

[5.810] {Sect. 5.9.3} S. Coen, M. Tlidi, P. Emplit, M. Haelterman: Convectionversus dispersion in optical bistability, Phys Rev Lett 83, p.2328-2331 (1999)

[5.811] {Sect. 5.9.3} Z.Z. Zhuang, Y.J. Kim, J.S. Patel: Bistable twisted nematicliquid-crystal optical switch, Appl Phys Lett 75, p.3008-3010 (1999)

[5.812] {Sect. 5.9.3} Y. Hong, K.A. Shore: Observation of optical bistability ina GaAlAs semiconductor laser under intermodal injection locking, OpticsLetters 23, p.1689-1691 (1998)

[5.813] {Sect. 5.9.3} X.H. Lu, Y.X. Bai, S.Q. Li, T.J. Chen: Optical bistability andbeam reshaping in nonlinear multilayered structures, Opt Commun 156,p.219-226 (1998)

[5.814] {Sect. 5.9.3} L.G. Luo, R.F. Peng, P.L. Chu: Optical bistability in a passiveerbium-doped fibre ring resonator, Opt Commun 156, p.275-278 (1998)

5.9.3 Optical Bistability 781

[5.815] {Sect. 5.9.3} Y.M. Golubev, M.I. Kolobov: Noiseless transfer of nonclassicallight through bistable systems, Phys Rev Lett 79, p.399-402 (1997)

[5.816] {Sect. 5.9.3} K. Hane, M. Suzuki: Bistability of a self-standing film causedby photothermal displacement, Appl Opt 36, p.5006-5009 (1997)

[5.817] {Sect. 5.9.3} L.L. Li: Optical bistability in semiconductor lasers under in-termodal light injection, IEEE J QE-32, p.248-256 (1996)

[5.818] {Sect. 5.9.3} M. Okada, K. Nishio: Bistability and optical switching in apolarization- bistable laser diode, IEEE J QE-32, p.1767-1776 (1996)

[5.819] {Sect. 5.9.3} J.H. Si, Y.G. Wang, J. Zhao, B.S. Zou, P.X. Ye, L. Qui, Y.Q.Shen, Z.G. Cai, J.Y. Zhou: Picosecond optical bistability in metallophthalo-cyanine- doped polymer film waveguides, Optics Letters 21, p.357-359(1996)

[5.820] {Sect. 5.9.3} H.J. Eichler, A. Haase, K. Janiak, A. Kummrow, A. Wahi,A. Wappelt: Absorption bistability and nonlinearity in evaporated thinfilms, Opt. Comm. 88, p.298-304 (1992)

[5.821] {Sect. 5.9.3} R. Bonifacio, L.A. Lugiato: Dispersive Bistability in Homoge-neously Broadened Systems, Nuovo Cimento B 53, p.311-333 (1979)

[5.822] {Sect. 5.9.3} J.G. Chen, D.Y. Li, Y. Li, Y. Lu, X.H. Zhou: Analytical ex-pression for the hysteresis loop width of bistable tunable external cavitysemiconductor lasers, Appl Opt 38, p.6333-6336 (1999)

[5.823] {Sect. 5.9.3} M.P. Hehlen, A. Kuditcher, S.C. Rand, S.R. Luthi: Site-selective, intrinsically bistable luminescence of Yb3+ ion pairs in CsCdBr3,Phys Rev Lett 82, p.3050-3053 (1999)

[5.824] {Sect. 5.9.3} I. Towers, R. Sammut, A.V. Buryak, B.A. Malomed: Solitonmultistability as a result of double-resonance wave mixing in chi ((2)) media,Optics Letters 24, p.1738-1740 (1999)

[5.825] {Sect. 5.9.3} L.G. Luo, T.J. Tee, P.L. Chu: Bistability of erbium-doped fiberlaser, Opt Commun 146, p.151-157 (1998)

[5.826] {Sect. 5.9.3} D.B. Shire, C.L. Tang, M.A. Parker, C. Lei, L. Hodge: Bistableoperation of coupled in-plane and oxide-confined vertical-cavity laser 1xNrouting switches, Appl Phys Lett 71, p.3039-3041 (1997)

[5.827] {Sect. 5.9.3} B.M. Jost: Photorefractive two-wave mixing bistability inFe:KNbO3 without external feedback: Increasing gain bistability, Appl PhysLett 69, p.1346-1348 (1996)

[5.828] {Sect. 5.10.1} T. Kobayashi, T. Saito, H. Ohtani: Real-time spectroscopy oftransition states in bacteriorhodopsin during retinal isomerization, Nature414, p.531-534 (2001)

[5.829] {Sect. 5.10.1} L.D. Li, H. Mohwald, C. Spitz, D. vonSeggern, M. Mucke, R.Menzel: Long-lived photoinduced charge separation inside polarity gradientcapsules, Advan Mater 17, p.2247-2249 (2005)

[5.830] {Sect. 5.10.1} B.L. Yao, M. Lei, L.Y. Ren, N. Menke, Y.L. Wang, T.Fischer, N. Hampp: Polarization multiplexed write-once-read-many opti-cal data storage in bacteriorhodopsin films, Optics Letters 30, p.3060-3062(2005)

[5.831] {Sect. 5.10.1.1} I. B. Berlmann: Handbook of Flourescence Spectra ofAromatic Molecules (Academic Press, New York, London, 1971)

[5.832] {Sect. 5.10.1.1} B.R. Henry, W. Siebrand: Radiationless Transitions, inOrganic Molecular Photophysics, ed. J.B. Birks, Vol. 1, Wiley, London 1973,p. 153

[5.833] {Sect. 5.10.1.1} H. S. Nalwa, S. Miyata: Nonlinear Optics of OrganicMolecules and Polymeric Materials (Springer, Berlin, Heidelberg, New York,1996)

782 5. Nonlinear Interactions of Light and Matter with Absorption

[5.834] {Sect. 5.10.1.1} P. N. Prasad, D. Williams: Introduction to Nonlinear Op-tical Effects in Molecules and Polymers (John Wiley & Sons, Chichester,1991)

[5.835] {Sect. 5.10.1.1} J. Saltiel, J.L. Charlton: Rearrangement in Ground andExcited States, ed. by P. DeMeyo (Academic, New York 1980) Vol. III,p.25

[5.836] {Sect. 5.10.1.1} J. Zyss: Molecular Nonlinear Optics (Academic Press,Boston, 1994)

[5.837] {Sect. 5.10.1.1} R. Menzel, K.-H. Naumann: Towards a Theoretical Descrip-tion of UV-Vis Absorption Bands of Organic Molecules, Ber. Bunsenges.Phys. Chem. 95, p.834-837 (1991)

[5.838] {Sect. 5.10.1.1} W. Sibbett, J.R. Taylor, D. Welford: Substituent and Envi-ronmental Effects on the Picosecond Lifetimes of the Polymethine CyanineDyes, IEEE J. QE-17, p.500-509 (1981)

[5.839] {Sect. 5.10.1.1} G. Swiatkowski, R. Menzel, W. Rapp: Hindrance of theRotational Relaxation in the Excited Singlet State of Biphenyl and Para-Terphenyl in Cooled Solutions by Methyl Substituents, J. Luminesc. 37,p.183-189 (1987)

[5.840] {Sect. 5.10.1.1} V. Sundstrom, T. Gillbro, H. Bergstrom: Picosecond Kinet-ics of Radiationless Relaxations of Triphenyl Methane Dyes. Evidence fora Rapid Excited-State Equilibrium Between States of Differing Geometry,Chem. Phys. 73, p.439-458 (1982)

[5.841] {Sect. 5.10.1.1} S. Reindl, A. Penzkofer: Higher excited-state photoisomer-ization and singlet to triplet intersystem-crossing in DODCI, Chem Phys230, p.83-96 (1998)

[5.842] {Sect. 5.10.1.1} F. Gai, K.C. Hasson, J.C. McDonald, P.A. Anfinrud: Chem-ical dynamics in proteins: The photoisomerization of retinal in bacteri-orhodopsin, Science 279, p.1886-1891 (1998)

[5.843] {Sect. 5.10.1.1} T. Nagele, R. Hoche, W. Zinth, J. Wachtveitl: Femtosec-ond photoisomerization of cis-azobenzene, Chem Phys Lett 272, p.489-495(1997)

[5.844] {Sect. 5.10.1.1} N.C.R. Holme, P.S. Ramanujam, S. Hvilsted: 10,000 opticalwrite, read, and erase cycles in an azobenzene sidechain liquid-crystallinepolyester, Optics Letters 21, p.902-904 (1996)

[5.845] {Sect. 5.10.1.1} C. Desfrancois, H. Abdoulcarime, C.P. Schulz, J.P. Scher-mann: Laser separation of geometrical isomers of weakly bound molecularcomplexes, Science 269, p.1707-1709 (1995)

[5.846] {Sect. 5.10.1.1} J. Troe: Quantitative analysis of photoisomerization ratesin trans-stilbene and 4-methyl-trans-stilbene, Chem. Phys. Lett. 114, p.241-247 (1985)

[5.847] {Sect. 5.10.1.1} F.E. Doany, E.J. Heilweil, R. Moore, R.M. Hochstrasser:Picosecond study of an intermediate in the trans to cis isomerization path-way of stiff stilbene, J. Chem. Phys. 80, p.201-206 (1984)

[5.848] {Sect. 5.10.1.1} B.I. Greene, T.W. Scott: Time-resolved multiphoton ioniza-tion in the organic condensed phase: picosecond conformational dynamicsof cis-stilbene and tetraphenylethylene, Chem. Phys. Lett. 106, p.399-402(1984)

[5.849] {Sect. 5.10.1.1} T.J. Majors, U. Even, J. Jortner: Dynamics of trans-cisphotoisomerization of large molecules in supersonic jets, J. Chem. Phys.81, p.2330-2338 (1984)

[5.850] {Sect. 5.10.1.1} V. Sundstrom, T. Gillbro: Dynamics of the isomerizationof trans-stilbene in n-alcohols studied by ultraviolet picosecond absorptionrecovery, Chem. Phys. Lett. 109, p.538-543 (1984)

5.10.1 Organic Molecules 783

[5.851] {Sect. 5.10.1.1} J.A. Syage, P.M. Felker, A.H. Zewail: Picosecond dynamicsand photoisomerization of stilbene in supersonic beams. II. Reaction ratesand potential energy surface, J. Chem. Phys. 81, p.4706-4723 (1984)

[5.852] {Sect. 5.10.1.1} D.A. Cremers, T.L. Cremers: Picosecond Dynamics of Con-formation Changes in Malachite Green Dye Produced by Photoinonizationof Malachite Green Leucocyanide, Chem. Phys. Lett. 94, p.102-106 (1983)

[5.853] {Sect. 5.10.1.1} B.I. Greene, R.C. Farrow: Subpicosecond time resolved mul-tiphoton ionization: Excited state dynamics of cis-stilbene under collisionfree conditions, J. Chem. Phys. 78, p.3336-3338 (1983)

[5.854] {Sect. 5.10.1.1} M. Sumitani, K. Yoshihara: Direct Observation of the Ratefor Cis-Trans and Trans-Cis Photoisomerization of Stilbene with PicosecondLaser Photolysis, Bull. Chem. Soc. Japan 55, p.85-89 (1982)

[5.855] {Sect. 5.10.1.1} J.A. Syage, W.R. Lambert, P.M. Felker, A.H. Zewail, R.M.Hochstrasser: Picosecond excitation and trans-cis isomerization of stilbenein a supersonic jet: dynamics and spectra, Chem. Phys. Lett. 88, p.266-270(1982)

[5.856] {Sect. 5.10.1.1} F.E. Doany, B.I. Greene, R.M. Hochstrasser: Excitationenergy effects in the photophysics of trans-stilbene in solution, Chem. Phys.Lett. 75, p.206-208 (1980)

[5.857] {Sect. 5.10.1.1} B.I. Greene, R.M. Hochstrasser, R. Weisman: Picoseconddynamics of the photoisomerization of trans-stilbene under collision-freeconditions, J. Chem. Phys. 71, p.544-545 (1979)

[5.858] {Sect. 5.10.1.1} K. Yoshihara, A. Namiki, M. Sumitani, N. Nakashima:Picosecond flash photolysis of cis- and trans-stilbene. Observation of anintense intramolecular charge-resonance transition, J. Chem. Phys. 71,p.2892-2895 (1979)

[5.859] {Sect. 5.10.1.2} J.B. Birks: Horizontal radiationless transitions, Chem.Phys. Lett. 54, p.430-434 (1978)

[5.860] {Sect. 5.10.1.1} M. Sumitani, N. Nakashima, K. Yoshihara, S. Nagakura:Temperature Dependence of fluorescence lifetimes of trans-stilbene, Chem.Phys. Lett. 51, p.183-185 (1977)

[5.861] {Sect. 5.10.1.1} O. Teschke, E.P. Ippen, G.R. Holtom: Picosecond dynamicsof the singlet excited state of trans-and cis-stilbene, Chem. Phys. Lett. 52,p.233-235 (1977)

[5.862] {Sect. 5.10.1.1} F. Schael, H.G. Lohmannsroben: The deactivation of singletexcited all-trans-1,6- diphenylhexa-1,3,5-triene by intermolecular chargetransfer processes. 1. Mechanisms of fluorescence quenching and of tripletand cation formation, Chem Phys 206, p.193-210 (1996)

[5.863] {Sect. 5.10.1.1} R.A. Marcus: Elektronentransferrreaktionen in der Chemie– Theorie und Experiment (Nobel-Vortrag), Angew. Chem. 105, p.1161-1280 (1993)

[5.864] {Sect. 5.10.1.1} H. Lueck, M.W. Windsor, W. Rettig: Picosecond kineticstudies of charge separation in 9,9’-bianthryl as a function of solvent vis-cosity and comparisions with electron transfer in bacterial photosynthesis,J. Luminesc. 48 & 49, p.425-429 (1991)

[5.865] {Sect. 5.10.1.1} E. Gilabert, R. Lapouyade, C. Rulliere: Dual fluorescencein trans-4-dimethylamino-4’-cyanostilbene revealed by picosecond time-re-solved spectroscopy: A possible new ”TICT” compound, Chem. Phys. Lett.145, p.262-268 (1988)

[5.866] {Sect. 5.10.1.1} D. Huppert, V. Ittah, E. M. Kosower: New insights into themechanism of fast intramolecular electron transfer, Chem. Phys. Lett. 144,p.15-23 (1988)

[5.867] {Sect. 5.10.1.1} K. Nakatani, T. Okada, N. Mataga, F.C. de Schryver, M.van der Auweraer: Picosecond time-resolved transient absorption spectral

784 5. Nonlinear Interactions of Light and Matter with Absorption

studies of omega- (1-pyrenyl)-alpha-N,N-dimethylaminoalkanes in acetoni-trile, Chem. Phys. Lett. 145, p.81-84 (1988)

[5.868] {Sect. 5.10.1.1} K. Nakatani, T. Okada, N. Mataga, F.C. de Schryver: Pho-toinduced intramolecular electron transfer and exciplex formation of 1-(1-pyrenyl)-3-(N-skatolyl)propane in polar solvents, Chem. Phys. 121, p.87-92(1988)

[5.869] {Sect. 5.10.1.1} M. Vogel, W. Rettig, R. Sens, K.H. Drexhage: Evidence forthe formation of biradicaloid charge-transfer (BCT) states in xanthene andrelated dyes, Chem. Phys. Lett. 147, p.461-465 (1988)

[5.870] {Sect. 5.10.1.1} R. Hayashi, S. Tazuke: Pressure effects on the twisted in-tramolecular charge transfer (TICT) phenomenon, Chem. Phys. Lett. 135,p.123-127 (1987)

[5.871] {Sect. 5.10.1.1} T. Kakitani, N. Mataga: Comprehensive Study on the Roleof Coordinated Solvent Mode Played in Electron-Transfer Reactions in Po-lar Solutions, J. Phys. Chem. 91, p.6277-6285 (1987)

[5.872] {Sect. 5.10.1.1} T. Kobayashi, M. Futakami, O. Kajimoto: The charge-transfer state of 4-dimethylamino-3,5-dimethylbenzonitrile studied in a freejet, Chem. Phys. Lett. 141p.450-454 (1987)

[5.873] {Sect. 5.10.1.1} E. Lippert, W. Rettig, V. Bonacic-Koutecky, F. Heisel, J.A.Miehe: Photophysics of internal twisting, Adv. Chem. Phys, p.76-139 (1987)

[5.874] {Sect. 5.10.1.1} N. Mataga, H. Shioyama, Y. Kanda: Dynamics of ChargeRecombination Processes in the Singlet Electron-Transfer State of Pyrene-Pyromellitic Dianhydride Systems in Various Solvents. Picosecond LaserPhotolysis Studies, J. Phys. Chem. 91, p.314-317 (1987)

[5.875] {Sect. 5.10.1.1} T. Ohno, A. Yoshimura, H. Shioyama, N. Mataga: En-ergy Gap Dependence of Spin-Inverted Electron Transfer within GeminateRadical Pairs Formed by the Quenching of Phosphorescent States in PolarSolvents, J. Phys. Chem. 91, p.4365-4370 (1987)

[5.876] {Sect. 5.10.1.1} T. Kakitani, N. Mataga: Different Energy Gap Laws forthe Three Types of Electron-Transfer Reactions in Polar Solvents, J. Phys.Chem. 90, p.993-995 (1986)

[5.877] {Sect. 5.10.1.1} N. Mataga, Y. Kanda, T. Okada: Dynamics of AromaticHydrocarbon Cation-Tetracyanoethylene Anion Geminate Ion Pairs in Ace-tonitrile Solution with Implications to the Mechanism of the StronglyExothermic Charge Separation Reaction in the Excited Singlet State,J. Phys. Chem. 90, p.3880-3882 (1986)

[5.878] {Sect. 5.10.1.1} T. Ohno, A. Yoshimura, N. Mataga: Bell-Shaped EnergyGap Dependence of Backward Electron-Transfer Rate of Geminate RadicalPairs Produced by Electron-Transfer Quenching of Ru (II) Complexes byAromatic Amines, J. Phys. Chem. 90, p.3295-3297 (1986)

[5.879] {Sect. 5.10.1.1} W. Rettig, A. Klock: Intramolecular fluorescence quench-ing in aminocoumarines. Identification of an excited state with full chargeseparation, Can. J. Chem. 63, p.1649-1653 (1985)

[5.880] {Sect. 5.10.1.1} N. Mataga: Photochemical charge transfer phenomena –picosecond laser photolysis studies, Pure & Appl. Chem. 56, p.1255-1268(1984)

[5.881] {Sect. 5.10.1.1} Y. Wang, M. McAuliffe, K.B. Eisenthal: Picosecond Dy-namics of Twisted Internal Charge-Transfer Phenomena, J. Phys. Chem.85, p.3736-3739 (1981)

[5.882] {Sect. 5.10.1.1} W. Rapp: Classical treatment on intramolecular twistingrelaxations of dissolved molecules, Chem. Phys. Lett. 27, p.187-190 (1974)

[5.883] {Sect. 5.10.1.1} R.A. Marcus: On the Theory of Electron-Transfer Reac-tions. VI. Unified Treatment for Homogeneous and Electrode Reactions, J.Chem. Phys. 43, p.679-701 (1965)

5.10.1 Organic Molecules 785

[5.884] {Sect. 5.10.1.1} R.A. Marcus: Chemical and electrochemical electron-transfer theory, Annu. Rev. Phys. Chem. 15, p.155-196 (1964)

[5.885] {Sect. 5.10.1.1} R.A. Marcus: On the Theory of Oxidation-Reduction Re-actions Involving Electron Transfer. I, J. Chem. Phys. 24, p.966-978 (1956)

[5.886] {Sect. 5.10.1.1} J.R. Bolton, N. Mataga, Mc. Lendon (ed.): Electron Trans-fer in Inorganic, Organic, and Biological Systems, Adv. in Chem. Ser. 228(Am Chem. Soc.1991)

[5.887] {Sect. 5.10.1.1} M.A. Fox, M. Channon (ed.): Photoinduced Electron Trans-fer, Part A-D (Elsevier 1988)

[5.888] {Sect. 5.10.1.2} M.N. Slyadnev, T. Inoue, A. Harata, T. Ogawa: A rho-damine and a cyanine dye on the water surface as studied by laser inducedfluorescence microscopy, Colloid Surface A 164, p.155-162 (2000)

[5.889] {Sect. 5.10.1.2} A. Imhof, M. Megens, J.J. Engelberts, D.T.N. deLang,R. Sprik, W.L. Vos: Spectroscopy of fluorescein (FITC) dyed colloidal silicaspheres, J Phys Chem B 103, p.1408-1415 (1999)

[5.890] {Sect. 5.10.1.2} K. Kitaoka, J. Si, T. Mitsuyu, K. Hirao: Optical poling ofazo-dye-doped thin films using an ultrashort pulse laser, Appl Phys Lett75, p.157-159 (1999)

[5.891] {Sect. 5.10.1.2} C.S. Wang, H.S. Fei, Y.Q. Yang, Z.Q. Wei, Y. Qiu, Y.M.Chen: Photoinduced anisotropy and polarization holography in azobenzeneside-chain polymer, Opt Commun 159, p.58-62 (1999)

[5.892] {Sect. 5.10.1.2} S. Walheim, E. Schaffer, J. Mlynek, U. Steiner: Nanophase-separated polymer films as high-performance antireflection coatings, Science283, p.520-522 (1999)

[5.893] {Sect. 5.10.1.2} L.M. Blinov, G. Cipparrone, S.P. Palto: Phase gratingrecording on photosensitive Langmuir-Blodgett films, J Nonlinear OptPhysics Mat 7, p.369-383 (1998)

[5.894] {Sect. 5.10.1.2} D.J. Welker, J. Tostenrude, D.W. Garvey, B.K. Canfield,M.G. Kuzyk: Fabrication and characterization of single-mode electro-opticpolymer optical fiber, Optics Letters 23, p.1826-1828 (1998)

[5.895] {Sect. 5.10.1.2} K.T. Weitzel, U.P. Wild, V.N. Mikhailov, V.N. Krylov:Hologram recording in DuPont photopolymer films by use of pulse exposure,Optics Letters 22, p.1899-1901 (1997)

[5.896] {Sect. 5.10.1.2} D. Gu, Q. Chen, X. Tang, F. Gan, S. Shen, K. Liu, H. Xu:Application of phtalocyanine thin films in optical recording, Opt. Comm.121, p.125-129 (1995)

[5.897] {Sect. 5.10.1.2} J.R. Kulisch, H. Franke, R. Irmscher, Ch. Buchal: Opto-optical switching in ion-implanted poly (methyl methacrylate)-waveguides,J. Appl. Phys. 71, p.3123-3126 (1992)

[5.898] {Sect. 5.10.1.2} E. Gross, B. Ehrenberg: The partition and distributionof porphyrins in liposomal membranes. A spectroscopic study, Biochim.Biophys. Acta 983, p.118-122 (1989)

[5.899] {Sect. 5.10.1.2} V. Tsukanova, A. Harata, T. Ogawa: Orientational arrange-ment of long-chain fluorescein molecules within the monolayer at the air/water interface studied by the SHG technique, Langmuir 16, p.1167-1171(2000)

[5.900] {Sect. 5.10.1.2} L. Xu, Z.J. Hou, L.Y. Liu, Z.L. Xu, W.C. Wang, F.M. Li,M.X. Ye: Optical nonlinearity and structural phase-transition observation oforganic dye-doped polymer-silica hybrid material, Optics Letters 24, p.1364-1366 (1999)

[5.901] {Sect. 5.10.1.2} R.J. Kruhlak, M.G. Kuzyk: Side-illumination fluorescencespectroscopy. I. Principles, J Opt Soc Am B Opt Physics 16, p.1749-1755(1999)

786 5. Nonlinear Interactions of Light and Matter with Absorption

[5.902] {Sect. 5.10.1.2} R.J. Kruhlak, M.G. Kuzyk: Side-illumination fluores-cence spectroscopy. II. Applications to squaraine-dye-doped polymer opticalfibers, J Opt Soc Am B Opt Physics 16, p.1756-1767 (1999)

[5.903] {Sect. 5.10.1.2} Y. Takeoka, A.N. Berker, R. Du, T. Enoki, A. Grosberg,M. Kardar, T. Oya, K. Tanaka, G.Q. Wang, X.H. Yu et al.: First orderphase transition and evidence for frustrations in polyampholytic gels, PhysRev Lett 82, p.4863-4865 (1999)

[5.904] {Sect. 5.10.1.2} A. Hoischen, H.S. Kitzerow, K. Kurschner, P. Strohriegl:Optical storage effect due to photopolymerization of mesogenic twin mole-cules, J Appl Phys 87, p.2105-2109 (2000)

[5.905] {Sect. 5.10.1.2} C.J. Brabec, F. Padinger, N.S. Sariciftci, J.C. Hummelen:Photovoltaic properties of conjugated polymer/methanofullerene compos-ites embedded in a polystyrene matrix, J Appl Phys 85, p.6866-6872 (1999)

[5.906] {Sect. 5.10.1.2} A.Y.G. Fuh, M.S. Tsai, L.J. Huang, T.C. Liu: Opticallyswitchable gratings based on polymer-dispersed liquid crystal films dopedwith a guest-host dye, Appl Phys Lett 74, p.2572-2574 (1999)

[5.907] {Sect. 5.10.1.2} W. Holzer, M. Pichlmaier, E. Drotleff, A. Penzkofer, D.D.C.Bradley, W.J. Blau: Optical constants measurement of luminescent polymerfilms, Opt Commun 163, p.24-28 (1999)

[5.908] {Sect. 5.10.1.2} O.V. Khodykin, S.J. Zilker, D. Haarer, B.M. Kharlamov:Zinc-tetrabenzoporphyrine-doped poly (Methyl methacrylate): a new pho-tochromic recording medium, Optics Letters 24, p.513-515 (1999)

[5.909] {Sect. 5.10.1.2} J.S. Kim, R.H. Friend, F. Cacialli: Improved operationalstability of polyfluorene-based organic light- emitting diodes with plasma-treated indium-tin-oxide anodes, Appl Phys Lett 74, p.3084-3086 (1999)

[5.910] {Sect. 5.10.1.2} H. Murata, C.D. Merritt, H. Inada, Y. Shirota, Z.H. Kafafi:Molecular organic light-emitting diodes with temperature-independentquantum efficiency and improved thermal durability, Appl Phys Lett 75,p.3252-3254 (1999)

[5.911] {Sect. 5.10.1.2} S. Pelissier, D. Blanc, M.P. Andrews, S.I. Najafi, A.V.Tishchenko, O. Parriaux: Single-step UV recording of sinusoidal surfacegratings in hybrid solgel glasses, Appl Opt 38, p.6744-6748 (1999)

[5.912] {Sect. 5.10.1.2} G. Rojo, G. delaTorre, J. GarciaRuiz, I. Ledoux, T. Tor-res, J. Zyss, F. AgulloLopez: Novel unsymmetrically substituted push-pullphthalocyanines for second-order nonlinear optics, Chem Phys 245, p.27-34(1999)

[5.913] {Sect. 5.10.1.2} M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Patel, P. Wiltz-ius: Photopolymer-filled nanoporous glass as a dimensionally stable holo-graphic recording medium, Optics Letters 24, p.658-660 (1999)

[5.914] {Sect. 5.10.1.2} A. Shukla, S. Mazumdar: Designing emissive conjugatedpolymers with small optical gaps: A step towards organic polymeric infraredlasers, Phys Rev Lett 83, p.3944-3947 (1999)

[5.915] {Sect. 5.10.1.2} W.L. Yu, Y. Cao, J.A. Pei, W. Huang, A.J. Heeger: Bluepolymer light-emitting diodes from poly (9,9-dihexylfluorene-alt-co-2,5-di-decyloxy-para-phenylene), Appl Phys Lett 75, p.3270-3272 (1999)

[5.916] {Sect. 5.10.1.2} P.K.H. Ho, D.S. Thomas, R.H. Friend, N. Tessler: All-polymer optoelectronic devices, Science 285, p.233-236 (1999)

[5.917] {Sect. 5.10.1.2} S. Walheim, E. Schaffer, J. Mlynek, U. Steiner: Nanophase-separated polymer films as high-performance antireflection coatings, Science283, p.520-522 (1999)

[5.918] {Sect. 5.10.1.2} L.L. Hu, Z.H. Jiang: Laser action in rhodamine 6G dopedtitania-containing ormosils, Opt Commun 148, p.275-280 (1998)

[5.919] {Sect. 5.10.1.2} H. Kietzmann, R. Rochow, G. Gantefor, W. Eberhardt,K. Vietze, G. Seifert, P.W. Fowler: Electronic structure of small fullerenes:

5.10.1 Organic Molecules 787

Evidence for the high stability of C-32, Phys Rev Lett 81, p.5378-5381(1998)

[5.920] {Sect. 5.10.1.2} S.K. Lam, D. Lo: Delayed luminescence spectroscopy andoptical phase conjugation in eosin Y-doped sol-gel silica glasses, Chem PhysLett 297, p.329-334 (1998)

[5.921] {Sect. 5.10.1.2} E.I. Maltsev, D.A. Lypenko, B.I. Shapiro, M.A. Brusent-seva, V.I. Berendyaev, B.V. Kotov, A.V. Vannikov: J-aggregate electrolu-minescence in dye doped polymer layers, Appl Phys Lett 73, p.3641-3643(1998)

[5.922] {Sect. 5.10.1.2} J.H. Si, T. Mitsuyu, P.X. Ye, Z. Li, Y.Q. Shen, K. Hirao:Optical storage in an azobenzene-polyimide film with high glass transitiontemperature, Opt Commun 147, p.313-316 (1998)

[5.923] {Sect. 5.10.1.2} K. Kandasamy, P.N. Puntambekar, B.P. Singh, S.J. Shetty,T.S. Srivastava: Resonant nonlinear optical studies on porphyrin deriva-tives, J Nonlinear Opt Physics Mat 6, p.361-375 (1997)

[5.924] {Sect. 5.10.1.2} X.A. Long, A. Malinowski, D.D.C. Bradley, M. Inbasekaran,E.P. Woo: Emission processes in conjugated polymer solutions and thinfilms, Chem Phys Lett 272, p.6-12 (1997)

[5.925] {Sect. 5.10.1.2} E.S. Maniloff, D. Vacar, D.W. Mcbranch, H.L. Wang, B.R.Mattes, J. Gao, A.J. Heeger: Ultrafast holography using charge-transferpolymers, Opt Commun 141, p.243-246 (1997)

[5.926] {Sect. 5.10.1.2} S. Ozcelik, D.L. Akins: Extremely low excitation threshold,superradiant, molecular aggregate lasing system, Appl Phys Lett 71, p.3057-3059 (1997)

[5.927] {Sect. 5.10.1.2} M. Ahlheim, M. Barzoukas, P.V. Bedworth, M. Blanchard-desce, A. Fort, Z.Y. Hu, S.R. Marder, J.W. Perry, C. Runser, M. Staehelin,et al.: Chromophores with strong heterocyclic accepters: A poled polymerwith a large electro-optic coefficient, Science 271, p.335-337 (1996)

[5.928] {Sect. 5.10.1.2} F. Hide, M.A. Diazgarcia, B.J. Schwartz, M.R. Andersson,Q.B. Pei, A.J. Heeger: Semiconducting polymers: A new class of solid-statelaser materials, Science 273, p.1833-1836 (1996)

[5.929] {Sect. 5.10.1.2} H.S. Fei, Z.Q. Wei, Q.G. Yang, Y.L. Che, Y.Q. Shen, X.F.Fu, L. Qiu: Low power phase conjugation in push pull azobenzene com-pounds, Optics Letters 20, p.1518-1520 (1995)

[5.930] {Sect. 5.10.1.2} Y.C. Liu, H.Y. Wang, M.Z. Tian, Y.L. Lin, X.G. Kong,S.H. Huang, J.Q. Yu: Multiple-hologram storage for thin layers of MethylOrange dyes in polyvinyl alcohol matrices, Optics Letters 20, p.1495-1497(1995)

[5.931] {Sect. 5.10.1.2} Y.H. Zhang, Q.W. Song, C. Tseronis, R.R. Birge: Real-time holographic imaging with a bacteriorhodopsin film, Optics Letters 20,p.2429-2431 (1995)

[5.932] {Sect. 5.10.1.2} F.E. Doany, E.J. Heilweil, R. Moore, R.M. Hochstrasser:Picosecond study of an intermediate in the trans to cis isomerization path-way of stiff stilbene, J. Chem. Phys. 80, p.201-206 (1984)

[5.933] {Sect. 5.10.1.2} Y. Maeda, T. Okada, N. Mataga: Photoinduced Trans-Cis Isomerization and Intramolecular-Charge-Transfer Interaction. Photo-chemistry and Picosecond Laser Spectroscopy of 4-Substituted beta-(1-Pyrenyl)styrenes, J. Phys. Chem. 88, p.2714-2718 (1984)

[5.934] {Sect. 5.10.1.2} V. Sundstrom, T. Gillbro: Dynamics of the isomerizationof trans-stilbene in n-alcohols studied by ultraviolet picosecond absorptionrecovery, Chem. Phys. Lett. 109, p.538-543 (1984)

[5.935] {Sect. 5.10.1.2} A. Amirav, J. Jortner: Dynamics of trans-cis isomerizationof stilbene in supersonic jets, Chem. Phys. Lett. 95, p.295-300 (1983)

788 5. Nonlinear Interactions of Light and Matter with Absorption

[5.936] {Sect. 5.10.1.2} H. Gorner, D. Schult-Frohlinde: Trans-cis photoisomer-ization of the quaternary iodides of 4-cyano- and 4-nitro-4’-azastilbene inethanol solution: Singlet versus triplet mechanism, Chem. Phys. Lett. 101,p.79-85 (1983)

[5.937] {Sect. 5.10.1.2} K.S. Schanze, T. Fleming Mattox, D.G. Whitten: SolventEffects upon the Thermal Cis-Trans Isomerization and Charge-Transfer Ab-sorption of 4- (Diethylamino)-4’-nitroazobenzene, J. Org. Chem. 48, p.2808-2813 (1983)

[5.938] {Sect. 5.10.1.2} G. Bartocci, F. Masetti, U. Mazzucato, S. Dellonte,G. Orlandi: Photophysical study of rotational isomers of mono-aza- anddi-aza-stilbenes, Spectrochimica Acta 38A, p.729-735 (1982)

[5.939] {Sect. 5.10.1.2} M. Sumitani, K. Yoshihara: Photochemistry of the lowestexcited singlet state: Acceleration of trans-cis isomerization by two consec-utive picosecond pulses, J. Chem. Phys. 76, p.738-740 (1982)

[5.940] {Sect. 5.10.1.2} St.P. Velsko, G.R. Fleming: Solvent influence on photo-chemical isomerizations: Photophysics of DODCI, Chem. Phys. 65, p.59-70(1982)

[5.941] {Sect. 5.10.1.2} J. Saltiel, D.W. Eaker: Lifetime and geometry of 1-phenyl-2- (2-naphthyl)ethene triplets. Evidence against the triplet mechanism fordirect photoisomerization, Chem. Phys. Lett. 75, p.209-213 (1980)

[5.942] {Sect. 5.10.1.2} T. Kobayashi, S. Nagakura: The rates of internal conversionand photoisomerization of some carbocanine dyes as revealed from picosec-ond time-resolved spectroscopy, Chem. Phys. 23, p.153-158 (1977)

[5.943] {Sect. 5.10.1.2} S. Volker, J.H. van der Waals: Laser-induced photochemicalisomerization of free base porphyrin in an n-octane crystal at 4.2 K, Mol.Phys. 32, p.1703-1718 (1976)

[5.944] {Sect. 5.10.1.2} M. Sumitani, S. Nagakura, K. Yoshihara: Laser photolysisstudy of trans-cis photoisomerization of trans-1-phenyl-2-(2-naphthyl)ethyl-ene, Chem. Phys. Lett. 29, p.410-413 (1974)

[5.945] {Sect. 5.10.1.2} E.G. Arthurs, D.J. Bradley, A.G. Roddie: Picosecond mea-surements of 3,3’-diethyloxadicarbocyanine iodide and photoisomer fluores-cence, Chem. Phys. Lett. 22, p.230-234 (1973)

[5.946] {Sect. 5.10.1.2} N.G. Basov, A.M. Prokhorov: Possible Methods of Ob-taining Active Molecules for a Molecular Oscillator, Sov. Phys. JETP 1,p.184-185 (1955)

[5.947] {Sect. 5.10.1.2} B. Wei, N. Kobayashi, M. Ichikawa, T. Koyama, Y.Taniguchi, T. Fukuda: Organic solid laser pumped by an organic light-emitting diode, Opt Express 14, p.9436-9443 (2006)

[5.948] {Sect. 5.10.1.2}SunY.R., N.C. Giebink, H. Kanno, B.W. Ma, M.E. Thomp-son, S.R. Forrest: Management of singlet and triplet excitons for efficientwhite organic light-emitting devices, Nature 440, p.908-912 (2006)

[5.949] {Sect. 5.10.1.2} D. Pisignano, L. Persano, E. Mele, P. Visconti, R. Cingolani,G. Gigli, G. Barbarella, L. Favaretto: Emission properties of printed organicsemiconductor lasers, Optics Letters 30, p.260-262 (2005)

[5.950] {Sect. 5.10.1.2} J.R. Lawrence, G.A. Turnbull, I.D.W. Samuel, G.J.Richards, P.L. Burn: Optical amplification in a first-generation dendriticorganic semiconductor, Optics Letters 29, p.869-871 (2004)

[5.951] {Sect. 5.10.1.2} S. Coe, W.K. Woo, M. Bawendi, V. Bulovic: Electrolumines-cence from single monolayers of nanocrystals in molecular organic devices,Nature 420, p.800-803 (2002)

[5.952] {Sect. 5.10.1.2} C. Former, H. Wagner, R. Richert, D. Neher, K. Mullen:Orientation and dynamics of chainlike dipole arrays: Donor-acceptor-substituted oligophenylenevinylenes in a polymer matrix, Macromolecules32, p.8551-8559 (1999)

5.10.1 Organic Molecules 789

[5.953] {Sect. 5.10.1.2} R. Hildebrandt, H.M. Keller, G. Marowsky, W. Brutting,T. Fehn, M. Schwoerer, J.E. Sipe: Electric-field-induced optical second-harmonic generation in poly (Phenylene vinylene) light-emitting diodes,Chem Phys 245, p.341-344 (1999)

[5.954] {Sect. 5.10.1.2} E.I. Maltsev, D.A. Lypenko, B.I. Shapiro, M.A. Brusent-seva, G.H.W. Milburn, J. Wright, A. Hendriksen, V.I. Berendyaev, B.V.Kotov, A.V. Vannikov: Electroluminescence of polymer/J-aggregate com-posites, Appl Phys Lett 75, p.1896-1898 (1999)

[5.955] {Sect. 5.10.1.2} D.J. Pinner, R.H. Friend, N. Tessler: Transient electrolu-minescence of polymer light emitting diodes using electrical pulses, J ApplPhys 86, p.5116-5130 (1999)

[5.956] {Sect. 5.10.1.2} Y.Z. Wang, R.G. Sun, F. Meghdadi, G. Leising, A.J.Epstein: Multicolor multilayer light-emitting devices based on pyridine-containing conjugated polymers and para-sexiphenyl oligomer, Appl PhysLett 74, p.3613-3615 (1999)

[5.957] {Sect. 5.10.1.2} A. Yamamori, C. Adachi, T. Koyama, Y. Taniguchi: Elec-troluminescence of organic light emitting diodes with a thick hole transportlayer composed of a triphenylamine based polymer doped with an antimo-nium compound, J Appl Phys 86, p.4369-4376 (1999)

[5.958] {Sect. 5.10.1.2} R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes,R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas,M. Logdlund, W.R. Salaneck. Electroluminescence in conjugated polymers,Nature 397, p.121-128 (1999)

[5.959] {Sect. 5.10.1.2} V. Bulovic, A. Shoustikov, M.A. Baldo, E. Bose, V.G. Ko-zlov, M.E. Thompson, S.R. Forrest: Bright, saturated, red-to-yellow organiclight-emitting devices based on polarization-induced spectral shifts, ChemPhys Lett 287, p.455-460 (1998)

[5.960] {Sect. 5.10.1.2} A. Kraft, A.C. Grimsdale, A.B. Holmes: ElectroluminescentConjugated Polymers – Seeing Polymers in a New Light, Angew. Chem. Int.Ed. 37, p.402-428 (1998)

[5.961] {Sect. 5.10.1.2} H. Sirringhaus, N. Tessler, R.H. Friend: Integrated opto-electronic devices based on conjugated polymers, Science 280, p.1741-1744(1998)

[5.962] {Sect. 5.10.1.2} G.H. Gelinck, J.M. Warman, M. Remmers, D. Neher:Narrow-band emissions from conjugated-polymer films, Chem Phys Lett265, p.320-326 (1997)

[5.963] {Sect. 5.10.1.2} Q.B. Pei, G. Yu, C. Zhang, Y. Yang, A.J. Heeger: Polymerlight-emitting electrochemical cells, Science 269, p.1086-1088 (1995)

[5.964] {Sect. 5.10.1.2} U. Lemmer, R.F. Mahrt, Y. Wada, A. Greiner, H. Bassler,E.O. Gobel: Time resolved luminescence study of recombination processesin electroluminescent polymers, Appl. Phys. Lett. 62, p.2827-2829 (1993)

[5.965] {Sect. 5.10.1.2} T. Renger, V. May: Multiple exciton effects in molecularaggregates: Application to a photosynthetic antenna complex, Phys RevLett 78, p.3406-3409 (1997)

[5.966] {Sect. 5.10.1.2} S. Creighton, J.-K. Hwang, A. Warshel, W.W. Parson,J. Norris: Simulating the Dynamics of the Primary Charge Separation Pro-cess in Bacterial Photosynthesis, Biochem. 27, p.774-781 (1988)

[5.967] {Sect. 5.10.1.2} A. Ogrodnik, N. Remy-Richter, M.E. Michel-Beyerle,R. Feick: Observation of activationless recombination in reaction centersof R. sphaeroides. A new key to the primary electron-transfer mechanism,Chem. Phys. Lett. 135, p.576-581 (1987)

[5.968] {Sect. 5.10.1.2} A.W. Rutherford, P. Heathcote: Primary photochemistryin photosystem-I, Photosynthesis Research 6, p.295-316 (1985)

790 5. Nonlinear Interactions of Light and Matter with Absorption

[5.969] {Sect. 5.10.3} P. Yeh, C. Gu: Photorefractive Materials, Effects, and Ap-plications (SPIE Press, 1994)

[5.970] {Sect. 5.10.3} P. Yeh, C. Gu: Landmark Papers on Photorefractive Nonlin-ear Optics (World Scientific, Singapore, 1995)

[5.971] {Sect. 5.10.3} P. Bernasconi, G. Montemezzani, M. Wintermantel, I. Biag-gio, P. Gunter: High-resolution, high-speed photorefractive incoherent-to-coherent optical converter, Optics Letters 24, p.199-201 (1999)

[5.972] {Sect. 5.10.3} D. Day, M. Gu: Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractivepolymer, Optics Letters 24, p.948-950 (1999)

[5.973] {Sect. 5.10.3} J. Imbrock, S. Wevering, K. Buse, E. Kratzig: Nonvolatileholographic storage in photorefractive lithium tantalate crystals with laserpulses, J Opt Soc Am B Opt Physics 16, p.1392-1397 (1999)

[5.974] {Sect. 5.10.3} T. Nikolajsen, P.M. Johansen: Low-temperature thermal fix-ing of holograms in photorefractive La3Ga5SiO14 : Pr3+ crystal, OpticsLetters 24, p.1419-1421 (1999)

[5.975] {Sect. 5.10.3} X.N. Shen, J.H. Zhao, X.L. Lu, Q.Z. Jiang, J.W. Zhang, H.R.Xia, L.H. Song, S.J. Zhang, J.R. Han, H.C. Chen: Photorefractive propertiesof Cu-doped (K0.5Na0.5) (0.2) (Sr0.75Ba0.25) (0.9)Nb2O6 crystals withdifferent doping levels and different dimensions, J Appl Phys 86, p.3371-3376 (1999)

[5.976] {Sect. 5.10.3} E. Soergel, W. Krieger: Profiles of light-induced charge grat-ings on photorefractive crystals, Phys Rev Lett 83, p.2336-2339 (1999)

[5.977] {Sect. 5.10.3} J. Wolff, S. Schloter, U. Hofmann, D. Haarer, S.J. Zilker:Speed enhancement of photorefractive polymers by means of light-inducedfilling of trapping states, J Opt Soc Am B Opt Physics 16, p.1080-1086(1999)

[5.978] {Sect. 5.10.3} A. ApolinarIribe, N. Korneev, J.J. SanchezMondragon: Beamamplification resulting from non-Bragg wave mixing in photorefractivestrontium barium niobate, Optics Letters 23, p.1877-1879 (1998)

[5.979] {Sect. 5.10.3} T. Nikolajsen, P.M. Johansen, E. Dubovik, T. Batirov, R.Djalalov: Photorefractive two-step recording in a piezoelectric La3Ga5SiO14crystal doped with praseodymium, Optics Letters 23, p.1164-1166 (1998)

[5.980] {Sect. 5.10.3} B. Pesach, E. Refaeli, A.J. Agranat: Investigation of the holo-graphic storage capacity of paraelectric K1- xLixTa1-yNbyO3:Cu,V, OpticsLetters 23, p.642-644 (1998)

[5.981] {Sect. 5.10.3} X.N. Shen, T.H. Zhao, R.B. Wang, P.C. Yeh, S.J. Zhang,H.C. Chen: Photorefractive properties of Cu-doped KNSBN crystal withfluorine replacing oxygen, Optics Letters 23, p.1253-1255 (1998)

[5.982] {Sect. 5.10.3} A. Brignon, D. Geffroy, J.P. Huignard, M.H. Garrett,I. Mnushkina: Experimental investigations of the photorefractive proper-ties of rhodium-doped BaTiO3 at 1.06 mu m, Opt Commun 137, p.311-316(1997)

[5.983] {Sect. 5.10.3} J. Neumann, S. Odoulov: Parametric amplification of a co-herent light wave in photorefractive BaTiO3 by a single pump beam, OpticsLetters 22, p.1858-1860 (1997)

[5.984] {Sect. 5.10.3} P.M. Lundquist, R. Wortmann, C. Geletneky, R.J. Twieg,M. Jurich, V.Y. Lee, C.R. Moylan, D.M. Burland: Organic glasses: A newclass of photorefractive materials, Science 274, p.1182-1185 (1996)

[5.985] {Sect. 5.10.3} M. Taya, M.C. Bashaw, M.M. Fejer: Photorefractive effectsin periodically poled ferroelectrics, Opt. Lett. 21, p.857-859 (1996)

[5.986] {Sect. 5.10.3} A.A. Kamshilin, V.V. Prokofiev, T. Jaaskelainen: Beam Fan-ning and Double Phase Conjugation in a Fiber-Like Photorefractive Sample,IEEE J. QE-31, p.1642-1647 (1995)

5.10.3 Photorefractive Materials 791

[5.987] {Sect. 5.10.3} F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel,M. Wurtz, D. Hilgenberg: Photorefraction in the ultraviolet: Materials andeffects, Appl. Phys. B. 61, p.351-360 (1995)

[5.988] {Sect. 5.10.3} D. Psaltis, F. Mok, H.-Y. S. Li: Nonvolatile storage in pho-torefractive crystals, Opt. Lett. 19, p.210-212 (1994)

[5.989] {Sect. 5.10.3} J. Feinberg, D. Heiman, A.R. Tanguay,Jr, R.W. Hellwarth:Photorefractive effects and light-induced charge migration in bariumtitanate, J. Appl. Phys. 51, p.1297-1305 (1980)

[5.990] {Sect. 5.10.3} A.M. Glass: The Photorefractive Effect, Opt. Eng. 17, p.470-479 (1978)

[5.991] {Sect. 5.10.3} Y. Kawata, H. Ishitobi, S. Kawata: Use of two-photon ab-sorption in a photorefractive crystal for three- dimensional optical memory,Optics Letters 23, p.756-758 (1998)

[5.992] {Sect. 5.10.3} K. Meerholz, Y. DeNardin, R. Bittner, R. Wortmann,F. Wurthner: Improved performance of photorefractive polymers based onmerocyanine dyes in a polar matrix, Appl Phys Lett 73, p.4-6 (1998)

[5.993] {Sect. 5.10.3} T. Nikolajsen, P.M. Johansen, X. Yue, D. Kip, E. Kratzig:Two-step two-color recording in a photorefractive praseodymium-dopedLa3Ga5SiO14 crystal, Appl Phys Lett 74, p.4037-4039 (1999)

[5.994] {Sect. 5.10.3} A. Liu, M.K. Lee, L. Hesselink, S.H. Lee, K.S. Lim: Light-induced absorption of cerium-doped lead barium niobate crystals, OpticsLetters 23, p.1618-1620 (1998)

[5.995] {Sect. 5.10.3} V.A. Kalinin, K. Shcherbin, L. Solymar, J. Takacs, D.J.Webb: Resonant two-wave mixing in photorefractive materials with theaid of dc and ac fields, Optics Letters 22, p.1852-1854 (1997)

[5.996] {Sect. 5.10.3} H. Ueki, Y. Kawata, S. Kawata: Three-dimensional opticalbit-memory recording and reading with a photorefractive crystal: Analysisand experiment, Appl Opt 35, p.2457-2465 (1996)

[5.997] {Sect. 5.10.3} W.L. She, Z.X. Yu, H.W. Ho, H. Chan, W.K. Lee: Controlof self-pumped phase conjugate reflectivity in a photorefractive crystal byanother laser beam, Opt Commun 139, p.77-80 (1997)

[5.998] {Sect. 5.10.3} H. Guenther, G. Wittmann, R.M. Macfarlane, R.R. Neur-gaonkar: Intensity dependence and white-light gating of two-color photore-fractive gratings in LiNbO3, Optics Letters 22, p.1305-1307 (1997)

[5.999] {Sect. 5.10.3} A. Grunnetjepsen, C.L. Thompson, W.E. Moerner: Sponta-neous oscillation and self-pumped phase conjugation in a photorefractivepolymer optical amplifier, Science 277, p.549-552 (1997)

[5.1000] {Sect. 5.10.4} J. Shah: Ultrafast Spectroscopy of Semiconductors andSemiconductor Nanostructures (Springer, Berlin, Heidelberg, New York,1996)

[5.1001] {Sect. 5.10.4} S. Kakimoto, H. Watanabe: Intervalence band absorptionloss coefficients of the active layer for InP-based long wavelength laserdiodes, J Appl Phys 87, p.2095-2097 (2000)

[5.1002] {Sect. 5.10.4} T. Verbiest, S. VanElshocht, M. Kauranen, L. Hellemans,J. Snauwaert, C. Nuckolls, T.J. Katz, A. Persoons: Strong enhancement ofnonlinear optical properties through supramolecular chirality, Science 282,p.913-915 (1998)

[5.1003] {Sect. 5.10.4} D.A.B. Miller, C.T. Seaton, M.E. Prise, S.D. Smith: Band-Gap-Resonant Nonlinear Refraction in III-V Semiconductors, Phys. Rev.Lett. 47, p.197-200 (1981)

[5.1004] {Sect. 5.10.4} F.J.P. Schuurmans, M. Megens, D. Vanmaekelbergh,A. Lagendijk: Light scattering near the localization transition in macrop-orous GaP networks, Phys Rev Lett 83, p.2183-2186 (1999)

792 5. Nonlinear Interactions of Light and Matter with Absorption

[5.1005] {Sect. 5.10.5} G.B. Serapiglia, E. Paspalakis, C. Sirtori, K.L. Vodopyanov,C.C. Phillips: Laser-induced quantum coherence in a semiconductor quan-tum well, Phys Rev Lett 84, p.1019-1022 (2000)

[5.1006] {Sect. 5.10.5} M. Kira, F. Jahnke, S.W. Koch: Quantum theory of sec-ondary emission in optically excited semiconductor quantum wells, PhysRev Lett 82, p.3544-3547 (1999)

[5.1007] {Sect. 5.10.5} J. Schmitt, P. Machtle, D. Eck, H. Mohwald, C. A. Helm:Preparation and Optical Properties of Colloidal Gold Monolayers, Lang-muir 15, p.3256-3266 (1999)

[5.1008] {Sect. 5.10.5} D. Birkedal, J. Shah: Femtosecond spectral interferometryof resonant secondary emission from quantum wells: Resonance Rayleighscattering in the nonergodic regime, Phys Rev Lett 81, p.2372-2375 (1998)

[5.1009] {Sect. 5.10.5} D.H. Lowndes, D.B. Geohegan, A.A. Puretzky, D.P. Nor-ton, C.M. Rouleau: Synthesis of novel thin-film materials by pulsed laserdeposition, Science 273, p.898-903 (1996)

[5.1010] {Sect. 5.10.5} S.V. Gaponenko, U. Woggon, A. Uhrig, W. Langbein,C. Klingshirn: Narrow-band spectral hole burning in quantum dots,J. Luminesc. 60 & 61, p.302-307 (1994)

[5.1011] {Sect. 5.10.5} C. A. Foss, Jr, G. L. Hornyak, J. A. Stockert, Ch. R. Martin:Optically Transparent Nanometal Composite Membranes, Adv. Mater. 5,p.135-137 (1993)

[5.1012] {Sect. 5.10.5} A.V. Alekseeva, V.A. Bogatyrev, L.A. Dykman, B.N.Khlebtsov, L.A. Trachuk, A.G. Melnikov, N.G. Khlebtsov: Preparation andoptical scattering characterization of gold nanorods and their applicationto a dot-immunogold assay, Appl Opt 44, p.6285-6295 (2005)

[5.1013] {Sect. 5.10.5} S. DasSarma, D.W. Wang: Many-body renormalization ofsemiconductor quantum wire excitons: Absorption, gain, binding, and un-binding, Phys Rev Lett 84, p.2010-2013 (2000)

[5.1014] {Sect. 5.10.5} O. Mauritz, G. Goldoni, F. Rossi, E. Molinari: Local opticalspectroscopy in quantum confined systems: A theoretical description, PhysRev Lett 82, p.847-850 (1999)

[5.1015] {Sect. 5.10.5} T.A. Smith, J. Hotta, K. Sasaki, H. Masuhara, Y. Itoh:Photon pressure-induced association of nanometer-sized polymer chains insolution, J Phys Chem B 103, p.1660-1663 (1999)

[5.1016] {Sect. 5.10.5} F. Tassone, C. Piermarocchi: Electron-hole correlation ef-fects in the emission of light from quantum wires, Phys Rev Lett 82, p.843-846 (1999)

[5.1017] {Sect. 5.10.5} J.H. Golden, F.J. Disalvo, J.M.J. Frechet, J. Silcox,M. Thomas, J. Elman: Subnanometer-diameter wires isolated in a polymermatrix by fast polymerization, Science 273, p.782-784 (1996)

[5.1018] {Sect. 5.10.5} J.P. Zhang, D.Y. Chu, S.L. Wu, S.T. Ho, W.G. Bi, C.W. Tu,R.C. Tiberio: Photonic-wire laser, Phys Rev Lett 75, p.2678-2681 (1995)

[5.1019] {Sect. 5.10.5} C. A. Foss, Jr, G. L. Hornyak, J. A. Stockert, Ch. R. Mar-tin: Optical Properties of Composite Membranes Containing Arrays ofNanoscopic Gold Cylinders, J. Phys. Chem. 96, p.7497-7499 (1992)

[5.1020] {Sect. 5.10.5} D. Alexander, J. Bruce, C. Zuhlke, B. Koch, R. Rude-busch, J. Deogun, H. Hamza: Demonstration of a nanoparticle-based op-tical diode, Optics Letters 31, p.1957-1959 (2006)

[5.1021] {Sect. 5.10.5} S. Reitzenstein, A. Loffler, C. Hofmann, A. Kubanek, M.Kamp, J.P. Reithmaier, A. Forchel, V.D. Kulakovskii, L.V. Keldysh, I.V.Ponomarev, T.L. Reinecke: Coherent photonic coupling of semiconductorquantum dots, Optics Letters 31, p.1738-1740 (2006)

[5.1022] {Sect. 5.10.5} B. BenBakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry,P. Viktorovitch, M. Zussy, L. DiCioccio, J.M. Fedeli: Room-temperature

5.10.5 Nanometer Structures 793

InAs/InP quantum dots laser operation based on heterogeneous ”2.5 D”Photonic Crystal, Opt Express 14, p.9269-9276 (2006)

[5.1023] {Sect. 5.10.5} N.K. Metzger, E.M. Wright, W. Sibbett, K. Dholakia: Vi-sualization of optical binding of microparticles using a femtosecond fiberoptical trap, Opt Express 14, p.3677-3687 (2006)

[5.1024] {Sect. 5.10.5} H.B. Liao, W.J. Wen, G.K.L. Wong: Photoluminescencefrom Au nanoparticles embedded in Au:oxide composite films, J Opt SocAm B Opt Physics 23, p.2518-2521 (2006)

[5.1025] {Sect. 5.10.5} Y. Syvenkyy, B. Kotlyarchuk, A. Zaginey, B. Sahraoui:Laser-induced properties modification of CdTe:C1 and (Cd, Hg)Te: Com-puter simulation and experimental investigation, Opt Commun 256, p.342-346 (2005)

[5.1026] {Sect. 5.10.5} R.A. Ganeev, A.I. Ryasnyansky, A.L. Stepanov, C. Marques,R.C. daSilva, E. Alves: Application of Z-scan technique for investigation ofnonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles,Opt Commun 253, p.205-213 (2005)

[5.1027] {Sect. 5.10.5} I.V. Yurasova, O.L. Antipov: Giant optical nonlinearity ofC-70-doped hole-conducting polymer nanocomposite, Opt Commun 224,p.329-336 (2003)

[5.1028] {Sect. 5.10.5} MARC Alencar, A.S.L. Gomes, C.B. deAraujo: Directionallaserlike emission from a dye-doped polymer containing rutile nanoparti-cles, J Opt Soc Am B Opt Physics 20, p.564-567 (2003)

[5.1029] {Sect. 5.10.5} J. Bosbach, C. Hendrich, F. Stietz, T. Vartanyan, F. Trager:Ultrafast dephasing of surface plasmon excitation in silver nanoparticles:Influence of particle size, shape, and chemical surrounding – art. no.257404, Phys Rev Lett 8925, p.7404 (2002)

[5.1030] {Sect. 5.10.5} J.T. Hu, L.S. Li, W.D. Yang, L. Manna, L.W. Wang, A.P.Alivisatos: Linearly polarized emission from colloidal semiconductor quan-tum rods, Science 292, p.2060-2063 (2001)

[5.1031] {Sect. 5.10.5} M.V. Artemyev, U. Woggon: Quantum dots in photonicdots, Appl Phys Lett 76, p.1353-1355 (2000)

[5.1032] {Sect. 5.10.5} T. Brunhes, P. Boucaud, S. Sauvage, A. Lemaitre, J.M.Gerard, F. Glotin, R. Prazeres, J.M. Ortega: Infrared second-order opticalsusceptibility in InAs/GaAs self-assembled quantum dots, Phys Rev B 61,p.5562-5570 (2000)

[5.1033] {Sect. 5.10.5} M.Y. Gao, C. Lesser, S. Kirstein, H. Mohwald, A.L. Rogach,H. Weller: Electroluminescence of different colors from polycation/CdTenanocrystal self-assembled films, J Appl Phys 87, p.2297-2302 (2000)

[5.1034] {Sect. 5.10.5} T. Makimura, T. Mizuta, K. Murakami: Formation dynam-ics of silicon nanoparticles after laser ablation studied using plasma emis-sion caused by second-laser decomposition, Appl Phys Lett 76, p.1401-1403(2000)

[5.1035] {Sect. 5.10.5} N. Suzuki, T. Makino, Y. Yamada, T. Yoshida, S. Onari:Structures and optical properties of silicon nanocrystallites prepared bypulsed-laser ablation in inert background gas, Appl Phys Lett 76, p.1389-1391 (2000)

[5.1036] {Sect. 5.10.5} M. Ajgaonkar, Y. Zhang, H. Grebel, C.W. White: Nonlinearoptical properties of a coherent array of submicron SiO2 spheres (Opal)embedded with Si nanoparticles, Appl Phys Lett 75, p.1532-1534 (1999)

[5.1037] {Sect. 5.10.5} J. Bosbach, D. Martin, F. Stietz, T. Wenzel, F. Trager:Laser-based method for fabricating monodisperse metallic nanoparticles,Appl Phys Lett 74, p.2605-2607 (1999)

794 5. Nonlinear Interactions of Light and Matter with Absorption

[5.1038] {Sect. 5.10.5} B. Damilano, N. Grandjean, F. Semond, J. Massies, M.Leroux: From visible to white light emission by GaN quantum dots on Si(111) substrate, Appl Phys Lett 75, p.962-964 (1999)

[5.1039] {Sect. 5.10.5} W. Kim, V.P. Safonov, V.M. Shalaev, R.L. Armstrong: Frac-tals in microcavities: Giant coupled, multiplicative enhancement of opticalresponses, Phys Rev Lett 82, p.4811-4814 (1999)

[5.1040] {Sect. 5.10.5} A. Kurita, Y. Kanematsu, M. Watanabe, K. Hirata, T.Kushida: Wavelength- and angle-selective optical memory effect by inter-ference of multiple-scattered light, Phys Rev Lett 83, p.1582-1585 (1999)

[5.1041] {Sect. 5.10.5} B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg:Resonant and off-resonant light-driven plasmons in metal nanoparticlesstudied by femtosecond-resolution third-harmonic generation, Phys RevLett 83, p.4421-4424 (1999)

[5.1042] {Sect. 5.10.5} K.P. ODonnell, R.W. Martin, P.G. Middleton: Origin ofluminescence from InGaN diodes, Phys Rev Lett 82, p.237-240 (1999)

[5.1043] {Sect. 5.10.5} D. Orlikowski, M.B. Nardelli, J. Bernholc, C. Roland: Ad-dimers on strained carbon nanotubes: A new route for quantum dot for-mation?, Phys Rev Lett 83, p.4132-4135 (1999)

[5.1044] {Sect. 5.10.5} L.M. Robinson, H. Rho, J.C. Kim, H.E. Jackson, L.M.Smith, S. Lee, M. Dobrowolska, J.K. Furdyna: Quantum dot exciton dy-namics through a nanoaperture: Evidence for two confined states, PhysRev Lett 83, p.2797-2800 (1999)

[5.1045] {Sect. 5.10.5} P.C. Sercel, A.L. Efros, M. Rosen: Intrinsic gap states insemiconductor nanocrystals, Phys Rev Lett 83, p.2394-2397 (1999)

[5.1046] {Sect. 5.10.5} W.S. Shi, Z.H. Chen, N.N. Liu, H.B. Lu, Y.L. Zhou, D.F.Cui, G.Z. Yang: Nonlinear optical properties of self-organized complex ox-ide Ce : BaTiO3 quantum dots grown by pulsed laser deposition, ApplPhys Lett 75, p.1547-1549 (1999)

[5.1047] {Sect. 5.10.5} M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue:Electronic states and luminescence in porous silicon quantum dots: Therole of oxygen, Phys Rev Lett 82, p.197-200 (1999)

[5.1048] {Sect. 5.10.5} Y. Yang, V.J. Leppert, S.H. Risbud, B. Twamley, P.P.Power, H.W.H. Lee: Blue luminescence from amorphous GaN nanopar-ticles synthesized in situ in a polymer, Appl Phys Lett 74, p.2262-2264(1999)

[5.1049] {Sect. 5.10.5} A.E. Zhukov, A.R. Kovsh, N.A. Maleev, S.S. Mikhrin, V.M.Ustinov, A.F. Tsatsulnikov, M.V. Maximov, B.V. Volovik, D.A. Bedarev,Y.M. Shernyakov et al.: Long-wavelength lasing from multiply stackedInAs/InGaAs quantum dots on GaAs substrates, Appl Phys Lett 75,p.1926-1928 (1999)

[5.1050] {Sect. 5.10.5} J. Hodak, I. Martini, G.V. Hartland: Ultrafast study ofelectron-phonon coupling in colloidal gold particles, Chem Phys Lett 284,p.135-141 (1998)

[5.1051] {Sect. 5.10.5} H. Spocker, M. Portune, U. Woggon: Biexcitonic fingerprintin the nondegenerate four-wave-mixing signal of weakly confined cadmiumsulfur quantum dots, Optics Letters 23, p.427-429 (1998)

[5.1052] {Sect. 5.10.5} Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo,H. Koinuma, Y. Segawa: Room-temperature ultraviolet laser emission fromself-assembled ZnO microcrystallite thin films, Appl Phys Lett 72, p.3270-3272 (1998)

[5.1053] {Sect. 5.10.5} Al.L. Efross, M.Rosen: Quantum size level structure ofnarrow-gap semiconductor nanocrystals: Effect of band coupling, Phys.Rev. B 58, p.7120-7135 (1998)

5.10.5 Nanometer Structures 795

[5.1054] {Sect. 5.10.5} J.M. Ballesteros, R. Serna, J. Solis, C.N. Afonso, A.K.Petfordlong, D.H. Osborne, R.F. Haglund: Pulsed laser deposition ofCu:Al2O3 nanocrystal thin films with high third-order optical suscepti-bility, Appl Phys Lett 71, p.2445-2447 (1997)

[5.1055] {Sect. 5.10.5} B.A. Smith, J.Z. Zhang, U. Giebel, G. Schmid: Directprobe of size-dependent electronic relaxation in single-sized Au and nearlymonodisperse Pt colloidal nano- particles, Chem Phys Lett 270, p.139-144(1997)

[5.1056] {Sect. 5.10.5} S. Vijayalakshmi, M.A. George, H. Grebel: Nonlinear opticalproperties of silicon nanoclusters, Appl Phys Lett 70, p.708-710 (1997)

[5.1057] {Sect. 5.10.5} S. Vijayalakshmi, F. Shen, H. Grebel: Artificial dielectrics:Nonlinear optical properties of silicon nanoclusters at lambda=532 nm,Appl Phys Lett 71, p.3332-3334 (1997)

[5.1058] {Sect. 5.10.5} J.Q. Yu, H.M. Liu, Y.Y. Wang, F.E. Fernandez, W.Y. Jia,L.D. Sun, C.M. Jin, D. Li, J.Y. Liu, S.H. Huang: Irradiation-induced lumi-nescence enhancement effect of ZnS: Mn2+ nanoparticles in polymer films,Optics Letters 22, p.913-915 (1997)

[5.1059] {Sect. 5.10.5} S.A. Empedocles, M.G. Bawendi: Quantum-confined starkeffect in single CdSe nanocrystallite quantum dots, Science 278, p.2114-2117 (1997)

[5.1060] {Sect. 5.10.5} G.L. Hornyak, Ch.J. Patrissi, Ch.R. Martin : Fabrication,Characterization, and Optical Properties of Gold Nanoparticle/PorousAlumina Composites: The Nonscattering Maxwell-Garnett Limit, J. Phys.Chem. B 101, p.1548-1555 (1997)

[5.1061] {Sect. 5.10.5} M. Nikl, K. Nitsch, K. Polak, E. Mihokova, S. Zazubovich,G.P. Pazzi, P. Fabeni, L. Salvini, R. Aceves, M. Barbosa-Flores, R. PerezSalas, ;. Gurioli, A. Scacco: Quantum size effect in the excitone lumines-cence of CaPbX3-like quantum dots in CaX (X = Cl, Br) single crystalhost, J. Luminesc. 72-74, p.377-379 (1997)

[5.1062] {Sect. 5.10.5} C. A. Foss, Jr, G. L. Hornyak, J. A. Stockert, Ch. R. Martin:Template-Synthesized Nanoscopic Gold Particles: Optical Spectra and theEffects of Particle Size and Shape, J. Phys. Chem. 98, p.2963-2971 (1994)

[5.1063] {Sect. 5.10.5} Y. Kayanuma: Quantum-size effects of interacting electronsand holes in semiconductor microcrystals with spherical shape, Phys. Rev.B 38, p.9797-9805 (1988)

[5.1064] {Sect. 5.10.5} K. Tachibana, T. Someya, Y. Arakawa: Nanometer-scaleInGaN self-assembled quantum dots grown by metalorganic chemical vapordeposition, Appl Phys Lett 74, p.383-385 (1999)

[5.1065] {Sect. 5.10.5} X. Leyronas, J. Tworzydlo, C.W.J. Beenakker: Non-Cayley-tree model for quasiparticle decay in a quantum dot, Phys Rev Lett 82,p.4894-4897 (1999)

[5.1066] {Sect. 5.10.5} M. Rohner, J.P. Reithmaier, A. Forchel, F. Schafer, H. Zull:Laser emission from photonic dots, Appl Phys Lett 71, p.488-490 (1997)

[5.1067] {Sect. 5.10.5} D.L. Andrews, D.S. Bradshaw: Laser-induced forces betweencarbon nanotubes, Optics Letters 30, p.783-785 (2005)

[5.1068] {Sect. 5.10.5} M.Y. Sfeir, T. Beetz, F. Wang, L.M. Huang, X.M.H. Huang,M.Y. Huang, J. Hone, S. OBrien, J.A. Misewich, T.F. Heinz, L.J. Wu, Y.M.Zhu, L.E. Brus: Optical spectroscopy of individual single-walled carbonnanotubes of defined chiral structure, Science 312, p.554-556 (2006)

[5.1069] {Sect. 5.10.5} X.C. Liu, J.H. Si, B.H. Chang, G. Xu, Q.G. Yang, Z.W. Pan,S.S. Xie, P.X. Ye, J.H. Fan, M.X. Wan: Third-order optical nonlinearity ofthe carbon nanotubes, Appl Phys Lett 74, p.164-166 (1999)

796 5. Nonlinear Interactions of Light and Matter with Absorption

[5.1070] {Sect. 5.10.5} A. Rubio, D. SanchezPortal, E. Artacho, P. Ordejon, J.M.Soler: Electronic states in a finite carbon nanotube: A one-dimensionalquantum box, Phys Rev Lett 82, p.3520-3523 (1999)

[5.1071] {Sect. 5.10.5} M.L. Terranova, S. Piccirillo, V. Sessa, S. Botti, M. Rossi:Photoluminescence from silicon nanoparticles in a diamond matrix, ApplPhys Lett 74, p.3146-3148 (1999)

[5.1072] {Sect. 5.10.5} Q.Y. Wang, S.R. Challa, D.S. Sholl, J.K. Johnson: Quantumsieving in carbon nanotubes and zeolites, Phys Rev Lett 82, p.956-959(1999)

[5.1073] {Sect. 5.10.5} Y. Zhang, S. Iijima: Elastic response of carbon nanotubebundles to visible light, Phys Rev Lett 82, p.3472-3475 (1999)

[5.1074] {Sect. 5.10.5} M. Deubel, M. Wegener, S. Linden, G. vonFreymann, S.John: 3D-2D-3D photonic crystal heterostructures fabricated by directlaser writing, Optics Letters 31, p.805-807 (2006)

[5.1075] {Sect. 5.10.5} A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tuen-nermann, F. Lederer: Two-dimensional soliton in cubic fs laser writtenwaveguide arrays in fused silica, Opt Express 14, p.6055-6062 (2006)

[5.1076] {Sect. 5.10.5} A.M. Kowalevicz, V. Sharma, E.P. Ippen, J.G. Fujimoto, K.Minoshima: Three-dimensional photonic devices fabricated in glass by useof a femtosecond laser oscillator, Optics Letters 30, p.1060-1062 (2005)

[5.1077] {Sect. 5.10.5} N. Takeshima, Y. Narita, T. Nagata, S. Tanaka, K. Hirao:Fahrication of photonic crystals in ZnS-doped glass, Optics Letters 30,p.537-539 (2005)

[5.1078] {Sect. 5.10.5} Y. Akahane, T. Asano, B.S. Song, S. Noda: Fine-tuned high-Q photonic-crystal nanocavity, Opt Express 13, p.1202-1214 (2005)

[5.1079] {Sect. 5.10.5} M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa: Lasingaction due to the two-dimensional quasiperiodicity of photonic quasicrys-tals with a Penrose lattice – art. no. 123906, Phys Rev Lett 9212, p.3906(2004)

[5.1080] {Sect. 5.10.5} P.P. Markowicz, H. Tiryaki, H. Pudavar, P.N. Prasad, N.N.Lepeshkin, R.W. Boyd: Dramatic enhancement of third-harmonic genera-tion in three- dimensional photonic crystals – art. no. 083903, Phys RevLett 9208, p.3903 (2004)

[5.1081] {Sect. 5.10.5} Y. Shimotsuma, P.G. Kazansky, J.R. Qiu, K. Hirao: Self-organized nanogratings in glass irradiated by ultrashort light pulses – art.no. 247405, Phys Rev Lett 9124, p.7405 (2003)

[5.1082] {Sect. 5.10.5} R.S. Taylor, C. Hnatovsky, E. Simova, D.M. Rayner, V.R.Bhardwaj, P.B. Corkum: Femtosecond laser fabrication of nanostructuresin silica glass, Optics Letters 28, p.1043-1045 (2003)

[5.1083] {Sect. 5.10.5} S.O. Konorov, A.B. Fedotov, A.A. Ivanov, M.V. Alfimov,S.V. Zabotnov, A.N. Naumov, D.A. SidorovBiryukov, A.A. Podshivalov,A.N. Petrov, L. Fornarini, M. Carpanese, G. Ferrante, R. Fantoni, A.M.Zheltikov: Second- and third-harmonic generation as a local probe fornanocrystal-doped suppressed optical polymer materials with a breakdownthreshold, Opt Commun 224, p.309-320 (2003)

[5.1084] {Sect. 5.10.5} L. Pang, W. Nakagawa, Y. Fainman: Fabrication of two-dimensional photonic crystals with controlled defects by use of multipleexposures and direct write, Appl Opt 42, p.5450-5456 (2003)

[5.1085] {Sect. 5.10.5} K. Minoshima, A.M. Kowalevicz, E.P. Ippen, J.G. Fujimoto:Fabrication of coupled mode photonic devices in glass by nonlinear fem-tosecond laser materials processing, Opt Express 10, p.645-652 (2002)

[5.1086] {Sect. 5.10.5} S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, A.Chutinan: Semiconductor three-dimensional and two-dimensional photoniccrystals and devices, Ieee J Quantum Electron 38, p.726-735 (2002)

5.10.5 Nanometer Structures 797

[5.1087] {Sect. 5.10.5} M.L.M. Balistreri, H. Gersen, J.P. Korterik, L. Kuipers, N.F.vanHulst: Tracking femtosecond laser pulses in space and time, Science 294,p.1080-1082 (2001)

[5.1088] {Sect. 5.10.5} S. Sasaki, K. Nakamura, Y. Hamabe, E. Kurahashi, T. Hiroi:Production of iron nanoparticles by laser irradiation in a simulation oflunar-like space weathering, Nature 410, p.555-557 (2001)

[5.1089] {Sect. 5.10.5} C.M. Soukoulis (ed.): Photonic Band Gap Materials (KluwerAcademic Publishers, Dordrecht, 1996)

[5.1090] {Sect. 5.10.5} K. Busch, S. John: Liquid-crystal photonic-band-gap mate-rials: The tunable electromagnetic vacuum, Phys Rev Lett 83, p.967-970(1999)

[5.1091] {Sect. 5.10.5} P. Halevi, A.A. Krokhin, J. Arriaga: Photonic crystal opticsand homogenization of 2D periodic composites, Phys Rev Lett 82, p.719-722 (1999)

[5.1092] {Sect. 5.10.5} M. Bayer, T. Gutbrod, J.P. Reithmaier, A. Forchel, T.L.Reinecke, P.A. Knipp, A.A. Dremin, V.D. Kulakovskii: Optical modes inphotonic molecules, Phys Rev Lett 81, p.2582-2585 (1998)

[5.1093] {Sect. 5.10.5} G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr,M. Schmidt, M.M. Sigalas, C.M. Soukoulis, G. Kiriakidis, T. Pedersen, etal.: Fabrication of photonic crystals by deep x-ray lithography, Appl PhysLett 71, p.1441-1443 (1997)

[5.1094] {Sect. 5.10.5} S. John, T. Quang: Resonant nonlinear dielectric responsein a photonic band gap material, Phys Rev Lett 76, p.2484-2487 (1996)

6. Lasers

[6.1] {Sect. 6.0} T.H. Maiman: Stimulated Optical Radiation in Ruby, Nature187, p.493-494 (1960)

[6.2] {Sect. 6.0} C.K.N. Patel, R.A. McFarlane, W.L. Faust: Optical Maser Ac-tion in C, N, O, S, and Br on Dissociation of Diatomic and PolyatomicMolecules, Phys. Rev. 133, p.A1244-A1248 (1964)

[6.3] {Sect. 6.0} A.L. Schawlow, C.H. Townes: Infrared and Optical Masers, Phys.Rev. 112, p.1940-1949 (1958)

[6.4] {Sect. 6.0} J.P. Gordon, H.J. Zeiger, C.H. Townes: The Maser – New Typeof Microwave Amplifier, Frequency Standard, and Spectrometer, Phys. Rev.99, p.1264-1274 (1955)

[6.5] {Sect. 6.0} K. Shimoda: Introduction to Laser Physics, 2nd edn, SpringerSer. Opt. Sci, Vol. 44 (Springer, Berlin, Heidelberg 1986)

[6.6] {Sect. 6.0} K. An, J.J. Childs, R.R. Dasari, M.S. Feld: Microlaser: A laserwith one atom in an optical resonator, Phys Rev Lett 73, p.3375-3378 (1994)

[6.7] {Sect. 6.2} G.Y. Chen, G. Somesfalean, Z.G. Zhang, Q. Sun, E.P. Wang:Ultraviolet upconversion fluorescence in rare-earth-ion-doped Y2O3 inducedby infrared diode laser excitation, Optics Letters 32, p.87-89 (2007)

[6.8] {Sect. 6.2} Y. Sato, T. Taira: The studies of thermal conductivity inGdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flashmethod, Opt Express 14, p.10528-10536 (2006)

[6.9] {Sect. 6.2} A. Anedda, C.M. Carbonaro, D. Chiriu, P.C. Ricci, M. Abur-ishHmidat, M. Guerini, P.G. Lorrai, E. Fortin: Compositional tuning ofphotoluminescence properties in Nd-doped YAG- YSGG mixed structures,Ieee J Quantum Electron 42, p.563-569 (2006)

[6.10] {Sect. 6.2} M.R. Ozalp, G. Ozen, A. Sennaroglu, A. Kurt: Stimulated andspontaneous emission probabilities of Tm3+ in TeO2- CdCl2 glass: the roleof the local structure, Opt Commun 217, p.281-289 (2003)

798 6. Lasers

[6.11] {Sect. 6.2} M. Jackson, H. Hockel, M. Lauters, E.C.C. Vasconcellos, M.D.Allen, K.M. Evenson: New short-wavelength laser emissions from opticallypumped (CD3OD)-C- 13, Ieee J Quantum Electron 38, p.429-431 (2002)

[6.12] {Sect. 6.2} P. Nandi, G. Jose: Ytterbium-doped P2O5-TeO2 glass for laserapplications, Ieee J Quantum Electron 42, p.1115-1121 (2006)

[6.13] {Sect. 6.2} D. N. Nikogosyan: Properties of Optical and Laser-Related Ma-terials – A Handbook (John Wiley & Sons, Chichester, 1997)

[6.14] {Sect. 6.2} J. Capmany, D. Jaque, J.G. Sole: Continuous wave laser radi-ation at 1314 and 1386 nm and infrared to red self-frequency doubling innonlinear LaBGeO5 : Nd3+ crystal, Appl Phys Lett 75, p.2722-2724 (1999)

[6.15] {Sect. 6.2} E. Cavalli, E. Zannoni, C. Mucchino, V. Carozzo, A. Toncelli,M. Tonelli, M. Bettinelli: Optical spectroscopy of Nd3+ in KLa (MoO4) (2)crystals, J Opt Soc Am B Opt Physics 16, p.1958-1965 (1999)

[6.16] {Sect. 6.2} W.C. Choi, H.N. Lee, E.K. Kim, Y. Kim, C.Y. Park, H.S. Kim,J.Y. Lee: Violet/blue light-emitting cerium silicates, Appl Phys Lett 75,p.2389-2391 (1999)

[6.17] {Sect. 6.2} J. Dong, P.Z. Deng, J. Xu: Study of the effects of Cr ions on Ybin Cr,Yb : YAG crystal, Opt Commun 170, p.255-258 (1999)

[6.18] {Sect. 6.2} J.B. Gruber, B. Zandi, M. Ferry, L.D. Merkle: Spectra andenergy levels of trivalent samarium in strontium fluorapatite, J Appl Phys86, p.4377-4382 (1999)

[6.19] {Sect. 6.2} A. Braud, S. Girard, J.L. Doualan, R. Moncorge: Spectroscopyand fluorescence dynamics of (Tm3+, Tb3+) and (Tm3+, Eu3+) dopedLiYF4 single crystals for 1.5-mu m laser operation, IEEE J QE-34, p.2246-2255 (1998)

[6.20] {Sect. 6.2} J.A. Munoz, J.O. Tocho, F. Cusso: Photoacoustic determinationof the luminescent quantum efficiency of Yb3+ ions in lithium niobate, ApplOpt 37, p.7096-7099 (1998)

[6.21] {Sect. 6.2} B.M. Walsh, N.P. Barnes, B. DiBartolo: Branching ratios, crosssections, and radiative lifetimes of rare earth ions in solids: Application toTm3+ and Ho3+ ions in LiYF4, J Appl Phys 83, p.2772-2787 (1998)

[6.22] {Sect. 6.2} J.B. Gruber, A.O. Wright, M.D. Seltzer, B. Zandi, L.D. Merkle,J.A. Hutchinson, C.A. Morrison, T.H. Allik, B.H.T. Chai: Site-selective ex-citation and polarized absorption and emission spectra of trivalent thuliumand erbium in strontium fluorapatite, J Appl Phys 81, p.6585-6598 (1997)

[6.23] {Sect. 6.2} I.T. McKinnie, A.L. Oien, D.M. Warrington, P.N. Tonga,L.A.W. Gloster, T.A. King: Ti3+ ion concentration and Ti:sapphire laserperformance, IEEE J QE-33, p.1221-1230 (1997)

[6.24] {Sect. 6.2} M. Nogami, Y. Abe: Fluorescence spectroscopy of silicate glassescodoped with Sm2+ and Al3+ ions, J Appl Phys 81, p.6351-6356 (1997)

[6.25] {Sect. 6.2} R.H. Page, K.I. Schaffers, L.D. Deloach, G.D. Wilke, F.D. Patel,J.B. Tassano, S.A. Payne, W.F. Krupke, K.T. Chen, A. Burger: Cr2+-dopedzinc chalcogenides as efficient, widely tunable mid-infrared lasers, IEEE JQE-33, p.609-619 (1997)

[6.26] {Sect. 6.2} G. Tohmon, H. Sato, J. Ohya, T. Uno: Thulium:ZBLAN bluefiber laser pumped by two wavelengths, Appl Opt 36, p.3381-3386 (1997)

[6.27] {Sect. 6.2} X.H. Zhang, B.X. Jiang, Y.F. Yang, Z.G. Wang: Spectroscopicproperties of anisotropic absorption in a neodymium-doped YAlO3 lasercrystal, J Appl Phys 81, p.6939-6942 (1997)

[6.28] {Sect. 6.2} J.B. Gruber, C.A. Morrison, M.D. Seltzer, A.O. Wright, M.P.Nadler, T.H. Allik, J.A. Hutchinson, B.H.T. Chai: Site-selective excita-tion and polarized absorption spectra of Nd3+ in Sr5 (PO4)3F and Ca5(PO4)3F, J Appl Phys 79, p.1746-1758 (1996)

6.2 Active Materials: Three and Four Level Schemes – Gain 799

[6.29] {Sect. 6.2} M.A. Khan, M.A. Gondal, M.H. Rais: Laser gain on the 4p3dF-3 – 4S3d D-3 transitions of Ca following optical excitation of the 4s4pP-3 (1) state, Opt Commun 124, p.38-44 (1996)

[6.30] {Sect. 6.2} L.D. Merkle, B. Zandi, R. Moncorge, Y. Guyot, H.R. Verdun, B.Mcintosh: Spectroscopy and laser operation of Pr, Mg:SrAl12O19, J ApplPhys 79, p.1849-1856 (1996)

[6.31] {Sect. 6.2} M. Nogami, Y. Abe: Fluorescence properties of Sm2+ ions insilicate glasses, J Appl Phys 80, p.409-414 (1996)

[6.32] {Sect. 6.2} M.B. Saisudha, K.S.R.K. Rao, H.L. Bhat, J. Ramakrishna: Thefluorescence of Nd3+ in lead borate and bismuth borate glasses with largestimulated emission cross section, J Appl Phys 80, p.4845-4853 (1996)

[6.33] {Sect. 6.2} K.I. Schaffers, L.D. Deloach, S.A. Payne: Crystal growth, fre-quency doubling, and infrared laser performance of Yb3+:BaCaBO3F,IEEE J QE-32, p.741-748 (1996)

[6.34] {Sect. 6.2} T. Schweizer, D.W. Hewak, B.N. Samson, D.N. Payne: Spectro-scopic data of the 1.8-, 2.9-, and 4.3-mu m transitions in dysprosium-dopedgallium lanthanum sulfide glass, Optics Letters 21, p.1594-1596 (1996)

[6.35] {Sect. 6.2} J.M. Sutherland, P.M.W. French, J.R. Taylor, B.H.T. Chai:Visible continuous-wave laser transitions in Pr3+:YLF and femtosecondpulse generation, Optics Letters 21, p.797-799 (1996)

[6.36] {Sect. 6.2} N. Sarukura, Z.L. Liu, Y. Segawa, K. Edamatsu, Y. Suzuki,T. Itoh, V.V. Semashko, A.K. Naumov, S.L. Korableva, R. Yu, et al.: Ce3(+):LuLiF4 as a broadband ultraviolet amplification medium, Optics Let-ters 20, p.294-296 (1995)

[6.37] {Sect. 6.2} G.F. Wang, T.P.J. Han, H.G. Gallagher, B. Henderson: Novellaser gain media based on Cr3+-doped mixed borates RX (3) (BO3) (4),Appl Phys Lett 67, p.3906-3908 (1995)

[6.38] {Sect. 6.2} T.S. Rose, M.S. Hopkins, R.A. Fields: Characterization andControl of Gamma and Proton Radiation Effects on the Performance ofNd:YAG and Nd:YLF Lasers, IEEE J. QE-31, p.1593-1602 (1995)

[6.39] {Sect. 6.2} N. Mermilliod, R. Romero, I. Chartier, C. Garapon, R. Mon-corge: Performance of Various Diode-Pumped Nd:Laser Materials: Influenceof Inhomogeneous Broadening, IEEE J. QE-28, p.1179-1187 (1992)

[6.40] {Sect. 6.2} J. Harrison, D. Welford, P.F. Moulton: Threshold Analysis ofPulsed Lasers with Application to a Room-Temperature Co:MgF2 Laser,IEEE J. QE-25, p.1708-1711 (1989)

[6.41] {Sect. 6.2} K. Fuhrmann et al.: Effective cross section of the Nd:YAG 1.0641µm laser transition, J. Appl. Phys. 62, p.4041-4044 (1987)

[6.42] {Sect. 6.2} N. Neuroth: Laser glass: Status and prospects, Opt. Eng. 26,p.96-101 (1987)

[6.43] {Sect. 6.2} P.F. Moulton: Spectroscopic and laser characteristics ofTi:Al2O3, J. Opt. Soc. Am. B 3, p.125-133 (1986)

[6.44] {Sect. 6.2} L. Schearer, M. Leduc: Tuning Characteristics and New LaserLines in an Nd:YAP CW Laser, IEEE J. QE-22, p.756-758 (1986)

[6.45] {Sect. 6.2} P.F. Moulton: An Investigation of the Co:MgF2 Laser System,IEEE J. QE-21, p.1582-1595 (1985)

[6.46] {Sect. 6.2} U. Brauch, U. Durr: KZnF3:Cr3+ – A Tunable Solid State NIR-Laser, Optics Commun. 49, p.61-64 (1984)

[6.47] {Sect. 6.2} K. Maeda, M: Aabe, H. Kuroda, N. Nakano, M. Umino, N.Wada: Concentration Dependence of Fluoroscence Lifetime onf Nd3+-doped Gd3Ga5O12 Lasers, Jap. J. Appl. Phys. 23, p.759-760 (1984)

[6.48] {Sect. 6.2} B. Struve, G. Huber: Tunable Room-Temperature cw LaserAction in Cr3+:GdScGa-Garnet, Appl. Phys. B 30, p.117-120 (1983)

800 6. Lasers

[6.49] {Sect. 6.2} H.P. Christensen, H.P. Jenssen: Broad-Band Emission fromChromium Doped Germanium Garnets, IEEE J. QE-18, p.1197-1201 (1982)

[6.50] {Sect. 6.2} D. Pruss, G. Huber, A. Beimowski, V.V. Laptev, I.A.Shcherbakov, Y.V. Zharikov: Efficient Cr3+ Sensitized Nd3+:GdScGa-Garnet Laser at 1.06 µm, Appl. Phys. B 28, p.355-358 (1982)

[6.51] {Sect. 6.2} E.V. Zharikov, N.N. Il’ichev, V.V. Laptev, A.A. Malyutin, V.G.Ostroumov, P.P. Pashinin, I.A. Shcherbakov: Sensitization of neodymiumion luminescence by chromium ions in a Gd3Ga5O12 crystal, Sov. J. Quan-tum Electron. 12, p.338-341 (1982)

[6.52] {Sect. 6.2} E.V. Zharikov, V.V. Laptev, I.A. Shcherbakov, E.I. Sidorova,Y.P. Timofeev: Absolute Quantum Yield of Luminescence of CR 3+ Ions inGadolinium Gallium and Gadolinium Scandium Gallium Garnet Crystals,KVANTOVAYA ELEKTRONIKA 9, p.1740-1741 (1982)

[6.53] {Sect. 6.2} J.C. Walling, H.P. Jenssen, R.C. Morris, E.W. O’Dell, O.G.Peterson: Tunable-laser performance in BeAl2O4:Cr3+, Opt. Lett. 4, p.182-183 (1979)

[6.54] {Sect. 6.2} J.G. Gualtieri, T.R. Aucoin: Laser performance of large Nd-pentaphosphate crystals, Appl. Phys. Lett. 28, p.189-192 (1976)

[6.55] {Sect. 6.2} H.P. Jenssen, R.F. Begley, R. Webb, R.C. Morris.: Spectroscopicproperties and laser performance of Nd3+ in lanthanum beryllate, J. Appl.Phys. 47, p.1496-1500 (1976)

[6.56] {Sect. 6.2} R.F. Belt, J.R. Latore, R. Uhrin, J. Paxton: EPR and opticalstudy of Fe in Nd:YAIO3 laser crystals, Appl. Phys. Lett. 25, p.218-220(1974)

[6.57] {Sect. 6.2} L.F. Johnson, H.J. Guggenheim: Electronic- and Phonon-Term-inated Laser Emission from Ho3+ in BaY2F8, IEEE J. QE-10, p.442-449(1974)

[6.58] {Sect. 6.2} W.F. Krupke: Induced-Emission Cross Sections in NeodymiumLaser Glasses, IEEE J. QE-10, p.450-457 (1974)

[6.59] {Sect. 6.2} K.B. Steinbruegge, G.D. Baldwin: Evaluation of CaLaSOAP:Ndfor high-power flash-pumped Q-switched lasers, Appl. Phys. Lett. 25, p.220-222 (1974)

[6.60] {Sect. 6.2} H.P. Weber, P.F. Liao, B.C. Tofield: Emission Cross Sectionand Fluorescence Efficiency of Nd-Pentphosphate, IEEE J. QE-10, p.563-567 (1974)

[6.61] {Sect. 6.2} H.G. Danielmeyer, G. Huber, W.W. Kruhler, J.P. Jeser: Con-tinous Oscillation of a (Sc, Nd) Pentaphosphate Laser with 4 MilliwattsPump Threshold, Appl. Phys. 2, p.335-338 (1973)

[6.62] {Sect. 6.2} W.W. Kruhler, J.P. Jeser, H.G. Danielmeyer: Properties andLaser Oscillation of the (Nd, Y) Pentaphosphate System, Appl. Phys. 2,p.329-333 (1973)

[6.63] {Sect. 6.2} H.P. Weber, T.C. Damen, H.G. Danielmeyer, B.C. Tofield: Nd-ultraphospate laser, Appl. Phys. Lett. 22, p.534-536 (1973)

[6.64] {Sect. 6.2} M.J. Weber, M. Bass, T.E. Varitimos, D.P. Bua: Laser Actionfrom Ho3+, Er3+, and Tm3+ in YAIO3, IEEE J. QE-9, p.1079-1086 (1973)

[6.65] {Sect. 6.2} R.V. Alves, R.A. Buchanan, K.A.Wickersheim, E.A.C. Yates:Neodymium-Activated Lanthanum Oxysulfide: A New High-Gain Laser Ma-terial, J. Appl. Phys. 42, p.3043-3048 (1971)

[6.66] {Sect. 6.2} M.J. Weber, M. Bass, K. Andringa, R.R. Monchamp, E. Com-perchio: Czochralski Growths and Properties of YAIO3 Laser Crystals,Appl. Phys. Lett. 15, p.342-345 (1969)

[6.67] {Sect. 6.2} R.C. Ohlmann, K.B. Steinbruegge, R. Mazelsky: Spectroscopicand Laser Characteristics of Neodymium-doped Calcium Fluorophosphate,Appl. Opt. 7, p.905-914 (1968)

6.2 Active Materials: Three and Four Level Schemes – Gain 801

[6.68] {Sect. 6.2} L.F. Johnson, H.J. Guggenheim: Photon-Terminated CoherentEmission from V2+ Ions in MgF2, J. Appl. Phys. 38, p.4837-4839 (1967)

[6.69] {Sect. 6.2} D.C. Cronemeyer: Optical Absorption Characteristics of PinkRuby, J. Opt. Soc. Am. 56, p.1703-1706 (1966)

[6.70] {Sect. 6.2} J.R. O’Connor: Unusual Crystal-Field Energy Levels and Effi-cient Laser Properties of YVO4:Nd, Appl. Phys. Lett. 9, p.407-409 (1966)

[6.71] {Sect. 6.2} D.M. Dodd, D.L. Wood, R.L. Barns: Spectrophotometric Deter-mination of Chromium Concentration in Ruby, J. Appl. Phys. 35, p.1183-1186 (1964)

[6.72] {Sect. 6.2} K. Nassau, A.M. Broyer: Calcium Tungstate: CzochralskiGrowth, Perfection, and Substitution, J. Appl. Phys. 33, p.3064-3073 (1962)

[6.73] {Sect. 6.2} T.H. Maiman, R.H. Hoskins, I.J. D’Haenens, C.K. Asawa, V. Ev-tuhov: Stimulated Optical Emission in Fluorescent Solids. II. Spectroscopyand Stimulated Emission in Ruby, Phys. Rev. 123, p.1151-1157 (1961)

[6.74] {Sect. 6.2} A. Braud, S. Girard, J.L. Doualan, M. Thuau, R. Moncorge,A.M. Tkachuk: Energy-transfer processes in Yb : Tm-doped KY3F10,LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 mum, Phys Rev B 61, p.5280-5292 (2000)

[6.75] {Sect. 6.2} Y. Mita, T. Ide, M. Togashi, H. Yamamoto: Energy transferprocesses in Yb3+ and Tm3+ ion-doped fluoride crystals, J Appl Phys 85,p.4160-4164 (1999)

[6.76] {Sect. 6.2} M. Berggren, A. Dodabalapur, R.E. Slusher: Stimulated emis-sion and lasing in dye-doped organic thin films with Forster transfer, ApplPhys Lett 71, p.2230-2232 (1997)

[6.77] {Sect. 6.2} C. Wyss, W. Luthy, H.P. Weber, P. Rogin, J. Hulliger: Energytransfer in Yb3+:Er3+:YLF, Opt Commun 144, p.31-35 (1997)

[6.78] {Sect. 6.2} O. Barbosagarcia, E. Jonguitudisurieta, L.A. Diaztorres, C.W.Struck: The non-radiative energy transfer in high acceptor concentrationcodoped Nd,Ho:YAG and Nd,Er:YAG, Opt Commun 129, p.273-283 (1996)

[6.79] {Sect. 6.2} A.J. Cox, B.K. Matise: Energy Transfer Between Coumarins ina Dye Laser, Chem. Phys. Lett. 76, p.125-128 (1980)

[6.80] {Sect. 6.2} M.P. Hehlen, A. Kuditcher, A.L. Lenef, H. Ni, Q. Shu, S.C.Rand, J. Rai, S. Rai: Nonradiative dynamics of avalanche upconversion inTm : LiYF4, Phys Rev B 61, p.1116-1128 (2000)

[6.81] {Sect. 6.2} R. Kapoor, C.S. Friend, A. Biswas, P.N. Prasad: Highly efficientinfrared-to-visible energy upconversion in Er3+: Y2O3, Optics Letters 25,p.338-340 (2000)

[6.82] {Sect. 6.2} D.S. Anker, L.D. Merkle: Ion-ion upconversion excitation of the4f5d configuration in Pr : Y3Al5O12 – Experiments and Forster theory-based rate equation model, J Appl Phys 86, p.2933-2940 (1999)

[6.83] {Sect. 6.2} E. Pecoraro, D.F. deSousa, R. Lebullenger, A.C. Hernandes,L.A.O. Nunes: Evaluation of the energy transfer rate for the Yb3+: Pr3+system in lead fluoroindogallate glasses, J Appl Phys 86, p.3144-3148 (1999)

[6.84] {Sect. 6.2} R.W. Mosses, J.P.R. Wells, H.G. Gallagher, T.P.J. Han, M.Yamaga, N. Kodama, T. Yosida: Czochralski growth and IR-to-visible up-conversion of Ho3+- and Er3+- doped SrLaAlO4, Chem Phys Lett 286,p.291-297 (1998)

[6.85] {Sect. 6.2} D.N. Patel, R.B. Reddy, S.K. NashStevenson: Diode-pumpedviolet energy upconversion in BaF2:Er3+, Appl Opt 37, p.7805-7808 (1998)

[6.86] {Sect. 6.2} P.J. Deren, J. Feries, J.C. Krupa, W. Strek: Anti-stokes emissionin LaCl3 doped with U3+ and Pr3+ ions, Chem Phys Lett 264, p.614-618(1997)

802 6. Lasers

[6.87] {Sect. 6.2} G.S. He, K.S. Kim, L.X. Yuan, N. Cheng, P.N. Prasad: Two-photon pumped partially cross-linked polymer laser, Appl Phys Lett 71,p.1619-1621 (1997)

[6.88] {Sect. 6.2} G.S. He, L.X. Yuan, P.N. Prasad, A. Abbotto, A. Facchetti,G.A. Pagani: Two-photon pumped frequency-upconversion lasing of a newblue-green dye material, Opt Commun 140, p.49-52 (1997)

[6.89] {Sect. 6.2} G.S. He, L.X. Yuan, Y.P. Cui, M. Li, P.N. Prasad: Studies oftwo-photon pumped frequency-upconverted lasing properties of a new dyematerial, J Appl Phys 81, p.2529-2537 (1997)

[6.90] {Sect. 6.2} G.S. He, Y.P. Cui, J.D. Bhawalkar, P.N. Prasad, D.D.Bhawalkar: Intracavity upconversion lasing within a Q-switched Nd:YAGlaser, Opt Commun 133, p.175-179 (1997)

[6.91] {Sect. 6.2} P.E.A. Mobert, E. Heumann, G. Huber, B.H.T. Chai: GreenEr3+:YLiF4 upconversion laser at 551 nm with Yb3+ codoping: a novelpumping scheme, Optics Letters 22, p.1412-1414 (1997)

[6.92] {Sect. 6.2} H.M. Pask, A.C. Tropper, D.C. Hanna: A Pr3+-doped ZBLANfibre upconversion laser pumped by an Yb3+-doped silica fibre laser, OptCommun 134, p.139-144 (1997)

[6.93] {Sect. 6.2} T. Sandrock, H. Scheife, E. Heumann, G. Huber: High-powercontinuous-wave upconversion fiber laser at room temperature, Optics Let-ters 22, p.808-810 (1997)

[6.94] {Sect. 6.2} H.M. Pask, A.C. Tropper, D.C. Hanna: APr3+-doped ZBLANfibre upconversion laser pumped by an Yb3+-doped silica fibre laser, Opt.Comm. 134, p.139-144 (1997)

[6.95] {Sect. 6.2} D.M. Baney, G. Rankin, K.W. Chang: Blue Pr3+-doped ZBLANfiber upconversion laser, Optics Letters 21, p.1372-1374 (1996)

[6.96] {Sect. 6.2} D.M. Baney, G. Rankin, K.W. Chang: Simultaneous blue andgreen upconversion lasing in a laser-diode-pumped Pr3+/Yb3+ doped flu-oride fiber laser, Appl Phys Lett 69, p.1662-1664 (1996)

[6.97] {Sect. 6.2} S.R. Bowman, L.B. Shaw, B.J. Feldman, J. Ganem: A 7-mu mpraseodymium-based solid-state laser, IEEE J QE-32, p.646-649 (1996)

[6.98] {Sect. 6.2} T. Chuang, H.R. Verdun: Energy transfer up-conversion andexcited state absorption of laser radiation in Nd:YLF laser crystals, IEEEJ QE-32, p.79-91 (1996)

[6.99] {Sect. 6.2} G.S. He, J.D. Bhawalkar, C.F. Zhao, C.K. Park, P.N. Prasad:Upconversion dye-doped polymer fiber laser, Appl Phys Lett 68, p.3549-3551 (1996)

[6.100] {Sect. 6.2} C. Koeppen, G. Jiang, G. Zheng, A.F. Garito: Room-temperature green upconversion fluorescence of an Er3+-doped laser liquid,Optics Letters 21, p.653-655 (1996)

[6.101] {Sect. 6.2} G.S. He, J.D. Bhawalkar, C.F. Zhao, C.K. Park, P.N. Prasad:Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber sys-tem, Optics Letters 20, p.2393-2395 (1995)

[6.102] {Sect. 6.2} P. Xie, T.R. Gosnell: Room-temperature upconversion fiber lasertunable in the red, orange, green, and blue spectral regions, Optics Letters20, p.1014-1016 (1995)

[6.103] {Sect. 6.2} W. Kaiser, C.G.B. Garrett: Two-Photon Excitation in CaF2:Eu2+, Phys. Rev. Lett. 7, p.229-231 (1961)

[6.104] {Sect. 6.2} X. Zhang, X.G. Liu, J.P. Jouart, G. Mary: Upconversion fluo-rescence of Ho3+ ions in a BaF2 crystal, Chem Phys Lett 287, p.659-662(1998)

[6.105] {Sect. 6.2} C.L. Pope, B.R. Reddy, S.K. NashStevenson: Efficient violetupconversion signal from a fluoride fiber doped with erbium, Optics Letters22, p.295-297 (1997)

6.2 Active Materials: Three and Four Level Schemes – Gain 803

[6.106] {Sect. 6.3.1} P.H. Bernardes, D.W. Liang: Solid-state laser pumping bylight guides, Appl Opt 45, p.3811-3816 (2006)

[6.107] {Sect. 6.3.1} M. Bass, J. Dong: Properties of diode laser pumps for high-power solid-state lasers, Ieee J Quantum Electron 41, p.183-186 (2005)

[6.108] {Sect. 6.3.1} N.P. Barnes, M.E. Storm, P.L. Cross, M.W. Skolaut: Efficiencyof Nd Laser Materials with Laser Diode Pumping, IEEE J. QE-26, p.558-569(1990)

[6.109] {Sect. 6.3.1} W. Streifer, D.R. Scifres, G.L. Harnagel, D.F. Welch, J. Berger,M. Sakamoto: Advances in Diode Laser Pumps, IEEE J. QE-24, p.883-894(1988)

[6.110] {Sect. 6.3.1} Y.F. Chen, C.F. Kao, S.C. Wang: Analytical model for thedesign of fiber-coupled laser- diode end-pumped lasers, Opt Commun 133,p.517-524 (1997)

[6.111] {Sect. 6.3.1} W.A. Clarkson, D.C. Hanna: Efficient Nd:YAG laser endpumped by a 20-W diode-laser bar, Opt. Lett. 21, p.869-871 (1996)

[6.112] {Sect. 6.3.1} S. Yamaguchi, T. Kobayashi, Y. Saito, K. Chiba: EfficientNd:YAG laser end pumped by a high-power multistripe laser-diode barwith multiprism array coupling, Appl. Opt. 35, p.1430-1435 (1996)

[6.113] {Sect. 6.3.1} H.R. Verdun, T. Chuang: Efficient TEM00-mode operation ofa Nd:YAG laser end pumped by a three-bar high-power diode-laser array,Opt. Lett. 17, p.1000-1002 (1992)

[6.114] {Sect. 6.3.1} J. Berger, D.F. Welch, W. Streifer, D.R. Scifres, N.J. Hoff-mann, J.J. Smith, D. Radecki: Fiber-bundle coupled, diode end-pumpedNd:YAG laser, Opt. Lett. 13, p.306-308 (1988)

[6.115] {Sect. 6.3.1} T.Y. Fan, R.L. Byer: Diode Laser-Pumped Solid-State Lasers,IEEE J. QE-24, p.895-912 (1988)

[6.116] {Sect. 6.3.1} D.L. Sipes: Highly efficient neodymium:yttrium aluminiumgarnet laser end pumped by a semiconductor laser array, Appl. Phys. Lett.47, p.74-76 (1985)

[6.117] {Sect. 6.3.1} R.L. Fu, G.J. Wang, Z.Q. Wang, E.X. Ba, G.G. Mu, X.H. Hu:Design of efficient lens ducts, Appl Opt 37, p.4000-4003 (1998)

[6.118] {Sect. 6.3.1} R.J. Beach: Theory and optimization of lens ducts, Appl Opt35, p.2005-2015 (1996)

[6.119] {Sect. 6.3.1} R.P. Edwin: Stripe Stacker for Use with Laser Diode Bars,Optics Letters 20, p.222-224 (1995)

[6.120] {Sect. 6.3.1} J.R. Leger, W.C. Goltsos: Geometrical Transformation of Lin-ear Diode-Laser Arrays for Longitudinal Pumping of Solid-State Lasers,IEEE J. QE-28, p.1088-1100 (1992)

[6.121] {Sect. 6.3.1} U. Griebner, R. Grunwald, H. Schonnagel: Thermally bondedYb : YAG planar waveguide laser, Opt Commun 164, p.185-190 (1999)

[6.122] {Sect. 6.3.1} W.J. Kessler, S.J. Davis, H.C. Miller, G.D. Hager: Opticallypumped hydrogen fluoride laser, J Appl Phys 83, p.7448-7452 (1998)

[6.123] {Sect. 6.3.1} T. Kojima, K. Yasui: Efficient diode side-pumping configura-tion of a Nd:YAG rod laser with a diffusive cavity, Appl Opt 36, p.4981-4984(1997)

[6.124] {Sect. 6.3.1} R.J. Koshel, I.A. Walmsley: Optimal design of optically side-pumped lasers, IEEE J QE-33, p.94-102 (1997)

[6.125] {Sect. 6.3.1} Y. Liao, K.M. Du, S. Falter, J. Zhang, M. Quade, P. Loosen,R. Poprawe: Highly efficient diode-stack, end-pumped Nd:YAG slab laserwith symmetrized beam quality, Appl Opt 36, p.5872-5875 (1997)

[6.126] {Sect. 6.3.1} K. Takehisa: Scaling up of a high average power dye laseramplifier and its new pumping designs, Appl Opt 36, p.584-592 (1997)

804 6. Lasers

[6.127] {Sect. 6.3.1} T. Brand: Compact 170-W continuous-wave diode-pumpedNd:YAG rod laser with a cusp-shaped reflector, Optics Letters 20, p.1776-1778 (1995)

[6.128] {Sect. 6.3.1} N. Uehara, K. Nakahara, K. Ueda: Continuous-waveTEM (00)-mode 26.5-W-output virtual-point- source diode-array-pumpedNd:YAG laser, Optics Letters 20, p.1707-1709 (1995)

[6.129] {Sect. 6.3.1} M.M. Dyer, H. Helm: Axicon amplification of a synchronouslypumped subpicosecond dye laser, J. Opt. Soc. Am. B 10, p.1035-1039 (1993)

[6.130] {Sect. 6.3.1} F. Hanson, D. Haddock: Laser diode side pumping of neo-dymium laser rods, Appl. Opt. 27, p.80-83 (1988)

[6.131] {Sect. 6.3.1} B. Chen, Y. Chen, M. Bass: Edge- and end-pumped slab laserswith both efficient and uniform pumping, Ieee J Quantum Electron 42,p.483-489 (2006)

[6.132] {Sect. 6.3.1} T.S. Rutherford, W.M. Tulloch, S. Sinha, R.L. Byer: Yb :YAG and Nd : YAG edge-pumped slab lasers, Optics Letters 26, p.986-988(2001)

[6.133] {Sect. 6.3.1} J. Machan, R.Moyer, D. Hoffmaster, J. Zamel, D. Burch-man, R. Tinti, G. Holleman, L. Marabella, H. Injeyan: Multi-Kilowatt, HighBrightnesss Diode-Pumped Laser for Precision Laser Machining, Techn. Di-gest Adv. Solid-State Lasersp.263-265 (1998)

[6.134] {Sect. 6.3.1} A. Mandl, A. Zavriyev, D.E. Klimek, J.J. Ewing: Cr:LiSAFthin slab zigzag laser, IEEE J QE-33, p.1864-1868 (1997)

[6.135] {Sect. 6.3.1} J. Richards, A. McInnes: Versatile, efficient, diode-pumpedminiature slab laser, Opt. Lett. 20, p.371-373 (1995)

[6.136] {Sect. 6.3.1} T.J. Kane, R.L. Byer, R.C. Eckardt: Reduced Thermal Focus-ing and Birefringence in Zig Zag Slab Geometry Crystalline Lasers, IEEEJ. QE19, p.1351-1354 (1983)

[6.137] {Sect. 6.3.1} J.M. Eggleston, R.L. Byer, T. Kane, J. Unternahrer: SlabGeometry Solid State Lasers, Appl Phys B 28, p.236 (1982)

[6.138] {Sect. 6.3.1} U. Brauch, A. Giesen, M. Karszewski, C. Stewen, A. Voss:Multiwatt diode pumped Yb:YAG thin disk laser continuously tunable be-tween 1018 and 1053 nm, Optics Letters 20, p.713-715 (1995)

[6.139] {Sect. 6.3.1} A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch,H. Opower: Scalable Concept for Diode-Pumped High-Power Solid-StateLasers, Appl. Phys. B 58, p.365-372 (1994)

[6.140] {Sect. 6.3.1} D. Kouznetsov, J.F. Bisson, J. Dong, K.I. Ueda: Surface losslimit of the power scaling of a thin-disk laser, J Opt Soc Am B Opt Physics23, p.1074-1082 (2006)

[6.141] {Sect. 6.3.2} T. Vallius, J. Tervo, P. Vahimaa, J. Turunen: Electromagneticapproach to laser resonator analysis, Opt Express 13, p.5994-5999 (2005)

[6.142] {Sect. 6.3.2} F. Habibullah, J.W. Park: A behavioral approach to modelthermal sensitivity of semiconductor lasers, Opt Commun 249, p.265-272(2005)

[6.143] {Sect. 6.3.2} A. Assalem, S.S.A. Obayya, H.S. AlRaweshidy: Full vectorialfinite element analysis of semiconductor lasers, Opt Commun 248, p.221-228(2005)

[6.144] {Sect. 6.3.2} L. Borruel, S. Sujecki, P. Moreno, J. Wykes, M. Krakowski, B.Sumpf, P. Sewell, S.C. Auzanneau, H. Wenzel, D. Rodriguez, T.M. Benson,E.C. Larkins, I. Esquivias: Quasi-3-D simulation of high-brightness taperedlasers, Ieee J Quantum Electron 40, p.463-472 (2004)

[6.145] {Sect. 6.3.2} Y. Ben, C.Z. Sun, S. Xue, Y. Luo, T. Yagi, E. Omura: Non-linearity in power-current characteristics of narrow-pulse-driven AlGaInPlaser diodes, Ieee J Quantum Electron 40, p.349-353 (2004)

6.3.2 Electrical Pumping in Diode Lasers 805

[6.146] {Sect. 6.3.2} J.R. OCallaghan, J. Houlihan, V. Voignier, G.H. Wu, E.ONeill, J.G. McInerney, G. Huyet: Spatial coherence and thermal lensing inbroad-area semiconductor lasers, Ieee J Quantum Electron 40, p.1-9 (2004)

[6.147] {Sect. 6.3.3} S. Nagai, H. Furuhashi, A. Kono, Y. Uchida, T. Goto: Mea-surement of temporal behavior of electron density in a discharge- pumpedArF excimer laser, IEEE J QE-34, p.942-948 (1998)

[6.148] {Sect. 6.3.3} D. C. Cartwright: Total Cross Sections for the Excitation of theTriplet States in Molecular Nitrogen, Phys. Rev. A 2, p.1331-1347 (1970)

[6.149] {Sect. 6.3.3} P. Coutance, J.P. Pique: Radial and time-resolved measure-ment of cuprous bromide concentration in a Cu-HBr laser, IEEE J QE-34,p.1340-1348 (1998)

[6.150] {Sect. 6.3.4} D.A. Haner, B.T. McGuckin, R.T. Menzies, C.J. Bruegge, V.Duval: Directional-hemispherical reflectance for Spectralon by integrationof its bidirectional reflectance, Appl Opt 37, p.3996-3999 (1998)

[6.151] {Sect. 6.3.4} P. Mazzinghi, D. Bigazzi: Wavelength-dependent model of Krflash lamp emission and absorption, Appl Opt 36, p.2473-2480 (1997)

[6.152] {Sect. 6.3.4} D.V. Pantelic, B.M. Panic, I.Z. Belic: Solid-state laser pumpingwith a planar compound parabolic concentrator, Appl Opt 36, p.7730-7740(1997)

[6.153] {Sect. 6.3.4} P.J. Walsh, A. Kermani: Electrical characterization of cwXenon arcs moderate currents, J. Appl. Phys. 61, p.4484-4491 (1987)

[6.154] {Sect. 6.3.4} B. Smith: An overview of flashlamps and CW arc lamps, Techn.Bulletin 3.ILC Technology. (1986)

[6.155] {Sect. 6.3.4} F. Docchio, L. Pallaro, O. Svelto: Pump cavities for compactpulsed Nd:YAG lasers: a comparative study, Appl. Opt. 24, p.3752-3755(1985)

[6.156] {Sect. 6.3.4} F. Docchio: The rod image: a new method for the calculationof pump efficiency in reflecting close-coupled cavities, Appl. Opt. 24, p.3746-3751 (1985)

[6.157] {Sect. 6.3.4} A.N. Fletcher: Effect of Flashlamp Diameter on LuminescentCoolants for a Solid-State Laser, Appl. Phys. B 37, p.31-34 (1985)

[6.158] {Sect. 6.3.4} P. Laporta, V. Magni, O. Svelto: Comparative Study of theOptical Pumping Efficiency in Solid State Lasers, IEEE J. QE-21, p.1211-1218 (1985)

[6.159] {Sect. 6.3.4} D.M. Camm: Optimal reflectors for coupling cylindricalsources and targets of finite dimensions, Appl. Opt. 23, p.601-606 (1984)

[6.160] {Sect. 6.3.4} K. Yoshida, Y. Kato, H. Yoshida, C. Yamanaka: Predictionof flash lamp explosion by stress measurements, Rev. Sci. Instr. 55, p.1415-1420 (1984)

[6.161] {Sect. 6.3.4} R.G. Hohlfeld, W. Manning, D.A. MacLennan: Self-inductanceeffects in linear flashtubes: an extension to the Markiewicz and Emmetttheory, Appl. Opt. 22, p.1986-1991 (1983)

[6.162] {Sect. 6.3.4} J. Richards, D. Rees, K. Fueloep, B.A. See: Operation ofkrypton-filled flashlamps at high repetition rates, Appl. Opt. 22, p.1325-1328 (1983)

[6.163] {Sect. 6.3.4} W. Lama, T. Hammond: Arc-acoustic interaction in rare gasflashlamps, Appl. Opt. 20, p.765-769 (1981)

[6.164] {Sect. 6.3.4} J.H. Kelly, D.C. Brown, K. Teegarden: Time resolved spec-troscopy of large bore Xe flashlamps for use in large aperture amplifiers,Appl. Opt. 19, p.3817-3823 (1980)

[6.165] {Sect. 6.3.4} H.L. Witting: Acoustic resonances in cylindrical high-pressurearc discharges, J. Appl. Phys. 49, p.2680-2683 (1978)

[6.166] {Sect. 6.3.4} D.A. Huchital, G.N.Steinberg: Pumping of Nd:YAG with Elec-trodeless arc lamps, IEEE J. QE-12, p.1-9 (1976)

806 6. Lasers

[6.167] {Sect. 6.3.4} M.R. Siegrist: Cusp shape reflectors to pump disk or slablasers, Appl. Opt. 15, p.2167-2171 (1976)

[6.168] {Sect. 6.3.4} H.U. Leuenberger, G. Herziger: Optical Pump System forMode-Controlled Laser Operation, Appl. Opt. 14, p.1190-1192 (1975)

[6.169] {Sect. 6.3.4} V.J. Corcoran, R.W. McMillan, S.K. Barnoske: Flashlamp-Pumped YAG:Nd+3 Laser Action at Kilohertz Rates, IEEE J. QE-10,p.618-620 (1974)

[6.170] {Sect. 6.3.4} R.H. Dishington, W.R. Hook, R.P. Hilberg: Flashlamp Dis-charge and Laser Efficiency, Appl. Opt. 13, p.2300-2312 (1974)

[6.171] {Sect. 6.3.4} D.D. Bhawalkar, L. Pandit: Improving the Pumping Efficiencyof a Nd3+ Glass Laser Using Dyes, IEEE J. QE-9, p.43-46 (1973)

[6.172] {Sect. 6.3.4} W.R. Hook, R.H. Dishington, R.P. Hilberg: Xenon FlashlampTriggering for Laser Applications, IEEE Trans. ED-19, p.308-314 (1972)

[6.173] {Sect. 6.3.4} W. Koechner, L. DeBenedictis, E. Matovich, G.E. Mevers:Characteristics and Performance of High-Power CW Krypton Arc Lampsfor Nd:YAG Laser Pumping, IEEE J. QE-8, p.310-316 (1972)

[6.174] {Sect. 6.3.4} W. Koechner: Output Fluctuations of CW-Pumped Nd:YAGLasers, IEEE J. QE-8, p.656-661 (1972)

[6.175] {Sect. 6.3.4} W.W. Morey: Active Filtering for Neodymium Lasers, IEEEJ. QE-8, p.818-819 (1972)

[6.176] {Sect. 6.3.4} S. Yoshikawa, K. Iwamoto, K. Washio: Efficient Arc Lamps forOptical Pumping of Neodymium Lasers, Appl. Opt. 10, p.1620-1623 (1971)

[6.177] {Sect. 6.3.4} W.D. Fountain, L.M. Osterink, J.D. Foster: Comparision ofKr and Xe Flashlamps for Nd:YAG Lasers, IEEE J. QE-6, p.684-687 (1970)

[6.178] {Sect. 6.3.4} D.R. Skinner: The Effect of Laser-Rod Properties on the En-ergy Transfer Efficiency of Pumping Cavities Using Helical Flash Lamps,Appl. Opt. 8, p.1467-1470 (1969)

[6.179] {Sect. 6.3.4} J.G. Edwards: Some Factors Affecting the Pumping Efficiencyof Optically Pumped Lasers, Appl. Opt. 6, p.837-843 (1967)

[6.180] {Sect. 6.3.4} K. Kamiryo, T. Kano, H. Matsuzawa: Optimum Design ofElliptical Pumping Chambers for Solid Lasers, Jap. J. Appl. Phys. 5, p.1217-1226 (1966)

[6.181] {Sect. 6.3.4} J.P. Markiewicz, J.L. Emmett: Design of flashlamp drivingcircuits, IEEE J. QE-2, p.707-711 (1966)

[6.182] {Sect. 6.3.4} T.B. Read: The cw pumping of YAG:Nd3+ by water-cooledkrypton arcs, Appl. Phys. Lett. 9, p.342-344 (1966)

[6.183] {Sect. 6.3.4} D. Roess: Analysis of Room Temperature CW Ruby Lasers,IEEE J. QE-2, p.208-214 (1966)

[6.184] {Sect. 6.3.4} C. Bowness: On the effeciency of single and multiple ellipticallaser cavities, Appl. Opt. 4, p.103-108 (1965)

[6.185] {Sect. 6.3.4} S.B. Schuldt, R.L. Aagard: An Analysis of Radiation TransferBy Means of Elliptical Cylinder Reflectors, Appl. Opt. 2, p.509-513 (1963)

[6.186] {Sect. 6.3.5} D. Furman, B.D. Barmashenko, S. Rosenwaks: Diode-laser-based absorption spectroscopy diagnostics of a jet-type O- 2 ((1)Delta) gen-erator for chemical oxygen-iodine lasers, IEEE J QE-35, p.540-547 (1999)

[6.187] {Sect. 6.3.5} G.N. Tsikrikas, A.A. Serafetinides: Discharge and circuit sim-ulation of a plasma cathode TEA HF laser operating with a He/SF6/C3H8gas mixture, Opt Commun 134, p.145-148 (1997)

[6.188] {Sect. 6.3.5} I. Blayvas, B.D. Barmashenko, D. Furman, S. Rosenwaks,M.V. Zagidullin: Power optimization of small-scale chemical oxygen-iodinelaser with jet-type singlet oxygen generator, IEEE J QE-32, p.2051-2057(1996)

[6.189] {Sect. 6.3.5} G.D. Hager, C.A. Helms, K.A. Truesdell, D. Plummer, J.Erkkila, P. Crowell: A simplified analytic model for gain saturation and

6.3.5 Chemical Pumping 807

power extraction in the flowing chemical oxygen-iodine laser, IEEE J QE-32, p.1525-1536 (1996)

[6.190] {Sect. 6.3.6} S. Pau, G. Bjork, J. Jacobson, Y. Yamamoto: Fundamentalthermodynamic limit of laser efficiency, IEEE J QE-32, p.567-573 (1996)

[6.191] {Sect. 6.4.0} A. Sennaroglu: Experimental determination of fractional ther-mal loading in an operating diode-pumped Nd : YVO4 minilaser at 1064nm, Appl Opt 38, p.3253-3257 (1999)

[6.192] {Sect. 6.4.0} D.C. Brown: Heat, fluorescence, and stimulated-emissionpower densities and fractions in Nd:YAG, IEEE J QE-34, p.560-572 (1998)

[6.193] {Sect. 6.4.0} S. Chang, C.C. Hsu, T.H. Huang, S.W. Lin, C.Y. Leaung,T.T. Liu: Heterodyne interferometric measurement of the thermo-optic co-efficients of potassium niobate, J Appl Phys 84, p.1825-1829 (1998)

[6.194] {Sect. 6.4.0} L.C.O. Dacal, A.M. Mansanares, E.C. daSilva: Heat sourcedistribution, vertical structure, and coating influences on the temperature ofoperating 0.98 mu m laser diodes: Photothermal reflectance measurements,J Appl Phys 84, p.3491-3499 (1998)

[6.195] {Sect. 6.4.0} S.L. Huang, W.L. Wu, P.L. Huang: Measurement of temper-ature gradient in diode-laser-pumped high-power solid-state laser by low-coherence reflectometry, Appl Phys Lett 73, p.3342-3344 (1998)

[6.196] {Sect. 6.4.0} A. Sennaroglu, B. Pekerten: Experimental and numerical in-vestigation of thermal effects in end- pumped Cr4+:forsterite lasers nearroom temperature, IEEE J QE-34, p.1996-2005 (1998)

[6.197] {Sect. 6.4.0} A. Sennaroglu: Comparative experimental investigation ofthermal loading in continuous-wave Cr4+:forsterite lasers, Appl Opt 37,p.1627-1634 (1998)

[6.198] {Sect. 6.4.0} M. Tsunekane, N. Taguchi, H. Inaba: Reduction of thermaleffects in a diode-end-pumped, composite Nd: YAG rod with a sapphireend, Appl Opt 37, p.3290-3294 (1998)

[6.199] {Sect. 6.4.0} R. Weber, B. Neuenschwander, M. MacDonald, M.B. Roos,H.P. Weber: Cooling schemes for longitudinally diode laser-pumpedNd:YAG rods, IEEE J QE-34, p.1046-1053 (1998)

[6.200] {Sect. 6.4.0} M. Mehendale, T.R. Nelson, F.G. Omenetto, W.A. Schroeder:Thermal effects in laser pumped Kerr-lens modelocked Ti: sapphire lasers,Opt Commun 136, p.150-159 (1997)

[6.201] {Sect. 6.4.0} J.J. Kasinski, R.L. Burnham: Near-diffraction-limited, high-energy, high-power, diode-pumped laser using thermal aberration correctionwith aspheric diamond-turned optics, Appl. Opt. 35, p.5949-4954 (1996)

[6.202] {Sect. 6.4.0} C. Pfistner, R. Weber, H.P. Weber, S. Merazzi, R. Gru-ber: Thermal Beam Distortions in End-Pumped Nd:YAG Nd:GSGG, andNd:YLF Rods, IEEE J. QE-30, p.1605-1615 (1994)

[6.203] {Sect. 6.4.0} A.K. Cousins: Temperature and Thermal Stress Scaling inFinite-Length End-Pumped Laser Rods, IEEE J. QE-28, p.1057-1069 (1992)

[6.204] {Sect. 6.4.0} Z. Zeng, H. Shen, M. Huang, H. Xu, R. Zeng, Y. Zhou, G.Yu, C. Huang: Measurement of the refractive index and thermal refractiveindex coefficients of Nd:YAP crystal, Appl. Opt. 29, p.1281-1286 (1990)

[6.205] {Sect. 6.4.0} M.S. Mangir, D.A. Rockwell: Measurements of Heating andEnergy Storage in Flashlamp-Pumped Nd:YAG and Nd-Doped PhosphateLaser Glasses, IEEE J. QE-22, p.574-581 (1986)

[6.206] {Sect. 6.4.0} E. Friedmann, L. Poole, A. Cherdak, W. Houghton: Absorptioncoefficient instrument for turbid natural waters, Appl. Opt. 19, p.1688-1693(1980)

[6.207] {Sect. 6.4.0} R.F. Hotz: Thermal Transient Effects in Repetitively PulsedFlashlamp-Pumped YAG:Nd,Lu Laser Material, Appl. Opt. 12, p.1834-1838(1973)

808 6. Lasers

[6.208] {Sect. 6.4.0} J.A. Curcio, C.C. Petty: The near infrared absorption spec-trum of liquid water, J. Opt. Soc. Am. 41, p.302-304 (1951)

[6.209] {Sect. 6.4.0} N. Hodgson, H. Weber: Influence of Sperical Aberration ofthe Active Medium on the Performance of Nd:YAG Lasers, IEEE J. QE-29,p.2497-2507 (1993)

[6.210] {Sect. 6.4.0} M.E. Innocenzi, H.T. Yura, C.L. Fincher, R.A. Fields: Thermalmodeling of continuous-wave end-pumped solid-state lasers, Appl. Phys.Lett. 56, p.1831-1833 (1990)

[6.211] {Sect. 6.4.0} U.O. Farrukh, A.M. Buoncristiani, E.C. Byvik: An Analysis ofthe Temperature Distribution in Finite Solid-State Laser Rods, J. QuantumElectron. 24, p.2253-2263 (1988)

[6.212] {Sect. 6.4.0} C.S. Hoefer, K.W. Kirby, L.G. DeShazer: Thermo-optic prop-erties of Garnet laser crystals, J. Opt. Soc. Am. B 5, p.2327-2332 (1988)

[6.213] {Sect. 6.4.0} K. Mann, H. Weber: Surface heat transfer coefficient, heatefficiency and temperature of pulsed solid state lasers, J. Appl. Phys. 64,p.1015-1021 (1988)

[6.214] {Sect. 6.4.0} T.J. Kane, J.M. Eggleston, R.L. Byer: The Slab GeometryLaser – Part II: Thermal Effects in a Finite Slab, IEEE J. QE-21, p.1195-1210 (1985)

[6.215] {Sect. 6.4.0} J.M. Eggleston, T.J. Kane, K. Kuhn, J. Unternahrer, R.L.Byer: The Slab Geometry Laser – Part I: Theory, IEEE J. QE-20, p.289-301 (1984)

[6.216] {Sect. 6.4.0} S.B. Sutton, G.F. Albrecht: Optical distortion in end-pumpedsolid-state rod lasers, Appl. Opt. 32, p.5256-5269 (1983)

[6.217] {Sect. 6.4.0} K.R. Richter, W. Koechner: Electrical Analogy of TransientHeat Flow in Laser Rods, Appl. Phys. 3, p.205-212 (1974)

[6.218] {Sect. 6.4.0} W. Koechner: Transient thermal profile in optically pumpedlaser rods, J. Appl. Phys. 44, p.3162-3170 (1973)

[6.219] {Sect. 6.4.0} M.K. Chun, J.T. Bischoff: Thermal Transient Effects in Opti-cally Pumped Repetitively Pulsed Lasers, IEEE J. QE-7, p.200-202 (1971)

[6.220] {Sect. 6.4.1} G. Wagner, M. Shiler, V. Wulfmeyer: Simulations of thermallensing of a Ti:Sapphire crystal end-pumped with high average power, OptExpress 13, p.8045-8055 (2005)

[6.221] {Sect. 6.4.1} H.W. Yu, G. Bourdet: Thickness optimization of the compositegain medium for the oscillator and amplifier of the Lucia laser, Appl Opt44, p.7161-7169 (2005)

[6.222] {Sect. 6.4.1} S.A. Amarande, M.J. Damzen: Measurement of the thermallens of grazing-incidence diode-pumped Nd:YVO4 laser amplifier, Opt Com-mun 265, p.306-313 (2006)

[6.223] {Sect. 6.4.1} L. Qiang, Z.M. Wang, T.C. Zuo: A method measuring thermallens focal length of all rays polarized in radial and tangential direction ofhigh power Nd:YAG laser, Opt Commun 241, p.155-158 (2004)

[6.224] {Sect. 6.4.1} A. Agnesi, P. Uggetti: Measurement of thermal diffractivelosses in end-pumped solid-state lasers, Opt Commun 212, p.371-376 (2002)

[6.225] {Sect. 6.4.1} J. Bourderionnet, A. Brignon, J.P. Huignard, R. Frey: Influ-ence of aberrations on fundamental mode of high power rod solid- statelasers, Opt Commun 204, p.299-310 (2002)

[6.226] {Sect. 6.4.1} J.C. Bermudez, V.J. PintoRobledo, A.V. Kiryanov, M.J.Damzen: The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd : YVO4 laser, Opt Commun 210, p.75-82 (2002)

[6.227] {Sect. 6.4.1} P.J. Hardman, W.A. Clarkson, G.J. Friel, M. Pollnau, D.C.Hanna: Energy-transfer upconversion and thermal lensing in high-powerend- pumped Nd : YLF laser crystals, IEEE J QE-35, p.647-655 (1999)

6.4.1 Thermal Lensing 809

[6.228] {Sect. 6.4.1} M. Tsunekane, N. Taguchi, H. Inaba: Improvement of thermaleffects in a diode-end-pumped, composite Tm : YAG rod with undopedends, Appl Opt 38, p.1788-1791 (1999)

[6.229] {Sect. 6.4.1} D.Y. Zhang, H.Y. Shen, W. Liu, G.F. Zhang, W.Z. Chen,G. Zhang, R.R. Zeng, C.H. Huang, W.X. Lin, J.K. Liang: The thermalrefractive index coefficients of 7.5 mol % Nb : KTiOPO4 crystals, J ApplPhys 86, p.3516-3518 (1999)

[6.230] {Sect. 6.4.1} J.L. Blows, J.M. Dawes, T. Omatsu: Thermal lensing mea-surements in line-focus end-pumped neodymium yttrium aluminium garnetusing holographic lateral shearing interferometry, J Appl Phys 83, p.2901-2906 (1998)

[6.231] {Sect. 6.4.1} J. Calatroni, A. Marcano, R. Escalona, P. Sandoz: Visualiza-tion and measurement of a stationary thermal lens using spectrally resolvedwhite light interferometry, Opt Commun 138, p.1-5 (1997)

[6.232] {Sect. 6.4.1} M. Shimosegawa, T. Omatsu, A. Hasegawa, M. Tateta, I.Ogura: Transient thermal lensing measurement in a laser diode pumpedNdxY1-xAl3 (BO3) (4) laser using a holographic shearing interferometer,Opt Commun 140, p.237-241 (1997)

[6.233] {Sect. 6.4.1} S.D. Jackson, J.A. Piper: Thermally induced strain and bire-fringence calculations for a Nd: YAG rod encapsulated in a solid pump lightcollector, Appl Opt 35, p.1409-1423 (1996)

[6.234] {Sect. 6.4.1} S.D. Jackson, J.A. Piper: Encapsulated rod for efficient ther-mal management in diode- side-pumped Nd:YAG lasers, Appl Opt 35,p.2562-2565 (1996)

[6.235] {Sect. 6.4.1} X.H. Lu, G.Y. Ru, Q. Lin, S.M. Wang: Analysis of the proper-ties of self compensation for thermal distortion in a Eckige-Schraube laser,Opt Commun 128, p.55-60 (1996)

[6.236] {Sect. 6.4.1} A. Mcinnes, J. Richards: Thermal effects in a coplanar-pumpedfolded-zigzag slab laser, IEEE J QE-32, p.1243-1252 (1996)

[6.237] {Sect. 6.4.1} B. Neuenschwander, R. Weber, H.P. Weber: Thermal lens andbeam properties in multiple longitudinally diode laser pumped Nd:YAGslab lasers, IEEE J QE-32, p.365-370 (1996)

[6.238] {Sect. 6.4.1} H.J. Eichler, A. Haase, R. Menzel, A. Siemoneit: ThermalLensing and Depolarization in a Highly Pumped Nd:YAG-Laser-Amplifier,J. Phys. D: Appl. Phys. 26, p.1884-1891 (1993)

[6.239] {Sect. 6.4.1} T.Y. Fan: Heat Generation in Nd:YAG and Yb:YAG, IEEE J.QE-29, p.1457-1459 (1993)

[6.240] {Sect. 6.4.1} N. Hodgson, C. Rahlff, H. Weber: Dependence of the refractivepower of Nd:YAG rods on the intracavity intensity, Opt. Laser Technol. 25,p.179-185 (1993)

[6.241] {Sect. 6.4.1} J. Frauchiger, P. Albers, H.P. Weber: Modeling of ThermalLensing and Higher Order Ring Mode Oscillation in End-Pumped CWNd:YAG Lasers, IEEE J. QE-28, p.1046-1056 (1992)

[6.242] {Sect. 6.4.1} H. Vanherzeele: Continuous-wave dual rod Nd:YLF laser withdynamic lensing compensation, Appl. Opt. 28, p.4042-4044 (1989)

[6.243] {Sect. 6.4.1} B. Struve, P. Fuhrberg, W. Luhs, G. Litfin: Thermal lensingand laser operation of flashlamp-pumped Cr:GSAG, Opt. Comm. 65, p.291-296 (1988)

[6.244] {Sect. 6.4.1} J.C. Lee, S.D. Jacobs: Refractive index and dn/dT of Cr:Nd:GSGG at 1064 nm, Appl. Opt. 26, p.777-778 (1987)

[6.245] {Sect. 6.4.1} K.P. Driedger, W. Krause, H. Weber: Average refractive pow-ers of an Alexandrit laserrod, Opt. Comm. 57, p.403406 (1986)

810 6. Lasers

[6.246] {Sect. 6.4.1} J.S. Uppal, J.C. Monga, D.D. Bhawalkar: Study of thermaleffects in an Nd doped phosphate glass laser rod, IEEE J. QE-22, p.2259-2265 (1986)

[6.247] {Sect. 6.4.1} L. Horowitz Y.B. Band, O. Kafri, D.F. Heller: Thermal lensinganalysis of alexandrite laser rods by moire deflectometry, Appl. Opt. 23,p.2229-2231 (1984)

[6.248] {Sect. 6.4.1} J.E. Murray: Pulsed Gain and Thermal Lensing of Nd:LiF4,IEEE J. QE-19, p.488-491 (1983)

[6.249] {Sect. 6.4.1} D.C. Brown, J. A. Abate, L. Lund, J. Waldbillig: Passivelyswitched double-pass active mirror system, Appl. Opt. 20, p.1588-1594(1981)

[6.250] {Sect. 6.4.1} D.C. Brown, J.H. Kelly, J.A. Abate: Active-Mirror Amplifiers:Progress and Prospects, IEEE J. QE-17, p.1755-1765 (1981)

[6.251] {Sect. 6.4.1} H.P. Kortz, R. Ifflander, H. Weber: Stability and beam di-vergence of multimode lasers with internal variable lenses, Appl. Opt. 20,p.4124-4134 (1981)

[6.252] {Sect. 6.4.1} W.E. Martin, J.B. Trenholme, G.T. Linford, S.M. Yarema,C.A. Hurley: Solid-State Disk Amplifiers for Fusion-Laser Systems, IEEEJ. QE-17, p.1744-1755 (1981)

[6.253] {Sect. 6.4.1} N.L. Boling et al.: Empirical Relationships for Predicting Non-linear Refractive Index Changes in Optical Solids, IEEE J. QE-14, p.601-608(1978)

[6.254] {Sect. 6.4.1} T.J. Gleason, J.S. Kruger, R.M. Curnutt: Thermally InducedFocusing in a Nd:YAG Laser Rod at Low Input Powers, Appl. Opt. 12,p.2942-2946 (1973)

[6.255] {Sect. 6.4.1} D.D. Young, K.C. Jungling, T.L. Williamson, E.R. Nichols:Holographic Interferometry Measurement of the Thermal Refractive In-dex Coefficient and the Thermal Expansion Coefficient of Nd:YAG andNd:YALO, IEEE J. QE-8, p.720-721 (1972)

[6.256] {Sect. 6.4.1} F.A. Levine: TEM00 Enhancement in CW Nd-YAG by Ther-mal Lensing Compensation, IEEE J. QE-7, p.170-172 (1971)

[6.257] {Sect. 6.4.1} G. Slack, D. Oliver: Thermal conductivity of garnets andphonon scattering by rare-earth-ions, Phys. Rev. B 4, p.592-609 (1971)

[6.258] {Sect. 6.4.1} D.C. Burnham: Simple Measurement of Thermal Lensing Ef-fects in Laser Rods, Appl. Opt. 9, p.1727-1728 (1970)

[6.259] {Sect. 6.4.1} J.D. Forster, L.M. Osterink: Thermal Effects in a Nd:YAGLaser, J. Appl. Phys. 41, p.3656-3663 (1970)

[6.260] {Sect. 6.4.1} W. Koechner: Absorbed Pump Power, Thermal Profile andStresses in a cw Pumped Nd:YAG Crystal, Appl. Opt. 9, p.1429-1434 (1970)

[6.261] {Sect. 6.4.1} W. Koechner: Thermal Lensing in a Nd:YAG Laser Rod, Appl.Opt. 9, p.2548-2553 (1970)

[6.262] {Sect. 6.4.1} L.M. Osterink, J.D. Foster: Thermal effects and transversemode control in a Nd:YAG laser, Appl. Phys. Lett. 12, p.128-131 (1968)

[6.263] {Sect. 6.4.1} Y. Liao, R.J.D. Miller, M.R. Armstrong: Pressure tuningof thermal lensing for high-power scaling, Optics Letters 24, p.1343-1345(1999)

[6.264] {Sect. 6.4.1} A. Agnesi, E. Piccinini, G.C. Reali: Influence of thermal effectsin Kerr-lens mode-locked femtosecond Cr4+: Forsterite lasers, Opt Commun135, p.77-82 (1997)

[6.265] {Sect. 6.4.1} R. Koch: Self-adaptive optical elements for compensation ofthermal lensing effects in diode end-pumped solid state lasers – Proposaland preliminary experiments, Opt Commun 140, p.158-164 (1997)

6.4.1 Thermal Lensing 811

[6.266] {Sect. 6.4.1} J. Song, A.P. Liu, K. Okino, K. Ueda: Control of the thermallensing effect with different pump light distributions, Appl Opt 36, p.8051-8055 (1997)

[6.267] {Sect. 6.4.1} S. Backus, C.G. Durfee, G. Mourou, H.C. Kapteyn, M.M.Murnane: 0.2-TW laser system at 1 kHz, Optics Letters 22, p.1256-1258(1997)

[6.268] {Sect. 6.4.1} M.S. Roth, E.W. Wyss, H. Glur, H.P. Weber: Generation ofradially polarized beams in a Nd:YAG laser with self- adaptive overcom-pensation of the thermal lens, Optics Letters 30, p.1665-1667 (2005)

[6.269] {Sect. 6.4.1} E. Wyss, T. Graf, H.P. Weber: Solid-state lasers at the stabilitylimit: Constant beam properties over large power ranges, Ieee J QuantumElectron 41, p.671-676 (2005)

[6.270] {Sect. 6.4.1} V. Lupei, G. Aka, D. Vivien: Quasi-three-level 946 nm CWlaser emission of Nd : YAG under direct pumping at 885 nm into the emit-ting level, Opt Commun 204, p.399-405 (2002)

[6.271] {Sect. 6.4.1} I. Moshe, S. Jackel: Correction of thermally induced birefrin-gence in double-rod laser resonators – comparison of various methods, OptCommun 214, p.315-325 (2002)

[6.272] {Sect. 6.4.1} E. Wyss, M. Roth, T. Graf, H.P. Weber: Thermooptical com-pensation methods for high-power lasers, Ieee J Quantum Electron 38,p.1620-1628 (2002)

[6.273] {Sect. 6.4.1} T. Graf, E. Wyss, M. Roth, H.P. Weber: Laser resonator withbalanced thermal lenses, Opt Commun 190, p.327-331 (2001)

[6.274] {Sect. 6.4.2} R.Z. Hua, S. Wada, H. Tashiro: Analytical method for design aTEM00 mode resonator of a dual-rod Nd:YAG laser with full birefringencecompensation, Opt Commun 232, p.333-341 (2004)

[6.275] {Sect. 6.4.2} E. Khazanov, A. Anastasiyev, N. Andreev, A. Voytovich, O.Palashov: Compensation of birefringence in active elements with a novelFaraday mirror operating at high average power, Appl Opt 41, p.2947-2954(2002)

[6.276] {Sect. 6.4.2} N. Kugler, S. Dong, Q. Lu, H. Weber: Investigation of themisalignment sensitivity of a birefringence-compensated two-rod Nd:YAGlaser system, Appl. Opt. 36, p.9359-9366 (1997)

[6.277] {Sect. 6.4.2} M. Ohmi, M. Akatsuka, K. Ishikawa, K. Naito, Y. Yonezawa,Y. Nishida, M. Yamanaka, Y. Izawa, S. Nakai: High-sensitivity two-dimen-sional thermal- and mechanical-stress-induced birefringence measurementsin a Nd:YAG rod, Appl. Opt. 33, p.6368-6372 (1994)

[6.278] {Sect. 6.4.2} S.Z. Kurtev, O.E. Denchev, S.D. Savov: Effects of thermallyinduced birefringence in high-output-power electro-optically Q-switchedNd:YAG lases and their compensation, Appl. Opt. 32, p.278-285 (1993)

[6.279] {Sect. 6.4.2} J. Richards: Birefringence compensation in polarization cou-pled lasers, Appl. Opt. 26, p.2514-2517 (1987)

[6.280] {Sect. 6.4.2} G. Giuliani, R.L. Byer, Y.K. Park: Radial Birefringent Elementand Its Application to Laser Resonator Design, Optics Letters 5, p.491-493(1980)

[6.281] {Sect. 6.4.2} G. Giuliani, P. Ristori: Polarization flip cavities: A new ap-proach to laser resonators, Optics Commun. 35, p.109-113 (1980)

[6.282] {Sect. 6.4.2} G. Giuliani, Y.K. Park, R.L. Byer: Radial birefringent elementand ist application to laser resonator design, Opt. Lett. 5, p.491-493 (1980)

[6.283] {Sect. 6.4.2} A. L. Bloom: Modes of a laser resonator containing tiltedbirefringent plates, J. Opt. Soc. Am. 64, p.447-452 (1974)

[6.284] {Sect. 6.4.2} J. Sherman: Thermal compensation of a cw-pumped Nd:YAGlaser, Appl Opt 37, p.7789-7796 (1998)

812 6. Lasers

[6.285] {Sect. 6.4.2} W.A. Clarkson, N.S. Felgate, D.C. Hanna: Simple method forreducing the depolarization loss resulting from thermally induced birefrin-gence in solid-state lasers, Optics Letters 24, p.820-822 (1999)

[6.286] {Sect. 6.4.2} D. MonzonHernandez, A.N. Starodumov, A.R.B.Y. Goitia,V.N. Filippov, V.P. Minkovich, P. Gavrilovic: Stress distribution and bire-fringence measurement in double-clad fiber, Opt Commun 170, p.241-246(1999)

[6.287] {Sect. 6.4.2} J. Zhang, M. Quade, Y. Liao, S. Falter, K.M. Du, P. Loosen:Polarization characteristics of a Nd:YAG laser side pumped by diode laserbars, Appl Opt 36, p.7725-7729 (1997)

[6.288] {Sect. 6.4.2} M.P. Murdough, C.A. Denman: Mode-volume and pump-power limitations in injection-locked TEM (00) Nd:YAG rod lasers, ApplOpt 35, p.5925-5936 (1996)

[6.289] {Sect. 6.4.2} Q. Lu, N. Kugler, H. Weber, S. Dong, N. Muller, U. Wittrock:A novel approach for compensation of birefringence in cylindrical Nd:YAGrods, Opt. Quant. Electron. 28, p.57-69 (1996)

[6.290] {Sect. 6.4.2} W.C. Scott, M. de Wit: Birefringence compensation andTEM00 Mode enhancement in a Nd:YAG Laser, Appl. Phys. Lett. 18, p.3-4(1971)

[6.291] {Sect. 6.4.3} D.C. Brown: Nonlinear thermal and stress effects and scalingbehavior of YAG slab amplifiers, IEEE J QE-34, p.2393-2402 (1998)

[6.292] {Sect. 6.4.3} W. Koechner: Rupture Stess and Modulus of Elasticity forNd:YAG Crystals, Appl. Phys. 2, p.279-280 (1973)

[6.293] {Sect. 6.5.0} S.M. Sepke, D.P. Umstadter: Exact analytical solution for thevector electromagnetic field of Gaussian, flattened Gaussian, and annularGaussian laser modes, Optics Letters 31, p.1447-1449 (2006)

[6.294] {Sect. 6.5.0} K. Altmann, C. Pflaum, D. Seider: Third-dimensional finiteelement computation of laser cavity eigenmodes, Appl Opt 43, p.1892-1901(2004)

[6.295] {Sect. 6.5.0} J.K. Watts: Theory of Multiplate Resonant Reflectors, Appl.Opt. 7, p.1621-1624 (1968)

[6.296] {Sect. 6.5.0} D.G. Peterson, A. Yariv: Interferometry and Laser Controlwith Solid Fabry-Perot Etalons, Appl. Opt. 5, p.985-991 (1966)

[6.297] {Sect. 6.5.0} G.D. Boyd, H. Kogelnik: Generalized Confocal Resonator The-ory, Bell Syst. Tech. J. 41, p.1347-1369 (1962)

[6.298] {Sect. 6.5.0} A.G. Fox, T. Li: Resonant Modes in a Maser Interferometer,Bell Syst. Tech. J. 40, p.453-489 (1961)

[6.299] {Sect. 6.5.0} C. Palma: Complex dynamics of a beam in a Gaussian cavity,Opt Commun 129, p.120-133 (1996)

[6.300] {Sect. 6.5.2} O. Emile, D. Chauvat, A. LeFloch, F. Bretenaker: Temporalbehavior of an unstable optical cavity, Optics Letters 24, p.22-24 (1999)

[6.301] {Sect. 6.5.2} M. Endo, M. Kawakami, K. Nanri, S. Takeda, T. Fujioka:Two-dimensional simulation of an unstable resonator with a stable core,Appl Opt 38, p.3298-3307 (1999)

[6.302] {Sect. 6.5.2} G.P. Karman, J.P. Woerdman: Fractal structure of eigenmodesof unstable cavity lasers, Optics Letters 23, p.1909-1911 (1998)

[6.303] {Sect. 6.5.2} A. Torre, C. Petrucci: Two-dimensional simulation of a high-gain, generalized self-filtering, unstable resonator, Appl Opt 36, p.2499-2505(1997)

[6.304] {Sect. 6.5.2} S. De Silvestri, P. Laporta, V. Magni, G. Valentini, G.Cerullo: Comparative Analysis of Nd:YAG Unstable Resonators with Super-Gaussian Variable Reflectance Mirrors, Opt. Commun. 77, p.179-184 (1990)

6.5.2 Unstable Resonators 813

[6.305] {Sect. 6.5.2} S. De Silvestri, P. Laporta, V. Magni, O. Svelto, B. Majocchi:Unstable laser resonators with super Gaussian mirrors, Opt. Lett. 13, p.201-203 (1988)

[6.306] {Sect. 6.5.2} P.G. Gobbi, G.C. Reali: Mode analysis of a self filtering un-stable resonator with a gaussian transmission aperture, Opt. Commun.57p.355-359 (1986)

[6.307] {Sect. 6.5.2} M.E. Smithers: Unstable resonator with aspherical mirrors, J.Opt. Soc. Am. 72, p.1183-1186 (1982)

[6.308] {Sect. 6.5.2} T.F. Ewanizky: Ray-transfer-matrix approach to unstable res-onator analysis, Appl. Opt. 18, p.724-727 (1979)

[6.309] {Sect. 6.5.2} R.R. Butts, P.V. Avizonis: Asymptotic analysis of unstablelaser resonators with circular mirrors, J. Opt. Soc. Am. 68, p.1072-1078(1978)

[6.310] {Sect. 6.5.2} A.E. Siegman: A Canonical Formulation for Analyzing Multi-element Unstable Resonators, IEEE J. QE-12, p.35-39 (1976)

[6.311] {Sect. 6.5.2} A.E. Siegman: Unstable Optical Resonators, Appl. Opt. 13,p.353-367 (1974)

[6.312] {Sect. 6.5.2} P. Horwitz: Asymptotic theory of unstable resonator modes,J. Opt. Soc. Am. 63, p.1528-1543 (1973)

[6.313] {Sect. 6.5.2} A.E. Siegman, H.Y. Miller: Unstable Optical Resonator LossCalculations Using the Prony Method, Appl. Opt. 9, p.2729-2736 (1970)

[6.314] {Sect. 6.5.2} R.L. Sanderson, W. Streifer: Unstable Laser Resonator Modes,Appl. Opt. 8, p.2129-2136 (1969)

[6.315] {Sect. 6.5.2} L. Bergstein: Modes of Stable and Unstable Optical Res-onators, Appl. Opt. 7, p.495-504 (1968)

[6.316] {Sect. 6.5.2} G.S. McDonald, G.H.C. New, J.P. Woerdman: Excess noisein low Fresnel number unstable resonators, Opt Commun 164, p.285-295(1999)

[6.317] {Sect. 6.5.2} T. Hall, F. Duschek, K.M. Grunewald, J. Handke: Modi-fied negative-branch confocal unstable resonator, Appl Opt 45, p.8777-8780(2006)

[6.318] {Sect. 6.5.2} Y. Bo, A.C. Geng, Y. Bi, Z.P. Sun, X.D. Yang, Q.J. Peng,H.Q. Li, R.N. Li, D.F. Cui, Z.Y. Xu: High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,Appl Opt 45, p.2499-2503 (2006)

[6.319] {Sect. 6.5.2} A.W. Kennedy, J.B. Gruber, P.R. Bolton, M.S. Bowers: Mod-eling gain-medium diffraction in super-Gaussian coupled unstable laser cav-ities, Appl Opt 44, p.1283-1287 (2005)

[6.320] {Sect. 6.5.2} J.F. Pinto, L. Esterowitz: Unstable Cr:LiSAF baser resonatorwith a variable reflectivity output coupler, Appl Opt 37, p.3272-3275 (1998)

[6.321] {Sect. 6.5.2} M.A. Vaneijkelenborg, A.M. Lindberg, M.S. Thijssen, J.P.Woerdman: Higher order transverse modes of an unstable-cavity laser, IEEEJ QE-34, p.955-965 (1998)

[6.322] {Sect. 6.5.2} S.A. Biellak, G. Fanning, Y. Sun, S.S. Wong, A.E. Siegman:Reactive-ion-etched diffraction-limited unstable resonator semiconductorlasers, IEEE J QE-33, p.219-230 (1997)

[6.323] {Sect. 6.5.2} Y.J. Cheng, C.G. Fanning, A.E. Siegman: Transverse-modeastigmatism in a diode-pumped unstable resonator Nd:WO4 laser, ApplOpt 36, p.1130-1134 (1997)

[6.324] {Sect. 6.5.2} E. Galletti, E. Stucchi, D.V. Willetts, M.R. Harris: Transverse-mode selection in apertured super-Gaussian resonators: An experimentaland numerical investigation for a pulsed CO2 Doppler lidar transmitter,Appl Opt 36, p.1269-1277 (1997)

814 6. Lasers

[6.325] {Sect. 6.5.2} R. Massudi, M. Piche: Nearly flat-top laser beams from un-stable resonators with internal spatial filtering, Opt Commun 142, p.61-65(1997)

[6.326] {Sect. 6.5.2} S. Chandra, T.H. Allik, J.A. Hutchinson: Nonconfocal unstableresonator for solid-state dye lasers based on a gradient-reflectivity mirror,Optics Letters 20, p.2387-2389 (1995)

[6.327] {Sect. 6.5.2} N. Hodgson, G. Bostanjoglo, H. Weber: Multirod unstable res-onators for high-power solid-state lasers, Appl. Opt. 32, p.5902-5917 (1993)

[6.328] {Sect. 6.5.2} N. Hodgson, G. Bostanjoglo, H. Weber: The near-concentricunstable resonator (NCUR) – an improved resonator design for high powersolid state lasers, Opt. Commun. 99, p.75-81 (1993)

[6.329] {Sect. 6.5.2} V. Magni, S. De Silvestri, L.-J. Qian, O. Svelto: Rod-imagingsuperggaussian unstable resonator for high poser solid-state lasers, Opt.Commun. 94, p.87-91 (1992)

[6.330] {Sect. 6.5.2} N. Hodgson, H. Weber: High-power solid-state lasers withunstable resonators, Opt. Quantum Electron. 22, p.39-55 (1990)

[6.331] {Sect. 6.5.2} N. Hodgson, H. Weber: Unstable Resonators with ExcitedConverging Wave, IEEE J. QE-26, p.731-738 (1990)

[6.332] {Sect. 6.5.2} A. Parent, P. Lavigne: Variable reflectivity unstable resonatorsfor coherent laser radar emitters, Appl. Opt. 28, p.901-903 (1989)

[6.333] {Sect. 6.5.2} S. De Silvestri, P. Laporta, V. Magni, O. Svelto: Solid statelaser unstable resonators with tapered reflectivity mirrors – The super Gaus-sian approach, IEEE J. QE-24, p.1172-1177 (1988)

[6.334] {Sect. 6.5.2} K.J. Snell, N. McCarthy, M. Piche: Single Transverse ModeOscillation from an unstable Resonator Nd:YAG Laser Using a VariableReflectivity Mirror, Opt. Commun. 65, p.377-382 (1988)

[6.335] {Sect. 6.5.2} D.T. Harter, J.C. Walling: Low-magnification unstable res-onators used with ruby and alexandrite lasers, Opt. Lett. 11, p.706-708(1986)

[6.336] {Sect. 6.5.2} A.H. Paxton, W.P. Latham, Jr.: Unstable Resonators with 90beam rotation, Appl. Opt. 25, p.2939-2946 (1986)

[6.337] {Sect. 6.5.2} P.G. Gobbi, S. Morosi, G. C. Reali, A. S. Zarkasi: Novel un-stable resonator configuration with a self-filtering aperture: experimentalcharacterization of the Nd:YAG loaded cavity, Appl. Opt. 24, p.26-33 (1985)

[6.338] {Sect. 6.5.2} N. McCarthy, P. Lavigne: Large-size Gaussian mode in unsta-ble resonators using Gaussian mirrors, Opt. Lett. 10, p.553-555 (1985)

[6.339] {Sect. 6.5.2} A.H. Paxton: Unstable resonators with negative fresnel num-bers, Opt. Lett. 11, p.76-78 (1985)

[6.340] {Sect. 6.5.2} P.G. Gobbi, G.C. Reali: A novel unstable resonator configu-ration with a self filtering aperture, Opt. Commun. 52p.195-198 (1984)

[6.341] {Sect. 6.5.2} M.E. Smithers, Th.R. Ferguson: Unstable optical resonatorswith linear magnification, Appl. Opt. 23, p.3718-3724 (1984)

[6.342] {Sect. 6.5.2} T. Kedmi, D. Treves: Injection-locking optimization in unsta-ble resonators, Appl. Opt. 20p.2108-2112 (1981)

[6.343] {Sect. 6.5.2} O.L. Bourne, P.E. Dyer: A novel stable-unstable resonator forbeam control of raregas hailde lasers, Opt. Commun. 31, p.193-196 (1979)

[6.344] {Sect. 6.5.2} W.H. Southwell: Mode discrimination of unstable resonatorswith spatial filters and by phase modification, Opt. Lett. 7, p.193-195 (1979)

[6.345] {Sect. 6.5.2} A.H. Paxton, T.C. Salvi: Unstable optical resonator with self-imaging aperture, Opt. Commun. 26p.305-307 (1978)

[6.346] {Sect. 6.5.2} R.L. Herbst, H. Komine, R.L. Byer: A 200mJ unstable res-onator Nd:YAG oscillator, Opt. Commun. 21, p.36712 (1977)

[6.347] {Sect. 6.5.2} T.F. Ewanizky, J.M. Craig: Negative-branch unstable res-onator Nd:YAG laser, Appl. Opt. 15, p.1465-1469 (1976)

6.5.2 Unstable Resonators 815

[6.348] {Sect. 6.5.2} R.J. Freiberg, P.P. Chenausky, C.J. Buczek: UnidirectionalUnstable Ring Lasers, Appl. Opt. 12, p.1140-1144 (1973)

[6.349] {Sect. 6.5.2} W. Streifer: Unstable optical resonators and waveguides, IEEEJ. QE-4, p.229-230 (1968)

[6.350] {Sect. 6.5.2} S.R. Baron: Optical Resonators in the Unstable Region, Appl.Opt. 6, p.861-864 (1967)

[6.351] {Sect. 6.5.2} A.E. Siegman, E. Arrathoon: Modes in Unstable Optical Res-onators and Lens Waveguides, IEEE J. QE-3, p.156-163 (1967)

[6.352] {Sect. 6.5.2} W.K. Kahn: Unstable Optical Resonators, Appl. Opt. 5, p.407-413 (1966)

[6.353] {Sect. 6.6.5} A. Rapaport, L. Weichman, B. Brickeen, S. Green, M. Bass:Laser resonator design using optical ray tracing software: Comparisons withsimple analytical models and experimental results, Ieee J Quantum Electron37, p.1401-1408 (2001)

[6.354] {Sect. 6.6.5} G.Q. Zhou: Analytical vectorial structure of Laguerre-Gaussian beam in the far field, Optics Letters 31, p.2616-2618 (2006)

[6.355] {Sect. 6.6.5} A.A. Ishaaya, N. Davidson, A.A. Friesem: Very high-orderpure Laguerre-Gaussian mode selection in a passive Q- switched Nd:YAGlaser, Opt Express 13, p.4952-4962 (2005)

[6.356] {Sect. 6.6.5} Z. Hricha, A. Belafhal: A comparative parametric characteriza-tion of elegant and standard Hermite-cosh-Gaussian beams, Opt Commun253, p.231-241 (2005)

[6.357] {Sect. 6.6.5} D. Ganic, X.S. Gan, M. Gu, M. Hain, S. Somalingam, S.Stankovic, T. Tschudi: Generation of doughnut laser beams by use of aliquid-crystal cell with a conversion efficiency near 100%, Optics Letters 27,p.1351-1353 (2002)

[6.358] {Sect. 6.6.5} Y.J. Cai, Q. Lin: The elliptical Hermite-Gaussian beam and itspropagation through paraxial systems, Opt Commun 207, p.139-147 (2002)

[6.359] {Sect. 6.6.5} Y.J. Cai, Q. Lin: Decentered elliptical Gaussian beam, ApplOpt 41, p.4336-4340 (2002)

[6.360] {Sect. 6.6.5} R. Oron, N. Davidson, A.A. Friesem, E. Hasman: Manipulatingthe Wigner distribution of high order laser modes, Opt Commun 193, p.227-232 (2001)

[6.361] {Sect. 6.6.5} I. Freund: Vortex flowers, Opt Commun 196, p.63-76 (2001)[6.362] {Sect. 6.6.5} I. Freund: Polarization flowers, Opt Commun 199, p.47-63

(2001)[6.363] {Sect. 6.6.5} L. Shen, S.H. Chen, X.P. Ge, S.H. Xu, D.Y. Fan: Temporal-

space-transforming pulse-shaping system with a knife-edge apparatus for ahigh-energy laser facility, Appl Opt 44, p.5311-5314 (2005)

[6.364] {Sect. 6.6.5} F. EncinasSanz, I. Leyva, J.M. Guerra: Time resolved patternevolution in a large aperture laser, Phys Rev Lett 84, p.883-886 (2000)

[6.365] {Sect. 6.6.5} V.N. Belyi, N.S. Kazak, N.A. Khilo: Properties of parametricfrequency conversion with Bessel light beams, Opt Commun 162, p.169-176(1999)

[6.366] {Sect. 6.6.5} D.M. Fondevila, A.A. Hnilo: Coupled dye laser modes: exper-imental study of the dynamics, Opt Commun 162, p.324-332 (1999)

[6.367] {Sect. 6.6.5} S.P. Hegarty, G. Huyet, J.G. McInerney, K.D. Choquette:Pattern formation in the transverse section of a laser with a large fresnelnumber, Phys Rev Lett 82, p.1434-1437 (1999)

[6.368] {Sect. 6.6.5} M. Santarsiero, F. Gori, R. Borghi, G. Guattari: Evaluationof the modal structure of light beams composed of incoherent mixtures ofHermite-Gaussian modes, Appl Opt 38, p.5272-5281 (1999)

816 6. Lasers

[6.369] {Sect. 6.6.5} M. Vallet, M. Brunel, F. Bretenaker, M. Alouini, A. LeFloch,G.P. Agrawal: Polarization self-modulated lasers with circular eigenstates,Appl Phys Lett 74, p.3266-3268 (1999)

[6.370] {Sect. 6.6.5} M.R. Wang, X.G. Huang: Subwavelength-resolvable focusednon-Gaussian beam shaped with a binary diffractive optical element, ApplOpt 38, p.2171-2176 (1999)

[6.371] {Sect. 6.6.5} M.A. Clifford, J. Arlt, J. Courtial, K. Dholakia: High-orderLaguerre-Gaussian laser modes for studies of cold atoms, Opt Commun 156,p.300-306 (1998)

[6.372] {Sect. 6.6.5} A. Cutolo, M. Dellanoce, L. Zeni: Real-time measurement oftransverse-mode-mixing effects in a Q-switched Nd:YAG laser, Appl Opt35, p.2544-2547 (1996)

[6.373] {Sect. 6.6.5} J.R. Marciante, G.P. Agrawal: Nonlinear mechanisms of fil-amentation in broad-area semiconductor lasers, IEEE J QE-32, p.590-596(1996)

[6.374] {Sect. 6.6.5} K.P. Driedger, B. Lu, H. Weber: Multimode Resonators, in-sensitive against thermal lensing, Optica Acta 32, p.847-854 (1985)

[6.375] {Sect. 6.6.5} R.L. Phillips, L.C: Andrews: Spot size and divergence for La-guerre Gaussian beams of any order, Appl. Opt. 22, p.643-644 (1983)

[6.376] {Sect. 6.6.5} D. Ryter, M. Von Allmen: Intensity of Hot Spots in MultimodeLaser Beams, IEEE J. QE-17, p.2015-2017 (1981)

[6.377] {Sect. 6.6.5} R. Ifflander, H.P. Kortz, H. Weber: Beam divergence and re-fractive power of directly coated solid state lasers, Opt. Comm. 29, p.223-226 (1979)

[6.378] {Sect. 6.6.5} M. Hercher: The Spherical Mirror Fabry-Perot Interferometer,Appl. Opt. 7, p.951-966 (1968)

[6.379] {Sect. 6.6.5} T. Li, H. Zucker: Modes of a Fabry-Perot Laser Resonatorwith Output-Coupling Apertures, J. Opt. Soc. Am. 57, p.984-986 (1967)

[6.380] {Sect. 6.6.5} V. Evtuhov, A.E. Siegman: A ”Twisted-Mode” Technique forObtaining Axially Uniform Energy Density in a Laser Cavity, Appl. Opt.4, p.142-143 (1965)

[6.381] {Sect. 6.6.5} Q. Lin, L.G. Wang: Optical resonators producing partiallycoherent flat-top beams, Opt Commun 175, p.295-300 (2000)

[6.382] {Sect. 6.6.5} C. Gao, H. Laabs, H. Weber, T. Brand, N. Kugler: Sym-metrization of astigmatic high power diode laser stacks, Opt. Quant. Elec-tron. 31, p.1207-1218 (1999)

[6.383] {Sect. 6.6.5} X.G. Huang, M.R. Wang, C. Yu: High-efficiency flat-top beamshaper fabricated by a nonlithographic technique, Opt. Eng. 38, p.208-213(1999)

[6.384] {Sect. 6.6.5} H. Laabs, C.Q. Gao, H. Weber: Twisting of three-dimensionalHermite-Gaussian beams, J. Mod. Optic46p.709-719 (1999)

[6.385] {Sect. 6.6.5} T.Y. Cherezova, S.S. Chesnokov, L.N. Kaptsov, A.V. Kudrya-shov: Super-Gaussian laser intensity output formation by means of adaptiveoptics, Opt Commun 155, p.99-106 (1998)

[6.386] {Sect. 6.6.5} F. Nikolajeff, S. Hard, B. Curtis: Diffractive microlenses repli-cated in fused silica for excimer laser-beam homogenizing, Appl Opt 36,p.8481-8489 (1997)

[6.387] {Sect. 6.6.5} C. Parigger, Y. Tang, D.H. Plemmons, J.W.L. Lewis: Sphericalaberration effects in lens-axicon doublets: theoretical study, Appl Opt 36,p.8214-8221 (1997)

[6.388] {Sect. 6.6.5} K.S. Repasky, J.K. Brasseur, J.G. Wessel, J.L. Carlsten: Cor-recting an astigmatic, non-Gaussian beam, Appl Opt 36, p.1536-1539 (1997)

[6.389] {Sect. 6.6.5} D. Shafer: Gaussian to flat-top in diffraction far-field, ApplOpt 36, p.9092-9093 (1997)

6.6.5 Higher Transversal Modes 817

[6.390] {Sect. 6.6.5} W.A. Clarkson, D.C. Hanna: Two-mirror beam-shaping tech-nique for high-power diode bars, Optics Letters 21, p.375-377 (1996)

[6.391] {Sect. 6.6.5} X.G. Deng, Y.P. Li, D.Y. Fan, Y. Qiu: Pure-phase plates forsuper-Gaussian focal-plane irradiance profile generations of extremely highorder, Optics Letters 21, p.1963-1965 (1996)

[6.392] {Sect. 6.6.5} T. Graf, J.E. Balmer: Laser beam quality, entropy and thelimits of beam shaping, Opt Commun 131, p.77-83 (1996)

[6.393] {Sect. 6.6.5} K. Nemoto, T. Fujii, N. Goto, T. Nayuki, Y. Kanai: Trans-formation of a laser beam intensity profile by a deformable mirror, OpticsLetters 21, p.168-170 (1996)

[6.394] {Sect. 6.6.5} S.G. Chuartzman, D. Krygier, A.A. Hnilo: Pattern formationin a large Fresnel number dye laser, Opt. Comm. 121, p.1-7 (1995)

[6.395] {Sect. 6.6.5} A. Hakola, S.C. Buchter, T. Kajava, H. Elfstrom, J. Simonen,P. Paakkonen, J. Turunen: Bessel-Gauss output beam from a diode-pumpedNd:YAG laser, Opt Commun 238, p.335-340 (2004)

[6.396] {Sect. 6.6.5} S.H. Tao, W.M. Lee, X.C. Yuan: Dynamic optical manipula-tion with a higher-order fractional Bessel beam generated from a spatiallight modulator, Optics Letters 28, p.1867-1869 (2003)

[6.397] {Sect. 6.6.5} J. Courtial, M.J. Padgett: Performance of a cylindrical lensmode converter for producing Laguerre-Gaussian laser modes, Opt Commun159, p.13-18 (1999)

[6.398] {Sect. 6.6.5} J.A. Davis, D.M. Cottrell, J. Campos, M.J. Yzuel, I. Moreno:Bessel function output from an optical correlator with a phase-only encodedinverse filter, Appl Opt 38, p.6709-6713 (1999)

[6.399] {Sect. 6.6.5} M. Arif, M.M. Hossain, A.A.S. Awwal, M.N. Islam: Two-element refracting system for annular Gaussian-to-Bessel beam transfor-mation, Appl Opt 37, p.4206-4209 (1998)

[6.400] {Sect. 6.6.5} P. Paakkonen, J. Turunen: Resonators with Bessel-Gaussmodes, Opt Commun 156, p.359-366 (1998)

[6.401] {Sect. 6.6.5} H. Sonajalg, M. Ratsep, P. Saari: Demonstration of the Bessel-X pulse propagating with strong lateral and longitudinal localization in adispersive medium, Optics Letters 22, p.310-312 (1997)

[6.402] {Sect. 6.6.5} I.S. Grudinin, A.B. Matsko, A.A. Savchenkov, D. Strekalov,V.S. Ilchenko, L. Maleki: Ultra high Q crystalline microcavities, Opt Com-mun 265, p.33-38 (2006)

[6.403] {Sect. 6.6.5} J. Bae, J. Lee, O. Kwon, V.G. Minogin: Spectrum of three-dimensional photonic quantum-ring microdisk cavities: comparison betweentheory and experiment, Optics Letters 28, p.1861-1863 (2003)

[6.404] {Sect. 6.6.5} M. Cai, K. Vahala: Highly efficient optical power transfer towhispering-gallery modes by use of a symmetrical dual-coupling configura-tion, Optics Letters 25, p.260-262 (2000)

[6.405] {Sect. 6.6.5} J.C. Ahn, K.S. Kwak, B.H. Park, H.Y. Kang, J.Y. Kim, O.Kwon: Photonic quantum ring, Phys Rev Lett 82, p.536-539 (1999)

[6.406] {Sect. 6.6.5} T. Harayama, P. Davis, K.S. Ikeda: Nonlinear whisperinggallery modes, Phys Rev Lett 82, p.3803-3806 (1999)

[6.407] {Sect. 6.6.5} O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. OBrien, P.D.Dapkus, I. Kim: Two-dimensional photonic band-gap defect mode laser,Science 284, p.1819-1821 (1999)

[6.408] {Sect. 6.6.5} C. Gmachl, F. Capasso, E.E. Narimanov, J.U. Nockel, A.D.Stone, J. Faist, D.L. Sivco, A.Y. Cho: High-power directional emission frommicrolasers with chaotic resonators, Science 280, p.1556-1564 (1998)

[6.409] {Sect. 6.6.5} C. Gmachl, J. Faist, F. Capasso, C. Sirtori, D.L. Sivco, A.Y.Cho: Long-wavelength (9.5-11.5 mu m) microdisk quantum-cascade lasers,IEEE J QE-33, p.1567-1573 (1997)

818 6. Lasers

[6.410] {Sect. 6.6.5} A. Scherer, J.L. Jewell, Y.H. Lee, J.P. Harbison, L.T. Florez:Fabrication of microlasers and microresonator optical switches, Appl. Phys.Lett. 55, p.2724-2726 (1989)

[6.411] {Sect. 6.6.5} K. Kogelnik, T. Li. Laser Beams and Resonators, Appl. Opt.5, p.1550-1567 (1966)

[6.412] {Sect. 6.6.5.4} T. Hirayama, Y. Kozawa, T. Nakamura, S. Sato: Generationof a cylindrically symmetric, polarized laser beam with narrow linewidthand fine tunability, Opt Express 14, p.12839-12845 (2006)

[6.413] {Sect. 6.6.5.4} A.A. Ishaaya, V. Eckhouse, L. Shimshi, N. Davidson, A.A.Friesem: Improving the output beam quality of multimode laser resonators,Opt Express 13, p.2722-2730 (2005)

[6.414] {Sect. 6.6.8} B.D. Lu, B. Zhang, H. Ma: Beam-propagation factor andmode-coherence coefficients of hyperbolic- cosine-Gaussian beams, OpticsLetters 24, p.640-642 (1999)

[6.415] {Sect. 6.6.9} D.M. Deng: Propagation of elegant Hermite cosine Gaussianlaser beams, Opt Commun 259, p.409-414 (2006)

[6.416] {Sect. 6.6.9} K.L. Duan, B.D. Lu: Four-petal Gaussian beams and theirpropagation, Opt Commun 261, p.327-331 (2006)

[6.417] {Sect. 6.6.9} G.Q. Zhou, R.P. Chen, J.L. Chen: Propagation of non-paraxialnonsymmetrical vector Gaussian beam, Opt Commun 259, p.32-39 (2006)

[6.418] {Sect. 6.6.9} R. Simon, N. Mukunda, E.C.G. Sudarshan: Partially coherentbeams and a generalized ABCD-law, Optics Commun. 65, p.322-328 (1988)

[6.419] {Sect. 6.6.9} S. Nemoto, T. Makimoto: Generalized spot size for a higher-order beam mode, J. Opt. Soc. Am. 69, p.578-580 (1979)

[6.420] {Sect. 6.6.9} J.P. Campbell, L.G. DeShazer: Near Fields of Truncated-Gaussian Apertures, J. Opt. Soc. Am. 59, p.1427-1429 (1969)

[6.421] {Sect. 6.6.9} W.B. Bridges: J-3-Gaussian Beam Distorsion Caused by Sat-urable Gain or Loss, IEEE J. QE-4, p.820-827 (1968)

[6.422] {Sect. 6.6.9} M.R. Fetterman, J.C. Davis, D. Goswami, W. Yang, W.S.Warren: Propagation of complex laser pulses in optically dense media, PhysRev Lett 82, p.3984-3987 (1999)

[6.423] {Sect. 6.6.9} R. Martinezherrero, P.M. Mejias: On the fourth-order spatialcharacterization of laser beams: New invariant parameter through ABCDsystems, Opt Commun 140, p.57-60 (1997)

[6.424] {Sect. 6.6.9} S.A. Amarande: Beam propagation factor and the kurtosisparameter of flattened Gaussian beams, Opt Commun 129, p.311-317 (1996)

[6.425] {Sect. 6.6.9} C. Pare, P.A. Belanger: Propagation law and quasi-invarianceproperties of the truncated second-order moment of a diffracted laser beam,Opt Commun 123, p.679-693 (1996)

[6.426] {Sect. 6.6.10} R. Menzel, M. Ostermeyer: Fundamental mode determinationfor guaranteeing diffrraction limited beam quality of lasers with high outputpowers, Opt. Comm. 149, p.321-325 (1998)

[6.427] {Sect. 6.6.10} S.K. Dixit, S.R. Daulatabad, P.K. Shukla, R. Bhatnagar:Diffraction filtered resonator for Rh6G dye laser transversely pumped by acopper vapor laser, Opt Commun 134, p.149-154 (1997)

[6.428] {Sect. 6.6.10} S. Szatmari, Z. Bakonyi, P. Simon: Active spatial filtering oflaser beams, Opt Commun 134, p.199-204 (1997)

[6.429] {Sect. 6.6.10} D. Golla, M. Bode, S. Knoke, W. Schone, A. Tunnermann:62-W cw TEM00 Nd:YAG laser side-pumped by fiber-coupled diode lasers,Opt. Lett. 21, p.210-212 (1996)

[6.430] {Sect. 6.6.10} N. Hodgson, B. Ozygus, F. Schabert, H. Weber: Degeneratedconfocal resonator, Appl. Opt. 32, p.3190-3200 (1993)

6.6.10 Fundamental Mode Operation: Mode Apertures 819

[6.431] {Sect. 6.6.10} A. Parent, N. McCarthy, P. Lavigne: Effects of Hard Aper-tures on Mode Properties of Resonators with Gaussian Reflectivity Mirrors,IEEE J. QE-23, p.222-228 (1987)

[6.432] {Sect. 6.6.10} M. Piche, P. Lavigne, F. Martin, P.A. Belanger: Modes ofresonators with internal apertures, Appl. Opt. 22, p.1999-2006 (1983)

[6.433] {Sect. 6.6.10} J. Dembowski, H. Weber: Optimal pinhole radius for funda-mental mode operation, Opt. Comm. 42, p.133-137 (1982)

[6.434] {Sect. 6.6.10} L.W. Casperson, S.D. Lunnam: Gaussian Modes in High LossLaser Resonators, Appl. Opt. 14, p.1193-1199 (1975)

[6.435] {Sect. 6.6.10} L.W. Casperson: Mode Stability of Lasers and Periodic Op-tical Systems, IEEE J. QE-10, p.629-634 (1974)

[6.436] {Sect. 6.6.10} H. Steffen, J.-P. Lortscher, G. Herziger: Fundamental ModeRadiation With Solid-State Lasers, IEEE J. QE-8, p.239-245 (1972)

[6.437] {Sect. 6.6.10} W.C. Fricke: Fundamental Mode YAG:Nd Laser Analysis,Appl. Opt. 9, p.2045-2052 (1970)

[6.438] {Sect. 6.6.10} J.M. Moran: Coupling of Power from a Circular ConfocalLaser With an Output Aperture, IEEE J. QE-6, p.93-96 (1970)

[6.439] {Sect. 6.6.10} D. Hanna: Astigmatic Gaussian Beams Produced by AxiallyAsymmetric Laser Cavities, IEEE J. QE-5, p.483-488 (1969)

[6.440] {Sect. 6.6.10} G.T. Mc.Nice, V.E. Derr: Analysis of the Cylindrical ConfocalLaser Resonator Having a Single Circular Coupling Aperture, IEEE J. QE-5, p.569-575 (1969)

[6.441] {Sect. 6.6.10} J.G. Skinner, J.E. Geusic: A Diffraction Limited Oscillator,J. Opt. Soc. Am. 52, p.1437-1444 (1962)

[6.442] {Sect. 6.6.10} C. Siegel, T. Graf, J. Balmer, H.P. Weber: Experimentaldetermination of the fundamental-mode diameter in solid- state lasers, ApplOpt 37, p.4902-4906 (1998)

[6.443] {Sect. 6.6.10} S. De Silvestri, V. Magni, O. Svelto, G. Valentini: Lasers withSuper-Gaussian Mirrors, IEEE J. QE-26, p.1500-1509 (1990)

[6.444] {Sect. 6.6.10} G. Emiliani, A. Piegari, S. De Silvestri, P. Laporta, V. Magni:Optical coatings with variable reflectance for laser mirrors, Appl. Opt. 28,p.2832-2837 (1989)

[6.445] {Sect. 6.6.10} C. Zizzo, C. Arnone, C. Cali, S. Sciortino: Fabrication andcharacterization of tuned Gaussian mirrors for the visible and the nearinfrared, Opt. Lett. 13, p.342-344 (1988)

[6.446] {Sect. 6.6.10} D.M. Walsh, L.V. Knight: Transverse modes of a laser res-onator with Gaussian mirrors, Appl. Opt. 25, p.2947-2954 (1986)

[6.447] {Sect. 6.6.10} P. Lavigne, N. McCarthy, J.-G. Demers: Design and charac-terization of complementary Gaussian reflectivity mirrors, Appl. Opt. 24,p.2581-2586 (1985)

[6.448] {Sect. 6.6.10} N. McCarthy, P. Lavigne: Optical resonators with Gaussianreflectivity mirrors: misalignment sensitivity, Appl. Opt. 23, p.3845-3850(1984)

[6.449] {Sect. 6.6.10} N. McCarthy, P. Lavigne: Optical resonators with Gaussianreflectivity mirrors: output beam characteristics, Appl. Opt. 22, p.2704-2708(1983)

[6.450] {Sect. 6.6.10} A. Yariv, R. Yeh: Confinement and stability in optical res-onators employing mirrors with Gaussian reflectivity, Opt. Comm. 13,p.370-374 (1975)

[6.451] {Sect. 6.6.10} H. Lin: Suppression of transverse instabilities in a laser by useof a spatially filtered feedback, J Opt Soc Am B Opt Physics 17, p.239-246(2000)

[6.452] {Sect. 6.6.10} E. DelGiudice, R. Mele, G. Preparata, S. Sanvito, F. Fontana:A further look at waveguide lasers, IEEE J QE-34, p.2403-2408 (1998)

820 6. Lasers

[6.453] {Sect. 6.6.10} A.A. Anderson, R.W. Eason, L.M.B. Hickey, M. Jelinek, C.Grivas, D.S. Gill, N.A. Vainos: Ti:sapphire planar waveguide laser grownby pulsed laser deposition, Optics Letters 22, p.1556-1558 (1997)

[6.454] {Sect. 6.6.10} Q.D. Liu, L. Shi, P.P. Ho, R.R. Alfano: Nonlinear vectorrotation and depolarization of femtosecond laser pulses propagating in non-birefringent single-mode optical fibers, Opt Commun 138, p.45-48 (1997)

[6.455] {Sect. 6.6.10} E.J. Zang: Theory of waveguide laser resonators with smallcurvature mirrors, IEEE J QE-33, p.955-958 (1997)

[6.456] {Sect. 6.6.10} J.R. Marciante, G.P. Agrawal: Controlling filamentation inbroad-area semiconductor lasers and amplifiers, Appl Phys Lett 69, p.593-595 (1996)

[6.457] {Sect. 6.6.10} S. Makki, J. Leger: Solid-state laser resonators with diffractiveoptic thermal aberration correction, IEEE J QE-35, p.1075-1085 (1999)

[6.458] {Sect. 6.6.10} A.A. Napartovich, N.N. Elkin, V.N. Troschieva, D.V. Vysot-sky, J.R. Leger: Simplified intracavity phase plates for increasing laser-modediscrimination, Appl Opt 38, p.3025-3029 (1999)

[6.459] {Sect. 6.6.10} S. Bischoff, S.W. Koch: Beam shaping in vertical-cavitysurface-emitting laser cavities, Opt Commun 158, p.65-71 (1998)

[6.460] {Sect. 6.6.10} J.R. Leger, D. Chen, K. Dai: High modal discrimination ina Nd:YAG laser resonator with internal phase gratings, Optics Letters 19,p.1976-1978 (1994)

[6.461] {Sect. 6.6.10} T.R. Boehly, V.A. Smalyuk, D.D. Meyerhofer, J.P. Knauer,D.K. Bradley, R.S. Craxton, M.J. Guardalben, S. Skupsky, T.J. Kessler:Reduction of laser imprinting using polarization smoothing on a solid- statefusion laser, J Appl Phys 85, p.3444-3447 (1999)

[6.462] {Sect. 6.6.10} F. Druon, G. Cheriaux, J. Faure, J. Nees, M. Nantel, A. Mak-simchuk, J.C. Chanteloup, G. Vdovin: Wave-front correction of femtosecondterawatt lasers by deformable mirrors, Optics Letters 23, p.1043-1045 (1998)

[6.463] {Sect. 6.6.10} F. Sanchez, A. Chardon: Pump size optimization in microchiplasers, Opt Commun 136, p.405-409 (1997)

[6.464] {Sect. 6.6.11} G. Cerullo, S. de Silvestri, V. Magni, O. Svelto: Output PowerLimitations in cw Single Transverse Mode Nd:YAG Lasers with a Rod ofLarge Cross-Section, Opt. Quant. Electron. 25, p.489-500 (1993)

[6.465] {Sect. 6.6.11} D. Cerullo, S. De Silvestri, V. Magni: High efficiency, 40 Wcw Nd:YLF laser with large TEM00 mode, Opt. Comm. 93, p.77-81 (1992)

[6.466] {Sect. 6.6.11} V. Magni: Multielement stable resonators containing a vari-able lens, J. Opt. Soc. Am A 4, p.1962-1969 (1987)

[6.467] {Sect. 6.6.11} V. Magni: Resonators for Solid-State Lasers with Large-Volume Fundamental Mode and High Alignment Stability, Appl. Opt. 25,p.107-117 (1986)

[6.468] {Sect. 6.6.11} D.C. Hanna, C.G. Sawyers, M.A. Yuratich: Telescopic Res-onators for Large Volume TEM00-Mode Operation, Opt. Quant. Electron.13, p.493-507 (1981)

[6.469] {Sect. 6.6.11} D.C. Hanna, C.G. Sawyers, M.A. Yuratich: Large volumeTEM00 mode operation of Nd:YAG lasers, Opt. Comm. 37, p.359-362(1981)

[6.470] {Sect. 6.6.11} D.C. Sawyers, M.A. Yuratich: Telescopic resonators for large-volume TEM00-mode operation, Opt. Quant. Electr. 13, p.493-507 (1981)

[6.471] {Sect. 6.6.11} L.W. Casperson: Mode Stability of Lasers and Periodic Op-tical Systems, IEEE J. QE-10, p.629-634 (1974)

[6.472] {Sect. 6.6.11} N. Kurauchi, W.K. Kahn: Rays and Ray Envelopes withinStable Optical Resonators Containing Focusing Media, Appl. Opt. 5,p.1023-1029 (1966)

6.6.12 Transversal Modes of Lasers with a Phase Conjugating Mirror 821

[6.473] {Sect. 6.6.12} A. Yariv: Operator algebra for propagation problems involv-ing phase conjugation and nonreciprocal elements, Appl. Opt. 26, p.4538-4540 (1987)

[6.474] {Sect. 6.6.12} G. Giuliani, M. Denariez-Roberge, P.A. Belanger: Transversemodes of a stimulated scattering phase-conjugate resonator, Appl. Opt. 21,p.3719-3724 (1982)

[6.475] {Sect. 6.6.12} M. Ostermeyer, R. Menzel: 50 Watt average output powerwith 1.2*DL beam quality from a single rod Nd:YALO laser with phase-conjugating SBS mirror, Opt. Comm. 171, p.85-91 (1999)

[6.476] {Sect. 6.6.12} A.V. Kiryanov, V. Aboites, N.N. Ilichev: Analysis of a large-mode neodymium laser passively Q switched with a saturable absorber anda stimulated-Brillouin-scattering mirror, J Opt Soc Am B Opt Physics 17,p.11-17 (2000)

[6.477] {Sect. 6.6.12} I.Yu. Anikeev, J. Munch: Improved output power perfor-mance of a phase conjugated laser oscillator, Opt. Quant. Electr. 31, p.545-553 (1999)

[6.478] {Sect. 6.6.12} M. Ostermeyer, A. Heuer, R. Menzel: 27 Watt Average Out-put Power with 1.2*DL Beam Quality from a Single Rod Nd:YAG-Laserwith Phase Conjugating SBS-Mirror, IEEE J. QE-34, p.372-377 (1998)

[6.479] {Sect. 6.6.12} H.S. Kim, K.G. Han, N.S. Kim, Y.S. Shin, H.J. Kong: BeamSmoothing in a Passive Q-Switched Laser with an Additional StimulatedBrillouin Scattering output coupler, Jpn. J. Appl. Phys. 35, p.L1324-L1326(1996)

[6.480] {Sect. 6.6.12} R.A. Lamb: Single-longitudianal-mode, phase-conjugate ringmaster oscillator power amplifier using external stimulated-Brillouin-scat-tering Q switching, J. Opt. Soc. Am. B. 13p.1758-1765 (1996)

[6.481] {Sect. 6.6.12} V.F. Losev, Yu. N. Panchenko: Formation of high-qualityXeCl laser radiation in a cavity with an SBS mirror, Quant. Electron. 25,p.450-451 (1995)

[6.482] {Sect. 6.6.12} P.J. Soan, M.J. Damzen, V. Aboites, M.H.R. Hutchin-son: Long-pulse self-starting stimulated-Brillouin-scattering resonator, Opt.Lett. 19, p.783-785 (1994)

[6.483] {Sect. 6.6.12} S. Seidel, G. Phillipps: Pulse lengthening by intracavity stim-ulated Brillouin scattering in a Q-switched, phase-conjugated Nd:YAG laseroscillator, Appl. Opt. 32, p.7408-7417 (1993)

[6.484] {Sect. 6.6.12} A.D. Case, P.J. Soan, M.J. Damzen, M.H.R. Hutchinson:Coaxial flash-lamp-pumped dye laser with a stimulated Brillouin scatteringreflector, J. Opt. Soc. Am. B 9, p.374-379 (1992)

[6.485] {Sect. 6.6.12} H.J. Eichler, R. Menzel, D. Schumann: 10 Watt Single-RodNd-YAG-Laser with SBS-Q-Switching Mirror, Appl. Opt. 24, p.5038-5043(1992)

[6.486] {Sect. 6.6.12} H. Meng, H.J. Eichler: Nd:YAG laser with a phase-conjugating mirror based on stimulated Brillouin scattering in SF6 gas,Opt. Lett. 16, p.569-571 (1991)

[6.487] {Sect. 6.6.12} G.K.N. Wong, M.J. Damzen: Investigations of Optical Feed-back Used to Enhance Stimulated Scattering, IEEE J. QE-26, p.139-148(1990)

[6.488] {Sect. 6.6.12} M.R. Osborne, W.A. Schroeder, M.J. Damzen, M.H.R.Hutchinson: Low-Divergence Operation of a Long-Pulse Excimer Laser Us-ing a SBS Phase-Conjugate Cavity, Appl. Phys. B 48, p.351-356 (1989)

[6.489] {Sect. 6.6.12} M.D. Skeldon, R.W. Boyd: Transverse-Mode Structure of aPhase-Conjugate Oscillator Baased on Brillouin-Enhanced Four-Wave Mix-ing, IEEE J. QE-25, p.588-594 (1989)

822 6. Lasers

[6.490] {Sect. 6.6.12} P.P. Pashinin, E.J. Shklovsky: Solid-state lasers with stimu-lated-Brillouin-scattering mirrors operating in the repetitive-pulse mode, J.Opt. Soc. Am. B 5, p.1957-1961 (1988)

[6.491] {Sect. 6.6.12} I.M. Bel’dyugin, B.Ya. Zel’dovich, M.V. Zolotarev, V.V.Shkunov: Lasers with wavefront-reversing mirrors (review), Sov. J. Quan-tum Electron. 15, p.1583-1600 (1986)

[6.492] {Sect. 6.6.12} E.J. Bochove: Transverse-mode instability and chaos in anoptical cavity with phase-conjugate mirror, Opt. Lett. 11, p.727-729 (1986)

[6.493] {Sect. 6.6.12} V.S. Arakelyan, G.E. Rylov: Laser with a wavefront-reversingmirror and Q switching by stimulated Brillouin backscattering, Sov. J.Quantum Electron. 15, p.433-434 (1985)

[6.494] {Sect. 6.6.12} S. Chandra, R.C. Fukuda, R. Utano: Sidearm stimulatedscattering phase-conjugated laser resonator, Opt. Lett. 10, p.356-358 (1985)

[6.495] {Sect. 6.6.12} W. Shaomin, H. Weber: Fundamental modes of stimulatedscattering phase-conjugate resonators, Opt. Acta 31, p.971-976 (1984)

[6.496] {Sect. 6.6.12} P.A. Belanger, C. Pare, M. Piche: Modes of phase-conjugateresonators with bounded mirrors, p.567-571 (1983)

[6.497] {Sect. 6.6.12} G.C. Valley, D. Fink: Three-dimensional phase-conjugate-resonator performance, J. Opt. Soc. Am. 73, p.572-575 (1983)

[6.498] {Sect. 6.6.12} P.A. Belanger: Phase conjugation and optical resonators, Opt.Eng. 21, p.266-270 (1982)

[6.499] {Sect. 6.6.12} N.N. Il’ichev, A.A. Malyutin, P.P. Pashinin: Laser withdiffraction-limited divergence and Q switching by stimulated Brillouin scat-tering, Sov. J. Quant. Electron. 12, p.1161-1164 (1982)

[6.500] {Sect. 6.6.12} G.J. Linford, B.C. Johnson, J.S. Hildrum, W.E. Martin, K.Snyder, R.D. Boyd, W.L. Smith, C.L. Vercimak, D. Eimerl, J.T. Hunt:Large aperture harmonic conversion experiments at Lawrence LivermoreNational Laboratory, Appl. Opt. 21, p.3633-3643 (1982)

[6.501] {Sect. 6.6.12} I.G. Zubarev, A.B. Mironov, S.I. Mikahilov: Single-modepulse-periodic oscillator-amplifier system with wavefront reversal, Sov. J.Quantum Electron. 10, p.1179-1181 (1981)

[6.502] {Sect. 6.6.12} P.A. Belanger, A. Hardy, A.E. Siegman: Resonant modesof optical cavities with phase-conjugate mirrors, Appl. Opt. 19, p.602-609(1980)

[6.503] {Sect. 6.6.12} J. Auyeung, D. Fekete, D.M. Pepper, A. Yariv: A Theoreticaland Experimental Investigation of the Modes of Optical Resonators withPhase-Conjugate Mirrors, IEEE J. QE-15, p.1180-1188 (1979)

[6.504] {Sect. 6.6.12} S.A. Lesnik, M.S. Soskin, A.I. Khizhnyak: Laser with astimulated-Brillouin-scattering complex-conjugate mirror, Sov. Phys. Tech.Phys. 24, p.1249-1250 (1979)

[6.505] {Sect. 6.6.12} U. Ganiel, A. Hardy, Y. Silberberg: Stability of optical laserresonator with mirrors of Gaussian reflectivity profiles, which contain anactive medium, Opt. Comm. 14, p.290-293 (1975)

[6.506] {Sect. 6.6.12} G.J. Crofts, M.J. Damzen: Numerical modelling ofcontinuous-wave holographic laser oscillators, Opt Commun 175, p.397-408(2000)

[6.507] {Sect. 6.6.12} S. CamachoLopez, M.J. Damzen: Self-starting Nd : YAGholographic laser oscillator with a thermal grating, Optics Letters 24, p.753-755 (1999)

[6.508] {Sect. 6.6.12} S. Mailis, J. Hendricks, D.P. Shepherd, A.C. Tropper, N.Moore, R.W. Eason, G.J. Crofts, M. Trew, M.J. Damzen: High-phase-conjugate reflectivity (> 800%) obtained by degenerate four-wave mixing ina continuous-wave diode-side-pumped Nd : YVO4 amplifier, Optics Letters24, p.972-974 (1999)

6.6.12 Transversal Modes of Lasers with a Phase Conjugating Mirror 823

[6.509] {Sect. 6.6.12} A. Minassian, G.J. Crofts, M.J. Damzen: A tunable self-pumped phase-conjugate laser using Ti : sapphire slab amplifiers, Opt Com-mun 161, p.338-344 (1999)

[6.510] {Sect. 6.6.12} O.L. Antipov, A.S. Kuzhelev, V.A. Vorobyov, A.P. Zinovev:Pulse repetitive Nd:YAG laser with distributed feedback by self-inducedpopulation grating, Opt Commun 152, p.313-318 (1998)

[6.511] {Sect. 6.6.12} D.S. Hsiung, X.W. Xia, T.T. Grove, M.S. Shahriar, P.R. Hem-mer: Demonstration of a phase conjugate resonator using degenerate four-wave mixing via coherent population trapping in rubidium, Opt Commun154, p.79-82 (1998)

[6.512] {Sect. 6.6.12} K. Iida, H. Horiuchi, O. Matoba, T. Omatsu, T. Shimura,K. Kuroda: Injection locking of a broad-area diode laser through a doublephase- conjugate mirror, Opt Commun 146, p.6-10 (1998)

[6.513] {Sect. 6.6.12} E. Rosas, V. Aboites, M.J. Damzen: Transient evolution andspatial mode size analysis of adaptive laser oscillators, Opt Commun 156,p.419-425 (1998)

[6.514] {Sect. 6.6.12} P. Sillard, A. Brignon, J.P. Huignard, J.P. Pocholle: Self-pumped phase-conjugate diode-pumped Nd:YAG loop resonator, OpticsLetters 23, p.1093-1095 (1998)

[6.515] {Sect. 6.6.12} A.A.R. Alrashed, B.E.A. Saleh: Modes of resonators withdispersive phase-conjugate mirrors, Appl Opt 36, p.3400-3412 (1997)

[6.516] {Sect. 6.6.12} A. Minassian, G.J. Crofts, M.J. Damzen: Self-starting Ti:sap-phire holographic laser oscillator, Optics Letters 22, p.697-699 (1997)

[6.517] {Sect. 6.6.12} P. Sillard, A. Brignon, J.P. Huignard: Nd:YAG loop resonatorwith a Cr4+:YAG self-pumped phase-conjugate mirror, IEEE J QE-33,p.483-489 (1997)

[6.518] {Sect. 6.6.12} A.-A.R. Al-Rashed, B.E.A. Saleh: Modes of resonators withdispersive phase-conjugate mirrors, Appl. Opt. 36, p.3400-3412 (1997)

[6.519] {Sect. 6.6.12} R.P.M. Green, G.J. Crofts, W. Hubbard, D. Udaiyan, D.H.Kim, M.J. Damzen: Dynamic laser control using feedback from a gain grat-ing, IEEE J QE-32, p.371-377 (1996)

[6.520] {Sect. 6.6.12} P. Kurz, R. Nagar, T. Mukai: Highly efficient phase conjuga-tion using spatially nondegenerate four-wave mixing in a broad-area laserdiode, Appl Phys Lett 68, p.1180-1182 (1996)

[6.521] {Sect. 6.6.12} M.J. Damzen, R.P.M. Green, K.S. Syed: Self-adaptive solid-state laser oscillator formed by dynamic gain-grating holograms, OpticsLetters 20, p.1704-1706 (1995)

[6.522] {Sect. 6.6.12} O. Wittler, D. Udaiyan, G.J. Crofts, K.S. Syed, M.J. Damzen:Characterization of a distortion-corrected Nd : YAG laser with a self- con-jugating loop geometry, IEEE J QE-35, p.656-664 (1999)

[6.523] {Sect. 6.6.12} J.C. Chanteloup, H. Baldis, A. Migus, G. Mourou, B.Loiseaux, J.P. Huignard: Nearly diffraction-limited laser focal spot obtainedby use of an optically addressed light valve in an adaptive-optics loop, Op-tics Letters 23, p.475-477 (1998)

[6.524] {Sect. 6.6.12} M.K. Lee, W.D. Cowan, B.H. Welsh, V.M. Bright, M.C.Roggemann: Aberration-correction results from a segmented microelec-tromechanical deformable mirror and a refractive lenslet array, Optics Let-ters 23, p.645-647 (1998)

[6.525] {Sect. 6.6.12} I. Moshe, S. Jackal, R. Lallouz: Dynamic correction of thermalfocusing in Nd:YAG confocal unstable resonators by use of a variable radiusmirror, Appl Opt 37, p.7044-7048 (1998)

[6.526] {Sect. 6.6.12} J.J. Kasinski, R.L. Burnham: Near-diffraction-limited, high-energy, high-power, diode- pumped laser using thermal aberration correc-tion with aspheric diamond-turned optics, Appl Opt 35, p.5949-5954 (1996)

824 6. Lasers

[6.527] {Sect. 6.6.12} N. Pavel, T. Dascalu, V. Lupei: Variable reflectivity mir-ror unstable resonator with deformable mirror thermal compensation, OptCommun 123, p.115-120 (1996)

[6.528] {Sect. 6.6.13} N. Kugler, S.L. Dong, Q.T. Lu, H. Weber: Investigation of themisalignment sensitivity of a birefringence-compensated two-rod Nd:YAGlaser system, Appl Opt 36, p.9359-9366 (1997)

[6.529] {Sect. 6.6.13} R.M.R. Pillai, E.M. Garmire: Paraxial-misalignment insensi-tive external-cavity semiconductor-laser array emitting near-diffraction lim-ited single-lobed beam, IEEE J QE-32, p.996-1008 (1996)

[6.530] {Sect. 6.6.13} N. Hodgson, H. Weber: Misalignment sensitivity of stableresonators in multimode operation, J. Mod. Opt. 39, p.1873-1882 (1992)

[6.531] {Sect. 6.6.13} K.P. Driedger, R.M. Ifflander, H. Weber: Multirod Resonatorsfor High-Power Solid-State Lasers with Improved Beam Quality, IEEE J.QE-24, p.665-674 (1988)

[6.532] {Sect. 6.6.13} R. Hauck, N. Hodgson, H. Weber: Misalignment sensitivityof unstable resonators with spherical mirrors, J. Mod. Opt. 35, p.165-176(1988)

[6.533] {Sect. 6.6.13} D. Metcalf, P. de Giovanni, J. Zachorowski, M. Leduc: Laserresonators containing self-focusing elements, Appl. Opt. 26, p.4508-4517(1987)

[6.534] {Sect. 6.6.13} S. De Silvestri, P. Laporta, V. Magni: Misalignment sensi-tivity of solid-state laser resonators with thermal lensing, Opt. Comm. 59,p.43-48 (1986)

[6.535] {Sect. 6.6.13} N. McCarthy, P. Lavigne: Optical resonators with Gaussianreflectivity mirrors: misalignment sensitivity, Appl. Opt. 23, p.3845-3850(1984)

[6.536] {Sect. 6.6.13} A. Le Floch, J.M. Lenormand, R. Le Naour, J.P. Tache: Acritical geometry fo rlasers with internal lenslike effects, Le Journal de Phys.Lett. 43, p.L493-L498 (1982)

[6.537] {Sect. 6.6.13} H.P. Kortz, R. Ifflander, H. Weber: Stability and beam di-vergence of multimode lasers with internal variable lenses, Appl. Opt. 20,p.4124-4134 (1981)

[6.538] {Sect. 6.6.13} R. Hauck, H.P. Kortz, H. Weber: Misalignment sensitivity ofoptical resonators, Appl. Opt. 19, p.598-601 (1980)

[6.539] {Sect. 6.6.13} J.L. Remo: Diffraction losses for symmetrically tilted planereflectors in open resonators, Appl. Opt. 19, p.774-777 (1980)

[6.540] {Sect. 6.6.13} P. Horwitz: Modes in misalignment unstable resonators, Appl.Opt. 15, p.167-178 (1976)

[6.541] {Sect. 6.6.14} K. Yasui: Efficient and stable operation of a high-brightnesscw 500-W Nd:YAG rod laser, Appl. Opt. 35, p.2566-2569 (1996)

[6.542] {Sect. 6.6.14} V. Magni: Multielement stable resonators containing a vari-able lens, J. Opt. Soc. Am A 4, p.1962-1969 (1987)

[6.543] {Sect. 6.6.14} P.H. Sarkies: A stable YAG resonator yielding a beam of verylow divergence and high output energy, Opt. Comm. 31, p.189-192 (1979)

[6.544] {Sect. 6.6.15} Y.F. Chen, H.J. Kuo: Determination of the thermal loadingof diode-pumped Nd:YVO4 by use of thermally induced second-harmonicoutput depolarization, Optics Letters 23, p.846-848 (1998)

[6.545] {Sect. 6.6.15} B. Ozygus, Q.C. Zhang: Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes, Appl PhysLett 71, p.2590-2592 (1997)

[6.546] {Sect. 6.6.15} B. Neuenschwander, R. Weber, H.P. Weber: Determinationof the Thermal Lens in Solid-State Lasers with Stable Cavities, IEEE J.QE-31, p.1082-1087 (1995)

6.6.15 Measurement of the Thermally Induced Refractive Power 825

[6.547] {Sect. 6.6.15} D.C. Burnham: Simple Measurement of Thermal LensingEffects in Laser Rods, Appl. Opt. 9, p.1727-1728 (1970)

[6.548] {Sect. 6.7.2} G. Stephan: An airy function for the laser, J Nonlinear OptPhysics Mat 5, p.551-557 (1996)

[6.549] {Sect. 6.7.4} D. Cooper, L.L. Tankersley, J. Reintjes: Narrow-linewidth un-stable resonator, Opt. Lett. 13, p.568-570 (1988)

[6.550] {Sect. 6.7.4} N. Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya: High Pre-cision Wavelength Meter with Fabry-Perot Optics, Appl. Phys. 25, p.311-316 (1981)

[6.551] {Sect. 6.7.4} F.J. Duarte: Multiple-prism grating solid-state dye laser oscil-lator: optimized architecture, Appl Opt 38, p.6347-6349 (1999)

[6.552] {Sect. 6.7.4} R.M. Hofstra, F.A. vanGoor, W.J. Witteman: Linewidth re-duction of a long-pulse, low-gain XeCl* laser with intracavity etalons, J OptSoc Am B Opt Physics 16, p.1068-1071 (1999)

[6.553] {Sect. 6.7.4} T. Earles, L.J. Mawst, D. Botez: 1.1W continuous-wave, nar-row spectral width, (<1 angstrom) emission from broad-stripe, distributed-feedback diode lasers (Lambda=0.893 mu m), Appl Phys Lett 73, p.2072-2074 (1998)

[6.554] {Sect. 6.7.4} D. Lo, S.K. Lam, C. Ye, K.S. Lam: Narrow linewidth operationof solid state dye laser based on sol-gel silica, Opt Commun 156, p.316-320(1998)

[6.555] {Sect. 6.7.4} V.V. Vassiliev, V.L. Velichansky, V.S. Ilchenko, M.L. Goro-detsky, L. Hollberg, A.V. Yarovitsky: Narrow-line-width diode laser with ahigh-Q microsphere resonator, Opt Commun 158, p.305-312 (1998)

[6.556] {Sect. 6.7.4} D. Wandt, M. Laschek, A. Tunnermann, H. Welling: Contin-uously tunable external-cavity diode laser with a double-grating arrange-ment, Optics Letters 22, p.390-392 (1997)

[6.557] {Sect. 6.7.4} B.W. Liby, D. Statman: Controlling the linewidth of a semicon-ductor laser with photorefractive phase conjugate feedback, IEEE J QE-32,p.835-838 (1996)

[6.558] {Sect. 6.7.4} J. Harrison, G.A. Rines, P.F. Moulton, J.R. Leger: Coher-ent summation of injection-locked, diode-pumped Nd:YAG ring lasers, Opt.Lett. 13, p.111-113 (1988)

[6.559] {Sect. 6.7.4} F.J. Duarte, R.W. Conrad Diffraction-limited single-longitu-dinal-mode multiple-prism flashlamp-pumped dye laser oscillator: linewidthanalysis and injection of amplifier system, Appl. Opt. 26, p.2567-2571 (1987)

[6.560] {Sect. 6.7.4} E. Armandillo, G. Giuliani: Estimation of the Minimum LaserLinewidth Achievable with a Grazing Grating Configuration, Optics Letters8, p.274-276 (1983)

[6.561] {Sect. 6.7.4} F.J. Duarte, J.A. Piper: Prism preexpanded grazing-incidencegrating cavity for pulsed dye lasers, Appl. Opt. 20, p.2113-2116 (1981)

[6.562] {Sect. 6.7.4} W. R. Leeb: Losses Introduced by Tilting Intracavity Etalons.I790+I1516, Appl. Phys. 6, p.267-272 (1975)

[6.563] {Sect. 6.7.4} W. Wiesemann: Longitudinal Mode Selection in Lasers withThree-Mirror Reflectors, Appl. Opt. 12, p.2909-2912 (1973)

[6.564] {Sect. 6.7.4} H. Walther, J. L. Hall: Tunable Dye Laser with Narrow Spec-tral Output, Appl. Phys. Lett. 17, p.239-242 (1970)

[6.565] {Sect. 6.7.4} W.B. Tiffany: Repetitively Pulsed, Tunable Ruby Laser withSolid Etalon Mode Control, Appl. Opt. 7, p.67-72 (1968)

[6.566] {Sect. 6.7.4} E. Snitzer: Frequency Control of a Nd3+ Glass Laser, Appl.Opt. 5, p.121-126 (1966)

[6.567] {Sect. 6.7.4} F.J. McClung, D. Weiner: Longitudinal Mode Control in GiantPulse Lasers, IEEE J. QE-1, p.94-99 (1965)

826 6. Lasers

[6.568] {Sect. 6.7.4} B.B. McFarland, R.H. Hoskins, B.H. Soffer: Narrow SpectralEmission from a Passively Q-spoiled Neodymium-glass Laser, Nature 207,p.1180-1181 (1965)

[6.569] {Sect. 6.7.4} Z.Y. Li, Z.Y. Zhang, A. Scherer, D. Psaltis: Mechanically tun-able optofluidic distributed feedback dye laser, Opt Express 14, p.10494-10499 (2006)

[6.570] {Sect. 6.7.4} B.S. Williams, S. Kumar, Q. Hu, J.L. Reno: Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metalwaveguides, Optics Letters 30, p.2909-2911 (2005)

[6.571] {Sect. 6.7.4} Y. Oki, S. Miyamoto, M. Maeda, N.J. Vasa: Multiwavelengthdistributed-feedback dye laser array and its application to spectroscopy,Optics Letters 27, p.1220-1222 (2002)

[6.572] {Sect. 6.7.4} Y. Oki, T. Yoshiura, Y. Chisaki, M. Maeda: Fabrication of adistributed-feedback dye laser with a grating structure in its plastic waveg-uide, Appl Opt 41, p.5030-5035 (2002)

[6.573] {Sect. 6.7.4} X. Li, A.D. Sadovnikov, W.P. Huang, T. Makino: A physics-based three-dimensional model for distributed feedback laser diodes, IEEEJ QE-34, p.1545-1553 (1998)

[6.574] {Sect. 6.7.4} H. Kuwatsuka, H. Shoji, M. Matsuda, H. Ishikawa: Nondegen-erate four-wave mixing in a long-cavity lambda/4-shifted DFB laser usingits lasing beam as pump beams, IEEE J QE-33, p.2002-2010 (1997)

[6.575] {Sect. 6.7.4} J.F. Pinto, L. Esterowitz: Distributed-feedback, tunable Ce3+-doped colquiriite lasers, Appl Phys Lett 71, p.205-207 (1997)

[6.576] {Sect. 6.7.4} K. Wada, Y. Akage, H. Marui, H. Horinaka, N. Yamamoto,Y. Cho: Simple method for determining the gain saturation coefficient of adistributed feedback semiconductor laser, Opt Commun 130, p.57-62 (1996)

[6.577] {Sect. 6.7.4} X. Peng, L.Y. Liu, J.F. Wu, Y.G. Li, Z.J. Hou, L. Xu, W.C.Wang, F.M. Li: Wide-range amplified spontaneous emission wavelength tun-ing in a solid-state dye waveguide, Optics Letters 25, p.314-316 (2000)

[6.578] {Sect. 6.7.4} J. McKay, K.L. Schepler, G.C. Catella: Efficient grating-tunedmid-infrared Cr2+: CdSe laser, Optics Letters 24, p.1575-1577 (1999)

[6.579] {Sect. 6.7.4} J. Struckmeier, A. Euteneuer, B. Smarsly, M. Breede, M. Born,M. Hofmann, L. Hildebrand, J. Sacher: Electronically tunable external-cavity laser diode, Optics Letters 24, p.1573-1574 (1999)

[6.580] {Sect. 6.7.4} V.P. Gerginov, Y.V. Dancheva, M.A. Taslakov, S.S. Cartaleva:Frequency tunable monomode diode laser at 670 nm for high resolutionspectroscopy, Opt Commun 149, p.162-169 (1998)

[6.581] {Sect. 6.7.4} R. Khare, S.R. Daulatabad, K.K. Sharangpani, R. Bhatna-gar: An independently tunable, collinear, variable delay, two-wavelengthdye laser, Opt Commun 153, p.68-72 (1998)

[6.582] {Sect. 6.7.4} R. Khare, S.R. Daultabad, R. Jain, R. Bhatnagar: Utilizationof the yellow component of a copper-vapor laser for extending the tuningrange of a Rhodamine 6G dye laser by use of an additional dye in a novelcoupled resonator scheme, Appl Opt 37, p.4921-4924 (1998)

[6.583] {Sect. 6.7.4} Y. Nagumo, N. Taguchi, H. Inaba: Widely tunable continuous-wave Cr3+:LiSrAlF6 ring laser from 800 to 936 nm, Appl Opt 37, p.4929-4932 (1998)

[6.584] {Sect. 6.7.4} B. Golubovic, B.E. Bouma, G.J. Tearney, J.G. Fujimoto: Op-tical frequency-domain reflectometry using rapid wavelength tuning of aCr4+:forsterite laser, Optics Letters 22, p.1704-1706 (1997)

[6.585] {Sect. 6.7.4} D. Kopf, A. Prasad, G. Zhang, M. Moser, U. Keller: Broadlytunable femtosecond Cr:LiSAF laser, Optics Letters 22, p.621-623 (1997)

[6.586] {Sect. 6.7.4} B. Pati, J. Borysow: Single-mode tunable Ti:sapphire laserover a wide frequency range, Appl Opt 36, p.9337-9341 (1997)

6.7.4 Methods for Decreasing the Spectral Bandwidth of the Laser 827

[6.587] {Sect. 6.7.4} P.S. Bhatia, J.W. Keto: Precisely tunable, narrow-band pulseddye laser, Appl Opt 35, p.4152-4158 (1996)

[6.588] {Sect. 6.7.4} D.K. Ko, G. Lim, S.H. Kim, J.M. Lee: Dual-wavelength oper-ation of a self-seeded dye laser oscillator, Appl Opt 35, p.1995-1998 (1996)

[6.589] {Sect. 6.7.4} P. Mandel, K. Otsuka, J.Y. Wang, D. Pieroux: Two-mode laserpower spectra, Phys Rev Lett 76, p.2694-2697 (1996)

[6.590] {Sect. 6.7.4} K. Tamura, M. Nakazawa: Dispersion-tuned harmonicallymode-locked fiber ring laser for self-synchronization to an external clock,Optics Letters 21, p.1984-1986 (1996)

[6.591] {Sect. 6.7.4} S. Wada, K. Akagawa, H. Tashiro: Electronically tuned Ti:sap-phire laser, Optics Letters 21, p.731-733 (1996)

[6.592] {Sect. 6.7.4} D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, H.Welling: External cavity laser diode with 40 nm continuous tuning rangearound 825 nm, Opt Commun 130, p.81-84 (1996)

[6.593] {Sect. 6.7.4} J. Harrison, A. Finch, J.H. Flint, P.F. Moulton: Broad-BandRapid Tuning of a Single-Frequency Diode-Pumped Neodymium Laser,IEEE J. QE-28, p.1123-1130 (1992)

[6.594] {Sect. 6.7.4} J.J. Zayhowski, J.A. Keszenheimer: Frequency Tuning of Mi-crochip Lasers Using Pump-Power Modulation, IEEE J. QE-28, p.1118-1122(1992)

[6.595] {Sect. 6.7.4} P.A. Schultz, S.R. Henion: Frequency-modulated Nd:YAGlaser, Opt. Lett. 16, p.578-580 (1991)

[6.596] {Sect. 6.7.4} W. Fuhrmann, W. Demtroder: A Continuously Tunable GaAsDiode Laser with an External Resonator, Appl. Phys. B 49, p.29-32 (1989)

[6.597] {Sect. 6.7.4} T.J. Kane, E.A.P. Cheng: Fast frequency tuning and phaselocking of diode-pumped Nd:YAG ring lasers, Opt. Lett. 13, p.970-972(1988)

[6.598] {Sect. 6.7.4} A. Owyoung, P. Esherick: Stress-induced tuning of a diode-laser-excited monolithic Nd:YAG laser, Opt. Lett. 12, p.999-1001 (1987)

[6.599] {Sect. 6.7.4} I.J. Hodgkinson, J.I. Vukusic: Birefringent Tuning Filters with-out Secondary Peaks, Opt. Commun. 24, p.133-134 (1978)

[6.600] {Sect. 6.7.4} M.M. Johnson, A.H. LaGrone: Continuously Tunable Reso-nant Ruby Laser Reflector, Appl. Opt. 12, p.510-518 (1973)

[6.601] {Sect. 6.7.4} F. J. Duarte (ed.): Tunable Lasers Handbook: Optics andPhotonics (Academic Press, San Diego, California, 1995)

[6.602] {Sect. 6.7.5} K. Takeno, T. Ozeki, S. Moriwaki, N. Mio: 100 W, single-frequency operation of an injection-locked Nd: YAG laser, Optics Letters30, p.2110-2112 (2005)

[6.603] {Sect. 6.7.5} X.J. Wang: Single-longitudinal-mode operation of a 1 W com-bined actively and passively Q-switched Cr,Nd:YAG laser, Opt Express 13,p.6693-6698 (2005)

[6.604] {Sect. 6.7.5} A. Polynkin, P. Polynkin, M. Mansuripur, N. Peyghambarian:Single-frequency fiber ring laser with 1W output power at 1.5 mu m, OptExpress 13, p.3179-3184 (2005)

[6.605] {Sect. 6.7.5} M. Trobs, P. Wessels, C. Fallnich: Power- and frequency-noisecharacteristics of an Yb-doped fiber amplifier and actuators for stabiliza-tion, Opt Express 13, p.2224-2235 (2005)

[6.606] {Sect. 6.7.5} Y. Louyer, P. Juncar, M.D. Plimmer, T. Badr, F. Balembois,P. Georges, M.E. Himbert: Doubled single-frequency Nd:YLF ring lasercoupled to a passive nonresonant cavity, Appl Opt 43, p.1773-1776 (2004)

[6.607] {Sect. 6.7.5} P. Burdack, T. Fox, M. Bode, I. Freitag: 1 W of stable single-frequency output at 1.03 m from a novel, monolithic, non-planar Yb:YAGring laser operating at room temperature, Optics Express 14, p.4363-4367(2006)

828 6. Lasers

[6.608] {Sect. 6.7.5} P. Burdack, T. Fox, M. Bode, I. Freitag: 1 W of stablesingle-frequency output at 1.03 mu m from a novel, monolithic, non-planarYb:YAG ring laser operating at room temperature, Opt Express 14, p.4363-4367 (2006)

[6.609] {Sect. 6.7.5} P.D. vanVoorst, H.L. Offerhaus, K.J. Boller: Single-frequencyoperation of a broad-area laser diode by injection locking of a complexspatial mode via a double phase conjugate mirror, Optics Letters 31, p.1061-1063 (2006)

[6.610] {Sect. 6.7.5} E.W. Eloranta, I.A. Razenkov: Frequency locking to the centerof a 532 nm iodine absorption line by using stimulated Brillouin scatteringfrom a single-mode fiber, Optics Letters 31, p.598-600 (2006)

[6.611] {Sect. 6.7.5} W.W. Hsiang, C.Y. Lin, N.K. Sooi, Y.C. Lai: Long-term sta-bilization of a 10 GHz 0.8 ps asynchronously mode-locked Er-fiber solitonlaser by deviation-frequency locking, Opt Express 14, p.1822-1828 (2006)

[6.612] {Sect. 6.7.5} C. Pedersen, R.S. Hansen: Single frequency, high power, ta-pered diode laser using phase-conjugated feedback, Optics Express 13,p.3961-3968 (2005)

[6.613] {Sect. 6.7.5} A. Banerjee, D. Das, U.D. Rapol, V. Natarajan: Frequencylocking of tunable diode lasers to a rubidium-stabilized ring-cavity res-onator, Appl Opt 43, p.2528-2531 (2004)

[6.614] {Sect. 6.7.5} N.P. Robins, B.J.J. Slagmolen, D.A. Shaddock, J.D. Close,M.B. Gray: Interferometric, modulation-free laser stabilization, Optics Let-ters 27, p.1905-1907 (2002)

[6.615] {Sect. 6.7.5} S.J. Rehse, S.A. Lee: Generation of 125 mW frequency stabi-lized continuous-wave tunable laser light at 295 nm by frequency doublingin a BBO crystal, Opt Commun 213, p.347-350 (2002)

[6.616] {Sect. 6.7.5} C.I. Sukenik, H.C. Busch, M. Shiddiq: Modulation-free laserfrequency stabilization and detuning, Opt Commun 203, p.133-137 (2002)

[6.617] {Sect. 6.7.5} A.Y. Nevsky, M. Eichenseer, J. vonZanthier, H. Walther: ANd : YAG Laser with short-term frequency stability at the Hertz- level, OptCommun 210, p.91-100 (2002)

[6.618] {Sect. 6.7.5} E.D. Black: An introduction to Pound-Drever-Hall laser fre-quency stabilization, Am. J. Phys. 69, p.79-87 (2001)

[6.619] {Sect. 6.7.5} D.A. Clubley, K.D. Skeldon, B.W. Barr, G.P. Newton, K.A.Strain, J. Hough: Ultrahigh level of frequency stabilization of an injectionlocked Nd:YAG laser with relevance to gravitational wave detection, OpticsCommunications 186, p.177-184 (2000)

[6.620] {Sect. 6.7.5} R.F. Teehan, J.C. Bienfang, C.A. Denman: Power scaling andfrequency stabilization of an injection locked Nd:YAG rod laser, AppliedOptics 39, p.3076-3083 (2000)

[6.621] {Sect. 6.7.5} C.M. DePriest, T. Yilmaz, P.J. Delfyett, S. Etemad, A. Braun,J. Abeles: Ultralow noise and supermode suppression in an actively mode-locked external-cavity semiconductor diode ring laser, Optics Letters 27,p.719-721 (2002)

[6.622] {Sect. 6.7.5} J. Morville, D. Romanini, M. Chenevier, A. Kachanov: Effectsof laser phase noise on the injection of a high-finesse cavity, Appl Opt 41,p.6980-6990 (2002)

[6.623] {Sect. 6.7.5} M. Zhu, J.L. Hall: Stabilization of optical phase/frequency of alaser system: application to a commercial dye laser with external stabilizer,J. Opt. Soc. Am. B 10p.802-816 (1993)

[6.624] {Sect. 6.7.5} P.A. Ruprecht, J.R. Branderberg: Enhancing diode laser tun-ing with a short external cavity, Opt. Commun. 93p.82-86 (1992)

6.7.5 Single Mode Laser 829

[6.625] {Sect. 6.7.5} R. Kallenbach, G. Zimmermann, D.H. McIntyre, T.W. Hansch,R.G. DeVoe: A blue dye laser with sub-kilohertz stability, Opt. Commun.70p.56-60 (1989)

[6.626] {Sect. 6.7.5} M. Houssin, M. Jardino, B. Gely, M. Desaintfuscien: Designperformance of a few-kilohertz-linewidth dye laser stabilized by reflectionin an optical resonator, Opt. Lett. 13p.823-825 (1988)

[6.627] {Sect. 6.7.5} Ch. Salomon, D. Hills, J.L. Hall: Laser stabilization at themillihertz level, J. Opt. Soc. Am. B 5p.1576-1587 (1988)

[6.628] {Sect. 6.7.5} A.J. Berry, D.C. Hanna, C.G. Swayers: High power singlefrequency operation of a Q-switched TEMoo mode Nd:YAG laser, Opt.Commun. 40, p.54-58 (1981)

[6.629] {Sect. 6.7.5} J.M. Green, J.P. Hohimer, F.K. Tittel: Traveling-wave opera-tion of a tunable cw dye laser, Opt. Commun. 7 p.349-350 (1973)

[6.630] {Sect. 6.7.5} F.P. Schafer, H. Muller: Tunable dye ring-laser, Opt. Commun.26p.407409 (1971)

[6.631] {Sect. 6.7.5} L. BarteltBerger, U. Brauch, A. Giesen, H. Huegel, H. Opower:Power-scalable system of phase-locked single-mode diode lasers, Appl Opt38, p.5752-5760 (1999)

[6.632] {Sect. 6.7.5} Y. Beregovski, A. Fardad, H. Luo, M. Fallahi: Single-modeoperation of the external cavity DBR laser with sol-gel waveguide Bragggrating, Opt Commun 164, p.57-61 (1999)

[6.633] {Sect. 6.7.5} A.K. Goyal, P. Gavrilovic, H. Po: 1.35 W of stable single-frequency emission from an external-cavity tapered oscillator utilizing fiberBragg grating feedback, Appl Phys Lett 73, p.575-577 (1999)

[6.634] {Sect. 6.7.5} T. Heil, I. Fischer, W. Elsasser, J. Mulet, C.R. Mirasso: Statis-tical properties of low-frequency fluctuations during single- mode operationin distributed-feedback lasers: experiments and modeling, Optics Letters24, p.1275-1277 (1999)

[6.635] {Sect. 6.7.5} Y. Isyanova, D. Welford: Temporal criterion for single-frequency operation of passively Q-switched lasers, Optics Letters 24,p.1035-1037 (1999)

[6.636] {Sect. 6.7.5} S. Riyopoulos: Stable single-mode vertical-cavity surface-emitting laser with a photoresistive aperture, Optics Letters 24, p.768-770(1999)

[6.637] {Sect. 6.7.5} I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer,A. Tunnermann: All-solid-state neodymium-based single-frequency master-oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064nm, Optics Letters 24, p.469-471 (1999)

[6.638] {Sect. 6.7.5} D.J. Binks, D.K. Ko, L.A.W. Gloster, T.A. King: Pulsed singlemode laser oscillation in a new coupled cavity design, Opt Commun 146,p.173-176 (1998)

[6.639] {Sect. 6.7.5} Y.F. Chen, T.M. Huang, C.L. Wang, L.J. Lee, S.C. Wang: The-oretical and experimental studies of single-mode operation in diode pumpedNd:YVO4/KTP green laser: influence of KTP length, Opt Commun 152,p.319-323 (1998)

[6.640] {Sect. 6.7.5} R. Dalgliesh, A.D. May, G. Stephan: Polarization states of asingle-mode (microchip) Nd3+:YAG laser -Part II: Comparison of theoryand experiment, IEEE J QE-34, p.1493-1502 (1998)

[6.641] {Sect. 6.7.5} D. Hofstetter, R.L. Thornton, L.T. Romano, D.P. Bour, M.Kneissl, R.M. Donaldson: Room-temperature pulsed operation of an electri-cally injected InGaN/GaN multi-quantum well distributed feedback laser,Appl Phys Lett 73, p.2158-2160 (1998)

[6.642] {Sect. 6.7.5} E. Lafond, A. Hirth: Optimization of a single mode Q-switchedoscillator at 1.34 mu m, Opt Commun 152, p.329-334 (1998)

830 6. Lasers

[6.643] {Sect. 6.7.5} H. Ludvigsen, M. Tossavainen, M. Kaivola: Laser linewidthmeasurements using self-homodyne detection with short delay, Opt Com-mun 155, p.180-186 (1998)

[6.644] {Sect. 6.7.5} A.J. Tiffany, I.T. McKinnie, D.M. Warrington: Pulse ampli-fication of a single-frequency Cr:forsterite laser, Appl Opt 37, p.4907-4913(1998)

[6.645] {Sect. 6.7.5} D. Wandt, M. Laschek, F. vonAlvensleben, A. Tunnermann,H. Welling: Continuously tunable 0.5 W single-frequency diode laser source,Opt Commun 148, p.261-264 (1998)

[6.646] {Sect. 6.7.5} A.K. Goyal, P. Gavrilovic, H. Po: Stable single-frequency op-eration of a high-power external cavity tapered diode laser at 780 nm, ApplPhys Lett 71, p.1296-1298 (1997)

[6.647] {Sect. 6.7.5} R. Knappe, G. Bitz, K.J. Boller, R. Wallenstein: Compactsingle-frequency diode-pumped Cr:LiSAF lasers, Opt Commun 143, p.42-46 (1997)

[6.648] {Sect. 6.7.5} K.I. Martin, W.A. Clarkson, D.C. Hanna: High-power single-frequency operation, at 1064 nm and 1061.4 nm of a Nd:YAG ring laser end-pumped by a beam- shaped diode bar, Opt Commun 135, p.89-92 (1997)

[6.649] {Sect. 6.7.5} W. Nagengast, K. Rith: High-power single-mode emission froma broad-area semiconductor laser with a pseudoexternal cavity and a Fabry-Perot etalon, Optics Letters 22, p.1250-1252 (1997)

[6.650] {Sect. 6.7.5} B. Pati, J. Borysow: Single-mode tunable Ti:sapphire laserover a wide frequency range, Appl Opt 36, p.9337-9341 (1997)

[6.651] {Sect. 6.7.5} C. Pedersen, P.L. Hansen, P. Buchhave, T. Skettrup: Single-frequency diode-pumped Nd:YAG prism laser with use of a composite lasercrystal, Appl Opt 36, p.6780-6787 (1997)

[6.652] {Sect. 6.7.5} M. Teshima, M. Koga, K. Sato: Accurate frequency controlof a mode-locked laser diode by reference-light injection, Optics Letters 22,p.126-128 (1997)

[6.653] {Sect. 6.7.5} A.J. Tiffany, I.T. McKinnie, D.M. Warrington: Low-threshold,single-frequency, coupled cavity Ti: Sapphire laser, Appl Opt 36, p.4989-4992 (1997)

[6.654] {Sect. 6.7.5} G.H.M. Vantartwijk, G.P. Agrawal: Nonlinear dynamics in thegeneralized Lorenz-Haken model, Opt Commun 133, p.565-577 (1997)

[6.655] {Sect. 6.7.5} S.J.M. Kuppens, M.P. vanExter, J.P. Woerdman, M.I.Kolobov: Observation of the effect of spectrally inhomogeneous gain onthe quantum-limited laser linewidth, Opt Commun 126, p.79-84 (1996)

[6.656] {Sect. 6.7.5} P. Kurz, T. Mukai: Frequency stabilization of a semiconductorlaser by external phase-conjugate feedback, Optics Letters 21, p.1369-1371(1996)

[6.657] {Sect. 6.7.5} K.I. Martin, W.A. Clarkson, D.C. Hanna: 3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diodebar pumped Nd:YAG ring laser, Optics Letters 21, p.875-877 (1996)

[6.658] {Sect. 6.7.5} K.I. Martin, W.A. Clarkson, D.C. Hanna: Limitations imposedby spatial hole burning on the single-frequency performance of unidirec-tional ring lasers, Opt Commun 125, p.359-368 (1996)

[6.659] {Sect. 6.7.5} B. Pezeshki, F. Agahi, J.A. Kash: A gratingless wavelengthstabilized semiconductor laser, Appl Phys Lett 69, p.2807-2809 (1996)

[6.660] {Sect. 6.7.5} M. Tsunekane, N. Taguchi, H. Inaba: High-power, efficient,low-noise, continuous-wave all- solid-state Ti:Sapphire laser, Optics Letters21, p.1912-1914 (1996)

[6.661] {Sect. 6.7.5} V. Wulfmeyer, J. Bosenberg: Single-mode operation of aninjection-seeded alexandrite ring laser for application in water-vapor and

6.7.5 Single Mode Laser 831

temperature differential absorption lidar, Optics Letters 21, p.1150-1152(1996)

[6.662] {Sect. 6.7.5} S.F. Yu: A quasi-three-dimensional large-signal dynamic modelof distributed feedback lasers, IEEE J QE-32, p.424-432 (1996)

[6.663] {Sect. 6.7.5} M. Hyodo, T. Carty, K. Sakai: Near shot-noise-level relativefrequency stabilization of a laser-diode-pumped Nd:YVO4 microchip laser,Appl. Opt. 35, p.4749-4753 (1996)

[6.664] {Sect. 6.7.5} R.A. Lamb: Single-longitudianal-mode, phase-conjugate ringmaster oscillator power amplifier using external stimulated-Brillouin-scattering Q switching, J. Opt. Soc. Am. B. 13p.1758-1765 (1996)

[6.665] {Sect. 6.7.5} L. Viana, S.S. Vianna, M. Oria, J.W.R. Tabosa: Diode lasermode selection using a long external cavity, Appl. Opt. 35, p.368-371 (1996)

[6.666] {Sect. 6.7.5} I. Freitag, R. Henking, A. Tunnermann, H. Welling: Quasi-three-level room-temperature Nd:YAG ring laser with high single-frequencyoutput power at 946 nm, Optics Letters 20, p.2499-2501 (1995)

[6.667] {Sect. 6.7.5} I. Freitag, D. Golla, S. Knoke, W. Schone, H. Zellmer, A.Tunnermann, H. Welling: Amplitude and frequency stability of a diodepumped Nd:YAG laser operating: At a single frequency continuous waveoutput power of 20 W, Optics Letters 20, p.462-464 (1995)

[6.668] {Sect. 6.7.5} C. Pedersen, P.L. Hansen, T. Skettrup, P. Buchhave: Diode-pumped single-frequency Nd:YVO4 laser with a set of coupled resonators,Optics Letters 20, p.1389-1391 (1995)

[6.669] {Sect. 6.7.5} C.J. Flood, D.R. Walker, H.M. van Driel: Effect of spatial holeburning in a mode-locked diode end-pumped Nd:YAG laser, Opt. Lett. 20,p.58-60 (1995)

[6.670] {Sect. 6.7.5} S. Taccheo, S. Longhi, L. Pallaro, P. Laporta: Frequency sta-bilization to a molecular line of a diode-pumped Er-Yb laser at 1533-nmwavelength, Opt. Lett. 20, p.2420-2422 (1995)

[6.671] {Sect. 6.7.5} N. Uehara, K. Ueda: Ultrahigh-frequency stabilization of adiode-pumped Nd:YAG laser with a high-power-acceptance photodetector,Opt. Lett. 19, p.728-730 (1994)

[6.672] {Sect. 6.7.5} H. Nagai, M. Kume, Y. Yoshikawa, K, Itoh: Low-noise op-eration (-140 dB/Hz) in close-coupled Nd:YVO4 second-harmonic laserspumped by single-mode laser diodes, Appl. Opt. 32, p.6610-6615 (1993)

[6.673] {Sect. 6.7.5} T. Day, E.K. Gustafson, R.L. Byer: Sub-Hertz Relative Fre-quency Stabilization of Two-Diode Laser-Pumped Nd:YAG Lasers. Lockedto a Fabry-Perot Interferometer, IEEE J. QE-28, p.1106-1117 (1992)

[6.674] {Sect. 6.7.5} L.J. Bromley, D.C. Hanna: Single-frequency Q-switched oper-ation of a diode-laser-pumped Nd:YAG ring laser using an acoustic-opticmodulator, Opt. Lett. 16, p.378-380 (1991)

[6.675] {Sect. 6.7.5} E.S. Fry, Q. Hu, X. Li: Single frequency operation of aninjection-seeded Nd:YAG laser in high noise and vibration environments,Appl. Opt. 30, p.1015-1017 (1991)

[6.676] {Sect. 6.7.5} F. Zhou, A.I. Ferguson: Frequency stabilization of a diode-laser-pumped microchip Nd:YAG laser at 1.3 µm, Opt. Lett. 16, p.79-81(1991)

[6.677] {Sect. 6.7.5} T. Day, E.K. Gustafson, R.L. Byer: Active frequency stabiliza-tion of a 1.062-µm, Nd:GGG diode-laser-pumped nonplanar ring oscillatorto less than 3 Hz of relative linewidth, Opt. Lett. 15, p.221-223 (1990)

[6.678] {Sect. 6.7.5} W.R. Trutna, Jr, D.K. Donald: Two-piece, piezoelectricallytuned, single-mode Nd:YAG ring laser, Opt. Lett. 15, p.369-371 (1990)

[6.679] {Sect. 6.7.5} D.Shoemaker, A. Brillet, C.N. Man, O. Cregut: Frequency-stabilized laser-diode-pumped Nd:YAG laser, Opt. Lett. 14, p.609-611(1989)

832 6. Lasers

[6.680] {Sect. 6.7.5} T.J. Kane, E.A.P. Cheng: Fast frequency tuning and phaselocking of diode-pumped Nd:YAG ring lasers, Opt. Lett. 13, p.970-972(1988)

[6.681] {Sect. 6.7.5} W.R. Trutna, Jr, D.K. Donald, M. Nazarathy: Unidirectionaldiode-laser-pumped Nd:YAG ring laser with a small magnetic field, Opt.Lett. 12, p.248-250 (1987)

[6.682] {Sect. 6.7.5} S. De Silvestri, P. Laporta, V. Magni: The Role of the RodPosition in Single-Mode Solid State Laser Resonators: Optimization of aCW Mode-Locked Nd:YAG Laser, Opt. Comm. 57, p.339-344 (1986)

[6.683] {Sect. 6.7.5} F.J. Duarte: Multiple-prism Littrow and grazing-incidencepulsed CO2 lasers, Appl. Opt. 24, p.1244-1245 (1985)

[6.684] {Sect. 6.7.5} L.A. Rahn: Feedback stabilization of an injection-seededNd:YAG laser, Appl. Opt. 24, p.940-942 (1985)

[6.685] {Sect. 6.7.5} F.D. Feiock, J.R. Oldenettel: Gain effects on laser mode for-mation, J. Opt. Soc. Am. A 1, p.1097-1102 (1984)

[6.686] {Sect. 6.7.5} M.G. Littman: Single-mode pulsed tunable dye laser, Appl.Opt. 23, p.4465-4468 (1984)

[6.687] {Sect. 6.7.5} O.E. Nanii, A.N. Shelaev: Magnetooptic effects in aYAG:Nd3+ ring laser with a nonplanar resonator, Sov. J. Quant. Electron.14, p.638-642 (1984)

[6.688] {Sect. 6.7.5} D.W. Hall, R.A. Haas, W.F. Krupke, M.J. Weber: Spectraland Polarization Hole Burning in Neodymium Glass Lasers, IEEE J. QE-19, p.1704-1717 (1983)

[6.689] {Sect. 6.7.5} Y.K. Park, R.L. Byer, G. Giuliani: Stable Single Axial ModeOperation of an Unstable Resonator ND YAG Oscillator by Injection Lock-ing, Optics Letters 5, p.96-98 (1980)

[6.690] {Sect. 6.7.5} G. Marowsky, K. Kaufmann: Influence of Spatial Hole Burningon the Output Power of a CW Dye Ring Laser, IEEE J. QE-12, p.207-209(1976)

[6.691] {Sect. 6.7.5} I. V. Hertel, A. Stamatovic: Spatial Hole Burning and Oligo-Mode Distance Control in CW Dye Lasers, IEEE J. QE-11, p.210-212 (1975)

[6.692] {Sect. 6.7.5} A. L. Bloom: Modes of a laser resonator containing tiltedbirefringent plates, J. Opt. Soc. Am. 64, p.447-452 (1974)

[6.693] {Sect. 6.7.5} H.G. Danielmeyer, W.N. Leibolt: Stable Tunable Single-Frequency Nd:YAG Laser, Appl. Phys. 3, p.193-198 (1974)

[6.694] {Sect. 6.7.5} A.R. Clobes, M.J. Brienza: Single-frequency traveling-waveNd:YAG laser, Appl. Phys. Lett.21, p.265-267 (1972)

[6.695] {Sect. 6.7.5} D.A. Draegert: Efficient Single-Longitudinal-Mode Nd:YAGLaser, IEEE J. QE-8p.235-239 (1972)

[6.696] {Sect. 6.7.5} H.G. Danielmeyer, E.H. Turner: Electro-Optic Elimination ofSpatial Hole Burning in Lasers, Appl. Phys. Lett. 17, p.519-521 (1970)

[6.697] {Sect. 6.7.5} H.G. Danielmeyer, W.G. Nilsen: Spontaneous Single-Frequency Output From a Spatially Homogenous Nd:YAG Laser, Appl.Phys. Lett. 16, p.124-126 (1970)

[6.698] {Sect. 6.7.5} H.G. Danielmeyer: Low-Frequency Dynamics of HomogeneousFour-Level cw Lasers, J. Appl. Phys. 41, p.4014-4018 (1970)

[6.699] {Sect. 6.7.5} M. Hercher: Tunable Single Mode Operation of Gas LasersUsing Intracavity Tilted Etalons, Appl. Opt. 8, p.1103-1106 (1969)

[6.700] {Sect. 6.7.5} J. L. Hall: The Laser Absolute Wavelength Standard Problem,IEEE J. QE-4, p.638-641 (1968)

[6.701] {Sect. 6.7.5} R. Polloni, O. Svelto: Static and Dynamic Behavior of a Single-Mode Nd-YAG Laser, IEEE J. QE-4, p.481-485 (1968)

[6.702] {Sect. 6.7.5} D. Roess: Single-Mode Operation of a Room-TemperatureCW-Ruby Laser, Appl. Phys. Lett. 8, p.109-111 (1966)

6.7.5 Single Mode Laser 833

[6.703] {Sect. 6.7.5} M. Hercher: Single Mode Operation of a Q-Switched RubyLaser, Appl. Phys. Lett. 7, p.39-41 (1965)

[6.704] {Sect. 6.7.5} S.A. Collins, G.R. White: Interferometer Laser Mode Selector,Appl. Opt. 2, p.448-449 (1963)

[6.705] {Sect. 6.7.5} C. Bollig, W.A. Clarkson, D.C. Hanna, D.S. Lovering, G.C.W.Jones: Single-frequency operation of a monolithic Nd:glass ring laser via theacousto-optic effect, Opt Commun 133, p.221-224 (1997)

[6.706] {Sect. 6.7.5} M. Musha, S. Telada, K. Nakagawa, M. Ohashi, K. Ueda: Mea-surement of frequency noise spectra of frequency- stabilized LD-pumpedNd:YAG laser by using a cavity with separately suspended mirrors, OptCommun 140, p.323-330 (1997)

[6.707] {Sect. 6.7.5} B. Braun, U. Keller: Single-frequency Q-switched ring laserwith an antiresonant Fabry-Perot saturable absorber, Optics Letters 20,p.1020-1022 (1995)

[6.708] {Sect. 6.7.5} A.C. Nilsson, E.K. Gustafson, R.L. Byer: EigenpolarizationTheory of Monolithic Nonplanar Ring Oscillators, IEEE J. QE-25, p.767-790 (1989)

[6.709] {Sect. 6.7.5} T.J. Kane, A.C. Nilsson, R.L. Byer: Frequency stability andoffset locking of a laser-diode-pumpde Nd:YAG monolithic nonplanar ringoscillator, Opt. Lett. 12, p.175-177 (1987)

[6.710] {Sect. 6.7.5} T.J. Kane, R.J. Byer: Monolithic, unidirectional single-modeNd:YAG ring laser, Opt. Lett. 10, p.65-67 (1985)

[6.711] {Sect. 6.7.5} A. Owyoung, G.R. Hadley, P. Esherick, R.L. Schmitt, L.A.Rahn: Gain switching of a monolithic single-frequency laser-diode-excitedNd:YAG laser, Opt. Lett. 10, p.484-486 (1985)

[6.712] {Sect. 6.7.5} K. Schneider, P. Kramper, S. Schiller, T. Mlynek: Toward anoptical synthesizer: A single-frequency parametric oscillator using periodi-cally poled LiNbO3, Optics Letters 22, p.1293-1295 (1997)

[6.713] {Sect. 6.7.5} D.F. Plusquellic, O. Votava, D.J. Nesbitt: Absolute frequencystabilization of an injection-seeded optical parametric oscillator, Appl Opt35, p.1464-1472 (1996)

[6.714] {Sect. 6.7.5} S. Schiller, G. Breitenbach, R. Paschotta, J. Mlynek: Subhar-monic-pumped continuous-wave parametric oscillator, Appl Phys Lett 68,p.3374-3376 (1996)

[6.715] {Sect. 6.7.5} P.B. Sellin, N.M. Strickland, J.L. Carlsten, R.L. Cone: Pro-grammable frequency reference for subkilohertz laser stabilization by use ofpersistent spectral hole burning, Optics Letters 24, p.1038-1040 (1999)

[6.716] {Sect. 6.7.5} C. Greiner, B. Boggs, T. Wang, T.W. Mossberg: Laser fre-quency stabilization by means of optical self-heterodyne beat-frequencycontrol, Optics Letters 23, p.1280-1282 (1998)

[6.717] {Sect. 6.7.5} U.K. Schreiber, C.H. Rowe, D.N. Wright, S.J. Cooper, G.E.Stedman: Precision stabilization of the optical frequency in a large ring lasergyroscope, Appl Opt 37, p.8371-8381 (1998)

[6.718] {Sect. 6.7.5} R. Storz, C. Braxmaier, K. Jack, O. Pradl, S. Schiller: Ul-trahigh long-term dimensional stability of a sapphire cryogenic optical res-onator, Optics Letters 23, p.1031-1033 (1998)

[6.719] {Sect. 6.7.5} H. Talvitie, M. Merimaa, E. Ikonen: Frequency stabilization ofa diode laser to Doppler-free spectrum of molecular iodine at 633nm, OptCommun 152, p.182-188 (1998)

[6.720] {Sect. 6.7.5} D.J. Binks, L.A.W. Gloster, T.A. King, I.T. McKinnie: Fre-quency locking of a pulsed single-longitudinal-mode laser in a coupled-cavityresonator, Appl Opt 36, p.9371-9377 (1997)

834 6. Lasers

[6.721] {Sect. 6.7.5} M. Musha, K. Nakagawa, K. Ueda: Wideband and high fre-quency stabilization of an injection-locked Nd:YAG laser to a high-finesseFabry-Perot cavity, Optics Letters 22, p.1177-1179 (1997)

[6.722] {Sect. 6.7.5} R. Paschotta, J. Nilsson, L. Reekie, A.C. Trooper, D.C. Hanna:Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burn-ing, Optics Letters 22, p.40-42 (1997)

[6.723] {Sect. 6.7.5} G. Ruoso, R. Storz, S. Seel, S. Schiller, J. Mlynek: Nd:YAGlaser frequency stabilization to a supercavity at the 0.1 Hz level, Opt Com-mun 133, p.259-262 (1997)

[6.724] {Sect. 6.7.5} S. Seel, R. Storz, G. Ruoso, J. Mlynek, S. Schiller: Cryogenicoptical resonators: A new tool for laser frequency stabilization at the 1 Hzlevel, Phys Rev Lett 78, p.4741-4744 (1997)

[6.725] {Sect. 6.7.5} F. Bondu, P. Fritschel, C.N. Man, A. Brillet: Ultrahigh-spectral-purity laser for the VIRGO experiment, Optics Letters 21, p.582-584 (1996)

[6.726] {Sect. 6.7.5} D.H. Sarkisyan, A.V. Papoyan: Frequency-stabilized high-power ruby laser Q switched by Rb-2 vapor, Appl Opt 35, p.3207-3209(1996)

[6.727] {Sect. 6.7.5} C.T. Taylor, M. Notcutt, E.K. Wong, A.G. Mann: Measure-ment of the coefficient of thermal expansion of a cryogenic, all-sapphire,Fabry-Perot optical cavity, Opt Commun 131, p.311-314 (1996)

[6.728] {Sect. 6.7.5} S.T. Yang, Y. Imai, M. Oka, N. Eguchi, S. Kubota: Frequency-stabilized, 10-W continuous-wave, laser-diode end-pumped, injection-lockedNd:YAG laser, Optics Letters 21, p.1676-1678 (1996)

[6.729] {Sect. 6.7.5} K. Nakagawa, A.S. Shelkovnikov, T. Katsuda, M. Ohtsu: Ab-solute frequency stability of a diode-laser-pumped Nd:YAG laser stabilizedto a high-finesse optical cavity, Appl. Opt. 33, p.6383-6386 (1994)

[6.730] {Sect. 6.7.5} P. Robrish: Single-mode electro-optically tuned Nd:YVO4laser, Opt. Lett. 19, p.813-815 (1994)

[6.731] {Sect. 6.7.5} N. Uehara, K. Ueda: 193-mHz beat linewidth of frequency-stabilized laser-diode-pumped Nd:YAG ring laser, Opt. Lett. 18, p.505-507(1993)

[6.732] {Sect. 6.7.5} T. Day, E.K. Gustafson, R.L. Byer: Sub-Hertz Relative Fre-quency Stabilization of Two-Diode Laser-Pumped Nd:YAG Lasers. Lockedto a Fabry-Perot Interferometer, IEEE J. QE-28, p.1106-1117 (1992)

[6.733] {Sect. 6.7.5} B. Zhou, T.J. Kane, G.J. Dixon, R.L. Byer: Efficient,frequency-stable laser-diode-pumped Nd:YAG laser, Opt. Lett. 10, p.62-64(1985)

[6.734] {Sect. 6.7.5} Y.L. Sun, R.L. Byer: Submegahertz Frequency Stabilized NDYAG Oscillator, Optics Letters 7, p.408-410 (1982)

[6.735] {Sect. 6.7.5} W.G. Schweitzer Jr, E.G. Kessler Jr, R.D. Deslattes, H.P.Layer, J.R. Whetstone: Description, Performance, and Wavelengths of Io-dine Stabilized Lasers, Appl. Opt. 12p.2927-2938 (1973)

[6.736] {Sect. 6.7.5} H.G. Danielmeyer: Stabilized Efficient Single-FrequencyNd:YAG Laser, IEEE J. QE-6, p.101-104 (1970)

[6.737] {Sect. 6.7.5} C.C. Harb, M.B. Gray, H.-A. Bachor, R. Schilling, P. Rot-tengatter, I. Freitag, H. Welling: Suppression of the Intensity Noise in aDiode-Pumped Neodymium:YAG Nonplanar Ring Laser, IEEE J. QE-30,p.2907-2913 (1994)

[6.738] {Sect. 6.7.5} H.A. Haus, A. Mecozzi: Noise of Mode-Locked Lasers, IEEEJ QE-29, p.983-996 (1993)

[6.739] {Sect. 6.7.6} P. Kappe, R. Menzel, M. Ostermeyer: Numerical and experi-mental analysis of temporal and spectral output properties of a mode-lockedSBS-laser, Phys. Rev. A 74, p.13809-13818 (2006)

6.7.6 Longitudinal Modes of Resonators with an SBS Mirror 835

[6.740] {Sect. 6.7.6} T. Hirose, T. Omatsu, H. Watanabe, M. Tateda: Vectorialphase conjugator by degenerated four-wave mixing in a laser- pumped poly-mer dye amplifier, Opt Commun 199, p.215-222 (2001)

[6.741] {Sect. 6.7.6} D. Gay, N. McCarthy: Effects of phase-conjugate feedbackon the modal content and noise characteristics of a cw argon ion laser:experimental results, Opt Commun 193, p.197-205 (2001)

[6.742] {Sect. 6.7.6} E. Gehrig, O. Hess: Ultrafast active phase conjugation inbroad-area semiconductor laser amplifiers, J Opt Soc Am B Opt Physics18, p.1036-1040 (2001)

[6.743] {Sect. 6.7.6} W.A. vanderGraaf, L. Pesquera, D. Lenstra: Stability and noiseproperties of diode lasers with phase-conjugate feedback, Ieee J QuantumElectron 37, p.562-573 (2001)

[6.744] {Sect. 6.7.6} M. Ostermeyer, K. Mittler, R. Menzel: Q switch and longitudi-nal modes of a laser oscillator with a stimulated-Brillouin-scattering mirror,Phys. Rev. A 59, p.3975-3985 (1999)

[6.745] {Sect. 6.7.6} B. Barrientos, V. Aboites, M. Damzen: Temporal dynamics ofa ring dye laser with a stimulated Brillouin scattering mirror, Appl Opt 35,p.5386-5391 (1996)

[6.746] {Sect. 6.7.6} B. Barrientos, V. Aboites, M.J. Damzen: Temporal dynam-ics of an external-injection dye laser with a stimulated Brillouin scatteringreflector, J. Opt. (Paris) 26p.97-104 (1995)

[6.747] {Sect. 6.7.6} A. Agnesi, G.C. Reali: Passive and self-Q-switching of phase-conjugation Nd:YAG laser oscillators, Opt. Comm. 89, p.41-46 (1992)

[6.748] {Sect. 6.7.6} G.E. Nekraskova, M.V. Pyatakhin: Dynamics of stimulatedemission from a multimode laser considered allowing for stimulated Bril-louin scattering, Sov. J. Quant. Electron. 22, p.794-797 (1992)

[6.749] {Sect. 6.7.6} W.A. Schroeder, M.J. Damzen, M.H.R. Hutchinson: Studies ofa single-frequency stimulated-Brillouin-scattering phase-conjugate Nd:YAGlaser oscillator, J. Opt. Soc. Am. B 6, p.171-179 (1989)

[6.750] {Sect. 6.7.6} M.J. Damzen, M.H.R. Hutchinson, W.A. Schroeder: Single-frequency phase-conjugate laser resonator using stimulated Brillouin scat-tering, Opt. Lett. 12, p.45-47 (1987)

[6.751] {Sect. 6.7.6} A.T. Friberg, M. Kauranen, R.Salomaa: Dynamics of Fabry-Perot resonators with a phase-conjugate mirror, J. Opt. Soc. Am. B 3,p.1656-1672 (1986)

[6.752] {Sect. 6.7.6} H. Vanherzeele, J.L. Van Eck, A.E. Siegman: Mode-lockedlaser oscillation using self-pumped phase-conjugate reflection, Opt. Lett. 6,p.467-469 (1981)

[6.753] {Sect. 6.7.6} V.I. Bezrodnyi, F.I. Ibragimov, V.I. Kislenko, R.A. Petrenko,V.L. Strizhevskii, E.A. Tikhonov: Mechanism of laser Q switching by intra-cavtiy stimulated scattering, Sov. J. Quant. Elevtron. 10, p.382-383 (1980)

[6.754] {Sect. 6.7.6} D. Pohl: A new laser Q-switch-technique using stimulatedBrillouin scattering, Phys. Lett. 24A, p.239-241 (1967)

[6.755] {Sect. 6.7.6} M. Lobel, P.M. Petersen, P.M. Johansen: Suppressing self-induced frequency scanning of a phase conjugate diode laser array withusing counterbalance dispersion, Appl Phys Lett 72, p.1263-1265 (1998)

[6.756] {Sect. 6.7.6} M. Lobel, P.M. Petersen, P.M. Johansen: Single-mode oper-ation of a laser-diode array with frequency-selective phase-conjugate feed-back, Optics Letters 23, p.825-827 (1998)

[6.757] {Sect. 6.7.6} A. Murakami, J. Ohtsubo: Dynamics and linear stability anal-ysis in semiconductor lasers with phase-conjugate feedback, IEEE J QE-34,p.1979-1986 (1998)

[6.758] {Sect. 6.7.6} T. Omatsu, A. Katoh, K. Okada, S. Hatano, A. Hasegawa, M.Tateda, I. Ogura: Investigation of photorefractive phase conjugate feedback

836 6. Lasers

on the lasing spectrum of a broad-stripe laser diode, Opt Commun 146,p.167-172 (1998)

[6.759] {Sect. 6.7.6} W.A. vanderGraaf, L. Pesquera, D. Lenstra: Stability of adiode laser with phase-conjugate feedback, Optics Letters 23, p.256-258(1998)

[6.760] {Sect. 6.7.6} D.H. Detienne, G.R. Gray, G.P. Agrawal, D. Lenstra: Semicon-ductor laser dynamics for feedback from a finite-penetration-depth phase-conjugate mirror, IEEE J QE-33, p.838-844 (1997)

[6.761] {Sect. 6.7.6} A. Shiratori, M. Obara: Frequency-stable, narrow linewidthoscillation of red diode laser with phase-conjugate feedback using stimulatedphotorefractive backscattering, Appl Phys Lett 69, p.1515-1516 (1996)

[6.762] {Sect. 6.7.6} M. Ohtsu, I. Koshishi, Y. Teramachi: A Semiconductor Laseras a Stable Phase Conjugate Mirror for Linewidth Reduction of AnotherSemiconductor Laser, Jap. J. Appl. Phys. 29, p.L2060-L2062 (1990)

[6.763] {Sect. 6.7.6} G.C. Valley, G.J. Dunning: Observation of optical chaos in aphase-conjugate resonator, Opt. Lett. 9, p.513-515 (1984)

[6.764] {Sect. 6.7.6} M.M. Denariez-Roberge, G. Giuliani: High-power single-modelaser operation using stimulated Rayleigh scattering, Opt. Lett. 6, p.339-3341 (1981)

[6.765] {Sect. 6.7.6} R.C. Lind, D.G. Steel: Demonstration of the longitudinalmodes and aberration-correction properties of a continuous-wave dye laserwith a phase-conjugate mirror, Opt. Lett. 6, p.554-556 (1981)

[6.766] {Sect. 6.8.1} M. Azadeh, L.W. Casperson: Field solutions for bidirectionalhigh-gain laser amplifiers and oscillators, J Appl Phys 83, p.2399-2407(1998)

[6.767] {Sect. 6.8.1} T. Taira, W.M. Tulloch, R.L. Byer: Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers, Appl Opt 36, p.1867-1874(1997)

[6.768] {Sect. 6.8.1} J.M. Eggleston, L.M. Frantz, H. Injeyan: Derivation of theFrantz-Nodvik Equation for Zig-Zag Optical Path, Slab Geometry LaserAmplifiers, IEEE J. QE-25, p.1855-1862 (1989)

[6.769] {Sect. 6.8.1} J. Eicher, N. Hodgson, H. Weber: Output power and efficienciesof slab laser systems, J. Appl. Phys. 66, p.4608-4613 (1989)

[6.770] {Sect. 6.8.1} N. Hodgson, H. Weber: Measurement of extraction efficiencyand excitation efficiency of lasers, J. Mod. Opt. 35, p.807-813 (1988)

[6.771] {Sect. 6.8.1} J.A. Caird, M.D. Shinn, T.A. Kirchoff, L.K. Smith, R.E.Wilder: Measurements of losses and lasing efficiency in GSGG:Cr, Nd andYAG:Nd laser rods, Appl. Opt. 25, p.4294-4305 (1986)

[6.772] {Sect. 6.8.1} L.W. Casperson: Power characteristics of high magnificationsemiconductor lasers, Opt. Quant. Electron. 18, p.155-157 (1986)

[6.773] {Sect. 6.8.1} R.S. Galeev, S.I. Krasnov: Approximate method for calcu-lations of unstable telescopic resonators, Sov. J. Quantum Electron. 12,p.802-804 (1982)

[6.774] {Sect. 6.8.1} G.J. Linford, R.A. Saroyan, J.B. Trenholme, M.J. Weber: Mea-surements and Modeling of Gain Coefficients for Neodymium Laser Glasses,IEEE J. QE-15, p.510-523 (1979)

[6.775] {Sect. 6.8.1} B.K. Sina: A new method for the estimation of pumping co-efficient for a Ruby laser, IEEE J. QE-15, p.1083-1085 (1979)

[6.776] {Sect. 6.8.1} W.W. Rigrod: Homogeneously broadened CW laser with uni-form distributed loss, IEEE J. QE-14, p.377-381 (1978)

[6.777] {Sect. 6.8.1} H.G. Danielmeyer: Low-Frequency Dynamics of HomogeneousFour-Level cw Lasers, J. Appl. Phys. 41, p.4014-4018 (1970)

[6.778] {Sect. 6.8.1} T. Kimura, K. Otsuka: Response of a CW Nd3+:YAG Laserto Sinusoidal Cavity Perturbations, IEEE J. QE-6, p.764-769 (1970)

6.8.1 Gain from the Active Material: Parameters 837

[6.779] {Sect. 6.8.1} J.F. Nester: Dynamic Optical Properties of CW Nd:YAlGLasers, IEEE J. QE-6p.97-100 (1970)

[6.780] {Sect. 6.8.1} A.Y. Cabezas, R.P. Treat: Effect of Spectral Hole-Burning andCross Relaxation on the Gain Saturation of Laser Amplifiers, J. Appl. Phys.37, p.3556-3563 (1966)

[6.781] {Sect. 6.8.1} D. Findlay, R.A. Clay: The measurement of internal losses in4-level lasers, Phys. Lett. 20, p.277-278 (1966)

[6.782] {Sect. 6.8.1} D. Roess: Analysis of Room Temperature CW Ruby Lasers,IEEE J. QE-2, p.208-214 (1966)

[6.783] {Sect. 6.8.1} W.W. Rigrod: Saturation Effects in High-Gain Lasers, J. Appl.Phys. 36, p.2487-2490 (1965)

[6.784] {Sect. 6.8.1} S.J. Cooper: Systematic errors in laser gain, saturation irra-diance, and cavity loss measurements and comparison with a HCN laser,Appl Opt 38, p.3258-3265 (1999)

[6.785] {Sect. 6.8.1} M.Y. Sharonov, A.B. Bykov, V. Petricevic, R.R. Alfano: Cr4+-doped Li2CaSiO4 crystal: growth and spectroscopic properties, Opt Com-mun 231, p.273-280 (2004)

[6.786] {Sect. 6.8.1} J. Dong, M. Bass, Y.L. Mao, P.Z. Deng, F.X. Gan: Depen-dence of the Yb3+ emission cross section and lifetime on temperature andconcentration in yttrium aluminum garnet, J Opt Soc Am B Opt Physics20, p.1975-1979 (2003)

[6.787] {Sect. 6.8.1} V. Sudesh, K. Asai: Spectroscopic and diode-pumped-laserproperties of Tm,Ho:YLF; Tm,Ho:LuLF; and Tm,Ho:LuAG crystals: a com-parative study, J Opt Soc Am B Opt Physics 20, p.1829-1837 (2003)

[6.788] {Sect. 6.8.1} P.H. Haumesser, R. Gaume, B. Viana, D. Vivien: Determina-tion of laser parameters of ytterbium-doped oxide crystalline materials, JOpt Soc Am B Opt Physics 19, p.2365-2375 (2002)

[6.789] {Sect. 6.8.1} C. Maunier, J.L. Doualan, R. Moncorge, A. Speghini, M. Bet-tinelli, E. Cavalli: Growth, spectroscopic characterization, and laser perfor-mance of Nd : LuVO4, a new infrared laser material that is suitable fordiode pumping, J Opt Soc Am B Opt Physics 19, p.1794-1800 (2002)

[6.790] {Sect. 6.8.2} K. Joosten, G. Nienhuis: Loss rates of laser cavities, Opt Com-mun 166, p.65-69 (1999)

[6.791] {Sect. 6.8.2} S. Ozcelik, D.L. Akins: Extremely low excitation threshold,superradiant, molecular aggregate lasing system, Appl Phys Lett 71, p.3057-3059 (1997)

[6.792] {Sect. 6.8.2} G.Z.Z. Zhang, D.W. Tokaryk: Lasing threshold reduction ingrating-tuned cavities, Appl Opt 36, p.5855-5858 (1997)

[6.793] {Sect. 6.8.2} J.A. Caird, M.D. Shinn, T.A. Kirchoff, L.K. Smith, R.E.Wilder: Measurements of losses and lasing efficiency in GSGG:Cr, Nd andYAG:Nd laser rods, Appl. Opt. 25, p.4294-4305 (1986)

[6.794] {Sect. 6.8.2} D. Findlay, R.A. Clay: The measurement of internal losses in4-level lasers, Phys. Lett. 20, p.277-278 (1966)

[6.795] {Sect. 6.8.2} A.G. Fox, T. Li: Effect of Gain Saturation on the OscillatingModes of Optical Masers, IEEE J. QE-2, p.774-783 (1966)

[6.796] {Sect. 6.8.3} G.J. deValcarcel, E. Roldan, F. Prati: Generalized rate equa-tions for multimode lasers, Opt Commun 216, p.203-207 (2003)

[6.797] {Sect. 6.8.3} M. Stanghini, M. Basso, R. Genesio, A. Tesi, R. Meucci, M.Ciofini: A new three-equation model for the CO2 laser, IEEE J QE-32,p.1126-1131 (1996)

[6.798] {Sect. 6.8.3} P. Laporta, V. Magni, O. Svelto: Comparative Study of theOptical Pumping Efficiency in Solid State Lasers, IEEE J. QE-21, p.1211-1218 (1985)

838 6. Lasers

[6.799] {Sect. 6.8.3} M. Mindak, J. Szydlak: Examples of operating characteristicsand power balance in pump cavity of cw Nd:YAG laser, Appl. Opt. 13,p.407-419 (1983)

[6.800] {Sect. 6.8.3} G.M.Schindler: Optimum Output Efficiency of HomogeneouslyBroadened Lasers with Constant Loss, IEEE J. QE-16, p.546-549 (1980)

[6.801] {Sect. 6.8.3} G.A. Massey: Criterion for selection of cw laser host materialsto increase available power in the fundamental mode, Appl. Phys. Lett. 17,p.213-215 (1970)

[6.802] {Sect. 6.8.3} T.J. Karr: Power and stability of phase-conjugate lasers, J.Opt. Soc. Am. 73, p.600-609 (1983)

[6.803] {Sect. 6.8.3} G. Lescroart, R. Muller, G. Bourdet: Experimental investiga-tions and theoretical modeling of a Tm: YVO4 microchip laser, Opt Com-mun 143, p.147-155 (1997)

[6.804] {Sect. 6.9.1} M. Eichenseer, J. vonZanthier, H. Walther: Common-mode-free frequency comparison of lasers with relative frequency stability at themillihertz level, Optics Letters 30, p.1662-1664 (2005)

[6.805] {Sect. 6.9.3.0} J. Kong, D.Y. Tang, J. Lu, K. Ueda: Random-wavelengthsolid-state laser, Optics Letters 29, p.65-67 (2004)

[6.806] {Sect. 6.9.3.0} H.S. Djie, B.S. Ooi, X.M. Fang, Y. Wu, J.M. Fastenau,W.K. Liu, M. Hopkinson: Room-temperature broadband emission of anInGaAs/GaAs quantum dots laser, Optics Letters 32, p.44-46 (2007)

[6.807] {Sect. 6.9.3.0} M. Horowitz, Y. Barad, Y. Silberberg: Noiselike pulses witha broadband spectrum generated from an erbium-doped fiber laser, OpticsLetters 22, p.799-801 (1997)

[6.808] {Sect. 6.9.3.0} K. Shimizu, T. Horiguchi, Y. Koyamada: Broad-band abso-lute frequency synthesis of pulsed coherent lightwaves by use of a phase-modulation amplified optical ring, IEEE J QE-33, p.1268-1277 (1997)

[6.809] {Sect. 6.9.3.0} C.A. Kapetanakos, B. Hafizi, H.M. Milchberg, P. Sprangle,R.F. Hubbard, A. Ting: Generation of high-average-power ultrabroad-bandinfrared pulses, IEEE J QE-35, p.565-576 (1999)

[6.810] {Sect. 6.9.3.0} M. Brown: Increased spectral bandwidths in nonlinear con-version processes by use of multicrystal designs, Optics Letters 23, p.1591-1593 (1998)

[6.811] {Sect. 6.9.3.3} D. Lorenz, R. Menzel: Broadband operation of frequencydoubled Cr4+:YAG laser with high beam quality, OSA TOPS Vol. 19 Ad-vanced Solid State Lasers, p.92-96 (1998)

[6.812] {Sect. 6.9.3.3} V. Valerii, Ter-Mikirtychev, T. Tsubo: UltrabroadbandLiF:F2+* color center laser using two-rism spatially-disperse resonator,Opt. Comm. 137, p.74-76 (1997)

[6.813] {Sect. 6.9.3.3} L.W. Casperson: Analytic modeling of gain-switched lasers.I. Laser oscillators, J. Appl. Phys. 47, p.4555-4562 (1976)

[6.814] {Sect. 6.9.3} Y.H. Cha, Y.I. Kang, C.H. Nam: Generation of a broad am-plified spectrum in a femtosecond terawatt Ti : sapphire laser by a long-wavelength injection method, J Opt Soc Am B Opt Physics 16, p.1220-1223(1999)

[6.815] {Sect. 6.10.1} R. Bohm, V.M. Baev, P.E. Toschek: Measurements of opera-tion parameters and nonlinearity of a Nd3+-doped fibre laser by relaxationoscillations, Opt Commun 134, p.537-546 (1997)

[6.816] {Sect. 6.10.1} R. Stemme, G. Herziger, H. Weber: Power and halfwidth offirst laser spike, Opt. Comm. 10, p.221-225 (1974)

[6.817] {Sect. 6.10.1} H. Statz, G.A. DeMars, D.T. Wilson, C.L. Tang: Problem ofSpike Elimination in Lasers, J. Appl. Phys. 36, p.1510-1514 (1965)

[6.818] {Sect. 6.10.1} R. Dunsmuir: Theory of Relaxation Oscillations in OpticalMasers, J. Electron. Control 10, p.453-458 (1961)

6.10.1 Spiking Operation: Intensity Fluctuations 839

[6.819] {Sect. 6.10.2.0} Y. Joeng, Y. Kim, A. Liem, K. Moerl, S. Hoefer, A. Tuen-nermann, K. Oh: Q-switching of Yb3+-doped fiber laser using a novelmicro-optical waveguide on micro-actuating platform light modulator, OptExpress 13, p.10302-10309 (2005)

[6.820] {Sect. 6.10.2.1} G. Karlsson, V. Pasiskevicius, F. Laurell, J.A. Tellefsen:Q-switching of an Er-Yb:glass microchip laser using an acousto- opticalmodulator, Opt Commun 217, p.317-324 (2003)

[6.821] {Sect. 6.10.2.1} M. Ozolinsh, K. Stock, R. Hibst, R. Steiner: Q-switchingof Er:YAG (2.9 mu m) solid-state laser by PLZT electrooptic modulator,IEEE J QE-33, p.1846-1849 (1997)

[6.822] {Sect. 6.10.2.1} A. Hogele, G. Horbe, H. Lubatschowski, H. Welling, W.Ertmer: 2.70 mu m CrEr: YSGG laser with high output energy and FTIR-Q-switch, Opt Commun 125, p.90-94 (1996)

[6.823] {Sect. 6.10.2.1} T. Chuang, A.D. Hays, H.R. Verdun: Effect of dispersion onthe operation of a KTP electro-optic Q switch, Appl. Opt. 33, p.8355-8360(1994)

[6.824] {Sect. 6.10.2.1} S.Z. Kurtev, O.E. Denchev, S.D. Savov: Effects of thermallyinduced birefringence in high-output-power electro-optically Q-switchedNd:YAG lases and their compensation, Appl. Opt. 32, p.278-285 (1993)

[6.825] {Sect. 6.10.2.1} J. Richards: Unpolarized EO Q-switched laser, Appl. Opt.22, p.1306-1308 (1983)

[6.826] {Sect. 6.10.2.1} M.K. Chun, E.A. Teppo: Laser resonator: an electroopticalQ-switched Porro prism device, Appl. Opt. 15, p.1942-1946 (1976)

[6.827] {Sect. 6.10.2.1} H.A. Kruegle, L. Klein: High peak power output, high PRFby cavity dumping a Nd:YAG laser, Appl. Opt. 15, p.466-471 (1976)

[6.828] {Sect. 6.10.2.1} D. Cheng: Instability of Cavity-Dumped YAG Laser Dueto Time-Varying Reflections, IEEE J. QE-9, p.585-588 (1973)

[6.829] {Sect. 6.10.2.1} D. Milam: Brewster-Angle Pockels Cell Design, Appl. Opt.12, p.602-606 (1973)

[6.830] {Sect. 6.10.2.1} C.W. Reno: High Data Rate YAG Laser Techniques, Appl.Opt. 12, p.883-885 (1973)

[6.831] {Sect. 6.10.2.1} L.L. Steinmetz, T.W. Pouliot, B.C. Johnson: Cylindrical,Ring-Electrode KD*P Electrooptic Modulator, Appl. Opt. 12, p.1468-1471(1973)

[6.832] {Sect. 6.10.2.1} M.K. Chun, J.T. Bischoff: Multipulsing Behavior of Elec-trooptically Q-Switched Lasers, IEEE J. QE-8, p.715-716 (1972)

[6.833] {Sect. 6.10.2.1} D.C. Hanna, B. Luther Davis, R.C. Smith: Active Q switch-ing technique for producing high laser power in a single longitudinal mode,Electron. Lett. 8, p.369-370 (1972)

[6.834] {Sect. 6.10.2.1} R.B. Chesler, D.A. Pinnow, W.W. Benson: Suitability ofPbMoO4 for Nd:YAlG Intracavity Acoustooptic Modulation, Appl. Opt.10, p.2562 (1971)

[6.835] {Sect. 6.10.2.1} M.G. Cohen, R.T. Daly, R.A. Kaplan: Resonant Acous-tooptic Q Switching of High-Gain Lasers, IEEE J. QE-7, p.316-317 (1971)

[6.836] {Sect. 6.10.2.1} W.R. Hook, R.P. Hilberg: Lossless KD*P Pockels Cell forHigh-Power Q Switching, Appl. Opt. 10, p.1179-1180 (1971)

[6.837] {Sect. 6.10.2.1} W. Buchman, W. Koechner, D. Rice: Vibrating Mirror asa Repetitive Q Switch, IEEE J. QE-6, p.747-749 (1970)

[6.838] {Sect. 6.10.2.1} R.P. Hilberg, W.R. Hook: Transient Elastooptic Effectsand Q-Switching Performance in Lithium Niobate and KD*P Pockels Cells,Appl. Opt. 9, p.1939-1940 (1970)

[6.839] {Sect. 6.10.2.1} D. Maydan: Acoustooptical Pulse Modulators, IEEE J. QE-6, p.15-24 (1970)

840 6. Lasers

[6.840] {Sect. 6.10.2.1} R.M. Schotland: A Mode Controlled Q-Switched TuneableRuby Laser, Appl. Opt. 9, p.1211-1213 (1970)

[6.841] {Sect. 6.10.2.1} I.W. Mackintosh: Double Etalon Q-Switching of a Contin-uously Pumped Nd/YAG Laser, Appl. Opt. 8, p.1991-1998 (1969)

[6.842] {Sect. 6.10.2.1} M.B. Davies, P.H. Sarkies, J.K. Wright: Operaton of aLithium Niobate Electrooptic Q Switch at 1.06 µ, IEEE J. QE-4, p.533-535(1968)

[6.843] {Sect. 6.10.2.1} R.W. Dixon: Acoustic Diffraction of Light in AnisotropicMedia, IEEE J. QE-3, p.85-93 (1967)

[6.844] {Sect. 6.10.2.1} M. Dore: A Low Drive-Power Light Modular Using a Read-ily Available Material ADP, IEEE J. QE-3, p.555-560 (1967)

[6.845] {Sect. 6.10.2.1} W.R. Hook, R.H. Dishington, R.P. Hilberg: Laser cav-ity dumping using time variable reflection, Appl. Phys. Lett. 9, p.125-127(1966)

[6.846] {Sect. 6.10.2.1} I.P. Kaminow, E.H. Turner: Electrooptic Light Modulators,Appl. Opt. 5, p.1612-1627 (1966)

[6.847] {Sect. 6.10.2.1} R.A. Phillips: Temperature Variation of the Index of Refrac-tion of ADP, KDP, and Deuterated KDP*, J. Opt. Soc. Am. 56, p.629-632(1966)

[6.848] {Sect. 6.10.2.1} E.L. Steele, W.C. Davis, R.L. Treuthart: A Laser OutputUsing Frustrated Total Internal Reflection, Appl. Opt. 5, p.5-8 (1966)

[6.849] {Sect. 6.10.2.1} M. Yamazaki, T. Ogawa: Temperature Dependences ofthe Refractive Indices of NH4H2PO4, KH2PO4, and Partially DeuteratedKH2PO4, J. Opt. Soc. Am. 56, p.1407-1408 (1966)

[6.850] {Sect. 6.10.2.1} T. Crawford, C. Lowrie, J.R. Thompson: Prelase stabiliza-tion of the polarization state and frequency of a Q-switched, diode-pumped,Nd:YAG laser, Appl Opt 35, p.5861-5869 (1996)

[6.851] {Sect. 6.10.2.1} M. Marincek, M. Lukac: Development of EM Field in Laserswith Rotating Mirror Q-Switch, IEEE J. QE-29, p.2405-2412 (1993)

[6.852] {Sect. 6.10.2.1} C. Wyss, W. Luthy, H.P. Weber: Modulation and single-spike switching of a diode-pumped Er3+: LiYF4 laser at 2.8 mu m, IEEEJ QE-34, p.1041-1045 (1998)

[6.853] {Sect. 6.10.2.2} M.D. Wei, C.H. Chen, K.C. Tu: Spatial and temporal insta-bilities in a passively Q-switched Nd:YAG laser with a Cr4+:YAG saturableabsorber, Opt Express 12, p.3972-3980 (2004)

[6.854] {Sect. 6.10.2.2} J. Janousek, P. TidemandLichtenberg, J.L. Mortensen,P. Buchhave: Investigation of passively synchronized dual-wavelength Q-switched lasers based on V:YAG saturable absorber, Opt Commun 265,p.277-282 (2006)

[6.855] {Sect. 6.10.2.2} M. Brumer, M. Sirota, A. Kigel, A. Sashchiuk, E. Galun,Z. Burshtein, E. Lifshitz: Nanocrystals of PbSe core, PbSe/PbS, andPbSe/PbSexS1-x core/shell as saturable absorbers in passively Q-switchednear-infrared lasers, Appl Opt 45, p.7488-7497 (2006)

[6.856] {Sect. 6.10.2.2} G. Paunescu, J. Hein, R. Sauerbrey, W. Richter: In situcharacterization of semiconductor saturable absorber mirrors in an operat-ing Yb:KGW mode-locked laser, Optics Letters 30, p.2799-2801 (2005)

[6.857] {Sect. 6.10.2.2} K.W. Su, H.C. Lai, A. Li, Y.F. Chen, K.E. Huang:InAs/GaAs quantum-dot saturable absorber for a diode-pumped passivelymode-locked Nd:YVO4 laser at 1342 nm, Optics Letters 30, p.1482-1484(2005)

[6.858] {Sect. 6.10.2.2} S.A. Zolotovskaya, K.V. Yumashev, N.V. Kuleshov, A.V.Sandulenko: Diode-pumped Yb,Er:glass laser passively Q switched with aV3+:YAG crystal, Appl Opt 44, p.1704-1708 (2005)

6.10.2 Q Switching (Generation of ns Pulses) 841

[6.859] {Sect. 6.10.2.2} A.A. Fotiadi, P. Megret, M. Blondel: Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ringmirror, Optics Letters 29, p.1078-1080 (2004)

[6.860] {Sect. 6.10.2.2} A.S. Kuchyanov, R.V. Markov, A.I. Plekhanov, A.E.Simanchuk, V.I. Avdeeva, B.I. Shapiro, Y.I. Slominskii, A.I. Tolmachev:Passive mode locking of a Nd3+:YAG laser with a thin film of J- aggre-gates as a saturable absorber, Opt Commun 231, p.343-348 (2004)

[6.861] {Sect. 6.10.2.2} Y.V. Volk, I.A. Denisov, A.M. Malyarevich, K.V. Yuma-shev, O.S. Dymshits, A.V. Shashkin, A.A. Zhilin, U. Kang, K.H. Lee:Magnesium- and zinc-aluminosilicate cobalt-doped glass ceramics as sat-urable absorbers for diode-pumped 1.3-mu m laser, Appl Opt 43, p.682-687(2004)

[6.862] {Sect. 6.10.2.2} N.D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, L. Ful-bert: Two-frequency Er-Yb:glass microchip laser passively Q switched by aCo:ASL saturable absorber, Optics Letters 28, p.328-330 (2003)

[6.863] {Sect. 6.10.2.2} D.Y. Shen, D.Y. Tang, J. Kong: Passively Q-switched Yb :YAG laser with a GaAs output coupler, Opt Commun 211, p.271-275 (2002)

[6.864] {Sect. 6.10.2.2} A. Agnesi, A. Guandalini, G. Reali, J.K. Jabczynski, K.Kopczynski, Z. Mierczyk: Diode pumped Nd : YVO4 laser at 1.34 mu mQ-switched and mode locked by a V3+: YAG saturable absorber, Opt Com-mun 194, p.429-433 (2001)

[6.865] {Sect. 6.10.2.2} I.P. Bilinsky, J.G. Fujimoto, J.N. Walpole, L.J. Missaggia:InAs-doped silica films for saturable absorber applications, Appl Phys Lett74, p.2411-2413 (1999)

[6.866] {Sect. 6.10.2.2} P. Peterson, A. Gavrielides, M.P. Sharma, T. Erneux: Dy-namics of passively Q-switched microchip lasers, IEEE J QE-35, p.1247-1256 (1999)

[6.867] {Sect. 6.10.2.2} K.L. Vodopyanov, R. Shori, O.M. Stafsudd: Generationof Q-switched Er:YAG laser pulses using evanescent wave absorption inethanol, Appl Phys Lett 72, p.2211-2213 (1998)

[6.868] {Sect. 6.10.2.2} A. Agnesi, S. Dell’Acqua, E Piccinini, G. Reali, G. Piccinno:Efficient Wavelength Conversion with High-Power Passively Q-SwitchedDiode-Pumped Neodymium Lasers, IEEE J. QE-34, p.1480-1484 (1998)

[6.869] {Sect. 6.10.2.2} R.S. Afzal, A.W. Yu, T.J. Zayhowski, T.Y. Fan: Single-mode high-peak-power passively Q-switched diode- pumped Nd:YAG laser,Optics Letters 22, p.1314-1316 (1997)

[6.870] {Sect. 6.10.2.2} B. Braun, F.X. Kartner, G. Zhang, M. Moser, U. Keller:56-ps passively Q-switched diode-pumped microchip laser, Optics Letters22, p.381-383 (1997)

[6.871] {Sect. 6.10.2.2} R. Fluck, B. Braun, E. Gini, H. Melchior, U. Keller: Pas-sively Q-switched 1.34-mu m Nd:YVO4 microchip laser with semiconductorsaturable-absorber mirrors, Optics Letters 22, p.991-993 (1997)

[6.872] {Sect. 6.10.2.2} R.Z. Hua, L.J. Qian, T.T. Zhi, X.M. Deng: Short pulsegeneration in a Nd:YAG laser by silicon, Opt Commun 143, p.47-52 (1997)

[6.873] {Sect. 6.10.2.2} T.T. Kajava, A.L. Gaeta: Intra-cavity frequency-doublingof a Nd:YAG laser passively Q-switched with GaAs, Opt Commun 137,p.93-97 (1997)

[6.874] {Sect. 6.10.2.2} B. Braun, F.X. Kartner, U. Keller, J.P. Meyn, G. Huber:Passively Q-switched 180-ps Nd:LaSc3 (BO3) (4) microchip laser, OpticsLetters 21, p.405-407 (1996)

[6.875] {Sect. 6.10.2.2} T.T. Kajava, A.L. Gaeta: Q switching of a diode-pumpedNd:YAG laser with GaAs, Optics Letters 21, p.1244-1246 (1996)

842 6. Lasers

[6.876] {Sect. 6.10.2.2} Y. Shimony, Z. Burshtein, A.B. Baranga, Y. Kalisky, M.Strauss: Repetitive Q-Switching of a CW Nd:YAG laser using Cr4+:YAGsaturable absorbers, IEEE J QE-32, p.305-310 (1996)

[6.877] {Sect. 6.10.2.2} Y. Shimony, Z. Burshtein, Y. Kalisky: Cr4+:YAG as PassiveQ-Switch and Brewster Plate in a Pulsed Nd:YAG Laser, IEEE J. QE-31,p.1738-1741 (1995)

[6.878] {Sect. 6.10.2.2} H.J. Eichler, A. Haase, R. Menzel: Cr4+:YAG as PassiveQ-Switch for a Nd:YALO Oscillator with an Average Repetition Rate of 2.7kHz, TEM00 Mode and 13 W Output, Appl. Phys. B 58, p.409-411 (1994)

[6.879] {Sect. 6.10.2.2} Y. Jingguo, J. Hongwei: Self-Q-switching Nd:YAG laser op-eration using stimulated thermal Rayleigh scattering, Opt. Quant. Electron.26, p.929-932 (1994)

[6.880] {Sect. 6.10.2.2} J.A. Morris, C.R. Pollock: Passive Q switching of a diode-pumped Nd:YAG laser with a saturable absorber, Opt. Lett. 15, p.440-442(1990)

[6.881] {Sect. 6.10.2.2} E. Reed: A flashlamp-Pumped, Q-Switched Cr:Nd:GSGGLaser, IEEE J. QE-21, p.1625-1629 (1985)

[6.882] {Sect. 6.10.2.2} V.I. Bezrodnyi, F.I. Ibragimov, V.I. Kislenko, R.A. Pe-trenko, V.L. Strizhevskii, E.A. Tikhonov: Mechanism of laser Q switchingby intracavtiy stimulated scattering, Sov. J. Quant. Elevtron. 10, p.382-383(1980)

[6.883] {Sect. 6.10.2.2} B. Kopainsky, W. Kaiser, K.H. Drexhage: New UltrafastSaturable Absorbers for Nd:lasers, Opt. Comm. 32, p.451-455 (1980)

[6.884] {Sect. 6.10.2.2} W.E. Schmid: Pulse Stretching in a Q-Switched Nd:YAGLaser, IEEE J. QE-16, p.790-794 (1980)

[6.885] {Sect. 6.10.2.2} J.R. Lakowicz, G. Weber: Quenching of Fluorescence byOxygen. A Probe for Structural Fluctuations in Macromolecules, Biochem.12, p.4161-4170 (1973)

[6.886] {Sect. 6.10.2.2} M. Hercher: An Analysis of Saturable Absorbers, Appl.Opt. 6, p.947-954 (1967)

[6.887] {Sect. 6.10.2.2} C.H. Thomas, E.V. Price: Feedback Control of a Q-SwitchedRuby Laser, IEEE J. QE-2, p.617-623 (1966)

[6.888] {Sect. 6.10.2.2} B.H. Soffer: Giant Pulse Laser Operation by a Passive,Reversible Bleachable Absorber, J. Appl. Phys. 35, p.2551 (1964)

[6.889] {Sect. 6.10.2.2} F.J. McClung, R.W. Hellwarth: Characteristics of giantoptical pulsations from ruby, Proc. IEEE 51, p.46 (1963)

[6.890] {Sect. 6.10.2.2} A.G. Okhrimchuk, A.V. Shestakov: Absorption saturationmechanism for YAG : Cr4+ crystals, Phys Rev B 61, p.988-995 (2000)

[6.891] {Sect. 6.10.2.2} L.G. Luo, P.L. Chu: Passive Q-switched erbium-doped fibrelaser with saturable absorber, Opt Commun 161, p.257-263 (1999)

[6.892] {Sect. 6.10.2.2} P. Petropoulos, H.L. Offerhaus, D.J. Richardson, S. Dhan-jal, N.I. Zheludev: Passive Q-switching of fiber lasers using a broadbandliquefying gallium mirror, Appl Phys Lett 74, p.3619-3621 (1999)

[6.893] {Sect. 6.10.2.2} P. Petropoulos, S. Dhanjal, D.J. Richardson, N.I. Zheludev:Passive Q-switching of an Er3+: Yb3+ fibre laser with a fibrised liquefyinggallium mirror, Opt Commun 166, p.239-243 (1999)

[6.894] {Sect. 6.10.2.2} A.V. Podlipensky, V.G. Shcherbitsky, N.V. Kuleshov, V.P.Mikhailov, V.I. Levchenko, V.N. Yakimovich: Cr2+: ZnSe and Co2+: ZnSesaturable-absorber Q switches for 1.54-mu m Er : glass lasers, Optics Letters24, p.960-962 (1999)

[6.895] {Sect. 6.10.2.2} K.V. Yumashev: Saturable absorber Co2+: MgAl2O4 crys-tal for Q switching of 1.34-mu m Nd3+: YAIO (3) and 1.54-mu m Er3+:glass lasers, Appl Opt 38, p.6343-6346 (1999)

6.10.2 Q Switching (Generation of ns Pulses) 843

[6.896] {Sect. 6.10.2.2} Z.G. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T.Sugaya, T. Nakagawa, H. Takahashi: Broadband semiconductor saturable-absorber mirror for a self-starting mode-locked Cr:forsterite laser, OpticsLetters 23, p.1465-1467 (1998)

[6.897] {Sect. 6.10.2.2} Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, M.R. Kokta:Excited-State Absorption Studies of Cr4+ Ions in Several Garnet Host Crys-tals, IEEE J. QE-34, p.292-299 (1998)

[6.898] {Sect. 6.10.2.2} J. Popp, M.H. Fields, R.K. Chang: Q switching by saturableabsorption in microdroplets: elastic scattering and laser emission, OpticsLetters 22, p.1296-1298 (1997)

[6.899] {Sect. 6.10.2.2} Y.K. Kuo, M. Birnbaum, F. Unlu, M.F. Huang: Ho:CaF2solid-state saturable-absorber Q switch for the 2- mu m Tm,Cr:Y3Al5O12laser, Appl Opt 35, p.2576-2579 (1996)

[6.900] {Sect. 6.10.2.2} Y. Shimony, Z. Burshtein, Y. Kalisky, A.B. Baranga, M.Strauss: Progress in Q-switching of Nd:YAG lasers using Cr4+:YAG sat-urable absorber, J Nonlinear Opt Physics Mat 5, p.495-504 (1996)

[6.901] {Sect. 6.10.2.2} B.C. Weber, A. Hirth: Presentation of a new and simpletechnique of Q-switching with a LiSrAlf (6):Cr3+ oscillator, Opt Commun149, p.301-306 (1998)

[6.902] {Sect. 6.10.2.3} X.Y. Zhang, S.Z. Zhao, Q.P. Wang, B. Ozygus, H. We-ber: Modeling of diode-pumped actively Q-switched lasers, IEEE J QE-35p.1912-1918 (1999)

[6.903] {Sect. 6.10.2.3} S. Georgescu, V. Lupei: Q-switch regime of 3-mu m Er:YAGlasers, IEEE J QE-34, p.1031-1040 (1998)

[6.904] {Sect. 6.10.2.3} H. Su, H.Y. Shen, W.X. Lin, R.R. Zeng, C.H. Huang,G. Zhang: Computational model of Q-switch Nd : YAlO3 dual-wavelengthlaser, J Appl Phys 84, p.6519-6522 (1998)

[6.905] {Sect. 6.10.2.3} E. Tanguy, C. Larat, J.P. Pocholle: Modelling of the erbium-ytterbium laser, Opt Commun 153, p.172-183 (1998)

[6.906] {Sect. 6.10.2.3} G.H. Xiao, M. Bass, M. Acharekar: Passively Q-switchedsolid-state lasers with intracavity optical parametric oscillators, IEEE JQE-34, p.2241-2245 (1998)

[6.907] {Sect. 6.10.2.3} G.H. Xiao, M. Bass: Additional experimental confirmationof the predictions of a model to optimize passively Q-switched lasers, IEEEJ QE-34, p.1142-1143 (1998)

[6.908] {Sect. 6.10.2.3} G.H. Xiao, M. Bass: A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,IEEE J QE-33, p.41-44 (1997)

[6.909] {Sect. 6.10.2.3} X.Y. Zhang, S.Z. Zhao, Q.P. Wang, Q.D. Zhang, L.K. Sun,S.J. Zhang: Optimization of Cr4+-doped saturable-absorber Q-switchedlasers, IEEE J QE-33, p.2286-2294 (1997)

[6.910] {Sect. 6.10.2.3} B. Ozygus, K. Ziegler: Determination of losses, gain, andpumping-beam mode overlap for Q-switched end-pumped lasers, Appl PhysLett 68, p.582-583 (1996)

[6.911] {Sect. 6.10.2.3} J.J. Degnan: Optimization of Passively Q-Switched Lasers,IEEE J. QE-31, p.1890-1901 (1995)

[6.912] {Sect. 6.10.2.3} J.J. Degnan: Theory of the Optimally Coupled Q-SwitchedLaser, IEEE J. QE-25, p.214-220 (1989)

[6.913] {Sect. 6.10.2.3} A.E. Siegman: An Antiresonant Ring Interferometer forCoupled Laser Cavities, Laser Output Coupling, Mode Locking, and CavityDumping, IEEE J. QE-9, p.247-250 (1973)

[6.914] {Sect. 6.10.2.3} G.D. Baldwin: Output Power Calculations for a ContinouslyPumped Q-switched YAG:Nd+3 Laser, IEEE J. QE-7, p.220-224 (1971)

844 6. Lasers

[6.915] {Sect. 6.10.2.3} R.B. Kay, G.S. Waldmann: Complete Solutions to the RateEquations Describing Q-Spoiled and PTM Laser Operation, J. Appl. Phys.36, p.1319-1323 (1965)

[6.916] {Sect. 6.10.2.3} J.E. Midwinter: The theory of Q-switching applied to slowswitching and pulse shaping for solid state lasers, Brit. J. Appl. Phys. 16,p.1125-1133 (1965)

[6.917] {Sect. 6.10.2.3} W.R. Sooy: The Natural Selection of Modes in a PassiveQ-Switched Laser, Appl. Phys. Lett. 7, p.36-37 (1965)

[6.918] {Sect. 6.10.2.3} Z.T. Chen, A.B. Grudinin, J. Porta, J.D. Minelly: EnhancedQ switching in double-clad fiber lasers, Optics Letters 23, p.454-456 (1998)

[6.919] {Sect. 6.10.2.3} R.S. Conroy, T. Lake, G.T. Friel, A.T. Kemp, B.D. Sinclair:Self-Q-switched Nd:YVO4 microchip lasers, Optics Letters 23, p.457-459(1998)

[6.920] {Sect. 6.10.3.0} M.S. Demokan: Mode-Locking in Solid State and Semicon-ductor-Lasers (Wiley, New York 1982)

[6.921] {Sect. 6.10.3.0} G. Steinmeyer, D.H. Sutter, L. Gallmann, N. Matuschek,U. Keller: Frontiers in ultrashort pulse generation: Pushing the limits inlinear and nonlinear optics, Science 286, p.1507-1512 (1999)

[6.922] {Sect. 6.10.3.0} F. Krausz, M.E. Fermann, T. Brabec, P.F. Curley, M. Hofer,M.H. Ober, C. Spielmann, E. Wintner, A.J. Schmidt Femtosecond solidstate laser, IEEE J. QE-28, p.2097-2122 (1992)

[6.923] {Sect. 6.10.3.0} S. A. Akhmanov, V. A. Vysloukh, A. S. Chirkin: Optics ofFemtosecond Laser Pulses (American Institute of Physics, New York, 1992)

[6.924] {Sect. 6.10.3.0} T. Binhammer, E. Rittweger, U. Morgner, R. Ell, F.X.Kartner: Spectral phase control and temporal superresolution toward thesingle- cycle pulse, Optics Letters 31, p.1552-1554 (2006)

[6.925] {Sect. 6.10.3.0} T. Fuji, J. Rauschenberger, A. Apolonski, V.S. Yakovlev,G. Tempea, T. Udem, C. Gohle, T.W. Hansch, W. Lehnert, M. Scherer,F. Krausz: Monolithic carrier-envelope phase-stabilization scheme, OpticsLetters 30, p.332-334 (2005)

[6.926] {Sect. 6.10.3.0} C. Rouyer, E. Mazataud, I. Allais, A. Pierre, S. Seznec, C.Sauteret, G. Mourou, A. Migus: Generation of 50-TW femtosecond pulsesin a Ti:sapphire/Nd:glass chain, Opt. Lett. 18, p.214-216 (1993)

[6.927] {Sect. 6.10.3.0} M. Piche: Beam reshaping and self-mode-locking in nonlin-ear laser resonators, Opt. Commun. 86, p.156-160 (1991)

[6.928] {Sect. 6.10.3.0} A. Sullivan, H. Hamster, H.C. Kapteyn, S. Gordon, W.White, H. Nathel, R.J. Blair, R. W. Falcone: Multiterawatt, 100-fs laser,Opt. Lett. 16, p.1406-1408 (1991)

[6.929] {Sect. 6.10.3.0} J.P. Gordon, R.L. Fork: Optical resonator with negativedispersion, Opt. Lett. 9, p.153-155 (1984)

[6.930] {Sect. 6.10.3.0} S.R. Rotman, C. Roxlo, D. Bebelaar, T.K. Yee, M.M. Sa-lour: Generation, Stabilization and Amplification of Subpicosecond Pulses,Appl. Phys. B 28, p.319-326 (1982)

[6.931] {Sect. 6.10.3.0} G.R. Flemming, G.S. Beddard: CW mode-locked dye lasersfor ultra fast spectroscopic studies, Opt. Laser Technol. 10, p.257-264 (1978)

[6.932] {Sect. 6.10.3.0} A.E. Siegmann, D.J. Kuizenga: Active mode-coupling phe-nomena in pulsed and continuous lasers, Opto-Electr. 6, p.43-66 (1974)

[6.933] {Sect. 6.10.3.0} D.J. Bradley, W. Sibbett: Streak-Camera Studies of Pico-second Pulses from a Mode-Locked Nd:Glass Laser, Opt. Commun. 9, p.17-20 (1973)

[6.934] {Sect. 6.10.3.0} G. Girard, M. Michon: Transmission of a Kodak 9740 DyeSolution Under Picosecond Pulses, IEEE J. QE-9, p.979-984 (1973)

6.10.3 Mode Locking and Generation of ps and fs Pulses 845

[6.935] {Sect. 6.10.3.0} D.J. Kuizenga, D.W. Phillion, T. Lund, A.E. Siegman:Simultaneous Q-Switching and Mode-Locking in the CW Nd:YAG Laser,Opt. Commun. 9, p.221-226 (1973)

[6.936] {Sect. 6.10.3.0} D. von der Linde, K.F. Rodgers: Recovery Time of Sat-urable Absorbers for 1.06 µ, IEEE J. QE-9, p.960-961 (1973)

[6.937] {Sect. 6.10.3.0} D. von der Linde: Mode-Locked Lasers and Ultrashort LightPulses, Appl. Phys. 2, p.281-296 (1973)

[6.938] {Sect. 6.10.3.0} D. von der Linde: Experimental Study of Single PicosecondLight Pulses, IEEE J. QE-8, p.328-338 (1972)

[6.939] {Sect. 6.10.3.0} J.A. Fleck: Ultrashort-Pulse Generation by Q-SwitchedLasers, Phys. Rev. B 1, p.84-100 (1970)

[6.940] {Sect. 6.10.3.0} D.J. Kuizenga, A.E. Siegman: FM and AM Mode Lockingof the Homogeneous Laser – Part II: Experimental Results in a Nd:YAGLaser With Internal FM Modulation, IEEE J. QE-6, p.709-715 (1970)

[6.941] {Sect. 6.10.3.0} D. von der Linde, O. Bernecker, W. Kaiser: ExperimentalInvestigation of Single Picosecond Pulses, Opt. Comm. 2, p.149-152 (1970)

[6.942] {Sect. 6.10.3.0} G.R. Huggett: Mode-Locking of CW Lasers by RegenerativeRF Feedback, Appl. Phys. Lett. 13, p.186-187 (1968)

[6.943] {Sect. 6.10.3.1} A.M. Kowalevicz, A. Sennaroglu, A.T. Zare, J.G. Fujimoto:Design principles of q-preserving multipass-cavity femtosecond lasers, J OptSoc Am B Opt Physics 23, p.760-770 (2006)

[6.944] {Sect. 6.10.3.1} N.G. Usechak, G.P. Agrawal: Rate-equation approach forfrequency-modulation mode locking using the moment method, J Opt SocAm B Opt Physics 22, p.2570-2580 (2005)

[6.945] {Sect. 6.10.3.1} Z. Li, X. Yang, E. Tangdiongga, H. Ju, G.D. Khoe, H.J.S.Dorren, D. Lenstra: Simulation of mode-locking by nonlinear polarizationrotation in a semiconductor optical amplifier, Ieee J Quantum Electron 41,p.808-816 (2005)

[6.946] {Sect. 6.10.3.1} M. Nakazawa, H. Kubota, A. Sahara, K. Tamura: Time-domain ABCD matrix formalism for laser mode-locking and optical pulsetransmission, IEEE J QE-34, p.1075-1081 (1998)

[6.947] {Sect. 6.10.3.1} J. Theimer, M. Hayduk, M.F. Krol, J.W. Haus: Mode-locked Cr4+:YAG laser: model and experiment, Opt Commun 142, p.55-60(1997)

[6.948] {Sect. 6.10.3.1} S. Arahira, Y. Matsui, Y. Ogawa: Mode-locking at very highrepetition rates more than terahertz in passively mode-locked distributed-Bragg- reflector laser diodes, IEEE J QE-32, p.1211-1224 (1996)

[6.949] {Sect. 6.10.3.1} R.G.M.P. Koumans, R. Vanroijen: Theory for passive mode-locking in semiconductor laser structures including the effects of self-phasemodulation, dispersion, and pulse collisions, IEEE J QE-32, p.478-492(1996)

[6.950] {Sect. 6.10.3.1} J.A. Leegwater: Theory of mode-locked semiconductorlasers, IEEE J QE-32, p.1782-1790 (1996)

[6.951] {Sect. 6.10.3.1} L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, T.W.Hansch: Route to phase control of ultrashort light pulses, Optics Letters 21,p.2008-2010 (1996)

[6.952] {Sect. 6.10.3.1} R.E. Bridges, R.W. Boyd, G.P. Agrawal: Effect of beamellipticity on self-mode locking in lasers, Opt. Lett. 18, p.2026-2028 (1993)

[6.953] {Sect. 6.10.3.1} H.A. Haus, U. Keller, W.H. Knox: Theory of Coupled Cav-ity Mode Locking with a Resonant Nonlinearity, J OPT SOC AM B-OPTPHYSICS 8, p.1252-1258 (1991)

[6.954] {Sect. 6.10.3.1} J. Hermann, F. Weidner, B. Wilhelmi: Influence of theInversion Depletion in the Active Medium on the Evolution of Ultrashort

846 6. Lasers

Pulses in Passively Mode-Locked Solid-State Lasers, Appl. Phys. 20, p.237-245 (1979)

[6.955] {Sect. 6.10.3.1} G.H.C. New, T.B. O’Hare: A Simple Criterion for PassiveQ-Switching of Lasers, Phys. Lett. 68A, p.27-28 (1978)

[6.956] {Sect. 6.10.3.1} W. Zinth, A. Lauberau, W. Kaiser: Generation of Chirp-Free Picosecond Pulses, Opt. Comm. 22, p.161-176 (1977)

[6.957] {Sect. 6.10.3.1} D. von der Linde, K.F. Rodgers: Suppression of the Spec-tral Narrowing Effect in Lasers Mode-Locked by Saturable Absorbers, Opt.Comm. 8, p.91-94 (1973)

[6.958] {Sect. 6.10.3.1} G.H.C. New: Mode-Locking of Quasi-Continuous Lasers,Opt. Comm. 6, p.188-192 (1972)

[6.959] {Sect. 6.10.3.1} D. Bradley, G.H.C. New, S.J. Caughey: SubpicosecondStructure in Mode-Locked Nd:Glass Lasers, Phys. Lett. 30A, p.78-79 (1969)

[6.960] {Sect. 6.10.3.1} V.S. Letokhov: Ultrashort Fluctuation Pulsed of Light in aLaser, Soviet. Phys. JETP 28, p.1026-1027 (1969)

[6.961] {Sect. 6.10.3.1} V.S. Letokhov: Generation of Ultrafast Light Pulses in aLaser with a Nonlinear Absorber, Soviet. Phys. JETP 28, p.562-568 (1969)

[6.962] {Sect. 6.10.3.1} J.A. Fleck, Jr.: Mode-Locked Pulse Generation in PassivelySwitched Lasers, Appl. Phys. Lett. 12, p.178-181 (1968)

[6.963] {Sect. 6.10.3.1} J.A. Fleck, Jr.: Origin of Short-Pulse Emission by PassivelySwitched Lasers, J. Appl. Phys. 39, p.3318-3327 (1968)

[6.964] {Sect. 6.10.3.1} H. Weber: Generation and Measurement of Ultrashort LightPulses, J. Appl. Phys. 39, p.6041-6044 (1968)

[6.965] {Sect. 6.10.3.1} H.W. Mocker, R.J. Collins: Mode competition and self-locking effects in a Q-switched ruby laser, Appl. Phys. Lett. 7, p.270-273(1965)

[6.966] {Sect. 6.10.3.2} J. Javaloyes, J. Mulet, S. Balle: Passive mode locking oflasers by crossed-polarization gain modulation – art. no. 163902, Phys RevLett 9716, p.3902 (2006)

[6.967] {Sect. 6.10.3.2} P. Kappe, M. Ostermeyer, R. Menzel: Active mode lockingof a phase-conjugating SBS-laser oscillator, Appl. Phys. B 80, p.49-54 (2005)

[6.968] {Sect. 6.10.3.2} M. Guina, O.G. Okhotnikov: Harmonic mode locking bysynchronous optical pumping of a saturable absorber with the residualpump, Optics Letters 28, p.358-360 (2003)

[6.969] {Sect. 6.10.3.2} D.J. Ripin, J.T. Gopinath, H.M. Shen, A.A. Erchak, G.S.Petrich, L.A. Kolodziejski, F.X. Kartner, E.P. Ippen: Oxidized GaAs/AlAsmirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser, Opt Commun 214, p.285-289 (2002)

[6.970] {Sect. 6.10.3.2} A. McWilliam, A.A. Lagatsky, C.T.A. Brown, W. Sibbett,A.E. Zhukov, V.M. Ustinov, A.P. Vasilev, E.U. Rafailov: Quantum-dot-based saturable absorber for femtosecond mode-locked operation of a solid-state laser, Optics Letters 31, p.1444-1446 (2006)

[6.971] {Sect. 6.10.3.2} T.R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Mi-nami, S. Kazaoui, K. Miyashita, M. Tokumoto, Y. Sakakibara: Ultrashortpulse-generation by saturable absorber mirrors based on polymer-embeddedcarbon nanotubes, Opt Express 13, p.8025-8031 (2005)

[6.972] {Sect. 6.10.3.2} W.W. Tang, C. Shu: Self-starting picosecond optical pulsesource using stimulated Brillouin scattering in an optical fiber, Opt Express13, p.1328-1333 (2005)

[6.973] {Sect. 6.10.3.2} R.P. Prasankumar, I. Hartl, J.T. Gopinath, E.P. Ip-pen, J.G. Fujimoto, P. Mak, M.E. Ruane: Design and characterization ofsemiconductor-doped silica film saturable absorbers, J Opt Soc Am B OptPhysics 21, p.851-857 (2004)

6.10.3 Mode Locking and Generation of ps and fs Pulses 847

[6.974] {Sect. 6.10.3.2} P.K. Datta, S. Shivanand Mukhopadhyay, A. Agnesi, A.Lucca: Picosecond pulse generation and its simulation in a nonlinear opticalmirror mode-locked laser, Appl Opt 43, p.2347-2352 (2004)

[6.975] {Sect. 6.10.3.2} M. Guina, A. Vainionpaa, A. Harkonen, L. Orsila, J.Lyytikainen, O.G. Okhotnikov: Vertical-cavity saturable-absorber intensitymodulator (Er-fiber), Optics Letters 28, p.43-45 (2003)

[6.976] {Sect. 6.10.3.2} H.D. Sun, G.J. Valentine, R. Macaluso, S. Calvez, D. Burns,M.D. Dawson, T. Jouhti, M. Pessa: Low-loss 1.3-mu m GaInNAs saturableBragg reflector for high-power picosecond neodymium lasers, Optics Letters27, p.2124-2126 (2002)

[6.977] {Sect. 6.10.3.2} S. Schon, M. Haiml, L. Gallmann, U. Keller: Fluoride semi-conductor saturable-absorber mirror for ultrashort pulse generation, OpticsLetters 27, p.1845-1847 (2002)

[6.978] {Sect. 6.10.3.2} D.I. Chang, H.Y. Kim, M.Y. Jeon, H.K. Lee, D.S. Lim, K.H.Kim, I. Kim, S.T. Kim: Short pulse generation in the mode-locked fibre laserusing cholesteric liquid crystal, Opt Commun 162, p.251-255 (1999)

[6.979] {Sect. 6.10.3.2} V. Couderc, F. Louradour, A. Barthelemy: 2.8 ps pulsesfrom a mode-locked diode pumped Nd : YVO4 laser using quadratic polar-ization switching, Opt Commun 166, p.103-111 (1999)

[6.980] {Sect. 6.10.3.2} P. Glas, M. Naumann, A. Schirrmacher, L. Daweritz, R.Hey: Self pulsing versus self locking in a cw pumped neodymium dopeddouble clad fiber laser, Opt Commun 161, p.345-358 (1999)

[6.981] {Sect. 6.10.3.2} M. Jiang, G. Sucha, M.E. Fermann, J. Jimenez, D. Harter,M. Dagenais, S. Fox, Y. Hu: Nonlinearly limited saturable-absorber modelocking of an erbium fiber laser, Optics Letters 24, p.1074-1076 (1999)

[6.982] {Sect. 6.10.3.2} V.P. Kalosha, M. Muller, J. Herrmann: Theory of solid-statelaser mode locking by coherent semiconductor quantum-well absorbers, JOpt Soc Am B Opt Physics 16, p.323-338 (1999)

[6.983] {Sect. 6.10.3.2} M. Leitner, P. Glas, T. Sandrock, M. Wrage, G. Apos-tolopoulos, A. Riedel, H. Kostial, J. Herfort, K.J. Friedland, L. Daweritz:Self-starting mode locking of a Nd : glass fiber laser by use of the third-ordernonlinearity of low-temperature-grown GaAs, Optics Letters 24, p.1567-1569 (1999)

[6.984] {Sect. 6.10.3.2} J.T. Ahn, H.K. Lee, K.H. Kim, M.Y. Jeon, E.H. Lee: Apassively mode-locked fibre laser with a delayed optical path for increasingthe repetition rate, Opt Commun 148, p.59-62 (1998)

[6.985] {Sect. 6.10.3.2} Y.M. Chang, R. Maciejko, R. Leonelli, A.S. Thorpe: Self-starting passively mode-locked tunable Cr4+:yttrium-aluminum- garnetlaser with a single prism for dispersion compensation, Appl Phys Lett 73,p.2098-2100 (1998)

[6.986] {Sect. 6.10.3.2} J.M. Hopkins, G.J. Valentine, W. Sibbett, J.A. derAu, F.MorierGenoud, U. Keller, A. Valster: Efficient, low-noise, SESAM-basedfemtosecond Cr3+:LiSrAlF6 laser, Opt Commun 154, p.54-58 (1998)

[6.987] {Sect. 6.10.3.2} M.J. Lederer, B. LutherDavies, H.H. Tan, C. Jagadish: Anantiresonant Fabry-Perot saturable absorber for passive mode-locking fab-ricated by metal-organic vapor phase epitaxy and ion implantation design,characterization, and mode-locking, IEEE J QE-34, p.2150-2161 (1998)

[6.988] {Sect. 6.10.3.2} X. Liu, L.J. Qian, F. Wise, Z.G. Zhang, T. Itatani, T.Sugaya, T. Nakagawa, K. Torizuka: Diode-pumped Cr:forsterite laser modelocked by a semiconductor saturable absorber, Appl Opt 37, p.7080-7084(1998)

[6.989] {Sect. 6.10.3.2} V. Magni, M. ZavelaniRossi: Nd:YVO4 laser mode locked bycascading of second order nonlinearities, Opt Commun 152, p.45-48 (1998)

848 6. Lasers

[6.990] {Sect. 6.10.3.2} J.M. Shieh, T.C. Huang, K.F. Huang, C.L. Wang, C.L.Pan: Broadly tunable self-starting passively mode-locked Ti:sapphire laserwith triple-strained quantum-well saturable Bragg reflector, Opt Commun156, p.53-57 (1998)

[6.991] {Sect. 6.10.3.2} H.S. Loka, S.D. Benjamin, P.W.E. Smith: Optical Char-acterization of Low-Temperature-Grown GaAs for Ultrafast All-OpticalSwitching Devices, IEEE J. QE-34, p.1426-1436 (1998)

[6.992] {Sect. 6.10.3.2} S. Gee, R. Coffie, P.J. Delfyett, G. Alphonse, J. Connolly:Intracavity gain and absorption dynamics of hybrid modelocked semicon-ductor lasers using multiple quantum well saturable absorbers, Appl PhysLett 71, p.2569-2571 (1997)

[6.993] {Sect. 6.10.3.2} P.T. Guerreiro, S. Ten, N.F. Borrelli, J. Butty, G.E. Jab-bour, N. Peyghambarian: PbS quantum-dot doped grasses as saturableabsorbers for mode locking of a Cr:forsterite laser, Appl Phys Lett 71,p.1595-1597 (1997)

[6.994] {Sect. 6.10.3.2} M.J. Hayduk, S.T. Johns, M.F. Krol, C.R. Pollock,R.P. Leavitt: Self-starting passively mode-locked tunable femtosecondCr4+:YAG laser using a saturable absorber mirror, Opt Commun 137,p.55-58 (1997)

[6.995] {Sect. 6.10.3.2} S. Namiki, H.A. Haus: Noise of the stretched pulse fiberlaser. 1. Theory, IEEE J QE-33, p.649-659 (1997)

[6.996] {Sect. 6.10.3.2} C.X. Yu, S. Namiki, H.A. Haus: Noise of the stretchedpulse fiber laser. 2. Experiments, IEEE J QE-33, p.660-668 (1997)

[6.997] {Sect. 6.10.3.2} Z.G. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sug-aya, T. Nakagawa: Self-starting mode-locked femtosecond forsterite laserwith a semiconductor saturable-absorber mirror, Optics Letters 22, p.1006-1008 (1997)

[6.998] {Sect. 6.10.3.2} Z.G. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T.Sugaya, T. Nakagawa: Femtosecond Cr:forsterite laser with mode lockinginitiated by a quantum-well saturable absorber, IEEE J QE-33, p.1975-1981 (1997)

[6.999] {Sect. 6.10.3.2} J. Aus der Au, D. Kopf, F. Morier-Genoud, M. Moser,U. Keller: 60-fs pulses from a diode-pumped Nd:glass laser, Opt. Lett. 22,p.307-309 (1997)

[6.1000] {Sect. 6.10.3.2} I.D. Jung, F.X. Kartner, N. Matuschek, D.H. Sutter, F.Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, U. Keller: Semi-conductor saturable absorber mirrors supporting sub-10-fs pulses, Appl.Phys. B 65, p.137-150 (1997)

[6.1001] {Sect. 6.10.3.2} B.C. Collings, J.B. Stark, S. Tsuda, W.H. Knox, J.E.Cunningham, W.Y. Jan, R. Pathak, K. Bergman: Saturable Bragg reflectorself-starting passive mode locking of a Cr4+:YAG laser pumped with adiode-pumped Nd: YVO4 laser, Optics Letters 21, p.1171-1173 (1996)

[6.1002] {Sect. 6.10.3.2} R. Fluck, I.D. Jung, G. Zhang, F.X. Kartner, U. Keller:Broadband saturable absorber for 10-fs pulse generation, Optics Letters21, p.743-745 (1996)

[6.1003] {Sect. 6.10.3.2} D. Kopf, G. Zhang, R. Fluck, M. Moser, U. Keller: All-in-one dispersion-compensating saturable absorber mirror for compact fem-tosecond laser sources, Optics Letters 21, p.486-488 (1996)

[6.1004] {Sect. 6.10.3.2} R.C. Sharp, D.E. Spock, N. Pan, J. Elliot: 190-fs passivelymode-locked thulium fiber laser with a low threshold, Optics Letters 21,p.881-883 (1996)

[6.1005] {Sect. 6.10.3.2} M. Wegmuller, W. Hodel, H.P. Weber: Diode pumpedmode-locked Nd3+ doped fluoride fiber laser emitting at 1.05 mu m, OptCommun 127, p.266-272 (1996)

6.10.3 Mode Locking and Generation of ps and fs Pulses 849

[6.1006] {Sect. 6.10.3.2} S. Tsuda, W.H. Knox, S.T. Cundiff: High efficinecy diodepumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecondlaser, Appl. Phys. Lett. 69, p.1538-1540 (1996)

[6.1007] {Sect. 6.10.3.2} C. Honninger, G. Zhang, U. Keller, A. Giesen: Femtosec-ond Yb:YAG laser using semiconductor saturable absorbers, Optics Letters20, p.2402-2404 (1995)

[6.1008] {Sect. 6.10.3.2} D. Kopf, K.J. Weingarten, L.R. Brovelli, M. Kamp, U.Keller: Diode-pumped 100-fs passively mode-locked Cr:LiSAF laser withan antiresonant Fabry-Perot saturable absorber, Opt. Lett. 19, p.2143-2145(1994)

[6.1009] {Sect. 6.10.3.2} J.R. Lincoln, A.I. Ferguson: All-solid-state self-mode lock-ing of a Nd:YLF laser, Opt. Lett. 19, p.2119-2121 (1994)

[6.1010] {Sect. 6.10.3.2} S. Ruan, J.M. Sutherland, P.M.W. French, J.R. Taylor,P.J. Delfyett, L.T. Florez: Pulse evolution in cw femtosecond Cr (3+):LiS-rAlF6 lasers mode-locked with MQW saturable absorbers, Opt. Commun.110, p.340-344 (1994)

[6.1011] {Sect. 6.10.3.2} J.C. Chen, H.A. Haus, E.P. Ippen: Stability of Lasers ModeLocked by 2 Saturable Absorbers, IEEE J QE-29, p.1228-1232 (1993)

[6.1012] {Sect. 6.10.3.2} H.A. Haus, J.D. Moores, L.E. Nelson: Effect of 3rd-OrderDispersion on Passive Mode Locking, Optics Letters 18, p.51-53 (1993)

[6.1013] {Sect. 6.10.3.2} H.A. Haus: Gaussian Pulse Wings with Passive Modelock-ing, Opt Commun 97, p.215-218 (1993)

[6.1014] {Sect. 6.10.3.2} J. Herrmann: Starting dynamic, self-starting condition andmode-locking threshold in passive, coupled-cavity or Kerr-lens mode-lockedsolid-state lasers, Opt. Commun. 98, p.111-116 (1993)

[6.1015] {Sect. 6.10.3.2} K. Tamura, J. Jacobson, E.P. Ippen, H.A. Haus, J.G. Fu-jimoto: Unidirectional Ring Resonators for Self-Starting Passively Mode-Locked Lasers, Optics Letters 18, p.220-222 (1993)

[6.1016] {Sect. 6.10.3.2} D. Huang, M. Ulman, L.H. Acioli, H.A. Haus, J.G. Fu-jimoto: Self-focusing-induced saturable loss for laser mode locking, Opt.Lett. 17, p.511-513 (1992)

[6.1017] {Sect. 6.10.3.2} D.W. Hughes, M.W. Phillips, J.R.M. Barr, D.C. Hanna:A Laser-Diode-Pumped Nd:Glass Laser: Mode-Locked, High Power, andSingle Frequency Performance, IEEE J. QE-28, p.1010-1017 (1992)

[6.1018] {Sect. 6.10.3.2} S. Chen, J. Wang: Self-starting issues of passive self-focusing mode locking, Opt. Lett. 16, p.1689-1691 (1991)

[6.1019] {Sect. 6.10.3.2} M.J. Damzen, R.A. Lamb, G.K.N. Wong: Ultrashort pulsegeneration by phase locking of multiple stimulated Brillouin scattering,Opt. Comm. 82, p.337-341 (1991)

[6.1020] {Sect. 6.10.3.2} H.A. Haus, E.P. Ippen: Self-starting of passively mode-locked lasers, Opt. Lett. 16, p.1331-1333 (1991)

[6.1021] {Sect. 6.10.3.2} U. Keller, T.K. Woodward, D.L. Sivco, A.Y. Cho: Cou-pled Cavity Resonant Passive Mode Locked Nd Yttrium Lithium FluorideLaser, Optics Letters 16, p.390-392 (1991)

[6.1022] {Sect. 6.10.3.2} F. Krausz, C. Spielmann, T. Brabec, E. Wintner, A.J.Schmidt: Subpicosecond pulse generation from a Nd:glass laser using anonlinear external cavity, Opt. Lett. 15, p.737-739 (1990)

[6.1023] {Sect. 6.10.3.2} S. De Silvestri, P. Laporta, V. Magni: 14-W continuous-wave mode-locked Nd:YAG laser, Opt. Lett. 11p.785-787 (1986)

[6.1024] {Sect. 6.10.3.2} D. Kuhlke, V. Herpers, D. von der Linde: Characteristicsof a Hybridly Mode-Locked cw Dye Laser, Appl. Phys. B 38, p.233-240(1985)

[6.1025] {Sect. 6.10.3.2} P.G. May, W. Sibbett, K. Smith, J.R. Taylor, J.P. Willson:Simultaneous Autocorrelation and Synchroscan Streak Camera Measure-

850 6. Lasers

ment of Cavity Length Detuning Effects in a Synchronously Pumped CWDye Laser, Opt. Comm. 42, p.285-290 (1982)

[6.1026] {Sect. 6.10.3.2} H.A. Haus: Theory of Mode Locking with a Slow SaturableAbsorber, IEEE J. QE-11, p.736-746 (1975)

[6.1027] {Sect. 6.10.3.2} E.P. Ippen, C.V. Shank, A. Dienes: Passive mode-lockingof the cw dye laser, Appl. Phys. Lett. 21, p.348-350 (1972)

[6.1028] {Sect. 6.10.3.2} A.J. DeMaria, D.A. Stetser, H. Heynau: Self Mode-Lockingof Lasers with Saturable Absorbers, Appl. Phys. Lett. 8, p.174-176 (1966)

[6.1029] {Sect. 6.10.3.2} A.J.DeMaria, C.M. Ferrar, G.E. Danielson, Jr.: ModeLocking of a Nd3+-Doped Glass Laser, Appl. Phys. Lett. 8, p.22-24 (1966)

[6.1030] {Sect. 6.10.3.2} J.A.D. Au, D. Kopf, F. MorierGenoud, M. Moser, U.Keller: 60-fs pulses from a diode-pumped Nd:glass laser, Optics Letters22, p.307-309 (1997)

[6.1031] {Sect. 6.10.3.2} M.J. Lederer, B. LutherDavies, H.H. Tan, C. Jagadish:GaAs based anti-resonant Fabry-Perot saturable absorber fabricated bymetal organic vapor phase epitaxy and ion implantation, Appl Phys Lett70, p.3428-3430 (1997)

[6.1032] {Sect. 6.10.3.2} E. Garmire, A. Yariv: Laser Mode-Locking with SaturableAbsorbers, IEEE J. QE-3, p.222-226 (1967)

[6.1033] {Sect. 6.10.3.3} M. Hofmann, S. Bischoff, T. Franck, L. Prip, S.D. Brorson,J. Mork, K. Frojdh: Chirp of monolithic colliding pulse mode-locked diodelasers, Appl Phys Lett 70, p.2514-2516 (1997)

[6.1034] {Sect. 6.10.3.3} S. Bischoff, M.P. Sorensen, J. Mork, S.D. Brorson,T. Franck, J.M. Nielsen, A. Mollerlarsen: Pulse-shaping mechanism incolliding-pulse mode-locked laser diodes, Appl Phys Lett 67, p.3877-3879(1995)

[6.1035] {Sect. 6.10.3.3} G.T. Harvey, M.S. Heutmaker, P.R. Smith, M.C. Nuss,U. Keller, J.A. Valdmanis: Timing Jitter and Pump Induced AmplitudeModulation in the Colliding Pulse Mode Locked (cpm) Laser, IEEE J QE-27, p.295-301 (1991)

[6.1036] {Sect. 6.10.3.3} M.C. Nuss, R. Leonhardt, W. Zinth: Stable operatioon ofa synchronously pumped colliding-pulse mode-locked ring dye laser, Opt.Lett. 10, p.16-18 (1985)

[6.1037] {Sect. 6.10.3.3} R.L. Fork, Ch.V. Shank, R. Yen, C.A. Hirlimann: Femto-second Optical Pulses, IEEE J. QE-19, p.500-506 (1983)

[6.1038] {Sect. 6.10.3.3} C.V. Shank, C. Hirlimann: New experiments in femtosec-ond condensed matter spectroscopy, Helv. Phys. Acta 56, p.373-381 (1983)

[6.1039] {Sect. 6.10.3.3} R.L. Fork, B.I. Greene, C.V. Shank: Generation of opticalpulses shorter than 0.1 psec by colliding pulse mode locking, Appl. Phys.Lett. 38, p.671-672 (1981)

[6.1040] {Sect. 6.10.3.4} V.L. Kalashnikov, E. Sorokin, S. Naumov, I.T. Sorokina:Spectral properties of the Kerr-lens mode-locked Cr4+:YAG laser, J OptSoc Am B Opt Physics 20, p.2084-2092 (2003)

[6.1041] {Sect. 6.10.3.4} C. Jirauschek, F.X. Kartner, U. Morgner: SpatiotemporalGaussian pulse dynamics in Kerr-lens mode-locked lasers, J Opt Soc AmB Opt Physics 20, p.1356-1368 (2003)

[6.1042] {Sect. 6.10.3.4} I.P. Bilinsky, R.P. Prasankumar, J.G. Fujimoto: Self-starting mode locking and Kerr-lens mode locking of a Ti : Al2O3 laser byuse of semiconductor-doped glass structures, J Opt Soc Am B Opt Physics16, p.546-549 (1999)

[6.1043] {Sect. 6.10.3.4} M.J. Bohn, R.J. Jones, J.C. Diels: Mutual Kerr-lens mode-locking, Opt Commun 170, p.85-92 (1999)

6.10.3 Mode Locking and Generation of ps and fs Pulses 851

[6.1044] {Sect. 6.10.3.4} L.J. Qian, X. Liu, F.W. Wise: Femtosecond Kerr-lens modelocking with negative nonlinear phase shifts, Optics Letters 24, p.166-168(1999)

[6.1045] {Sect. 6.10.3.4} B. Henrich, R. Beigang: Self-starting Kerr-lens mode lock-ing of a Nd:YAG-laser, Opt Commun 135, p.300-304 (1997)

[6.1046] {Sect. 6.10.3.4} X.G. Huang, F.R. Huang, W.K. Lee, M.R. Wang: Cavitydesign of a compact Kerr-lens mode-locking laser, Opt Commun 142, p.249-252 (1997)

[6.1047] {Sect. 6.10.3.4} I.D. Jung, F.X. Kartner, N. Matuschek, D.H. Sutter, F.MorierGenoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi:Self-starting 6.5-fs pulses from a Ti:Sapphire laser, Optics Letters 22,p.1009-1011 (1997)

[6.1048] {Sect. 6.10.3.4} A. Ritsataki, P.M.W. French, G.H.C. New: A numericalmodel of Kerr-lens mode-locking, Opt Commun 142, p.315-321 (1997)

[6.1049] {Sect. 6.10.3.4} G.J. Valentine, J.M. Hopkins, P. LozaAlvarez, G.T.Kennedy, W. Sibbett, D. Burns, A. Valster: Ultralow-pump-threshold, fem-tosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInPlaser diode, Optics Letters 22, p.1639-1641 (1997)

[6.1050] {Sect. 6.10.3.4} B.E. Bouma, J.G. Fujimoto: Compact Kerr-lens mode-locked resonators, Optics Letters 21, p.134-136 (1996)

[6.1051] {Sect. 6.10.3.4} M. Lettenberger, K. Wolfrum: Optimized Kerr lens mode-locking of a pulsed Nd:KGW laser, Opt Commun 131, p.295-300 (1996)

[6.1052] {Sect. 6.10.3.4} K. Read, F. Blonigen, N. Riccelli, M.E. Murnane, H.Kapteyn: Low-threshold operation of an ultrashort-pulse mode-locked Ti:sapphire laser, Optics Letters 21, p.489-491 (1996)

[6.1053] {Sect. 6.10.3.4} J. Solis, J. Siegel, C.N. Afonso, N.P. Barry, R. Mellish,P.M.W. French: Experimental study of a self-starting Kerr-lens mode-locked titanium-doped sapphire laser, Opt Commun 123, p.547-552 (1996)

[6.1054] {Sect. 6.10.3.4} I.T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H.P.Jenssen, M.A. Noginov: Efficient continuous wave TEM (00) and femtosec-ond Kerr lens mode-locked Cr:LiSrGaF laser, Optics Letters 21, p.204-206(1996)

[6.1055] {Sect. 6.10.3.4} I.T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho,H.P. Jenssen, R. Szipocs: Prismless passively mode-locked femtosecondCr:LiSGaF laser, Optics Letters 21, p.1165-1167 (1996)

[6.1056] {Sect. 6.10.3.4} Y.P. Tong, J.M. Sutherland, P.M.W. French, J.R. Tay-lor, A.V. Shestakov, B.H.T. Chai: Self-starting Kerr-lens mode-locked fem-tosecond Cr4+:YAG and picosecond Pr3+:YLF solid-state lasers, OpticsLetters 21, p.644-646 (1996)

[6.1057] {Sect. 6.10.3.4} M.J.P. Dymott, A.I. Ferguson: Self mode locked diodepumped Cr:LiSAF laser producing 34- fs pulses at 42-mW average power,Optics Letters 20, p.1157-1159 (1995)

[6.1058] {Sect. 6.10.3.4} G. Cerullo, S. DeSilvestri, V. Magni: Self-Starting Kerr-Lens Mode Locking of a Ti-Sapphire Laser, Optics Letters 19, p.1040-1042(1994)

[6.1059] {Sect. 6.10.3.4} G. Cerullo, S. De Silvestri, V. Magni, L. Pallaro: Res-onators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers, Opt.Lett. 19, p.807-809 (1994)

[6.1060] {Sect. 6.10.3.4} M.J.P. Dymott, A.I. Ferguson: Self-mode-locked diode-pumped Cr:LiSAF laser, Opt. Lett. 19, p.1988-1990 (1994)

[6.1061] {Sect. 6.10.3.4} D. Kopf, K.J. Weingarten, L.R. Brovelli, M. Kamp, U.Keller: Diode-pumped 100-fs passively mode-locked Cr:LiSAF laser withan antiresonant Fabry-Perot saturable absorber, Opt. Lett. 19, p.2143-2145(1994)

852 6. Lasers

[6.1062] {Sect. 6.10.3.4} P.M. Mellish, P.M.W. French, J.R. Taylor, P.J. Delfyett,L.T. Florez: All-solid-state femtosecond diode-pumped Cr:LiSAF laser,Electron. Lett. 30, p.223-224 (1994)

[6.1063] {Sect. 6.10.3.4} J. Zhou, G. Taft, C.-P. Huang, M.M. Murnane, H.C.Kapteyn, I.P. Christov: Pulse evolution in a broad-bandwidth Ti:sapphirelaser,, Opt. Lett. 19, p.1149-1151 (1994)

[6.1064] {Sect. 6.10.3.4} J. Zhou, C.-P. Huang, C. Shi, M.M. Murnane, H.C.Kapteyn: Generation of 21-fs millijoule-energy pulses by use of Ti:sapphire,Opt. Lett. 19, p.126-128 (1994)

[6.1065] {Sect. 6.10.3.4} P. Beaud, M. Richardson, E.J. Miesak, B.H.T. Chai: 8-TW90-fs Cr:LiSAF laser, Opt. Lett. 18, p.1550-1552 (1993)

[6.1066] {Sect. 6.10.3.4} T. Brabec, P.F. Curley, Ch. Spielmann, E. Wintner, A.J.Schmidt: Hard-aperture Kerr-lens mode locking, J. Opt. Soc. Am. B 10,p.1029-1034 (1993)

[6.1067] {Sect. 6.10.3.4} P.F. Curley, C. Spielmann, T. Brabec, F. Krausz, E. Wint-ner, A.J. Schmidt: Operation of a femtosecond Ti:sapphire solitary laser inthe vicinity of zero group-delay dispersion, Opt. Lett. 18, p.54-56 (1993)

[6.1068] {Sect. 6.10.3.4} P.M.W. French, R. Mellish, J.R. Taylor, P.J. Delfyett, L.T.Florez: Mode-locked all-solid-state diode-pumped Cr:LiSAF laser, Opt.Lett. 18, p.1934-1936 (1993)

[6.1069] {Sect. 6.10.3.4} Y.M. Liu, P.R. Prucnal: Slow Amplitude Modulation inthe Pulse Train of a Self-Mode-Locked Ti:Sapphire Laser, IEEE J. QE-29,p.2663-2669 (1993)

[6.1070] {Sect. 6.10.3.4} V. Magni, G. Cerullo, S. DeSilvestri: ABCD matrix analy-sis of propagation of gaussian beams through Kerr media, Opt. Commun.96, p.348-355 (1993)

[6.1071] {Sect. 6.10.3.4} V. Magni, G. Cerullo, S. DeSilvestri: Closed form gaussianbeam analysis of resonators containing a Kerr medium for femtosecondlasers, Opt. Commun. 101, p.365-370 (1993)

[6.1072] {Sect. 6.10.3.4} Y. Pang, V. Yanovsky, F. Wise, B.I. Minkov: Self-mode-locked Cr:forsterite laser, Opt. Lett. 18, p.1168-1170 (1993)

[6.1073] {Sect. 6.10.3.4} A. Seas, V. Petricevic, R.R. Alfano: Self-mode-lockedchromium-doped forsterite laser generates 50-fs pulses-, Opt. Lett. 18,p.891-893 (1993)

[6.1074] {Sect. 6.10.3.4} A. Sennaroglu, C.R. Pollock, H. Nathel: Generation of 48-fs pulses and measurement of crystal dispersion by using a regenerativelyinitiated self-mode-locked chromium-doped forsterite laser, Opt. Lett. 18,p.826-828 (1993)

[6.1075] {Sect. 6.10.3.4} V. Yanovsky, Y. Pang, F. Wise, B.I. Minkov: Generationof 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimizedgroup-delay dispersion, Opt. Lett. 18, p.1541-1543 (1993)

[6.1076] {Sect. 6.10.3.4} T. Brabec, C. Spielmann, P.F. Curley, F. Krausz: Kerrlens mode locking, Opt. Lett. 17, p.1292-1294 (1992)

[6.1077] {Sect. 6.10.3.4} T. Brabec, C.H. Spielmann, F. Krausz: Limits of pulseshortening in solitary lasers, Opt. Lett. 17, p.748-750 (1992)

[6.1078] {Sect. 6.10.3.4} J.M. Jacobson, K. Naganuma, H.A. Haus, J.G. Fujimoto,A.G. Jacobson: Femtosecond Pulse Generation in a Ti-Al2O3 Laser byUsing 2nd-Order and 3rd-Order Intracavity Dispersion, Optics Letters 17,p.1608-1610 (1992)

[6.1079] {Sect. 6.10.3.4} K.X. Liu, C.J. Flood, D.R. Walker, H.M. van Driel: Kerrlens mode locking of a diode-pumped Nd:YAG laser, Opt. Lett. 17, p.1361-1363 (1992)

6.10.3 Mode Locking and Generation of ps and fs Pulses 853

[6.1080] {Sect. 6.10.3.4} Y.M. Liu, K.W. Sun, P.R. Prucnal, S.A. Lyon: Simplemethod to start and maintain self-mode-locking of a Ti:sapphire laser,Opt. Lett. 17, p.1219-1221 (1992)

[6.1081] {Sect. 6.10.3.4} A. Seas, V. Petricevic, R.R. Alfano: Generation of sub-100-fs pulses from a cw mode-locked chromium-doped forsterite laser, Opt.Lett. 17, p.937-939 (1992)

[6.1082] {Sect. 6.10.3.4} U. Keller, G.W. Thooft, W.H. Knox, J.E. Cunningham:Femtosecond Pulses from a Continuously Self Starting Passively ModeLocked Ti Sapphire Laser, Optics Letters 16, p.1022-1024 (1991)

[6.1083] {Sect. 6.10.3.4} J.D. Kmetec, J.J. Macklin, J.F. Young: 0.5-TW, 125-fsTi:sapphire laser, Opt. Lett. 16, p.1001-1003 (1991)

[6.1084] {Sect. 6.10.3.4} F. Salin, J. Squier, M. Piche: Mode locking of Ti:Al2O3lasers and self-focusing: a Gaussian approximation, Opt. Lett. 16, p.1674-1676 (1991)

[6.1085] {Sect. 6.10.3.4} D.E. Spence, J.M. Evans, W.E. Sleat, W. Sibbett: Re-generatively initiated self-mode-locked Ti:sapphire laser, Opt. Lett. 16,p.1762-1764 (1991)

[6.1086] {Sect. 6.10.3.4} D.E. Spence, P.N. Kean, W. Sibbett: 60-fsec pulse gen-eration from a self-mode-locked Ti:sapphire laser, Opt. Lett. 16, p.42-44(1991)

[6.1087] {Sect. 6.10.3.4} C. Spielmann, F. Krausz, T. Brabec, E. Wintner, A.J.Schmidt: Femtosecond pulse generation from a synchronously pumpedTi:sapphire laser, Opt. Lett. 16, p.1180-1182 (1991)

[6.1088] {Sect. 6.10.3.4} J. Goodberlet, J. Wang, J.G. Fujimoto, P.A. Schulz: Fem-tosecond passively mode-locked Ti:Al2O3 laser with a nonlinear externalcavity, Opt. Lett. 14, p.1125-1127 (1989)

[6.1089] {Sect. 6.10.3.4} J. Jasapara, W. Rudolph, V.L. Kalashnikov, D.O. Krimer,I.G. Polyoko, M. Lenzner: Automodulations in Kerr-lens mode-lockedsolid-state lasers, J Opt Soc Am B Opt Physics 17, p.319-326 (2000)

[6.1090] {Sect. 6.10.3.4} G.R. Boyer, G. Kononovitch: Gain optimization of a Kerr-lens mode-locked Cr:forsterite laser in the CW regime: Theory and exper-iments, Opt Commun 133, p.205-210 (1997)

[6.1091] {Sect. 6.10.3.4} L. Xu, G. Tempea, A. Poppe, M. Lenzner, Ch. Spielmann,R. Krausz, A. Stingl, K. Ferencz: High-power sub-10-fs Ti:sapphire oscil-lators, Appl. Phys. B 65, p.151-159 (1997)

[6.1092] {Sect. 6.10.3.4} B. Golubovic, R.R. Austin, M.K. SteinerShepard, M.K.Reed, S.A. Diddams, D.J. Jones, A.G. VanEngen: Double Gires-Tournoisinterferometer negative-dispersion mirrors for use in tunable mode-lockedlasers, Optics Letters 25, p.275-277 (2000)

[6.1093] {Sect. 6.10.3.4} R. Paschotta, G.J. Spuhler, D.H. Sutter, N. Matuschek, U.Keller, M. Moser, R. Hovel, V. Scheuer, G. Angelow, T. Tschudi: Double-chirped semiconductor mirror for dispersion compensation in femtosecondlasers, Appl Phys Lett 75, p.2166-2168 (1999)

[6.1094] {Sect. 6.10.3.4} K. Gabel, P. Russbuldt, R. Lebert, P. Loosen, R. Poprawe,H. Heyer, A. Valster: Diode pumped, chirped mirror dispersion compen-sated, fs-laser, Opt Commun 153, p.275-281 (1998)

[6.1095] {Sect. 6.10.3.4} D.H. Sutter, I.D. Jung, F.X. Kartner, N. Matuschek, F.Morier-Genoud, V. Scheuer, M. Tilsch, T. Tschudi, U. Keller: Self-starting6.5-fs pulses from a Ti:sapphire laser using a semiconductor saturable ab-sorber and double-chirped mirrors, IEEE J. QE-4, p.169-178 (1998)

[6.1096] {Sect. 6.10.3.4} F.X. Kartner, N. Matuschek, T. Schibli, U. Keller, H.A.Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, T. Tschudi: Design andfabrication of double-chirped mirrors, Opt. Lett. 22, p.831-833 (1997)

854 6. Lasers

[6.1097] {Sect. 6.10.3.4} A.P. Kovacs, K. Osvay, Z. Bor, R. Szipocs: Group delaymeasurement on laser mirrors by spectrally resolved white light interfer-ometry, Optics Letters 20, p.788-790 (1995)

[6.1098] {Sect. 6.10.3.4} A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, R.Szipocs: Sub-1O-fs mirror dispersion controlled Ti:sapphire laser, OpticsLetters 20, p.602-604 (1995)

[6.1099] {Sect. 6.10.3.4} U. Keller: Ultrafast All-Solid-State Laser Technology,Appl. Phys. B 58, p.347-363 (1994)

[6.1100] {Sect. 6.10.3.4} W.H. Knox, N.M. Pearson, K.D. Li, Ch.A. Hirlimann:Interferometric measurements of femtosecond group delay in optical com-ponents, Opt. Lett. 13, p.574-576 (1988)

[6.1101] {Sect. 6.10.3.4} E. Spiller: Broadening of Short Light Pulses by ManyReflections from Multilayer Dielectric Coatings, Appl. Opt. 10, p.557-566(1971)

[6.1102] {Sect. 6.10.3.4} D. Kopf, G.J. Spuhler, K.J. Weingarten, U. Keller: Mode-locked laser cavities with a single prism for dispersion compensation, ApplOpt 35, p.912-915 (1996)

[6.1103] {Sect. 6.10.3.4} A.M. Dunlop, W.J. Firth, E.M. Wright: Master equationfor spatio-temporal beam propagation and Kerr lens mode-locking, OptCommun 138, p.211-226 (1997)

[6.1104] {Sect. 6.10.3.4} J. Herrmann, V.P. Kalosha, M. Muller: Higher-order phasedispersion in femtosecond Kerr-lens mode-locked solid-state lasers: Side-band generation and pulse splitting, Optics Letters 22, p.236-238 (1997)

[6.1105] {Sect. 6.10.3.4} I.P. Christov, V.D. Stoev, M.M. Murnane, H.C. Kapteyn:Sub-10-fs operation of Kerr-lens mode-locked lasers, Optics Letters 21,p.1493-1495 (1996)

[6.1106] {Sect. 6.10.3.4} S. Gatz, J. Herrmann, M. Muller: Kerr-lens mode lockingwithout dispersion compensation, Optics Letters 21, p.1573-1575 (1996)

[6.1107] {Sect. 6.10.3.4} I.P. Christov, V.D. Stoev, M.M. Murnane, H.C. Kapteyn:Mode locking with a compensated space time astigmatism, Optics Letters20, p.2111-2113 (1995)

[6.1108] {Sect. 6.10.3.4} H.A. Haus, J.G. Fujimoto, E.P. Ippen: Analytic Theory ofAdditive Pulse and Kerr Lens Mode Locking, IEEE J QE-28, p.2086-2096(1992)

[6.1109] {Sect. 6.10.3.5} D.W. Huang, G.C. Lin, C.C. Yang: Fiber-grating-basedself-matched additive-pulse mode-locked fiber lasers, IEEE J QE-35, p.138-146 (1999)

[6.1110] {Sect. 6.10.3.5} T.M. Jeong, E.C. Kang, C.H. Nam: Temporal and spec-tral characteristics of an additive-pulse mode-locked Nd : YLF laser withMichelson-type configuration, Opt Commun 166, p.95-102 (1999)

[6.1111] {Sect. 6.10.3.5} G. Sucha, D.S. Chemla, S.R. Bolton: Effects of cavitytopology on the nonlinear dynamics of additive-pulse mode-locked lasers,J Opt Soc Am B Opt Physics 15, p.2847-2853 (1998)

[6.1112] {Sect. 6.10.3.5} P. Heinz, A. Seilmeier: Pulsed diode-pumped additive-pulse mode-locked high-peak- power Nd:YLF laser, Optics Letters 21, p.54-56 (1996)

[6.1113] {Sect. 6.10.3.5} I.V. Melnikov, A.V. Shipulin: Solitary-pulse regimes ofsolid-state laser additively mode locked by a cascading nonlinearity, ApplPhys Lett 69, p.299-301 (1996)

[6.1114] {Sect. 6.10.3.5} S. Namiki, E.P. Ippen, H.A. Haus, K. Tamura: Relaxationoscillation behavior in polarization additive pulse mode-locked fiber ringlasers, Appl Phys Lett 69, p.3969-3971 (1996)

[6.1115] {Sect. 6.10.3.5} G. Lenz, K. Tamura, H.A. Haus, E.P. Ippen: All-solid-statefemtosecond source at 1.55 mu m, Optics Letters 20, p.1289-1291 (1995)

6.10.3 Mode Locking and Generation of ps and fs Pulses 855

[6.1116] {Sect. 6.10.3.5} K. Tamura, E.P. Ippen, H.A. Haus, L.E. Nelson: 77-fspulse generation from generation from a stretched-pulse mode-locked all-fiber ring laser, Opt. Lett. 18, p.1080-1082 (1993)

[6.1117] {Sect. 6.10.3.5} H.A. Haus, J.G. Fujimoto, E.P. Ippen: Analytic Theory ofAdditive Pulse and Kerr Lens Mode Locking, IEEE J. QE-28, p.2086-2096(1992)

[6.1118] {Sect. 6.10.3.5} H.A. Haus, J.G. Fujimoto, E.P. Ippen: Structures for ad-ditive pulse mode locking, J. Opt. Soc. Am. B 8, p.2068-2076 (1991)

[6.1119] {Sect. 6.10.3.5} J. Goodberlet, J. Jacobson, J.G. Fujimoto, P.A. Schulz,T.Y. Fan: Self-starting additive-pulse mode-locked diode-pumped Nd:YAGlaser, Opt. Lett. 15, p.504-506 (1990)

[6.1120] {Sect. 6.10.3.5} F. Krausz, Ch. Spielmann, T. Brabec, E. Wintner, A.J.Schmidt: Self-starting additive-pulse mode locking of a Nd:glass laser, Opt.Lett. 15, p.1082-1084 (1990)

[6.1121] {Sect. 6.10.3.5} L.Y. Liu, J.M. Huxley, E.P. Ippen, H.A. Haus: Self-startingadditive-pulse mode locking of a Nd:YAG laser, Opt. Lett. 15, p.553-555(1990)

[6.1122] {Sect. 6.10.3.5} G.P.A. Malcolm, P.F. Curley, A.I. Ferguson: Addidive-pulse mode locking of a diode-pumped Nd:YLF laser, Opt. Lett. 15, p.1303-1305 (1990)

[6.1123] {Sect. 6.10.3.5} E.P. Ippen, H.A. Haus, L.Y. Liu: Additive pulse modelocking, J. Opt. Soc. Am. B 6, p.1736-1745 (1989)

[6.1124] {Sect. 6.10.3.5} U. Morgner, L. Rolefs, F. Mitschke: Dynamic instabilitiesin an additive-pulse mode-locked Nd: YAG laser, Optics Letters 21, p.1265-1267 (1996)

[6.1125] {Sect. 6.10.3.5} V. Cautaerts, D.J. Richardson, R. Paschotta, D.C. Hanna:Stretched pulse Yb3+:silica fiber laser, Optics Letters 22, p.316-318 (1997)

[6.1126] {Sect. 6.10.3.6} K.S. Abedin, F. Kubota: Widely tunable femtosecond soli-ton pulse generation at a 10-GHz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber, Optics Letters 28, p.1760-1762(2003)

[6.1127] {Sect. 6.10.3.6} P. Grelu, J. Beal, J.M. SotoCrespo: Soliton pairs in a fiberlaser: from anomalous to normal average dispersion regime, Opt Express11, p.2238-2243 (2003)

[6.1128] {Sect. 6.10.3.6} W.S. Man, H.Y. Tan, M.S. Demokan, P.K.A. Wai, D.Y.Tang: Mechanism of intrinsic wavelength tuning and sideband asymmetryin a passively mode-locked soliton fiber ring laser, J Opt Soc Am B OptPhysics 17, p.28-33 (2000)

[6.1129] {Sect. 6.10.3.6} M.E. Fermann, A. Galvanauskas, M.L. Stock, K.K. Wong,D. Harter, L. Goldberg: Ultrawide tunable Er soliton fiber laser amplifiedin Yb-doped fiber, Optics Letters 24, p.1428-1430 (1999)

[6.1130] {Sect. 6.10.3.6} M.E. Grein, L.A. Jiang, Y. Chen, H.A. Haus, E.P. Ippen:Timing restoration dynamics in an actively mode-locked fiber ring laser,Optics Letters 24, p.1687-1689 (1999)

[6.1131] {Sect. 6.10.3.6} M.J. Lederer, B. LutherDavies, H.H. Tan, C. Jagadish,N.N. Akhmediev, J.M. SotoCrespo: Multipulse operation of a Ti : sapphirelaser mode locked by an ion- implanted semiconductor saturable-absorbermirror, J Opt Soc Am B Opt Physics 16, p.895-904 (1999)

[6.1132] {Sect. 6.10.3.6} A.M. Dunlop, E.M. Wright, W.J. Firth: Spatial solitonlaser, Opt Commun 147, p.393-401 (1998)

[6.1133] {Sect. 6.10.3.6} G. Boyer: Dispersive wave generation in a Cr4+:forsteritefemtosecond soliton-like laser, Opt Commun 141, p.279-282 (1997)

[6.1134] {Sect. 6.10.3.6} S. Gray, A.B. Grudinin: Soliton fiber laser with a hybridsaturable absorber, Optics Letters 21, p.207-209 (1996)

856 6. Lasers

[6.1135] {Sect. 6.10.3.6} D.J. Jones, H.A. Haus, E.P. Ippen: Subpicosecond soli-tons in an actively mode-locked fiber laser, Optics Letters 21, p.1818-1820(1996)

[6.1136] {Sect. 6.10.3.6} D.O. Culverhouse, D.J. Richardson, T.A. Birks, P.S.J.Russell: All-fiber sliding-frequency Er3+/Yb3+ soliton laser, Optics Let-ters 20, p.2381-2383 (1995)

[6.1137] {Sect. 6.10.3.6} M.E. Fermann, K. Sugden, I. Bennion: High Power SolitonFiber Laser Based on Pulse Width Control with Chirped Fiber BraggGratings, Optics Letters 20, p.172-174 (1995)

[6.1138] {Sect. 6.10.3.6} M. Hofer, M.H. Ober, R. Hofer, M.E. Fermann, G. Sucha,D. Harter, K. Sugden, I. Bennion, C.A.C. Mendonca, T.H. Chiu: High-power neodymium soliton fiber laser that uses a chirped fiber grating,Optics Letters 20, p.1701-1703 (1995)

[6.1139] {Sect. 6.10.3.6} I.D. Jung, F.X. Kartner, L.R. Brovelli, M. Kamp, U.Keller: Experimental verification of soliton mode locking using only a slowsaturable absorber, Optics Letters 20, p.1892-1894 (1995)

[6.1140] {Sect. 6.10.3.6} C.R. Doerr, H.A. Haus, E.P. Ippen: Asynchronous solitonmode locking, Optics Letters 19, p.1958-1960 (1994)

[6.1141] {Sect. 6.10.3.6} F.M. Mitschke, L.F. Mollenauer: Ultrashort pulses fromthe soliton laser, Opt. Lett. 12, p.407-409 (1987)

[6.1142] {Sect. 6.10.3.6} F.M. Mitschke, L.F. Mollenauer: Stabilizing the solitonlaser, IEEE J. QE-22, p.2242-2252 (1986)

[6.1143] {Sect. 6.10.3.6} L.F. Mollenauer, R.H. Stolen: The soliton laser, Opt. Lett.9, p.13-15 (1984)

[6.1144] {Sect. 6.10.3.6} H.J. Polland, T. Elsaesser, A. Seilmeier, W. Kaiser, M.Kussler, N.J. Marx, B. Sens, K.H. Drexhage: Picosecond Dye Laser Emis-sion in the Infrared between 1.4 and 1.8 µm, Appl. Phys. B 32, p.53-57(1983)

[6.1145] {Sect. 6.10.3.6} D. Marcuse Pulse distortion in single-mode fibers, Appl.Opt. 19, p.1653-1660 (1980)

[6.1146] {Sect. 6.10.3.6} L.F. Mollenauer, R.H. Stolen, J.P. Gordon: ExperimentalObservation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,Phys. Rev. Lett. 45, p.1095-1098 (1980)

[6.1147] {Sect. 6.10.3.6} T.F. Carruthers, I.N. Duling, M. Horowitz, C.R. Menyuk:Dispersion management in a harmonically mode-locked fiber soliton laser,Optics Letters 25, p.153-155 (2000)

[6.1148] {Sect. 6.10.3.6} D. Huhse, O. Reimann, E.H. Bottcher, D. Bimberg: Gen-eration of 290 fs laser pulses by self-seeding and soliton compression, ApplPhys Lett 75, p.2530-2532 (1999)

[6.1149] {Sect. 6.10.3.7} A.V. Muravjov, S.H. Withers, R.C. Strijbos, S.G. Pavlov,V.N. Shastin, R.E. Peale: Actively mode-locked p-Ge laser in Faraday con-figuration, Appl Phys Lett 75, p.2882-2884 (1999)

[6.1150] {Sect. 6.10.3.7} S. Longhi, S. Taccheo, P. Laporta: High-repetition-ratepicosecond pulse generation at 1.5 mu m by intracavity laser frequencymodulation, Optics Letters 22, p.1642-1644 (1997)

[6.1151] {Sect. 6.10.3.7} T.F. Carruthers, I.N. Duling: 10-GHz, 1.3-ps erbium fiberlaser employing soliton pulse shortening, Optics Letters 21, p.1927-1929(1996)

[6.1152] {Sect. 6.10.3.7} O. Guy, V. Kubecek, A. Barthelemy: Mode-locked diode-pumped Nd:YAP laser, Opt Commun 130, p.41-43 (1996)

[6.1153] {Sect. 6.10.3.7} D. Kopf, F.X. Kartner, K.J. Weingarten, U. Keller: Pulseshortening in a Nd:glass laser by gain reshaping and soliton formation,Optics Letters 19, p.2146-2148 (1994)

6.10.3 Mode Locking and Generation of ps and fs Pulses 857

[6.1154] {Sect. 6.10.3.7} J.L. Dallas: Frequency-modulation mode-locking perfor-mance for four Nd3+-doped laser crystals, Appl. Opt. 33, p.6373-6376(1994)

[6.1155] {Sect. 6.10.3.7} U. Keller, K.D. Li, B.T. Khuri-Yakub, D.M. Bloom,K.J. Weingarten, D.C. Gerstenberger: High-frequency acousto-optic modelocker for picosecond pulse generation, Opt. Lett. 15, p.45-47 (1990)

[6.1156] {Sect. 6.10.3.7} F. Krausz, L. Turi, Cs. Kuti, A.J. Schmidt: Active modelocking of lasers by piezoelectrically induced diffraction modulation, Appl.Phys. Lett. 56, p.1415-1417 (1990)

[6.1157] {Sect. 6.10.3.7} L. Turi, Cs. Kuti, F. Krausz: Piezoelectrically InducedDiffraction Modulation of Light, IEEE J. QE-26, p.1234-1240 (1990)

[6.1158] {Sect. 6.10.3.7} P. Heinz, M. Fickenscher, A. Lauberau: Elektro-optic gaincontrol and cavity dumping of a Nd:glass laser with active-passive mode-locking, Opt. Comm. 62, p.343-347 (1987)

[6.1159] {Sect. 6.10.3.7} E.O. Gobel, J. Kuhl, G. Veith: Synchronous Mode Lockingof Semiconductor Laser Diodes by a Picosecond Optoelectronic Switch, J.Appl Phys 56, p.862-864 (1984)

[6.1160] {Sect. 6.10.3.7} C.J. Kennedy: Pulse Chirping in a Nd:YAG Laser, IEEEJ. QE-10, p.528-530 (1974)

[6.1161] {Sect. 6.10.3.7} R.H. Johnson: Characteristics of Acoustooptic CavityDumping in a Mode-Locked Laser, IEEE J. QE-9, p.255-257 (1973)

[6.1162] {Sect. 6.10.3.7} M.F. Becker, D.J. Kuizenka, A.E. Siegman: HarmonicMode Locking of the Nd:YAG Laser, IEEE J. QE-8p.687-693 (1972)

[6.1163] {Sect. 6.10.3.7} L.E. Hargrove, R.L.Fork, M.A. Pollack: Locking of He-Nelaser modes induced by synchronous intracavity modulation, Appl. Phys.Lett. 5, p.4-7 (1964)

[6.1164] {Sect. 6.10.3.7} S.E. Harris, O.P. McDuff: FM Laser Oscillation-Theory,Appl. Phys. Lett. 5, p.205-206 (1964)

[6.1165] {Sect. 6.10.3.7} M. Horowitz, C.R. Menyuk: Analysis of pulse dropout inharmonically mode-locked fiber lasers by use of the Lyapunov method,Optics Letters 25, p.40-42 (2000)

[6.1166] {Sect. 6.10.3.7} F.X. Kartner, D.M. Zumbuhl, N. Matuschek: Turbulencein mode-locked lasers, Phys Rev Lett 82, p.4428-4431 (1999)

[6.1167] {Sect. 6.10.3.7} R. Kiyan, O. Deparis, O. Pottiez, P. Megret, M. Blon-del: Stabilization of actively mode-locked Er-doped fiber lasers in therational-harmonic frequency-doubling mode-locking regime, Optics Letters24, p.1029-1031 (1999)

[6.1168] {Sect. 6.10.3.7} A.A. Mani, P. Hollander, P.A. Thiry, A. Peremans: All-solid-state 12 ps actively passively mode-locked pulsed Nd : YAG laserusing a nonlinear mirror, Appl Phys Lett 75, p.3066-3068 (1999)

[6.1169] {Sect. 6.10.3.7} M.Y. Jeon, H.K. Lee, K.H. Kim, E.H. Lee, W.Y. Oh, B.Y.Kim, H.W. Lee, Y.W. Koh: Harmonically mode-locked fiber laser with anacousto-optic modulator in a Sagnac loop and Faraday rotating mirrorcavity, Opt Commun 149, p.312-316 (1998)

[6.1170] {Sect. 6.10.3.7} S. Pajarola, G. Guekos, H. Kawaguchi: Dual-polarizationoptical pulse generation using a mode-locked two- arm external cavitydiode laser, Opt Commun 154, p.39-42 (1998)

[6.1171] {Sect. 6.10.3.7} K.S. Abedin, N. Onodera, M. Hyodo: Repetition-rate mul-tiplication in actively mode-locked fiber lasers by higher-order FM modelocking using a high-finesse Fabry-Perot filter, Appl Phys Lett 73, p.1311-1313 (1998)

[6.1172] {Sect. 6.10.3.7} D.T. Chen, H.R. Fetterman, A.T. Chen, W.H. Steier, L.R.Dalton, W.S. Wang, Y.Q. Shi: Demonstration of 110 GHz electro-opticpolymer modulators, Appl Phys Lett 70, p.3335-3337 (1997)

858 6. Lasers

[6.1173] {Sect. 6.10.3.7} T. Khayim, M. Yamauchi, D.S. Kim, T. Kobayashi: Fem-tosecond optical pulse generation from a CW laser using an electroopticphase modulator featuring lens modulation, IEEE J QE-35, p.1412-1418(1999)

[6.1174] {Sect. 6.10.3.8} S.N. Vainshtein, G.S. Simin, J.T. Kostamovaara: Deriv-ing of single intensive picosecond optical pulses from a high- power gain-switched laser diode by spectral filtering, J Appl Phys 84, p.4109-4113(1998)

[6.1175] {Sect. 6.10.3.8} J.D. Simon: Ultrashort light pulses, Rev. Sci. Instrum. 60,p.3597-3624 (1989)

[6.1176] {Sect. 6.10.3.8} J.M. Catherall, G.H.C. New, P.M. Radmore: Approach tothe theory of mode locking by synchronous pumping, Opt. Lett. 7, p.319-321 (1982)

[6.1177] {Sect. 6.10.3.8} C.P. Ausschnitt, R.K. Jain, J.P. Heritage: Cavity LengthDetuning Characteristics of the Synchronously Mode-Locked CW DyeLaser, IEEE J. QE-15, p.912-917 (1979)

[6.1178] {Sect. 6.10.3.8} J. Juhl, H. Klingenberg, D. von der Linde: Picosecond andSubpicosecond Pulse Generation in Synchronously Pumped Mode-Lockedcw Dye Lasers, Appl. Phys. 18, p.279-284 (1979)

[6.1179] {Sect. 6.10.3.8} J. Falk. Y.C. See: Internal cw parametric upconversion,Appl. Phys. Lett. 32, p.100-101 (1978)

[6.1180] {Sect. 6.10.3.8} G.W. Fehrenbach, K.J. Gruntz, R.G. Ulbrich: Subpicosec-ond light pulses from synchronously mode-locked dye laser with compositegain and absorber medium, Appl. Phys. Lett. 33, p.159-160 (1978)

[6.1181] {Sect. 6.10.3.8} J.P. Heritage, R.K. Jain: Subpicosecond pulses from atunable cw mode-locked dye laser, Appl. Phys. Lett. 32, p.101-103 (1978)

[6.1182] {Sect. 6.10.3.8} D.M. Kim, J. Kuhl, R. Lambrich, D. von der Linde: Char-acteristics of Picosecond Pulses Generated from Synchronously PumpedCW Dye Laser System, Opt. Comm. 27, p.123-126 (1978)

[6.1183] {Sect. 6.10.3.8} J.P. Ryan, L.S. Goldberg, D.J. Bradley: Comparisionof Synchronous Pumping and Passive Mode-Locking of CW Dye Lasersfor the Generation of Picosecond and Subpicosecond Light Pulses, Opt.Comm. 27, p.127-132 (1978)

[6.1184] {Sect. 6.10.3.8} N.J. Frigo, T. Daly, H. Mahr: A Study of Forced ModeLocked CW Dye Laser, IEEE J. QE-13p.101-109 (1977)

[6.1185] {Sect. 6.10.3.8} Z.A. Yasa, O. Teschke: Picosecond Pulse Generation inSynchronously Pumped Dye Lasers, Opt. Comm. 15, p.169-172 (1975)

[6.1186] {Sect. 6.10.3.8} C.K. Chan, S.O. Sari: Tunable dye laser pulse converterfor production of picosecond pulses, Appl. Phys. Lett. 25, p.403-406 (1974)

[6.1187] {Sect. 6.10.3.8} D.J. Kuizenga, A.E. Siegman: FM and AM Mode Lockingof the Homogeneous Laser – Part I: Theory, IEEE J. QE-6, p.694-708(1970)

[6.1188] {Sect. 6.10.3.8} D.J. Kuizenga, A.E. Siegman: FM Laser Operation of theNd:YAG Laser, IEEE J. QE-6, p.673-677 (1970)

[6.1189] {Sect. 6.10.4.1} P.P. Yaney, D.A.V. Kliner, P.E. Schrader, R.L. Farrow:Distributed-feedback dye laser for picosecond ultraviolet and visible spec-troscopy, Rev Sci Instr 71, p.1296-1305 (2000)

[6.1190] {Sect. 6.10.4.1} M. Maeda, Y. Oki, K. Imamura: Ultrashort pulse genera-tion from an integrated single-chip dye laser, IEEE J QE-33, p.2146-2149(1997)

[6.1191] {Sect. 6.10.4.1} A. Muller: Two independently tunable distributed feed-back dye lasers pumped by a single picosecond Nd:YAG laser, Appl. Phys.B 63, p.443-450 (1996)

6.10.4 Other Methods of Short Pulse Generation 859

[6.1192] {Sect. 6.10.4.1} F. Raksi, W. Heuer, H. Zacharias: A High-Power Sub-picosecond Distributed Feedback Dye Laser System Pumped by a Mode-Locked Nd:YAG Laser, Appl. Phys. B. 53, p.97-100 (1991)

[6.1193] {Sect. 6.10.4.1} G. Szabo, Z. Bor: 300 Femtosecond Pulses at 497 Nanome-ter Generated by an Excimer Laser Pumped Cascade of Distributed Feed-back Dye Lasers, Appl. Phys. B. 47, p.299-302 (1988)

[6.1194] {Sect. 6.10.4.1} S. Szatmari, B. Rasz: Generation of 320 fs Pulses with aDistributed Feedback Dye Laser, Appl. Phys. B 43, p.93-97 (1987)

[6.1195] {Sect. 6.10.4.1} J. Hebling, Z. Bor: Distributed Feedback Dye LaserPumped by a Laser Having a Low Degree of Coherence, J Phys E-SCIENTIFIC INSTRUMENTS 17, p.1077-1080 (1984)

[6.1196] {Sect. 6.10.4.1} G. Szabo, Z. Bor, A. Muller, B. Nikolaus, B. Racz: Trav-elling Wave Pumped Ultrashort Pulse Distributed Feedback Dye Laser,Appl Phys B 34, p.145-147 (1984)

[6.1197] {Sect. 6.10.4.1} S. Szatmari, Z. Bor: Directional and Wavelength Sweep ofDistributed Feedback Dye Laser Pulses, Appl Phys B 34, p.29-31 (1984)

[6.1198] {Sect. 6.10.4.1} Zs. Bor, B. Racz, G. Szabo: Picosecond Pulse Generationby Distributed Feedback Dye Lasers, Helvetica Physica Acta 56, p.383-392(1983)

[6.1199] {Sect. 6.10.4.1} C.V. Shank, J.E. Bjorkholm, H. Kogelnik: Tunable distri-buted-feedback dye lasers, Appl. Phys. Lett. 18, p.395-396 (1971)

[6.1200] {Sect. 6.10.4.3} J.C. Chanteloup, E. Salmon, C. Sauteret, A. Migus, P.Zeitoun, A. Klisnick, A. Carillon, S. Hubert, D. Ros, P. Nickles et al.: Pulse-front control of 15-TW pulses with a tilted compressor, and application tothe subpicosecond traveling-wave pumping of a soft-x- ray laser, J Opt SocAm B Opt Physics 17, p.151-157 (2000)

[6.1201] {Sect. 6.10.4.3} P.O.J. Scherer, A. Seilmeier, W. Kaiser: Ultrafast intra-and intermolecular energy transfer in solutions after selective infrared ex-citation, J. Chem. Phys. 83, p.3948-3957 (1985)

[6.1202] {Sect. 6.10.4.3} Zs. Bor, S. Szatmari, A. Muller: Picosecond Pulse Short-ening by Travelling Wave Amplified Spontaneous Emission, Appl. Phys. B32, p.101-104 (1983)

[6.1203] {Sect. 6.10.4.3} D.H. Auston: Transverse Mode Locking, IEEE J. QE-4,p.420-422 (1968)

[6.1204] {Sect. 6.10.5} S. Wieczorek, W.W. Chow: Global view of nonlinear dy-namics in coupled-cavity lasers – a bifurcation study, Opt Commun 246,p.471-493 (2005)

[6.1205] {Sect. 6.10.5} K. Green, B. Krauskopf: Bifurcation analysis of a semicon-ductor laser subject to non- instantaneous phase-conjugate feedback, OptCommun 231, p.383-393 (2004)

[6.1206] {Sect. 6.10.5} T. Heil, J. Mulet, I. Fischer, C.R. Mirasso, M. Peil, P. Colet,W. Elsasser: ON/OFF phase shift keying for chaos-encrypted communica-tion using external-cavity semiconductor lasers, Ieee J Quantum Electron38, p.1162-1170 (2002)

[6.1207] {Sect. 6.10.5} N. Gross, W. Kinzel, I. Kanter, M. Rosenbluh, L.Khaykovich: Synchronization of mutually versus unidirectionally coupledchaotic semiconductor lasers, Opt Commun 267, p.464-468 (2006)

[6.1208] {Sect. 6.10.5} P.H. Wang, L. Zhan, Z.C. Gu, Q.H. Ye, Y.X. Xia: Generationof the 11th order rational harmonic mode-locked pulses with an arbitrarynumerator in fiber-ring lasers, Opt Commun 238, p.345-349 (2004)

[6.1209] {Sect. 6.10.5} D. Pieroux, P. Mandel: Low-frequency pulsations in class-B solid-state lasers with delayed feedback, Optics Letters 27, p.1528-1530(2002)

860 6. Lasers

[6.1210] {Sect. 6.10.5} C.O.Weiss, F.Vilaseca: Dynamics of Lasers (VCH, Wein-heim, 1991)

[6.1211] {Sect. 6.10.5} W. Gadomski, B. RatajskaGadomska: Homoclinic orbits andchaos in the vibronic short-cavity standing- wave alexandrite laser, J OptSoc Am B Opt Physics 17, p.188-197 (2000)

[6.1212] {Sect. 6.10.5} H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, R.P.H.Chang: Random laser action in semiconductor powder, Phys Rev Lett 82,p.2278-2281 (1999)

[6.1213] {Sect. 6.10.5} G.J. deValcarcel, E. Roldan, F. Prati: Risken-Nummedal-Graham-Haken instability in class-B lasers, Opt Commun 163, p.5-8 (1999)

[6.1214] {Sect. 6.10.5} J.B. Geddes, K.M. Short, K. Black: Extraction of signalsfrom chaotic laser data, Phys Rev Lett 83, p.5389-5392 (1999)

[6.1215] {Sect. 6.10.5} A. Hohl, A. Gavrielides: Bifurcation cascade in a semicon-ductor laser subject to optical feedback, Phys Rev Lett 82, p.1148-1151(1999)

[6.1216] {Sect. 6.10.5} A. Imhof, W.L. Vos, R. Sprik, A. Lagendijk: Large dispersiveeffects near the band edges of photonic crystals, Phys Rev Lett 83, p.2942-2945 (1999)

[6.1217] {Sect. 6.10.5} H.D.I. Abarbanel, M.B. Kennel: Synchronizing high-dimen-sional chaotic optical ring dynamics, Phys Rev Lett 80, p.3153-3156 (1998)

[6.1218] {Sect. 6.10.5} V. Espinosa, F. Silva, G.J. deValcarcel, E. Roldan: Class-Btwo-photon Fabry-Perot laser, Opt Commun 155, p.292-296 (1998)

[6.1219] {Sect. 6.10.5} A. Hohl, A. Gavrielides: Experimental control of a chaoticsemiconductor laser, Optics Letters 23, p.1606-1608 (1998)

[6.1220] {Sect. 6.10.5} L. Larger, J.P. Goedgebuer, J.M. Merolla: Chaotic oscil-lator in wavelength: A new setup for investigating differential differenceequations describing nonlinear dynamics, IEEE J QE-34, p.594-601 (1998)

[6.1221] {Sect. 6.10.5} C. Szwaj, S. Bielawski, D. Derozier, T. Erneux: Faradayinstability in a multimode laser, Phys Rev Lett 80, p.3968-3971 (1998)

[6.1222] {Sect. 6.10.5} A. Uchida, T. Sato, F. Kannari: Suppression of chaotic os-cillations in a microchip laser by injection of a new orbit into the chaoticattractor, Optics Letters 23, p.460-462 (1998)

[6.1223] {Sect. 6.10.5} G. Vaschenko, M. Giudici, J.J. Rocca, C.S. Menoni, J.R.Tredicce, S. Balle: Temporal dynamics of semiconductor lasers with opticalfeedback, Phys Rev Lett 81, p.5536-5539 (1998)

[6.1224] {Sect. 6.10.5} A.G. Vladimirov: Bifurcation analysis of a bidirectional classB ring laser, Opt Commun 149, p.67-72 (1998)

[6.1225] {Sect. 6.10.5} G. Levy, A.A. Hardy: Chaotic effects in flared lasers: Anumerical analysis, IEEE J QE-33, p.26-32 (1997)

[6.1226] {Sect. 6.10.5} J.T. Malos, R. Dykstra, M. Vaupel, C.O. Weiss: Vortexstreets in a cavity with higher-order standing waves, Optics Letters 22,p.1056-1058 (1997)

[6.1227] {Sect. 6.10.5} S.V. Sergeyev, G.G. Krylov: Dynamics operations and chaoscontrol for an anisotropic A-class laser with a saturable absorber, OptCommun 139, p.270-286 (1997)

[6.1228] {Sect. 6.10.5} Q.S. Yang, P.Y. Wang, H.W. Yin, J.H. Dai, D.J. Zhang:Global stability and oscillation properties of a two-level model for a class-B laser with feedback, Opt Commun 138, p.325-329 (1997)

[6.1229] {Sect. 6.10.5} I. Fischer, G.H.M. Vantartwijk, A.M. Levine, W. Elsasser,E. Gobel, D. Lenstra: Fast pulsing and chaotic itinerancy with a drift in thecoherence collapse of semiconductor lasers, Phys Rev Lett 76, p.220-223(1996)

6.10.5 Chaotic Behavior 861

[6.1230] {Sect. 6.10.5} P. Khandokhin, Y. Khanin, J.C. Celet, D. Dangoisse, P. Glo-rieux: Low frequency relaxation oscillations in class B lasers with feedback,Opt Commun 123, p.372-384 (1996)

[6.1231] {Sect. 6.10.5} J.T. Malos, K. Staliunas, M. Vaupel, C.O. Weiss: Three-dimensional representation of two-dimensional vortex dynamics in lasers,Opt Commun 128, p.123-135 (1996)

[6.1232] {Sect. 6.10.5} D.Y. Tang, N.R. Heckenberg: Spontaneous self-organisationin chaotic laser mode-mode interaction, Opt Commun 131, p.89-94 (1996)

[6.1233] {Sect. 6.10.5} M. Sanmiguel: Phase instabilities in the laser vector complexGinzburg- Landau equation, Phys Rev Lett 75, p.425-428 (1995)

[6.1234] {Sect. 6.10.5} C. Serrat, A. Kulminskii, R. Vilaseca, R. Corbalan: Polar-ization chaos in an optically pumped laser, Optics Letters 20, p.1353-1355(1995)

[6.1235] {Sect. 6.10.5} G.C. Valley, G.J. Dunning: Observation of optical chaos ina phase-conjugate resonator, Opt. Lett. 9, p.513-515 (1984)

[6.1236] {Sect. 6.10.5} R. Hauck, F. Hollinger, H. Weber: Chaotic and PeriodicEmission of high power solid state lasers, Opt. Commun. 47, p.141-145(1983)

[6.1237] {Sect. 6.10.5} F.T. Arecchi, A. Bern’e, P. Bulamacchi: High-order fluctu-ations in a single-mode laser field, Phys. Rev. Lett. 16, p.32-35 (1966)

[6.1238] {Sect. 6.10.5} K. Otsuka, J.L. Chern, J.S. Lih: Experimental suppressionof chaos in a modulated multimode laser, Optics Letters 22, p.292-294(1997)

[6.1239] {Sect. 6.10.5} E.M. Wright, P. Meystre, W.J. Firth: Nonlinear Theory ofSelf-Oscillations in a Phase-Conjugate Resonator, Opt. Comm. 51, p.428-432 (1984)

[6.1240] {Sect. 6.11.0} S. Serak, N. Tabiryan, B. Zeldovich: High-efficiency 1.5 mum thick optical axis grating and its use for laser beam combining, OpticsLetters 32, p.169-171 (2007)

[6.1241] {Sect. 6.11.0} L. Fan, M. Fallahi, J. Hader, A.R. Zakharian, J.V. Moloney,J.T. Murray, R. Bedford, W. Stolz, S.W. Koch: Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme, OpticsLetters 31, p.3612-3614 (2006)

[6.1242] {Sect. 6.11.0} P.B. Phua, Y.L. Lim: Coherent polarization locking withnear-perfect combining efficiency, Optics Letters 31, p.2148-2150 (2006)

[6.1243] {Sect. 6.11.0} G.D. Goodno, H. Komine, S.J. McNaught, S.B. Weiss, S.Redmond, W. Long, R. Simpson, E.C. Cheung, D. Howland, P. Epp, M.Weber, M. McClellan, J. Sollee, H. Injeyan: Coherent combination of high-power, zigzag slab lasers, Optics Letters 31, p.1247-1249 (2006)

[6.1244] {Sect. 6.11.0} V. Eckhouse, A.A. Ishaaya, L. Shimshi, N. Davidson, A.A.Friesem: Intracavity coherent addition of 16 laser distributions, Optics Let-ters 31, p.350-352 (2006)

[6.1245] {Sect. 6.11.0} H.N. Yum, P.R. Hemmer, A. Heifetz, J.T. Shen, J.K. Lee,R. Tripathi, M.S. Shahriar: Demonstration of a multiwave coherent holo-graphic beam combiner in a polymeric substrate, Optics Letters 30, p.3012-3014 (2005)

[6.1246] {Sect. 6.11.0} H. Bruesselbach, D.C. Jones, M.S. Mangir, M. Minden, J.L.Rogers: Self-organized coherence in fiber laser arrays, Optics Letters 30,p.1339-1341 (2005)

[6.1247] {Sect. 6.11.0} J.L. Rogers, S. Peles, K. Wiesenfeld: Model for high-gainfiber laser arrays, Ieee J Quantum Electron 41, p.767-773 (2005)

[6.1248] {Sect. 6.11} S.J. Augst, A.K. Goyal, R.L. Aggarwal, T.Y. Fan, A. Sanchez:Wavelength beam combining of ytterbium fiber lasers, Optics Letters 28,p.331-333 (2003)

862 6. Lasers

[6.1249] {Sect. 6.11.1} D.W. Hall, M.J. Weber: Modeling Gain Saturation in Neo-dymium Laser Glasses, IEEE J. QE-20, p.831-834 (1984)

[6.1250] {Sect. 6.11.1} W.E. Martin, D. Milam: Gain Saturation in Nd:Doped LaserMaterials, IEEE J. QE-18, p.1155-1163 (1982)

[6.1251] {Sect. 6.11.1} S.M. Yarema, D. Milam: Gain Saturation in Phosphate LaserGlasses, IEEE J. QE-18, p.1941-1946 (1982)

[6.1252] {Sect. 6.11.1} J. Bunkenberg, J. Boles, D.C. Brown, J. Eastman, J. Hoose,R. Hopkins, L. Iwan, S.D. Jacobs, J.H. Kelly, S. Kumpan, S. Letzring,D. Lonobile, L.D. Lund, G. Mourou, S. Refermat, W. Seka, J.M. Soures,K. Walsh: The Omega High-Power Phosphate-Glass System: Design andPerformance, IEEE J. QE-17, p.1620-1628 (1981)

[6.1253] {Sect. 6.11.1} D.R. Speck, E.S. Bliss, J.A. Glaze, J.W. Herris, F.W. Hol-loway, J.T. Hunt, B.C. Johnson, D.J. Kuizenga, R.G. Ozarski, H.G. Patton,P.R. Rupert, G.J. Suski, C.D. Swift, C.E. Thompson: The Shiva Laser-Fusion Facility, IEEE J. QE-17, p.1599-1619 (1981)

[6.1254] {Sect. 6.11.1} C. Yamanaka,Y. Kato, Y. Izawa, K. Yoshida, T. Yamanaka,T. Sasaki, M. Nakatsuka, T. Mochizuki, J. Kuroda, S. Nakai: Nd-DopedPhosphate Glass Laser Systems for Laser-Fusion Research, IEEE J. QE-17,p.1639-1649 (1981)

[6.1255] {Sect. 6.11.1} P. Labudde, W. Seka, H.P. Weber: Gain increase in laseramplifiers by suppression of parasitic oscillations, Appl. Phys. Lett. 29,p.732-734 (1976)

[6.1256] {Sect. 6.11.1} A.N. Chester: Gain Thresholds for Diffuse Parasitic LaserModes, Appl. Opt. 12, p.2139-2146 (1973)

[6.1257] {Sect. 6.11.1} J.I. Davis, W.R. Sooy: The Effects of Saturation and Re-generation in Ruby Laser Amplifiers, Appl. Opt. 3, p.715-718 (1964)

[6.1258] {Sect. 6.11.1} W.W. Rigrod: Gain Saturation and Output Power of OpticalMasers, J. Appl. Phys. 34, p.2602-2609 (1963)

[6.1259] {Sect. 6.11.3.1} A. Brignon, G. Feugnet, J.P. Huignard, J.P. Pocholle:Compact Nd:YAG and Nd:YVO4 amplifiers end-pumped by a high-brightness stacked array, IEEE J QE-34, p.577-585 (1998)

[6.1260] {Sect. 6.11.3.1} A.C. Wilson, J.C. Sharpe, C.R. McKenzie, P.J. Man-son, D.M. Warrington: Narrow-linewidth master-oscillator power amplifierbased on a semiconductor tapered amplifier, Appl Opt 37, p.4871-4875(1998)

[6.1261] {Sect. 6.11.3.1} A. Brignon, G. Feugnet, J.-P. Huignard, J.-P. Pocholle:Compact Nd:YAG and Nd:YVO4 Amplifiers End-Pumped by a High-Brightness Stacked Array, IEEE J. QE-34, p.577-585 (1998)

[6.1262] {Sect. 6.11.3.1} Z. Dai, R. Michalzik, P. Unger, K.J. Ebeling: Numericalsimulation of broad-area high-power semiconductor laser amplifiers, IEEEJ QE-33, p.2240-2254 (1997)

[6.1263] {Sect. 6.11.3.1} R. Paschotta, D.C. Hanna, P. Denatale, G. Modugno, M.Inguscio, P. Laporta: Power amplifier for 1083 nm using ytterbium dopedfibre, Opt Commun 136, p.243-246 (1997)

[6.1264] {Sect. 6.11.3.1} A. Sugiyama, T. Nakayama, M. Kato, Y. Maruyama: Char-acteristics of a dye laser amplifier transversely pumped by copper vaporlasers with a two-dimensional calculation model, Appl Opt 36, p.5849-5854(1997)

[6.1265] {Sect. 6.11.3.1} F. Hosoi, M. Shimura, Y. Nabekawa, K. Kondo, S. Watan-abe: High-power dye laser using steady-state amplification with chirpedpulses, Appl Opt 35, p.1404-1408 (1996)

[6.1266] {Sect. 6.11.3.1} G.J. Linford, E.R. Peressini, W.R. Sooy, M.L. Spaeth:Very Long Lasers, Appl. Opt. 13, p.379-390 (1974)

6.11.3 Amplifier Schemes 863

[6.1267] {Sect. 6.11.3.1} L.M. Frantz, J.S. Nodvik: Theory of Pulse Propagation ina Laser Amplifier, J. Appl. Phys. 34, p.2346-2349 (1963)

[6.1268] {Sect. 6.11.3.1} C. Pare: Optimum laser beam profile for maximum energyextraction from a saturable amplifier, Opt Commun 123, p.762-776 (1996)

[6.1269] {Sect. 6.11.3.2} J.M. Casperson, F.G. Moore, L.W. Casperson: Double-pass high-gain laser amplifiers, J Appl Phys 86, p.2967-2973 (1999)

[6.1270] {Sect. 6.11.3.2} Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, T. Tajime:100-W class diode-pumped Nd : YAG MOPA system with a double-stagerelay-optics scheme, Opt Commun 170, p.275-280 (1999)

[6.1271] {Sect. 6.11.3.2} A. Brignon, G. Feugnet, J.P. Huignard, J.P. Pocholle:Compact Nd:YAG and Nd:YVO4 Amplifiers End-Pumped by a High-Brightness Stacked Array, IEEE J. QE-34, p.577-585 (1998)

[6.1272] {Sect. 6.11.3.2} A. Brignon, G. Feugnet, J.P. Huignard, J.P. Pocholle:Large-field-of-view, high-gain, compact diode-pumped Nd: YAG amplifier,Optics Letters 22, p.1421-1423 (1997)

[6.1273] {Sect. 6.11.3.2} S.D. Butterworth, W.A. Clarkson, N. Moore, G.J. Friel,D.C. Hanna: High-power quasi-cw laser pulses via high-gain diode- pumpedbulk amplifiers, Opt Commun 131, p.84-88 (1996)

[6.1274] {Sect. 6.11.3.3} J.W. Hahn, Y.S. Yoo: Suppression of amplified sponta-neous emission from a four-pass dye laser amplifier, Appl Opt 37, p.4867-4870 (1998)

[6.1275] {Sect. 6.11.3.3} M. Zitelli, E. Fazio, M. Bertolotti: On the design of mul-tipass dye laser amplifiers, IEEE J QE-34, p.609-615 (1998)

[6.1276] {Sect. 6.11.3.3} P. Heinz, A. Seilmeier, A. Piskarskas: Picosecond Nd:YLFlaser-multipass amplifier source pumped by pulsed diodes for the operationof powerful OPOs, Opt Commun 136, p.433-436 (1997)

[6.1277] {Sect. 6.11.3.3} P.F. Curley, C. LeBlanc, G. Cheriaux, G. Darpentigny, P.Rousseau, F. Salin, J.P. Chambaret, A. Antonetti: Multi-pass amplificationof sub-50 fs pulses up to the 4 TW level, Opt Commun 131, p.72-76 (1996)

[6.1278] {Sect. 6.11.3.3} E.S. Lee, J.W. Hahn: Four-pass amplifier for the pulsedamplification of a narrow-bandwidth continuous-wave dye laser, OpticsLetters 21, p.1836-1838 (1996)

[6.1279] {Sect. 6.11.3.3} S. Petit, O. Cregut, C. Hirlimann: A tunable femtosecondpulses amplifier, Opt Commun 124, p.49-55 (1996)

[6.1280] {Sect. 6.11.3.3} M. Lenzner, C. Spielmann, E. Wintner, F. Krausz, A.J.Schmidt: Sub-20-fs, kilohertz-repetition-rate Ti:sapphire amplifier, OpticsLetters 20, p.1397-1399 (1995)

[6.1281] {Sect. 6.11.3.3} J.P. Zhou, C.P. Huang, M.M. Murnane, H.C. Kapteyn:Amplification of 26-fs, 2-TW Pulses Near the Gain Narrowing Limit inTi-Sapphire, Optics Letters 20, p.64-66 (1995)

[6.1282] {Sect. 6.11.3.3} M. Michon, R. Auffret, R. Dumanchin: Selection andMultiple-Pass Amplification of a Single Mode-Locked Optical Pulse, J.Appl. Phys. 41, p.2739-2740 (1970)

[6.1283] {Sect. 6.11.3.3} D.T. Du, J. Squier, S. Kane, G. Korn, G. Mourou, C. Bo-gusch, C.T. Cotton: Terawatt Ti:sapphire laser with a spherical reflectiveoptic pulse expander, Optics Letters 20, p.2114-2116 (1995)

[6.1284] {Sect. 6.11.3.3} W.H. Lowdermilk, J.E. Murray: The multipass amplifier:Theory and numerical analysis, J. Appl. Phys. 51, p.2436-2444 (1980)

[6.1285] {Sect. 6.11.3.4} Y. Nabekawa, Y. Shimizu, K. Midorikawa: Sub-20-fsterawatt-class laser system with a mirrorless regenerative amplifier andan adaptive phase controller, Optics Letters 27, p.1265-1267 (2002)

[6.1286] {Sect. 6.11.3.4} J. Faure, J. Itatani, S. Biswal, G. Cheriaux, L.R. Bruner,G.C. Templeton, G. Mourou: A spatially dispersive regenerative amplifierfor ultrabroadband pulses, Opt Commun 159, p.68-73 (1999)

864 6. Lasers

[6.1287] {Sect. 6.11.3.4} H. Liu, S. Biswal, J. Paye, J. Nees, G. Mourou, C. Hon-ninger, U. Keller: Directly diode-pumped millijoule subpicosecond Yb:glass regenerative amplifier, Optics Letters 24, p.917-919 (1999)

[6.1288] {Sect. 6.11.3.4} V. Shcheslavskiy, F. Noack, V. Petrov, N. Zhavoronkov:Femtosecond regenerative amplification in Cr : forsterite, Appl Opt 38,p.3294-3297 (1999)

[6.1289] {Sect. 6.11.3.4} J. Itatani, J. Faure, M. Nantel, G. Mourou, S. Watanabe:Suppression of the amplified spontaneous emission in chirped-pulse- am-plification lasers by clean high-energy seed-pulse injection, Opt Commun148, p.70-74 (1998)

[6.1290] {Sect. 6.11.3.4} P.J. Delfyett, A. Yusim, S. Grantham, S. Gee, K.Gabel, M. Richardson, G. Alphonse, J. Connolly: Ultrafast semiconduc-tor laser-diode-seeded Cr:LiSAF regenerative amplifier system, Appl Opt36, p.3375-3380 (1997)

[6.1291] {Sect. 6.11.3.4} T.R. Nelson, W.A. Schroeder, C.K. Rhodes, F.G.Omenetto, J.W. Longworth: Short-pulse amplification at 745 nm inTi:sapphire with a continuously tunable regenerative amplifier, Appl Opt36, p.7752-7755 (1997)

[6.1292] {Sect. 6.11.3.4} H. Takada, K. Miyazaki, K.J. Torizuka: Flashlamp-pumped Cr:LiSAF laser amplifier, IEEE J QE-33, p.2282-2285 (1997)

[6.1293] {Sect. 6.11.3.4} V.A. Venturo, A.G. Joly, D. Ray: Pulse compression with ahigh-energy Nd:YAG regenerative amplifier system, Appl Opt 36, p.5048-5052 (1997)

[6.1294] {Sect. 6.11.3.4} A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S.Backus, M.M. Murnane, H.C. Kapteyn, I. Christov, V. Stoev: Ultrafastlaser and amplifier sources, Appl. Phys. B 65, p.161-174 (1997)

[6.1295] {Sect. 6.11.3.4} C.P.J. Barty, T. Guo, C. LeBlanc, F. Raksi, C.Rosepetruck, J. Squier, K.R. Wilson, V.V. Yakovlev, K. Yamakawa: Gen-eration of 18-fs, multiterawatt pulses by regenerative pulse shaping andchirped-pulse amplification, Optics Letters 21, p.668-670 (1996)

[6.1296] {Sect. 6.11.3.4} T. Joo, Y. Jia, G.R. Fleming: Ti:sapphire regenerative am-plifier for ultrashort high-power multikilohertz pulses without an externalstretcher, Opt. Lett. 20, p.389-391 (1995)

[6.1297] {Sect. 6.11.3.4} L. Turi, T. Juhasz: High-power longitudinally and-diode-pumped Nd:YLF regenerative amplifier, Opt. Lett. 20, p.154-156 (1995)

[6.1298] {Sect. 6.11.3.4} M.D. Selker, R.S. Afzal, J.L. Dallas, A.W. Yu: Efficient,diode-laser-pumped, diode-laser-seeded, high-peak-power Nd:YLF regen-erative amplifier, Opt. Lett. 19, p.551-553 (1994)

[6.1299] {Sect. 6.11.3.4} N.P. Barnes, J.C. Barnes: Injection Seeding I: Theory,IEEE J. QE-29, p.2670-2683 (1993)

[6.1300] {Sect. 6.11.3.4} M. Gifford, K.J. Weingarten: Diode-pumped Nd:YLF re-generative amplifier, Opt. Lett. 17, p.1788-1790 (1992)

[6.1301] {Sect. 6.11.3.4} T.E. Dimmick: Semiconductor-laser-pumped, cw mode-locked Nd:phosphate glass laser oscillator and regenerative amplifier, Opt.Lett. 15, p.177-179 (1990)

[6.1302] {Sect. 6.11.3.4} M. Saeed, D. Kim, L.F. DiMauro: Optimization and char-acterization of a high repetition rate, high intensity Nd:YLF regenerativeamplifier, Appl. Opt. 29, p.1752-1757 (1990)

[6.1303] {Sect. 6.11.3.4} P. Bado, M. Bouvier, J. Scott Coe: Nd:YLF mode-lockedoscillator and regenerative amplifier, Opt. Lett. 12, p.319-321 (1987)

[6.1304] {Sect. 6.11.3.4} I.N. Duling III, T. Norris, T. Sizer II, P. Bado, G.A.Mourou: Kilohertz synchronous amplification of 85-femtosecond opticalpulses, J. Opt. Soc. Am. B 2, p.616-618 (1985)

6.11.3 Amplifier Schemes 865

[6.1305] {Sect. 6.11.3.4} R.L. Fork, C.V. Shank, R.T. Yen: Amplification of 70-fsoptical pulses to gigawatt powers, Appl. Phys. Lett. 41, p.223-225 (1982)

[6.1306] {Sect. 6.11.3.4} J.E. Murray, W.H. Lowdermilk: ND:YAG regenerative am-plifier, J. Appl. Phys. 51, p.3548-3555 (1980)

[6.1307] {Sect. 6.11.3.4} J. Squier, C.P.J. Barty, F. Salin, C. LeBlanc, S. Kane: Useof mismatched grating pairs in chirped-pulse amplification systems, ApplOpt 37, p.1638-1641 (1998)

[6.1308] {Sect. 6.11.3.4} O.E. Martinez, C.M.G. Inchauspe: Compact curved-grating stretcher for laser pulse amplification, Optics Letters 22, p.811-813(1997)

[6.1309] {Sect. 6.11.3.4} I.N. Ross, M. Trentelman, C.N. Danson: Optimizationof a chirped-pulse amplification Nd:glass laser, Appl Opt 36, p.9348-9358(1997)

[6.1310] {Sect. 6.11.3.4} M. Trentelman, I.N. Ross, C.N. Danson: Finite size com-pression gratings in a large aperture chirped pulse amplification laser sys-tem, Appl Opt 36, p.8567-8573 (1997)

[6.1311] {Sect. 6.11.3.4} A. Galvanauskas, M.E. Fermann, D. Harter: High-PowerAmplification of Femtosecond Optical Pulses in a Diode-Pumped FiberSystem, Opt.Lett. 19, p.1201-1203 (1994)

[6.1312] {Sect. 6.11.3.4} J.V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, P.Bado: Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition ratein a Ti:Al2O3 regenerative amplifier, Opt. Lett. 18, p.2044-2046 (1993)

[6.1313] {Sect. 6.11.3.4} R.L. Fork, O.E. Martinez, J.P. Gordon: Negative disper-sion using pairs of prisms, Opt. Lett. 9, p.150-152 (1984)

[6.1314] {Sect. 6.11.3.4} A. Braun, S. Kane, T. Norris: Compensation of self-phasemodulation in chirped-pulse amplification laser systems, Optics Letters 22,p.615-617 (1997)

[6.1315] {Sect. 6.11.3.4} D. Strickland, G. Mourou: Compression of AmplifiedChirped Optical Pulses, Opt. Commun. 56, p.219-221 (1985)

[6.1316] {Sect. 6.11.3.5} B.W. Grime, W.B. Roh, T.G. Alley: Phasing of a two-channel continuous-wave master oscillator-power amplifier by use of a fiberphase-conjugate mirror, Optics Letters 30, p.2415-2417 (2005)

[6.1317] {Sect. 6.11.3.5} Y. Ojima, K. Nawata, T. Omatsu: Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with aphase conjugate mirror, Opt Express 13, p.8993-8998 (2005)

[6.1318] {Sect. 6.11.3.5} S. Jackel, I. Moshe, R. Lavi: Comparison of adaptive opticsand phase-conjugate mirrors for correction of aberrations in double-passamplifiers, Appl Opt 42, p.983-989 (2003)

[6.1319] {Sect. 6.11.3.5} A. Petris, M.J. Damzen, V.I. Vlad: Adaptive self-aligning,bi-directional interconnection using double phase conjugation in Rh : Ba-TiO3, Opt Commun 205, p.437-448 (2002)

[6.1320] {Sect. 6.11.3.5} Y. Tzuk, Y. Glick, M.M. Tilleman: Compact ultra-highgain multi-pass Nd : YAG amplifier with a low passive reflection phaseconjugate mirror, Opt Commun 165, p.237-244 (1999)

[6.1321] {Sect. 6.11.3.5} S. Seidel, N. Kugler: Nd:YAG 200-W average-power oscil-lator-amplifier system with stimulated-Brillouin-scattering phase conjuga-tion and depolarization compensation, J. Opt. Soc. Am. B 14, p.1885-1888(1997)

[6.1322] {Sect. 6.11.3.5} C.K. Ni, A.H. Kung: Effective suppression of amplifiedspontaneous emission by stimulated Brillouin scattering phase conjugation,Optics Letters 21, p.1673-1675 (1996)

[6.1323] {Sect. 6.11.3.5} H.L. Offerhaus, H.P. Godfried, W.J. Witteman: All solid-state diode pumped Nd:YAG MOPA with stimulated brillouin phase con-jugate mirror, Opt Commun 128, p.61-65 (1996)

866 6. Lasers

[6.1324] {Sect. 6.11.3.5} H.J. Eichler, A. Haase, R. Menzel: High beam quality ofa single rod neodym amplifier by SBS-phase conjugation up to 140 Wattaverage output, Opt. Quant. Electron. 28, p.261-265 (1996)

[6.1325] {Sect. 6.11.3.5} H.L. Offerhaus, H.P. Godfried, W.J. Witteman: Al solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase con-jugate mirror, Opt. Comm. 128, p.61-65 (1996)

[6.1326] {Sect. 6.11.3.5} D.M. Pepper, D.A. Rockwell, H.W. Bruesselbach: PhaseConjugation: Reversing Laser Aberrations, Photonics Spectra Aug. 1996,p.95-104 (1996)

[6.1327] {Sect. 6.11.3.5} E.V. Voskoboinik, A.V. Kir’yanov, P.P. Pashinin, V.S.Sidorin, V.V. Tumorin, E.I. Shklovskii: Repetitively pulsed Nd:YAG laserwith an SBS mirror, Quantum Electron. 26, p.31-33 (1996)

[6.1328] {Sect. 6.11.3.5} C.B. Dane, L.E. Zapata, W.A. Neumann, M.A. Norton,L.A. Hackel: Design and Operation of a 150 W Near Diffraction-LimitedLaser Amplifier with SBS Wavefront Correction, IEEE J. QE-31, p.148-163(1995)

[6.1329] {Sect. 6.11.3.5} H.J. Eichler, A. Haase, R. Menzel: 100 Watt Average Out-put Power 1.2*Diffraction Limited Beam From Pulsed Neodym Single RodAmplifier with SBS-Phaseconjugation, IEEE J. QE-31, p.1265-1269 (1995)

[6.1330] {Sect. 6.11.3.5} E.J. Shklovsky, V.V. Tumorin: Generation of long laserpulses in the scheme of a double-pass amplifier with SBS mirror, Opt.Comm. 120, p.303-306 (1995)

[6.1331] {Sect. 6.11.3.5} H.J. Eichler, A. Haase, R. Menzel, J. Schwartz: Depolar-ization treatment and optimization of high power double pass neodym-rodamplifiers with SBS mirror, Pure Appl. Opt. 3, p.585-591 (1994)

[6.1332] {Sect. 6.11.3.5} H.J. Eichler, A. Haase, R. Menzel: SBS-Phase Conjugationfor Thermal Lens Compensation in 100 Watt Average Power Solid-StateLasers, Int. J. Nonlinear Optics 3, p.339-345 (1994)

[6.1333] {Sect. 6.11.3.5} D.S. Sumida, C.J. Jones, R.A. Rockwell: An 8.2 J PhaseConjugating Solid-State Laser Coherently Combining Eight Parallel Am-plifiers, IEEE J. QE-30, p.2617-2627 (1994)

[6.1334] {Sect. 6.11.3.5} N.F. Andreev, E. Khazanov, G.A. Pasmanik: Applicationsof Brillouin Cells to High Repetition Rate Solid-State Lasers, IEEE J. QE-28, p.330-341 (1992)

[6.1335] {Sect. 6.11.3.5} N.F. Andreev, S.V. Kuznetsov, O.V. Palashov, G.A. Pas-manik, E.A. Khazanov: Four-pass YAG:Nd laser amplifier with compen-sation for aberration and polarization distortions of the wavefront, Sov. J.Quantum Electron. 22, p.800-802 (1992)

[6.1336] {Sect. 6.11.3.5} N.F. Andreev, E.A. Khazanov, S.V. Kuznetsov, G.A. Pas-manik, E.I. Shklovsky, V.S. Sidorin: Locked Phase Conjugation for Two-Beam Coupling of Pulse Repetition Rate Solid-State Lasers, IEEE J. QE-27, p.135-141 (1991)

[6.1337] {Sect. 6.11.3.5} J.-L. Ayral, J. Montel, T. Verny, J.-P. Huignard: Phase-conjugate Nd:YAG laser with internal acousto-optic beam steering, Opt.Lett. 16, p.1225-1227 (1991)

[6.1338] {Sect. 6.11.3.5} A.F. Vasil’ev, S.B. Gladin, V.E. Yashin: Pulse-periodicNd:YAIO3 laser with a phase-locked aperture under conditions of phaseconjugation by stimulated Brillouin scattering, Sov. J. Quantum Electron.21, p.494-497 (1991)

[6.1339] {Sect. 6.11.3.5} A.A. Babin, F.I. Fel’dshtein, G.I. Freidman: Double-passamplifier with a stimulated Brillouin scattering mirror for a subnanosecondpulse train, Sov. J. Quantum Electron. 19, p.1303-1304 (1989)

[6.1340] {Sect. 6.11.3.5} N.G. Basov, D.A. Glazkov, V.F. Efimkov, I.G. Zubarev,S.A. Pastukhov, V.B. Sobolev: Hypersonic Phase-Conjugation Mirror for

6.11.3 Amplifier Schemes 867

the Reflection of High-Power Nanosecond Pulses, IEEE J. QE-25, p.470-478 (1989)

[6.1341] {Sect. 6.11.3.5} N.G. Basov, V.F. Efimkov, I.G. Zubarev, V.V. Kolo-brodov, S.A. Pastukhov, M.G. Smirnov, V.B. Sobolev: Pulsed neodymiumamplifier with phase conjugation and direct amplification, Sov. J. Quan-tum Electron. 18, p.1593-1595 (1989)

[6.1342] {Sect. 6.11.3.5} P. Fairchild, K. Davis, M. Valley: Coherent beam combi-nation in barium titanate, J. Opt. Soc. Am. B 5, p.1758-1762 (1988)

[6.1343] {Sect. 6.11.3.5} D.A. Rockwell: A Review of Phase-Conjugate Solid-StateLasers, IEEE J. QE-24, p.1124-1140 (1988)

[6.1344] {Sect. 6.11.3.5} V.N. Alekseev, V.V. Golubev, D.I. Dmitriev, A.N. Zhilin,V.V. Lyubimov, A.A. Mak, V.I. Reshetnikov, V.S. Sirazetdinov, A.D.Starikov: Investigation of wavefront reversal in a phosphate glass laseramplifier with a 12-cm output aperture, Sov. J. Quantum Electron. 17,p.455-458 (1987)

[6.1345] {Sect. 6.11.3.5} M. Sugii, O. Sugihara, M. Ando, K. Sasaki: High lock-ing efficiency XeCl ring amplifier injection locked by backward stimulatedBrillouin scattering, J. Appl. Phys. 62, p.3480-3482 (1987)

[6.1346] {Sect. 6.11.3.5} K. Kyuma, A. Yariv: Polarization recovery in phase con-jugation by modal dispersal, Appl. Phys. Lett. 49, p.617-619 (1986)

[6.1347] {Sect. 6.11.3.5} D.A. Rockwell, C.R. Giuliano: Coherent coupling of lasergain media using phase conjugation, Opt. Lett. 11p.147-149 (1986)

[6.1348] {Sect. 6.11.3.5} M. Valley, G. Lombardi, R. Aprahamian: Beam combina-tion by stimulated Brillouin scattering, J. Opt. Soc. Am. B 3, p.1492-1497(1986)

[6.1349] {Sect. 6.11.3.5} I.D. Carr, D.C. Hanna: Performance of a Nd:YAG Oscilla-tor/Amplifier with Phase-Conjugation via Stimulated Brillouin Scattering,Appl. Phys. B 36, p.83-92 (1985)

[6.1350] {Sect. 6.11.3.5} M.C. Gower, R.G. Caro: KrF laser with a phase-conjugateBrillouin mirror, Opt. Lett. 7, p.162-164 (1982)

[6.1351] {Sect. 6.11.3.5} M.C. Gower: KrF laser amplifier with phase-conjugateBrillouin retroreflectors, Opt. Lett. 7, p.423-425 (1982)

[6.1352] {Sect. 6.11.3.5} D.T. Hon: Applications of wavefront reversal by stimulatedBrillouin scattering, Opt. Eng. 21, p.252-256 (1982)

[6.1353] {Sect. 6.11.3.5} I.G. Zubarev, A.B. Mironov, S.I. Mikahilov: Single-modepulse-periodic oscillator-amplifier system with wavefront reversal, Sov. J.Quantum Electron. 10, p.1179-1181 (1981)

[6.1354] {Sect. 6.11.3.5} N. Basov, I. Zubarev: Powerful Laser Systems with PhaseConjugation by SMBS Mirrror, Appl. Phys. 20, p.261-264 (1979)

[6.1355] {Sect. 6.11.3.5} infinity – A Revolutionary Nd:YAG Laser System,Prospekt Fa. Coherent

[6.1356] {Sect. 6.11.3.5} G.J. Crofts, X. Banti, M.J. Damzen: Tunable phase con-jugation in a Ti:sapphire amplifier, Optics Letters 20, p.1634-1636 (1995)

[6.1357] {Sect. 6.11.3.5} J.H. Kelly, S.D. Jacobs, J.C. Lambropoulos, J.C. Lee, M.J.Shoup, D.J. Smith, D.L. Smith High repetition rate Cr:Nd:GSGG activemirror amplifier, Opt. Lett. 12, p.996-998 (1987)

[6.1358] {Sect. 6.11.4.1} C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolon-ski, F. Krausz, T.W. Hansch: Carrier envelope phase noise in stabilizedamplifier systems, Optics Letters 30, p.2487-2489 (2005)

[6.1359] {Sect. 6.11.4.1} P. Wessels, M. Auerbach, C. Fallnich: Narrow-linewidthmaster oscillator fiber power amplifier system with very low amplified spon-taneous emission, Opt Commun 205, p.215-219 (2002)

[6.1360] {Sect. 6.11.4.1} L.W. Casperson, J.M. Casperson: Power self-regulation indouble-pass high-gain laser amplifiers, J Appl Phys 87, p.2079-2083 (2000)

868 6. Lasers

[6.1361] {Sect. 6.11.4.1} E.H. Huntington, T.C. Ralph, I. Zawischa: Sources ofphase noise in an injection-locked solid-state laser, J Opt Soc Am B OptPhysics 17, p.280-292 (2000)

[6.1362] {Sect. 6.11.4.1} S.R. Friberg, S. Machida: Ultrafast optical pulse noisesuppression using a nonlinear spectral filter: 23 dB reduction of fiber laser1/f noise, Appl Phys Lett 73, p.1934-1936 (1998)

[6.1363] {Sect. 6.11.4.1} D.J. Ottaway, P.J. Veitch, M.W. Hamilton, C. Hollitt, D.Mudge, J. Munch: A compact injection-locked Nd:YAG laser for gravita-tional wave detection, IEEE J QE-34, p.2006-2009 (1998)

[6.1364] {Sect. 6.11.4.1} U. Roth, T. Graf, E. Rochat, K. Haroud, J.E. Balmer, H.P.Weber: Saturation, gain, and noise properties of a multipass diode-laser-pumped Nd:YAG CW amplifier, IEEE J QE-34, p.1987-1991 (1998)

[6.1365] {Sect. 6.11.4.1} W.M. Tulloch, T.S. Rutherford, E.H. Huntington, R.Ewart, C.C. Harb, B. Willke, E.K. Gustafson, M.M. Fejer, R.L. Byer, S.Rowan et al.: Quantum noise in a continuous-wave laser-diode-pumped Nd: YAG linear optical amplifier, Optics Letters 23, p.1852-1854 (1998)

[6.1366] {Sect. 6.11.4.1} A. Hardy, D. Treves: Amplified Spontaneous Emission inSperical and Disk-Shaped Laser Media, IEEE J. QE-15, p.887-895 (1979)

[6.1367] {Sect. 6.11.4.1} S. Guch, Jr.: Parasitic suppression in large aperture disklasers employing liquid edge claddings, Appl. Opt. 15, p.1453-1457 (1976)

[6.1368] {Sect. 6.11.4.1} J.A. Glaze, S. Guch, J.B. Trenholme: Parasitic Suppressionin Large Aperture Nd:Glass Disk Laser Amplifiers, Appl. Opt. 13, p.2808-2811 (1974)

[6.1369] {Sect. 6.11.4.1} G.D. Baldwin, I.T. Basil: Parasitic Noise on the Outputof a CW YAG:Nd+3 Laser, IEEE J. QE-7, p.179-181 (1971)

[6.1370] {Sect. 6.11.4.1} W. Imajuku, A. Takada: Gain characteristics of coherentoptical amplifiers using a Mach-Zehnder interferometer with Kerr media,IEEE J QE-35, p.1657-1665 (1999)

[6.1371] {Sect. 6.11.4.1} S.A.E. Lewis, S.V. Chernikov, J.R. Taylor: Temperature-dependent gain and noise in fiber Raman amplifiers, Optics Letters 24,p.1823-1825 (1999)

[6.1372] {Sect. 6.11.4.1} F.G. Patterson, J. Bonlie, D. Price, B. White: Suppressionof parasitic lasing in large-aperture Ti : sapphire laser amplifiers, OpticsLetters 24, p.963-965 (1999)

[6.1373] {Sect. 6.11.4.1} H.J. Briegel, W. Dur, J.I. Cirac, P. Zoller: Quantum re-peaters: The role of imperfect local operations in quantum communication,Phys Rev Lett 81, p.5932-5935 (1998)

[6.1374] {Sect. 6.11.4.1} P. DiTrapani, A. Berzanskis, S. Minardi, S. Sapone, W.Chinaglia: Observation of optical vortices and J (0) Bessel-like beams inquantum- noise parametric amplification, Phys Rev Lett 81, p.5133-5136(1998)

[6.1375] {Sect. 6.11.4.1} W.K. Marshall, B. Crosignani, A. Yariv: Laser phase noiseto intensity noise conversion by lowest-order group- velocity dispersion inoptical fiber: exact theory, Optics Letters 25, p.165-167 (2000)

[6.1376] {Sect. 6.11.4.1} G. Heinzel, K.A. Strain, J. Mizuno, K.D. Skeldon, B.Willke, W. Winkler, R. Schilling, A. Rudiger, K. Danzmann: Experimen-tal demonstration of a suspended dual recycling interferometer for gravi-tational wave detection, Phys Rev Lett 81, p.5493-5496 (1998)

[6.1377] {Sect. 6.11.4.2} A. Efimov, M.D. Moores, N.M. Beach, J.L. Krause, D.H.Reitze: Adaptive control of pulse phase in a chirped-pulse amplifier, OpticsLetters 23, p.1915-1917 (1998)

[6.1378] {Sect. 6.11.4.2} B. Kohler, V.V. Yakovlev, K.R. Wilson, J. Squier, K.W.Delong, R. Trebino: Phase and intensity characterization of femtosecond

6.11.4 Quality Problems 869

pulses from a chirped pulse amplifier by frequency resolved optical gating,Optics Letters 20, p.483-485 (1995)

[6.1379] {Sect. 6.11.4.2} J.T. Hunt, J.A. Glaze, W.W. Simmons, P.A. Renard: Sup-pression of self-focusing through low-pass spatial filtering and relay imag-ing, Appl. Opt. 17, p.2053-2057 (1978)

[6.1380] {Sect. 6.11.4.2} J.T. Hunt, P.A. Renard, W.W. Simmons: Improved per-formance of fusion lasers using the imaging properties of multiple spatialfilters, Appl. Opt. 16, p.779-782 (1977)

[6.1381] {Sect. 6.11.4.2} J.F. Holzrichter, D.R. Speck: Laser focusing limitationsfrom nonlinear beam instabilities, J. Appl. Phys. 47, p.2459-2461 (1976)

[6.1382] {Sect. 6.11.4.2} B. Willke, N. Uehara, E.K. Gustafson, R.L. Byer, P.J.King, S.U. Seel, R.L. Savage: Spatial and temporal filtering of a 10-WNd:YAG laser with a Fabry- Perot ring-cavity premode cleaner, OpticsLetters 23, p.1704-1706 (1998)

[6.1383] {Sect. 6.11.4.3} G. Cerullo, M. Nisoli, S. Stagira, S. DeSilvestri, G. Tem-pea, F. Krausz, K. Ferencz: Mirror-dispersion-controlled sub-10-fs opticalparametric amplifier in the visible, Optics Letters 24, p.1529-1531 (1999)

[6.1384] {Sect. 6.11.4.3} C. Dorrer, B. deBeauvoir, C. LeBlanc, S. Ranc, J.P.Rousseau, P. Rousseau, J.P. Chambaret: Single-shot real-time characteri-zation of chirped-pulse amplification systems by spectral phase interferom-etry for direct electric-field reconstruction, Optics Letters 24, p.1644-1646(1999)

[6.1385] {Sect. 6.11.4.3} A. Galvanauskas, D. Harter, M.A. Arbore, M.H. Chou,M.M. Fejer: Chirped-pulse amplification circuits for fiber amplifiers,based on chirped-period quasi-phase-matching gratings, Optics Letters 23,p.1695-1697 (1998)

[6.1386] {Sect. 6.11.4.3} J. Badziak, S.A. Chizhov, A.A. Kozlov, J. Makowski, M.Paduch, K. Tomaszewski, A.B. Vankov, V.E. Yashin: Picosecond, terawatt,all-Nd:glass CPA laser system, Opt Commun 134, p.495-502 (1997)

[6.1387] {Sect. 6.11.4.3} Q. Fu, F. Seier, S.K. Gayen, R.R. Alfano: High-average-power kilohertz-repetition-rate sub-100-fs Ti: sapphire amplifier system,Optics Letters 22, p.712-714 (1997)

[6.1388] {Sect. 6.11.4.3} G. Lenz, W. Gellermann, D.J. Dougherty, K. Tamura, E.P.Ippen: Femtosecond fiber laser pulses amplified by a KCl:Tl+ color-centeramplifier for continuum generation in the 1.5- mu m region, Optics Letters21, p.137-139 (1996)

[6.1389] {Sect. 6.11.4.3} C. Lozano, P. Garciafernandez, C.R. Mirasso: Analyticalstudy of nonlinear chirped pulses: Propagation in dispersive optical fibers,Opt Commun 123, p.752-761 (1996)

[6.1390] {Sect. 6.11.4.3} S. Backus, J. Peatross, C.P. Huang, M.M. Murnane, H.C.Kapteyn: Ti:sapphire amplifier producing millijoule-level, 21-fs pulses at 1kHz, Optics Letters 20, p.2000-2002 (1995)

[6.1391] {Sect. 6.11.4.3} N. Blanchot, C. Rouyer, C. Sauteret, A. Migus: Amplifi-cation of sub-100-TW femtosecond pulses by shifted amplifying Nd:glassamplifiers: Theory and experiments, Optics Letters 20, p.395-397 (1995)

[6.1392] {Sect. 6.11.4.3} Ch. Spielmann, M. Lenzner, F. Krausz, R. Szipocs: Com-pact, high-throughput expansion-compression scheme for chirped pulseamplification in the 10 fs range, Opt. Comm. 120, p.321-324 (1995)

[6.1393] {Sect. 6.11.4.3} W.H. Knox: Femtosecond Optical Pulse Amplification,IEEE J. QE-24, p.388-397 (1988)

[6.1394] {Sect. 6.11.4.3} F.De Martini, C.H. Townes, T.K. Gustafson, P.L. Kelley:Self-Steepening of Light Pulses, Phys. Rev. 164, p.312-323 (1967)

[6.1395] {Sect. 6.11.4.3} F. Shimizu: Frequency Broadening in Liquids by a ShortLight Pulse, Phys. Rev. Lett. 19, p.1097-1100 (1967)

870 6. Lasers

[6.1396] {Sect. 6.11.4.3} P.J. Delfyett, H. Shi, S. Gee, I. Nitta, J.C. Connolly, G.A.Alphonse: Joint time-frequency measurements of mode-locked semicon-ductor diode lasers and dynamics using fuequency-resolved optical gating,IEEE J QE-35, p.487-500 (1999)

[6.1397] {Sect. 6.12.2} M. J. Weber: Handbook of Laser Wavelengths (CRC Press,Boca Raton, Boston, London, New York, Washington, D.C, 1999)

[6.1398] {Sect. 6.13.1.0} G. P. Agrawal (ed.): Semiconductor Lasers (American In-stitute of Physics, Woodbury, N. Y, 1995)

[6.1399] {Sect. 6.13.1.0} J. Carrol, J. Whiteaway, D. Plumb: Distributed FeedbackSemiconductor Lasers (SPIE Optical Engineering Press, London, 1998)

[6.1400] {Sect. 6.13.1.0} W. W. Chow, S. W. Koch, M. Sargent III: Semiconductor-Laser Physics (Springer, Berlin, Heidelberg, New York, 1994)

[6.1401] {Sect. 6.13.1.0} C. F. Klingshirn: Semiconductor Optics (Springer, Berlin,Heidelberg, New York, 1995)

[6.1402] {Sect. 6.13.1.0} F. K. Kneubuhl: Theories on Distributed Feedback Lasers(Harwood Academic Publishers, Chur, 1993)

[6.1403] {Sect. 6.13.1}Semiconductor Lasers P. Modh, N. Eriksson, A. Larsson, T.Suhara: Semiconductor laser with curved deep-etched distributed Braggreflectors supporting a planar Gaussian mode, Optics Letters 25, p.108-110 (2000)

[6.1404] {Sect. 6.13.1.0} H. Stoehr, E. Mensing, J. Helmcke, U. Sterr: Diode laserwith 1 Hz linewidth, Optics Letters 31, p.736-738 (2006)

[6.1405] {Sect. 6.13.1.0} O. Carroll, I. ODriscoll, S.P. Hegarty, G. Huyet, J. Houli-han, E.A. Viktorov, P. Mandel: Feedback induced instabilities in a quan-tum dot semiconductor laser, Opt Express 14, p.10831-10837 (2006)

[6.1406] {Sect. 6.13.1.0} C. Pedersen, R.S. Hansen: Single frequency, high power,tapered diode laser using phase- conjugated feedback, Opt Express 13,p.3961-3968 (2005)

[6.1407] {Sect. 6.13.1.0} E. Samsoe, N. Kjaergaard, H. Lausen, P.E. Andersen,P.M. Petersen: An external-cavity laser diode at 635 nm for laser displayapplications, Opt Commun 245, p.333-339 (2005)

[6.1408] {Sect. 6.13.1.0} J. Hald, V. Ruseva: Efficient suppression of diode-laserphase noise by optical filtering, J Opt Soc Am B Opt Physics 22, p.2338-2344 (2005)

[6.1409] {Sect. 6.13.1.0} A. Buttner, U.D. Zeitner, R. Kowarschik: Design consid-erations for high-brightness diffractive broad-area lasers, J Opt Soc Am BOpt Physics 22, p.796-806 (2005)

[6.1410] {Sect. 6.13.1.0} J.J. Lim, T.M. Benson, E.C. Larkins: Design of wide-emitter single-mode laser diodes, Ieee J Quantum Electron 41, p.506-516(2005)

[6.1411] {Sect. 6.13.1.0} M. Yuda, T. Sasaki, J. Temmyo, M. Sugo, C. Amano: High-power highly reliable 1.02-1.06-mu m InGaAs strained-quantum- well laserdiodes, Ieee J Quantum Electron 39, p.1515-1520 (2003)

[6.1412] {Sect. 6.13.1.0} J.C.L. Yong, J.M. Rorison, I.H. White: 1.3-mu m quantum-well InGaAsP, AlGaInAs, arid InGaAsN laser material gain: A theoreticalstudy, Ieee J Quantum Electron 38, p.1553-1564 (2002)

[6.1413] {Sect. 6.13.1.0} A. Champagne, J. Camel, R. Maciejko, K.J. Kasunic, D.M.Adams, L. Tromborg: Linewidth broadening in a distributed feedback laserintegrated with a semiconductor optical amplifier, Ieee J Quantum Elec-tron 38, p.1493-1502 (2002)

[6.1414] {Sect. 6.13.1.0} K. Shigihara, K. Kawasaki, Y. Yoshida, S. Yamamura, T.Yagi, E. Omura: High-power 980-nm ridge waveguide laser diodes includingan asymmetrically expanded optical field normal to the active layer, IeeeJ Quantum Electron 38, p.1081-1088 (2002)

6.13.1 Semiconductor Lasers 871

[6.1415] {Sect. 6.13.1.0} M. Kolesik, J.V. Moloney: A spatial digital filter methodfor broad-band simulation of semiconductor lasers, Ieee J Quantum Elec-tron 37, p.936-944 (2001)

[6.1416] {Sect. 6.13.1.0} M. Szymanski, J.M. Kubica, P. Szczepanski: Theoreticalanalysis of lateral modes in broad-area semiconductor lasers with profiledreflectivity output facets, Ieee J Quantum Electron 37, p.430-438 (2001)

[6.1417] {Sect. 6.13.1.1} M. Achtenhagen, M. McElhinney, S. Nolan, A. Hardy:High-power 980-nm pump laser modules for erbium-doped fiber amplifiers,Appl Opt 38, p.5765-5767 (1999)

[6.1418] {Sect. 6.13.1.1} P. Raisch, R. Winterhoff, W. Wagner, M. Kessler, H.Schweizer, T. Riedl, R. Wirth, A. Hangleiter, F. Scholz: Investigations onthe performance of multiquantum barriers in short wavelength (630 nm)AlGaInP laser diodes, Appl Phys Lett 74, p.2158-2160 (1999)

[6.1419] {Sect. 6.13.1.1} Y. Sidorin, P. Korioja, M. Blomberg: Novel tunable laserdiode arrangement with a micromachined silicon filter: feasibility, OptCommun 164, p.121-127 (1999)

[6.1420] {Sect. 6.13.1.1} C. Gmachl, A. Tredicucci, D.L. Sivco, A.L. Hutchinson, F.Capasso, A.Y. Cho: Bidirectional semiconductor laser, Science 286, p.749-752 (1999)

[6.1421] {Sect. 6.13.1.1} B. Boggs, C. Greiner, T. Wang, H. Lin, T.W. Mossberg:Simple high-coherence rapidly tunable external-cavity diode laser, OpticsLetters 23, p.1906-1908 (1998)

[6.1422] {Sect. 6.13.1.1} A.K. Goyal, P. Gavrilovic, H. Po: 1.35 W of stable single-frequency emission from an external-cavity tapered oscillator utilizing fiberBragg grating feedback, Appl Phys Lett 73, p.575-577 (1998)

[6.1423] {Sect. 6.13.1.1} M.P. Nesnidal, T. Earles, L.J. Mawst, D. Botez, J. Buus:0.45 W diffraction-limited beam and single-frequency operation from an-tiguided phase-locked laser array with distributed feedback grating, ApplPhys Lett 73, p.587-589 (1998)

[6.1424] {Sect. 6.13.1.1} C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D.L. Sivco,A.L. Hutchinson, A.Y. Cho: Long-wavelength (lambda approximate to 8-11.5 mu m) semiconductor lasers with waveguides based on surface plas-mons, Optics Letters 23, p.1366-1368 (1998)

[6.1425] {Sect. 6.13.1.1} D.M. Cornwell, H.J. Thomas: High-power (>0.9 W cw)diffraction-limited semiconductor laser based on a fiber Bragg grating ex-ternal cavity, Appl Phys Lett 70, p.694-695 (1997)

[6.1426] {Sect. 6.13.1.1} J. Diaz, H.J. Yi, M. Razeghi, G.T. Burnham: Long-termreliability of Al-free InGaAsP/GaAs (lambda=808 nm) lasers at high-power high-temperature operation, Appl Phys Lett 71, p.3042-3044 (1997)

[6.1427] {Sect. 6.13.1.1} S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Ya-mada, T. Matsushita, Y. Sugimoto, H. Kiyoku: Longitudinal mode spec-tra and ultrashort pulse generation of InGaN multiquantum well structurelaser diodes, Appl Phys Lett 70, p.616-618 (1997)

[6.1428] {Sect. 6.13.1.1} J.K. Wade, L.J. Mawst, D. Botez, R.F. Nabiev, M. Jansen:5 W continuous wave power, 0.81-mu m-emitting, Al-free active-regiondiode lasers, Appl Phys Lett 71, p.172-174 (1997)

[6.1429] {Sect. 6.13.1.1} A. Leitenstorfer, C. Furst, A. Laubereau, W. Kaiser, G.Trankle, G. Weimann: Femtosecond carrier dynamics in GaAs far fromequilibrium, Phys Rev Lett 76, p.1545-1548 (1996)

[6.1430] {Sect. 6.13.1.1} L.J. Mawst, A. Bhattacharya, J. Lopez, D. Botez, D.Z.Garbuzov, L. Demarco, J.C. Connolly, M. Jansen, F. Fang, R.F. Nabiev:8 W continuous wave front-facet power from broad-waveguide Al-free 980nm diode lasers, Appl Phys Lett 69, p.1532-1534 (1996)

872 6. Lasers

[6.1431] {Sect. 6.13.1.1} S.B. Ross, S.I. Kanorsky, A. Weis, T.W. Hansch: A sin-gle mode, cw, diode laser at the cesium D1 (894.59 nm) transition, Opt.Comm. 120, p.155-157 (1995)

[6.1432] {Sect. 6.13.1.1} J.-H. Kim, R.J. Lang, A. Larson, L.P. Lee, A.A.Narayanan: High-power AlGaAs/GaAs single quantum well surface-emitting lasers with integrated 45 beam deflectors, Appl. Phys. Lett. 57,p.2048-2050 (1990)

[6.1433] {Sect. 6.13.1.1} S. Murata, I. Mito: Frequency-tunable semiconductorlasers, Opt. Quantum Electr. 22, p.1-15 (1990)

[6.1434] {Sect. 6.13.1.1} N. W. Carlson: Monolithic Diode-Laser Arrays (Springer,Berlin, Heidelberg, New York, 1994)

[6.1435] {Sect. 6.13.1.1} T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cin-golani, Y. Arakawa: Room temperature lasing at blue wavelengths in gal-lium nitride microcavities, Science 285, p.1905-1906 (1999)

[6.1436] {Sect. 6.13.1.1} J. Nishio, L. Sugiura, H. Fujimoto, Y. Kokubun, K. Itaya:Characterization of InGaN multiquantum well structures for blue semicon-ductor laser diodes, Appl Phys Lett 70, p.3431-3433 (1997)

[6.1437] {Sect. 6.13.1.1} R.L. Aggarwal, P.A. Maki, R.J. Molnar, Z.L. Liau, I. Mel-ngailis: Optically pumped GaN/Al0.1Ga0.9N double-heterostructure ul-traviolet laser, J Appl Phys 79, p.2148-2150 (1996)

[6.1438] {Sect. 6.13.1.1} C.C. Chu, T.B. Ng, J. Han, G.C. Hua, R.L. Gunshor, E.Ho, E.L. Warlick, L.A. Kolodziejski, A.V. Nurmikko: Reduction of struc-tural defects in II-VI blue green laser diodes, Appl Phys Lett 69, p.602-604(1996)

[6.1439] {Sect. 6.13.1.1} S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Ya-mada, T. Matsushita, Y. Sugimoto, H. Kiyoku: Ridge-geometry InGaNmulti-quantum-well-structure laser diodes, Appl Phys Lett 69, p.1477-1479(1996)

[6.1440] {Sect. 6.13.1.1} N. Yokouchi, N. Yamanaka, N. Iwai, Y. Nakahira, A. Ka-sukawa: Tensile-strained GaInAsP-InP quantum-well lasers emitting at 1.3mu m, IEEE J QE-32, p.2148-2155 (1996)

[6.1441] {Sect. 6.13.1.1} R.H. Abram, K.S. Gardner, E. Riis, A.I. Ferguson: Narrowlinewidth operation of a tunable optically pumped semiconductor laser,Opt Express 12, p.5434-5439 (2004)

[6.1442] {Sect. 6.13.1.1} E. Samsoe, P.E. Andersen, S. AnderssonEngels, P.M. Pe-tersen: Improvement of spatial and temporal coherence of a broad arealaser diode using an external-cavity design with double grating feedback,Opt Express 12, p.609-616 (2004)

[6.1443] {Sect. 6.13.1.1} A. Naumenko, P. Besnard, N. Loiko, G. Ughetto, J.C.Bertreux: Characteristics of a semiconductor laser coupled with a fiberBragg grating with arbitrary amount of feedback, Ieee J Quantum Electron39, p.1216-1228 (2003)

[6.1444] {Sect. 6.13.1.1} V. Raab, D. Skoczowsky, R. Menzel: Tuning high-powerlaser diodes with as much as 0.38 W of power and M- 2=1.2 over a rangeof 32 nm with 3-GHz bandwidth, Optics Letters 27, p.1995-1997 (2002)

[6.1445] {Sect. 6.13.1.1} V. Raab, R. Menzel: External resonator design for high-power laser diodes that yields 400 mW of TEM00 power, Optics Letters27, p.167-169 (2002)

[6.1446] {Sect. 6.13.1.1} J.F. Lepage, N. McCarthy: Analysis of dual-wavelengthoscillation in a broad-area diode laser operated with an external cavity,Appl Opt 41, p.4347-4355 (2002)

[6.1447] {Sect. 6.13.1.1} Y. Barbarin, EAJM Bente, M.J.R. Heck, Y.S. Oei, R.Notzel, M.K. Smit: Characterization of a 15 GHz integrated bulk InGaAsP

6.13.1 Semiconductor Lasers 873

passively modelocked ring laser at 1.53 mu m, Opt Express 14, p.9716-9727(2006)

[6.1448] {Sect. 6.13.1.1} B. Cakmak: Modelling of experimentally measured Q-switched pulsations in InGaAs/GaAs diode lasers, Opt Commun 266,p.614-619 (2006)

[6.1449] {Sect. 6.13.1.1} M. Chi, B. Thestrup, P.M. Petersen: Self-injection lockingof an extraordinarily wide broad-area diode laser with a 1000-mu m-wideemitter, Optics Letters 30, p.1147-1149 (2005)

[6.1450] {Sect. 6.13.1.1} R. Scollo, H.J. Lobe, J.E. Holzman, E. Robin, H. Jackel,D. Erni, W. Vogt, E. Gini: Mode-locked laser diode with an ultrafast inte-grated uni-traveling carrier saturable absorber, Optics Letters 30, p.2808-2810 (2005)

[6.1451] {Sect. 6.13.1.1} K. Hagiuda, T. Hirooka, M. Nakazawa: 40-GHz, 100-fsstimulated-Brillouin-scattering-free pulse generation by combining a mode-locked laser diode and a dispersion-decreasing fiber, Optics Letters 30,p.670-672 (2005)

[6.1452] {Sect. 6.13.1.1} A. Aschwanden, D. Lorenser, H.J. Unold, R. Paschotta,E. Gini, U. Keller: 2.1-W picosecond passively mode-locked external-cavitysemiconductor laser, Optics Letters 30, p.272-274 (2005)

[6.1453] {Sect. 6.13.1.1} K. Kim, S. Lee, P.J. Delfyett: 1.4kW high peak powergeneration from an all semiconductor mode- locked master oscillator poweramplifier system based on eXtreme Chirped Pulse Amplification(X-CPA),Opt Express 13, p.4600-4606 (2005)

[6.1454] {Sect. 6.13.1.1} G.R. Lin, I.H. Chiu, M.C. Wu: 1.2-ps mode-locked semi-conductor optical amplifier fiber laser pulses generated by 60-ps back-ward dark-optical comb injection and soliton compression, Opt Express13, p.1008-1014 (2005)

[6.1455] {Sect. 6.13.1.1} A. Scire, C.J. Tessone: Dynamics of coupled self-pulsatingsemiconductor lasers, Ieee J Quantum Electron 41, p.272-279 (2005)

[6.1456] {Sect. 6.13.1.1} B. Resan, P.J. Delfyett: Dispersion-managed breathing-mode semiconductor mode-locked ring laser: Experimental characteriza-tion and numerical simulations, Ieee J Quantum Electron 40, p.214-221(2004)

[6.1457] {Sect. 6.13.1.1} K.R. Tamura, K. Sato: 50-GHz repetition-rate, 280-fs pulsegeneration at 100-mW average power from a mode-locked laser diode ex-ternally compressed in a pedestal-free pulse compressor, Optics Letters 27,p.1268-1270 (2002)

[6.1458] {Sect. 6.13.1.1} C.G. Lim, S. Iezekiel, C.M. Snowden: Nonlinear dynamicsof optically injected self-pulsating laser diodes, Ieee J Quantum Electron37, p.699-706 (2001)

[6.1459] {Sect. 6.13.1.1} A. Jechow, V. Raab, R. Menzel: Tunable diffraction limitedlight at 488 nm by single-pass frequency doubling of a broad area diodelaser, Appl. Opt. 46, p.943-946 (2007)

[6.1460] {Sect. 6.13.1.1} M. Maiwald, S. Schwertfeger, R. Gther, B. Sumpf, K.Paschke, Ch. Dzionk, G. Erbert, G. Trnkle: 600 mW optical output powerat 488 nm by use of a high-power hybrid laser diode system and a pe-riodically poled MgO:LiNbO3 bulk crystal, Optics Letters 31, p.802-804(2006)

[6.1461] {Sect. 6.13.1.1} M. Maiwald, S. Schwertfeger, R. Guther, B. Sumpf, K.Paschke, C. Dzionk, G. Erbert, G. Trankle: 600 mW optical output powerat 488 nm by use of a high-power hybrid laser diode system and a pe-riodically poled MgO: LiNbO3 bulk crystal, Optics Letters 31, p.802-804(2006)

874 6. Lasers

[6.1462] {Sect. 6.13.1.1} V. Ruseva, J. Hald: High-power 457-nm light source byfrequency doubling of an amplified diode laser, Appl Opt 42, p.5500-5507(2003)

[6.1463] {Sect. 6.13.1.1} X.G. Sun, J.L. Carlsten: Low-noise blue light source withlarge frequency-scanning range from frequency doubling of a diode laser,J Opt Soc Am B Opt Physics 18, p.281-285 (2001)

[6.1464] {Sect. 6.13.1.1} J. Hult, I.S. Burns, C.F. Kaminski: Wide-bandwidthmode-hop-free tuning of extended-cavity GaN diode lasers, Appl Opt 44,p.3675-3685 (2005)

[6.1465] {Sect. 6.13.1.1} Y.K. Kuo, B.T. Liou, M.L. Chen, S.H. Yen, C.Y. Lin:Effect of band-offset ratio on analysis of violet-blue InGaN laser charac-teristics, Opt Commun 231, p.395-402 (2004)

[6.1466] {Sect. 6.13.1.1} Y.K. Kuo, Y.A. Chang: Effects of electronic current over-flow and inhomogeneous carrier distribution on InGaN quantum-well laserperformance, Ieee J Quantum Electron 40, p.437-444 (2004)

[6.1467] {Sect. 6.13.1.1} V.Z. Tronciu, M. Yamada, T. Ohno, S. Ito, T. Kawakami,M. Taneya: Self-pulsation in an InGaN laser-theory and experiment, IeeeJ Quantum Electron 39, p.1509-1514 (2003)

[6.1468] {Sect. 6.13.1.1} K. Hayasaka: Frequency stabilization of an extended-cavityviolet diode laser by resonant optical feedback, Opt Commun 206, p.401-409 (2002)

[6.1469] {Sect. 6.13.1.1} W.W. Chow, H. Amano: Analysis of lateral-mode behaviorin broad-area InGaN quantum-well lasers, Ieee J Quantum Electron 37,p.265-273 (2001)

[6.1470] {Sect. 6.13.1.1} M.J. Chi, O.B. Jensen, J. Holm, C. Pedersen, P.E. An-dersen, G. Erbert, B. Sumpf, P.M. Petersen: Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered ampli-fier, Opt Express 13, p.10589-10596 (2005)

[6.1471] {Sect. 6.13.1.1} S.S. Beyertt, M. Zorn, T. Kubler, H. Wenzel, M. Weyers, A.Giesen, G. Trankle, U. Brauch: Optical in-well pumping of a semiconductordisk laser with high optical efficiency, Ieee J Quantum Electron 41, p.1439-1449 (2005)

[6.1472] {Sect. 6.13.1.2} E. Lassila, R. Hernberg: Bright diode laser light source,Appl Opt 45, p.3548-3552 (2006)

[6.1473] {Sect. 6.13.1.2} E. Babcock, B. Chann, I.A. Nelson, T.G. Walker:Frequency-narrowed diode array bar, Appl Opt 44, p.3098-3104 (2005)

[6.1474] {Sect. 6.13.1.2} H. Miyajima, H. Kan, T. Kanzaki, S. Furuta, M. Ya-manaka, Y. Izawa, S. Nakai: Jet-type, water-cooled heat sink that yields255-W continuous-wave laser output at 808 nm from a 1-cm laser diodebar, Optics Letters 29, p.304-306 (2004)

[6.1475] {Sect. 6.13.1.2} R. Beach, W.J. Benett, B.L. Freitas, D. Mundinger, B.J.Comaskey, R.W. Solarz, M.A. Emanuel: Modular microchannel cooledheatsinks for high average power laser diode arrays, IEEE J. QE-28, p.966-976 (1992)

[6.1476] {Sect. 6.13.1.2} B.J. Comaskey, R. Beach, G. Albrecht, W.J. Benett, B.L.Freitas, C. Petty, D. Vavlue, D. Mundinger, R.W. Solarz: High averagepower diode pumped slab laser, IEEE J. QE-28, p.992-996 (1992)

[6.1477] {Sect. 6.13.1.2} J.G. Endriz, M. Vakili, G.S. Browder, M. DeVito, J.M.Haden, G.L. Harnagel, W.E. Plano, M. Sakamoto, D.F. Welch, S. Willing,D.P. Worland, H.C. Yao: High Power Diode Laser Arrays, IEEE J. QE-28,p.952-965 (1992)

[6.1478] {Sect. 6.13.1.2} K.A. Forrest, J.B. Abshire: Time Evolution of Pulsed Far-Field Patterns of GaAlAs Phase-Locked Laser-Diode Arrays, IEEE J. QE-23, p.1287-1290 (1987)

6.13.1 Diode Laser Bars, Arrays and Stacks 875

[6.1479] {Sect. 6.13.1.2} X. Gao, H. Ohashi, H. Okamoto, M. Takasaka, K. Shinoda:Beam-shaping technique for improving the beam quality of a high-powerlaser-diode stack, Optics Letters 31, p.1654-1656 (2006)

[6.1480] {Sect. 6.13.1.2} B. Chann, A.K. Goyal, T.Y. Fan, A. SanchezRubio, B.L.Volodin, V.S. Ban: Efficient, high-brightness wavelength-beam-combinedcommercial off- the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating, Optics Letters 31, p.1253-1255 (2006)

[6.1481] {Sect. 6.13.1.2} A. Jechow, V. Raab, R. Menzel: High cw power using anexternal cavity for spectral beam combining of diode laser-bar emission,Appl Opt 45, p.3545-3547 (2006)

[6.1482] {Sect. 6.13.1.2} B. Chann, R.K. Huang, L.J. Missaggia, C.T. Harris, Z.L.Liau, A.K. Goyal, J.P. Donnelly, T.Y. Fan, A. SanchezRubio, G.W. Turner:Near-diffaction limited diode laser arrays by wavelength beam combining,Optics Letters 30, p.2104-2106 (2005)

[6.1483] {Sect. 6.13.1.2} H. Zhu, I.C. Ruset, E.W. Hersman: Spectrally narrowedexternal-cavity high-power stack of laser diode arrays, Optics Letters 30,p.1342-1344 (2005)

[6.1484] {Sect. 6.13.1.2} C.L. Talbot, M.E.J. Friese, D. Wang, I. Brereton, N.R.Heckenberg, H. RubinszteinDunlop: Linewidth reduction in a large-smilelaser diode array, Appl Opt 44, p.6264-6268 (2005)

[6.1485] {Sect. 6.13.1.3} A. Harkonen, M. Guina, O. Okhotnikov, K. Rossner,M. Hummer, T. Lehnhardt, M. Muller, A. Forchel, M. Fischer: 1-Wantimonide-based vertical external cavity surface emitting laser operatingat 2-mu m, Opt Express 14, p.6479-6484 (2006)

[6.1486] {Sect. 6.13.1.3} J.E. Hastie, S. Calvez, M.D. Dawson, T. Leinonen, A.Laakso, J. Lyytikainen, M. Pessa: High power CW red VECSEL with lin-early polarized TEM00 output beam, Opt Express 13, p.77-81 (2005)

[6.1487] {Sect. 6.13.1.3} E.L. Blansett, M.G. Raymer, G.Q. Cui, G. Khitrova, H.M.Gibbs, D.K. Serkland, A.A. Allerman, K.M. Geib: Picosecond polarizationdynamics and noise in pulsed vertical-cavity surface-emitting lasers, IeeeJ Quantum Electron 41, p.287-301 (2005)

[6.1488] {Sect. 6.13.1.3} Z.H.H. Yang, J.R. Leger: Flattop mode shaping of a verti-cal cavity surface emitting laser using an external-cavity aspheric mirror,Opt Express 12, p.5549-5555 (2004)

[6.1489] {Sect. 6.13.1.3} G.D. Xu, Y.H. Wang, Y.Y. Zhu, S.N. Zhu, N.B. Ming:Third-harmonic generation in a LiNbO3 channel waveguide with a quasi-periodic grating, J Opt Soc Am B Opt Physics 21, p.568-573 (2004)

[6.1490] {Sect. 6.13.1.3} S. Bandyopadhyay, Y. Hong, P.S. Spencer, K.A. Shore:Experimental observation of anti-phase polarisation dynamics in VCSELS,Opt Commun 202, p.145-154 (2002)

[6.1491] {Sect. 6.13.1.3} W.J. Alford, T.D. Raymond, A.A. Allerman: High powerand good beam quality at 980 nm from a vertical external- cavity surface-emitting laser, J Opt Soc Am B Opt Physics 19, p.663-666 (2002)

[6.1492] {Sect. 6.13.1.3} J. Kaiser, C. Degen, W. Elsasser: Amplitude-squeezedemission from a transverse single-mode vertical- cavity surface-emittinglaser with weakly anticorrelated polarization modes, Optics Letters 26,p.1720-1722 (2001)

[6.1493] {Sect. 6.13.1.3} A. Bramati, J.P. Hermier, A.Z. Khoury, E. Giacobino,P. Schnitzer, R. Michalzik, K.J. Ebeling, J.P. Poizat, P. Grangier: Spa-tial distribution of the intensity noise of a vertical-cavity surface-emittingsemiconductor laser, Optics Letters 24, p.893-895 (1999)

[6.1494] {Sect. 6.13.1.3} M.A. Holm, D. Burns, P. Cusumano, A.I. Ferguson, M.D.Dawson: High-power diode-pumped AlGaAs surface-emitting laser, ApplOpt 38, p.5781-5784 (1999)

876 6. Lasers

[6.1495] {Sect. 6.13.1.3} I.L. Krestnikov, W.V. Lundin, A.V. Sakharov, V.A. Se-menov, A.S. Usikov, A.F. Tsatsulnikov, Z.I. Alferov, N.N. Ledentsov, A.Hoffmann, D. Bimberg: Room-temperature photopumped InGaN/GaN/AlGaN vertical-cavity surface- emitting laser, Appl Phys Lett 75, p.1192-1194 (1999)

[6.1496] {Sect. 6.13.1.3} M.V. Maximov, Y.M. Shernyakov, A.F. Tsatsulnikov, A.V.Lunev, A.V. Sakharov, V.M. Ustinov, A.Y. Egorov, A.E. Zhukov, A.R.Kovsh, P.S. Kopev et al.: High-power continuous-wave operation of a In-GaAs/AlGaAs quantum dot laser, J Appl Phys 83, p.5561-5563 (1998)

[6.1497] {Sect. 6.13.1.3} T. Milster, W. Jiang, E. Walker, D. Burak, P. Claisse, P.Kelly, R. Binder: A single-mode high-power vertical cavity surface emittinglaser, Appl Phys Lett 72, p.3425-3427 (1998)

[6.1498] {Sect. 6.13.1.3} W.T. Hu, H. Ye, C.D. Li, Z.H. Jiang, F.Z. Zhou: All-solid-state tunable DCM dye laser pumped by a diode- pumped Nd:YAG laser,Appl Opt 36, p.579-583 (1997)

[6.1499] {Sect. 6.13.1.3} D.V. Plant, B. Robertson, H.S. Hinton, M.H. Ayliffe,G.C. Boisset, W. Hsiao, D. Kabal, N.H. Kim, Y.S. Liu, M.R. Otazo,et al.: 4x4 vertical-cavity surface-emitting laser (VCSEL) and metal-semiconductor-metal (MSM) optical backplane demonstrator system, ApplOpt 35, p.6365-6368 (1996)

[6.1500] {Sect. 6.13.1.3} N.W. Carlson, G.A. Evans, D.P. Bour, S.K. Liew: Demon-stration of a grating-surface-emitting diode laser with low-threshold cur-rent density, Appl. Phys. Lett. 56, p.16-18 (1990)

[6.1501] {Sect. 6.13.1.3} M.B. Willemsen, M.U.F. Khalid, M.P. vanExter, J.P. Wo-erdman: Polarization switching of a vertical-cavity semiconductor laser asa Kramers hopping problem, Phys Rev Lett 82, p.4815-4818 (1999)

[6.1502] {Sect. 6.13.2.0}Solid State Lasers W.F. Krupke, L.L. Chase: Groundstate depleted solid state laser principles, characteristics and scaling, Opt.Quant. Electron. 22, p.1-22 (1990)

[6.1503] {Sect. 6.13.2.0}Solid State Lasers Kitaeva et al.: The properties of Crystalswith Garnet structure, Phys. stat. sol. (a) 92, p.475-488 (1985)

[6.1504] {Sect. 6.13.2.0}Solid State Lasers L. DeShazer, M. Bass, U. Ranon,T.K. Guka, E.D. Reed, T.W. Strozyk, L. Rothrock: Laser operationof neodymium in YVO4 and gadolinium gallium garnet (GGG) and ofholmium in YVO4. 8th International Electr. Conf, San Francisco, CA(1974)

[6.1505] {Sect. 6.13.2.0}Solid State Lasers A. A. Kaminskii: Laser Crystals(Springer, Berlin, Heidelberg, New York, 1990)

[6.1506] {Sect. 6.13.2.0}Solid State Lasers S.E. Stokowski: Glass lasers, in Hand-book of Laser Science and Technology, ed. by M.J. Weber (CRC Press,Boca Raton, FL 1982) pp.215-264

[6.1507] {Sect. 6.13.2.0}Solid State Lasers Y.N. Xu, W.Y. Ching, B.K. Brick-een: Electronic structure and bonding in garnet crystals Gd3Sc2Ga3O12,Gd3Sc2Al3O12, and Gd3Ga3O12 compared to Y3Al3O12, Phys Rev B 61,p.1817-1824 (2000)

[6.1508] {Sect. 6.13.2.1} I. Moshe, S. Jackel, A. Meir, Y. Lumer, E. Leibush: 2 kW,M-2 < 10 radially polarized beams from aberration-compensated rod-basedNd:YAG lasers, Optics Letters 32, p.47-49 (2007)

[6.1509] {Sect. 6.13.2.1} J. Didierjean, M. Castaing, F. Balembois, P. Georges, D.Perrodin, J.M. Fourmigue, K. Lebbou, A. Brenier, O. Tillement: High-power laser with Nd:YAG single-crystal fiber grown by the micro- pulling-down technique, Optics Letters 31, p.3468-3470 (2006)

6.13.2 Solid-State Lasers 877

[6.1510] {Sect. 6.13.2.1} M. Tsunekane, T. Taira: 300 W continuous-wave operationof a diode edge-pumped, hybrid composite Yb:YAG microchip laser, OpticsLetters 31, p.2003-2005 (2006)

[6.1511] {Sect. 6.13.2.1} P. Peuser, W. Platz, P. Zeller, T. Brand, M. Haag, B.Kohler: High-power, longitudinally fiber-pumped, passively Q-switchedNd:YAG oscillator-amplifier, Optics Letters 31, p.1991-1993 (2006)

[6.1512] {Sect. 6.13.2.1} R. Zhou, E.B. Li, H.F. Li, P. Wang, J.Q. Yao: Continuous-wave, 15.2 W diode-end-pumped Nd : YAG laser operating at 946 nm,Optics Letters 31, p.1869-1871 (2006)

[6.1513] {Sect. 6.13.2.1} M. Frede, R. Wilhelm, D. Kracht: 250 W end-pumpedNd:YAG laser with direct pumping into the upper laser level, Optics Let-ters 31, p.3618-3619 (2006)

[6.1514] {Sect. 6.13.2.1} B. Jacobsson, V. Pasiskevicius, F. Laurell: Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity, OptExpress 14, p.9284-9292 (2006)

[6.1515] {Sect. 6.13.2.1} H. Okada, H. Yoshida, H. Fujita, M. Nakatsuka: Nd:YAGsplit-disk laser amplifier for 10 J output energy, Opt Commun 260, p.277-281 (2006)

[6.1516] {Sect. 6.13.2.1} M. Ostermeyer, D. Mudge, P.J. Veitch, J. Munch: Ther-mally induced birefringence in Nd:YAG slab lasers, Appl Opt 45, p.5368-5376 (2006)

[6.1517] {Sect. 6.13.2.1} A.K. Sridharan, S. Saraf, S. Sinha, R.L. Byer: Zigzag slabsfor solid-state laser amplifiers: batch fabrication and parasitic oscillationsuppression, Appl Opt 45, p.3340-3351 (2006)

[6.1518] {Sect. 6.13.2.1} D. Kracht, R. Wilhelm, M. Frede, K. Dupre, L. Acker-mann: 407 W end-pumped multi-segmented Nd:YAG laser, Opt Express13, p.10140-10144 (2005)

[6.1519] {Sect. 6.13.2.1} R. Zhou, T.L. Zhang, E.B. Li, X. Ding, Z.Q. Cai,B.G. Zhang, W.Q. Wen, P. Wang, J.Q. Yao: 8.3 W diode-end-pumpedcontinuous-wave Nd:YAG laser operating at 946- nm, Opt Express 13,p.10115-10119 (2005)

[6.1520] {Sect. 6.13.2.1} M. Moenster, P. Glas, G. Steinmeyer: Femtosecondneodymium-doped microstructure fiber laser, Opt Express 13, p.8671-8677(2005)

[6.1521] {Sect. 6.13.2.1} N. Pavel, V. Lupei, T. Taira: 1.34-mu m efficient laseremission in highly-doped Nd:YAG under 885- nm diode pumping, OptExpress 13, p.7948-7953 (2005)

[6.1522] {Sect. 6.13.2.1} M. Frede, R. Wilhelm, D. Kracht, C. Fallnich: Nd:YAGring laser with 213 W linearly polarized fundamental mode output power,Opt Express 13, p.7516-7519 (2005)

[6.1523] {Sect. 6.13.2.1} R. Zhou, Z.Q. Cai, W.Q. Wen, X. Ding, P. Wang, J.Q.Yao: High-power continuous-wave Nd:YAG laser at 946 nm and intracavityfrequency-doubling with a compact three-element cavity, Opt Commun255, p.304-308 (2005)

[6.1524] {Sect. 6.13.2.1} M. Ostermeyer, P. Kappe, R. Menzel, V. Wulfmeyer: Diodepumped Nd:YAG MOPA with high pulse energy, excellent beam qualityand frequency stabilized master oscillator as a basis for a next generationlidar system, Applied Optics 44, p.582-590 (2005)

[6.1525] {Sect. 6.13.2.1} M. Ostermeyer, P. Kappe, R. Menzel, V. Wulfmeyer:Diode-pumped Nd:YAG master oscillator power amplifier with high pulseenergy, excellent beam quality, and frequency-stabilized master oscillatoras a basis for a next-generation lidar system (Vol 44, pg 582, 2005), ApplOpt 44, p.7451 (2005)

878 6. Lasers

[6.1526] {Sect. 6.13.2.1} K. Furuta, T. Kojima, S. Fujikawa, J. Nishimae: Diode-pumped 1 kW Q-switched Nd:YAG rod laser with high peak power andhigh beam quality, Appl Opt 44, p.4119-4122 (2005)

[6.1527] {Sect. 6.13.2.1} Y.F. Chen, Y.P. Lan, S.W. Tsai: High-power diode-pumped actively Q-switched Nd:YAG laser at 1123 nm, Opt Commun234, p.309-313 (2004)

[6.1528] {Sect. 6.13.2.1} H. Kiriyama, K. Yamakawa, T. Nagai, N. Kageyama, H.Miyajima, H. Kan, H. Yoshida, M. Nakatsuka: 360-W average power op-eration with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHzrepetition rate, Optics Letters 28, p.1671-1673 (2003)

[6.1529] {Sect. 6.13.2.1} J.I. Mackenzie, C. Li, D.P. Shepherd: Multi-watt, high effi-ciency, diffraction-limited Nd:YAG planar waveguide laser, Ieee J QuantumElectron 39, p.493-500 (2003)

[6.1530] {Sect. 6.13.2.1} S. Picard, L. Robertsson, L.S. Ma, K. Nyholm, M. Mer-imaa, T.E. Ahola, P. Balling, P. Kren, J.P. Wallerand: Comparison ofI-127(2)-stabilized frequency-doubled Nd:YAG lasers at the Bureau Inter-national des Poids et Mesures, Appl Opt 42, p.1019-1028 (2003)

[6.1531] {Sect. 6.13.2.1} J.R. Lee, H.J. Baker, G.J. Friel, G.J. Hilton, D.R. Hall:High-average-power Nd : YAG planar waveguide laser that is face pumpedby 10 laser diode bars, Optics Letters 27, p.524-526 (2002)

[6.1532] {Sect. 6.13.2.1} H.R. Yang: 41 W cw TEM00 (M-2=1.2) 1064 nm beamgeneration from a diode-side- pumped Nd : YAG laser by use of a dual-telescopic optics configuration, Opt Commun 204, p.263-266 (2002)

[6.1533] {Sect. 6.13.2.1} T.J. Axenson, N.P. Barnes, D.J. Reichle, E.E. Koehler:High-energy Q-switched 0.946-mu m solid-state diode pumped laser, J OptSoc Am B Opt Physics 19, p.1535-1538 (2002)

[6.1534] {Sect. 6.13.2.1} M. Ostermeyer, G. Klemz, P. Kubina, R. Menzel: Quasi-continuous-wave birefringence-compensated single- and double- rod Nd :YAG lasers, Appl Opt 41, p.7573-7582 (2002)

[6.1535] {Sect. 6.13.2.1} S.M. Lee, S.K. Kim, M.J. Yun, H.S. Kim, B.H. Cha, H.J.Moon: Design and fabrication of a diode-side-pumped Nd : YAG laser witha diffusive optical cavity for 500-W output power, Appl Opt 41, p.1089-1094 (2002)

[6.1536] {Sect. 6.13.2.1} S.M. Lee, M.J. Yun, H.S. Kim, B.H. Cha, S. Suk: Outputpower and polarization characteristics for a diode-side-pumped Nd : YAGrod laser with a diffusive optical pump cavity, Appl Opt 41, p.1082-1088(2002)

[6.1537] {Sect. 6.13.2.1} G. Vdovin, V. Kiyko: Intracavity control of a 200-Wcontinuous-wave Nd : YAG laser by a micromachined deformable mirror,Optics Letters 26, p.798-800 (2001)

[6.1538] {Sect. 6.13.2.1} H.D. Jiang, H.J. Zhang, J.Y. Wang, H.R. Xia, X.B. Hu,B. Teng, C.Q. Zhang: Optical and laser properties of Nd : GdVO4 crystal,Opt Commun 198, p.447-452 (2001)

[6.1539] {Sect. 6.13.2.1} R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, S. Goldring:885 nm high-power diodes end-pumped Nd : YAG laser, Opt Commun 195,p.427-430 (2001)

[6.1540] {Sect. 6.13.2.1} M.V. Okhapkin, M.N. Skvortsov, A.M. Belkin, S.N.Bagayev: Tunable single-frequency diode-pumped Nd : YAG ring laser at946 nm, Opt Commun 194, p.207-211 (2001)

[6.1541] {Sect. 6.13.2.1} T. Omatsu, M.J. Damzen: Multi-watt CW output from adouble-pass diode side-pumped Nd : YVO4 amplifier with a Rh : BaTiO3phase conjugator, Opt Commun 198, p.135-139 (2001)

[6.1542] {Sect. 6.13.2.1} S. Amano, T. Mochizuki: High average and high peakbrightness slab laser, Ieee J Quantum Electron 37, p.296-303 (2001)

6.13.2 Solid-State Lasers 879

[6.1543] {Sect. 6.13.2.1} J.L. Blows, J.M. Dawes, J.A. Piper: A simple, thermally-stabilised, diode end-pumped, planar Nd : YAG laser, Opt Commun 162,p.247-250 (1999)

[6.1544] {Sect. 6.13.2.1} Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, T.Tajime: 208-W TEM00 operation of a diode-pumped Nd : YAG rod laser,Optics Letters 24, p.679-681 (1999)

[6.1545] {Sect. 6.13.2.1} H.J. Moon, J. Yi, J.M. Han, B.H. Cha, J. Lee: Efficientdiffusive reflector-type diode side-pumped Nd : YAG rod laser with anoptical slope efficiency of 55%, Appl Opt 38, p.1772-1776 (1999)

[6.1546] {Sect. 6.13.2.1} N. Moore, W.A. Clarkson, D.C. Hanna, S. Lehmann, J.Bosenberg: Efficient operation of a diode-bar-pumped Nd : YAG laser onthe low- gain 1123-nm line, Appl Opt 38, p.5761-5764 (1999)

[6.1547] {Sect. 6.13.2.1} G.J. Spuhler, R. Paschotta, U. Keller, M. Moser, M.J.P.Dymott, D. Kopf, J. Meyer, K.J. Weingarten, J.D. Kmetec, J. Alexanderet al.: Diode-pumped passively mode-locked Nd : YAG laser with 10-Waverage power in a diffraction-limited beam, Optics Letters 24, p.528-530(1999)

[6.1548] {Sect. 6.13.2.1} A. Agnesi, S. DellAcqua, C. Pennacchio, G. Reali, P.G.Gobbi: High-repetition-rate Q-switched diode-pumped Nd:YAG laser at1.444 mu m, Appl Opt 37, p.3984-3986 (1998)

[6.1549] {Sect. 6.13.2.1} M. Bode, S. Spiekermann, C. Fallnich, H. Welling, I. Fre-itag: Ultraviolet single-frequency pulses with 110 mW average power usingfrequency-converted passively Q-switched miniature Nd:YAG ring lasers,Appl Phys Lett 73, p.714-716 (1998)

[6.1550] {Sect. 6.13.2.1} K.M. Du, N.L. Wu, J.D. Xu, J. Giesekus, P. Loosen,R. Poprawe: Partially end-pumped Nd:YAG slab laser with a hybrid res-onator, Optics Letters 23, p.370-372 (1998)

[6.1551] {Sect. 6.13.2.1} T. Kellner, F. Heine, G. Huber, S. Kuck: Passive Q switch-ing of a diode-pumped 946-nm Nd:YAG laser with 1.6-W average outputpower, Appl Opt 37, p.7076-7079 (1998)

[6.1552] {Sect. 6.13.2.1} Y. Lutz, O. Musset, J.P. Boquillon, A. Hirth: Efficientpulsed 946-nm laser emission from Nd:YAG pumped by a titanium-dopedsapphire laser, Appl Opt 37, p.3286-3289 (1998)

[6.1553] {Sect. 6.13.2.1} M. Tsunekane, N. Taguchi, H. Inaba: Efficient 946-nmlaser operation of a composite Nd:YAG rod with undoped ends, Appl Opt37, p.5713-5719 (1998)

[6.1554] {Sect. 6.13.2.1} T. Graf, J.E. Balmer, R. Weber, H.P. Weber: Multi-Nd:YAG-rod variable-configuration resonator (VCR) end pumped by mul-tiple diode-laser bars, Opt Commun 135, p.171-178 (1997)

[6.1555] {Sect. 6.13.2.1} S. Konno, S. Fujikawa, K. Yasui: 80 W cw TEM00 1064nm beam generation by use of a laser- diode-side-pumped Nd:YAG rodlaser, Appl Phys Lett 70, p.2650-2651 (1997)

[6.1556] {Sect. 6.13.2.1} H.M. Kretschmann, F. Heine, V.G. Ostroumov, G. Huber:High-power diode-pumped continuous-wave Nd3+ lasers at wavelengthsnear 1.44 mu m, Optics Letters 22, p.466-468 (1997)

[6.1557] {Sect. 6.13.2.1} M. Ostermeyer, R. Menzel: 34 Watt flash lamp pumpedsingle rod ND:YAG laser with 1.2 * DL beam quality via special resonatordesign, Appl. Phys. B 65, p.669-671 (1997)

[6.1558] {Sect. 6.13.2.1} W.A. Clarkson, D.C. Hanna: Efficient Nd:YAG laser endpumped by a 20-W diode-laser bar, Optics Letters 21, p.869-871 (1996)

[6.1559] {Sect. 6.13.2.1} D. Golla, M. Rode, S. Knoke, W. Schone, A. Tunnermann:62-W cw TEM (00) Nd:YAG laser side pumped by fiber coupled diodelasers, Optics Letters 21, p.210-212 (1996)

880 6. Lasers

[6.1560] {Sect. 6.13.2.1} K. Yasui: Efficient and stable operation of a high-brightness w 500- W Nd: YAG rod laser, Appl Opt 35, p.2566-2569 (1996)

[6.1561] {Sect. 6.13.2.1} J.L. Dallas, R.S. Afzal, M.A. Stephen: Demonstration andcharacterization of a multibillion-shot, 2.5-mJ, 4-ns, Q-switched Nd:YAGlaser, Appl. Opt. 35, p.1427-1429 (1996)

[6.1562] {Sect. 6.13.2.1} D. Golla, S. Knoke, W. Schone, G. Ernst, M. Bode, A.Tunnermann, H. Welling: 300-W cw diode-laser side pumped Nd:YAG rodlaser, Optics Letters 20, p.1148-1150 (1995)

[6.1563] {Sect. 6.13.2.1} R.S. Afzal, M.D. Selker: Simple high-efficiency TEM00diode-laser-pumped Q-switched laser, Opt. Lett. 20, p.465-467 (1995)

[6.1564] {Sect. 6.13.2.1} T. Brand: Compact 170-W continous-wave diode-pumpedNd:YAG rod laser with a cusp-shaped reflector, Opt. Lett. 20, p.1776-1778(1995)

[6.1565] {Sect. 6.13.2.1} D. Golla, S. Knoke, W. Schone, A. Tunnermann, H.Schmidt: High Power Continuous-Wave Diode-Laser-Pumped Nd:YAGLaser, Appl. Phys. B 58, p.389-392 (1994)

[6.1566] {Sect. 6.13.2.1} S.C. Tidewell, J.F. Seamans, M.S. Bowers: Highly efficient60-W TEM00 cw diode-end-pumped Nd:YAG laser, Opt. Lett. 18, p.116-118 (1993)

[6.1567] {Sect. 6.13.2.1} S.C. Tidwell, J.F. Seamans, M.S. Bowers: Highly efficient60-W TEM00 cw diode-end-pumped Nd:YAG laser, Opt. Lett. 18, p.116-118 (1993)

[6.1568] {Sect. 6.13.2.1} S.C. Tidwell, J.F. Seamans, M.S. Bowers, A.K. Cousins:Scaling CW Diode-End-Pumped Nd:YAG Lasers to High Average Powers,IEEE J. QE-28, p.997-1009 (1992)

[6.1569] {Sect. 6.13.2.1} H.R. Verdun, T. Chuang: Efficient TEM00-mode operationof a Nd:YAG laser end pumped by a three-bar high-power diode-laser array,Opt. Lett. 17, p.1000-1002 (1992)

[6.1570] {Sect. 6.13.2.1} D.C. Shannon, R.W. Wallace: High-power Nd:YAG laserend pumped by a cw, 10 mm x 1 µm aperture, 10-W laser-diode bar, Opt.Lett. 16, p.318-320 (1991)

[6.1571] {Sect. 6.13.2.1} S.C. Tidwell, J.F. Seamans, C.E. Hamilton, C.H. Muller,D.D. Lowenthal: Efficient, 15 W Output Power, Diode End Pumped NdYAG Laser, Optics Letters 16, p.584-586 (1991)

[6.1572] {Sect. 6.13.2.1} N.P. Barnes, D.J. Gettemy, L. Esterowitz, R.A. Allen:Comparision of Nd 1.06. and 1.33 µm Operation in Various Hosts, IEEEJ. QE-23, p.1434-1451 (1987)

[6.1573] {Sect. 6.13.2.1} W.F. Krupke, M.D. Shinn, J.E. Marion, J.A. Caird, S.E.Stokowski: Spectroscopic, optical and thermomechanical properties of neo-dymium- and chromium-doped Gadolinium Scandium Gallium Garnet, J.Opt. Soc. Am B 3, p.102-113 (1986)

[6.1574] {Sect. 6.13.2.1} R.L. Schmitt, L.A. Rahn: Diode-laser-pumped Nd:YAGlaser injection seeding system, Appl. Opt. 25, p.629-633 (1986)

[6.1575] {Sect. 6.13.2.1} H. Shen, Y. Zhou, R. Zeng, G. Yu, Q. Ye, C. Huang, X.Huang, H. Liao.: High power 1.3414 µm Nd:YAG cw laser, Optics and lasertechnology 18, p.193-197 (1986)

[6.1576] {Sect. 6.13.2.1} J. Marling: 1.05-1.44 µm Tunability and Performance ofthe CW Nd3+:YAG Laser, IEEE J. QE-14, p.56-62 (1978)

[6.1577] {Sect. 6.13.2.1} H.P. Jenssen, R.F. Begley, R. Webb, R.C. Morris.: Spectro-scopic properties and laser performance of Nd3+ in lanthanum beryllate,J. Appl. Phys. 47, p.1496-1500 (1976)

[6.1578] {Sect. 6.13.2.1} S. Singh, R.G. Smith, L.G. Van Uitert:, Phys. Rev. B 10,p.2566-2572 (1974)

6.13.2 Solid-State Lasers 881

[6.1579] {Sect. 6.13.2.1} C.G. Bethea: Megawatt Power at 1.318 µ in Nd3+:YAGand Simultaneous Oscillation at Both 1.06 and 1.318 µ, IEEE J. QE-9,p.254 (1973)

[6.1580] {Sect. 6.13.2.1} H.G. Danielmeyer, M. Blatte, P. Balmer: FluorescenceQuenching in Nd:YAG, Appl. Phys. 1, p.269-274 (1973)

[6.1581] {Sect. 6.13.2.1} R.W. Wallace: Oscillation of the 1.833-µ Line inNd3+:YAG, IEEE J. QE-7, p.203-204 (1971)

[6.1582] {Sect. 6.13.2.1} M.J. Weber, T.E. Varitimos: Optical Spectra and Intensi-ties of Nd3+ in YAIO3, J. Appl. Phys. 42, p.4996-5005 (1971)

[6.1583] {Sect. 6.13.2.1} W. Koechner: Multihundred Watt Nd:YAG ContinuousLaser, Rev. Sci. Instr. 41, p.1699-1706 (1970)

[6.1584] {Sect. 6.13.2.1} H.F. Mahlein, G. Schollmeier: Periodic Multiplate Reso-nant Reflector for a YAG:Nd3+ Laser at 1.318 µ, IEEE J. QE-6, p.529-530(1970)

[6.1585] {Sect. 6.13.2.1} R.W. Wallace, S.E. Harris: Oscillation and Doubling ofthe 0.946-µ Line in Nd3+:YAG, Appl. Phys. Lett. 15, p.111-112 (1969)

[6.1586] {Sect. 6.13.2.1} T. Kushida, J.E. Geusic: Optical Refrigeration in Nd-Doped Yttrium Aluminum Garnet, Phys. Rev. Lett. 21, p.1172-1175 (1968)

[6.1587] {Sect. 6.13.2.1} P.H. Klein, W.J. Croft: Thermal Conductivity, Diffusivity,and Expansion of Y2O3, Y3Al5O12, and LaF3 in the Range 77-300K, J.Appl. Phys. 38, p.1603-1607 (1967)

[6.1588] {Sect. 6.13.2.1} J.K. Neeland, V. Evtuhov: Measurement of the Laser Tran-sition Cross Section for Nd+3 in Yttrium Aluminum Garnet, Phys. Rev.156, p.244-246 (1967)

[6.1589] {Sect. 6.13.2.1} C.H. Huang, G. Zhang, Y. Wei, L.X. Huang: 1.3414 mum Nd: YAP pulse laser in Q-switched mode, Opt Commun 260, p.248-250(2006)

[6.1590] {Sect. 6.13.2.1} M. Boucher, O. Musset, J.P. Boquillon, E. Georgiou: Mul-tiwatt CW diode end-pumped Nd : YAP laser at 1.08 and 1.34 mu m:influence of Nd doping level, Opt Commun 212, p.139-148 (2002)

[6.1591] {Sect. 6.13.2.1} R.X. Guo, J. Laurat, J.R. Gao, C.D. Xie, K.C. Peng:Application of an all-solid-state, frequency-doubled Nd : YAP laser to thegeneration of twin beams at 1080 nm, Appl Opt 41, p.2304-2307 (2002)

[6.1592] {Sect. 6.13.2.1} S. Yiou, F. Balembois, P. Georges, A. Brun: High-powercontinuous-wave diode-pumped Nd : YAlO3 laser that emits on low-gain1378-and 1385-nm transitions, Appl Opt 40, p.3019-3022 (2001)

[6.1593] {Sect. 6.13.2.1} M. Ostermeyer, R. Menzel: Single rod efficient Nd:YAGand Nd:YALO-lasers with average output powers of 46 and 47 W in diffrac-tion limited beams with M2 < 1.2 and 100 W with M2 < 3.7, Opt. Comm.160, p.251-254 (1999)

[6.1594] {Sect. 6.13.2.1} P. Poirier, F. Hanson: Discretely tunable multiwavelengthdiode-pumped Nd:YALO laser, Appl Opt 35, p.364-367 (1996)

[6.1595] {Sect. 6.13.2.1} S.L. Xue, Q.H. Lou: Passive mode-locking of a Nd:YAPlaser at 1.3414 mu m by using a convex-antiresonant ring unstable res-onator, Opt Commun 123, p.543-546 (1996)

[6.1596] {Sect. 6.13.2.1} G.A. Massey: Measurement of Device Parameters forNd:YAIO3 Lasers, IEEE J. QE-8, p.669-674 (1972)

[6.1597] {Sect. 6.13.2.1} G.A. Massey, J.M. Yarborough: High average power op-eration and nonlinear optical generation with the Nd:YAIO3 laser, Appl.Phys. Lett. 18, p.576-579 (1971)

[6.1598] {Sect. 6.13.2.1} K. Tei, M. Kato, Y. Niwa, S. Harayama, Y. Maruyama,T. Matoba, T. Arisawa: Diode-pumped 250-W zigzag slab Na:YAG oscilla-tor-amplifier system, Optics Letters 23, p.514-516 (1998)

882 6. Lasers

[6.1599] {Sect. 6.13.2.1} E. Armandillo, C. Norrie, A. Cosentino, P. Laporta,P. Wazen, P. Maine: Diode-pumped high-efficiency high-brightness Q-switched ND: YAG slab laser, Optics Letters 22, p.1168-1170 (1997)

[6.1600] {Sect. 6.13.2.1} M. Seguchi, K. Kuba: 1.4-kW Nd:YAG slab laser with adiffusive closed coupled pump cavity, Optics Letters 20, p.300-302 (1995)

[6.1601] {Sect. 6.13.2.1} R.J. Shine, A.J. Alfrey, R.L. Byer: 40-W cw, TEM (00)-mode, diode laser pumped, Nd:YAG miniature-slab laser, Optics Letters20, p.459-461 (1995)

[6.1602] {Sect. 6.13.2.1} R.J. Shine, Jr, A.J. Alfrey, R.L. Byer: 40-W cw, TEM00-mode, diode-laser-pumped, Nd:YAG miniature-slab laser, Opt. Lett. 20,p.459-461 (1995)

[6.1603] {Sect. 6.13.2.1} N. Hodgson, S. Dong, Q. Lu: Performance of a 2.3-kWNd:YAG slab laser system, Opt. Lett. 18, p.1727-1729 (1993)

[6.1604] {Sect. 6.13.2.1} B.J. Comaskey, R. Beach, G. Albrecht, W.J. Benett, B.L.Freitas, C. Petty, D. VanLue, D. Mundinger, R.W. Solarz: High AveragePower Diode Pumped Slab Laser, IEEE J. QE-28, p.992-996 (1992)

[6.1605] {Sect. 6.13.2.1} G.F. Albrecht, J.M. Eggleston, J.J. Ewing: Design andCharacterization of a High Average Power Slab YAG Laser, IEEE J. QE-22, p.2099-2106 (1986)

[6.1606] {Sect. 6.13.2.1} Y. Louyer, F. Balembois, M.D. Plimmer, T. Badr, P.Georges, P. Juncar, M.E. Himbert: Efficient cw operation of diode-pumpedNd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock, OptCommun 217, p.357-362 (2003)

[6.1607] {Sect. 6.13.2.1} M. Armstrong, X. Zhu, S. Gracewski, R.J.D. Miller: De-velopment of a 25 W TEM00 diode-pumped Nd : YLF laser, Opt Commun169, p.141-148 (1999)

[6.1608] {Sect. 6.13.2.1} W.A. Clarkson, P.J. Hardman, D.C. Hanna: High-powerdiode-bar end-pumped Nd:YLF laser at 1.053 mu m, Optics Letters 23,p.1363-1365 (1998)

[6.1609] {Sect. 6.13.2.1} P.J. Hardman, W.A. Clarkson, D.C. Hanna: High-powerdiode-bar-pumped intracavity-frequency-doubled Nd:YLF ring laser, OptCommun 156, p.49-52 (1998)

[6.1610] {Sect. 6.13.2.1} I. Will, A. Liero, D. Mertins, W. Sandner: Feedback-stabilized Nd:YLF amplifier system for generation of picosecond pulsetrains of an exactly rectangular envelope, IEEE J QE-34, p.2020-2028(1998)

[6.1611] {Sect. 6.13.2.1} Th. Graf, J.E. Balmer: High-power Nd:YLF laser endpumped by a diode-laser bar, Opt. Lett. 18, p.1317-1319 (1993)

[6.1612] {Sect. 6.13.2.1} T.M. Baer, D.F. Head, P. Gooding, G.J. Kintz, S. Hutchi-son: Performance of Diode-Pumped Nd:YAG and Nd:YLF Lasers in aTightly Folded Resonator Configuration, IEEE J. QE-28, p.1131-1138(1992)

[6.1613] {Sect. 6.13.2.1} H. Zbinden, J.E. Balmer: Q-switched Nd:YLF laser endpumped by a diode-laser bar, Opt. Lett. 15, p.1014-1016 (1990)

[6.1614] {Sect. 6.13.2.1} M.G. Knights, M.D. Thomas, E.P. Chicklis, G.A. Rines,W. Seka: Very High Gain Nd:YLF Amplifiers, IEEE J. QE-24, p.712-715(1988)

[6.1615] {Sect. 6.13.2.1} T.M. Pollak, W.F. Wing, R.J. Grasso, E.P. Chicklis, H.P.Jenssen: CW Laser Operation of Nd:YLF, IEEE J. QE-18, p.159-163(1982)

[6.1616] {Sect. 6.13.2.1} C.Y. Zhang, L. Zhang, Z.Y. Wei, C. Zhang, Y.B. Long,Z.G. Zhang, H.J. Zhang, J.Y. Wang: Diode-pumped continuous-wave Nd: LuVO4 laser operating at 916 nm, Optics Letters 31, p.1435-1437 (2006)

6.13.2 Solid-State Lasers 883

[6.1617] {Sect. 6.13.2.1} V. Lupei, G. Aka, D. Vivien: Highly efficient, 0.84 slopeefficiency, 901 nm, quasi-two-level laser emission of Nd in strontium lan-thanum aluminate, Optics Letters 31, p.1064-1066 (2006)

[6.1618] {Sect. 6.13.2.1} G.Q. Li, S.Z. Zhao, K.J. Yang, D.C. Li, H.Z. Yang: Diode-pumped doubly passively Q-switched Cr,Nd:YAG/KTP green laser withGaAs saturable absorber, Opt Express 14, p.4713-4720 (2006)

[6.1619] {Sect. 6.13.2.1} Y.J. Chen, X.H. Gong, Y.F. Lin, Q.G. Tan, Z.D. Luo, Y.D.Huang: Continuous-wave laser characteristics of a Nd3+:LaB3O6 cleavagemicrochip and the influence of thermal effects, Appl Opt 45, p.8338-8345(2006)

[6.1620] {Sect. 6.13.2.1} S.V. Voitikov, A.A. Demidovich, L.E. Batay, A.N. Kuzmin,M.B. Danailov: Sub-nanosecond pulse dynamics of Nd:LSB microchip laserpassively Q- switched by Cr:YAG saturable absorber, Opt Commun 251,p.154-164 (2005)

[6.1621] {Sect. 6.13.2.1} C. Grivas, T.C. MaySmith, D.P. Shepherd, R.W. Eason:Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 mum) planar waveguide grown by pulsed laser deposition, Opt Commun 229,p.355-361 (2004)

[6.1622] {Sect. 6.13.2.1} P. Glas, D. Fischer: Cladding pumped large-mode-areaNd-doped holey fiber laser, Opt Express 10, p.286-290 (2002)

[6.1623] {Sect. 6.13.2.1} D.L. Russell, K. Holliday: Upconversion and energy trans-fer dynamics in Nd3+: LiYF5, Opt Commun 191, p.277-294 (2001)

[6.1624] {Sect. 6.13.2.1} H.J. Baker, A.A. Chesworth, D.P. Millas, D.R. Hall: Aplanar waveguide Nd : YAG laser with a hybrid waveguide-unstable res-onator, Opt Commun 191, p.125-131 (2001)

[6.1625] {Sect. 6.13.2.1} A. Agnesi, S. DellAcqua, A. Guandalini, G. Reali, F.Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, T. Fukuda: Opticalspectroscopy and diode-pumped laser performance of Nd3+ in the CNCGcrystal, Ieee J Quantum Electron 37, p.304-313 (2001)

[6.1626] {Sect. 6.13.2.1} A. Rapaport, O. Moteau, M. Bass, L.A. Boatner, C. Deka:Optical spectroscopy and lasing properties of neodymium-doped lutetiumorthophosphate, J Opt Soc Am B Opt Physics 16, p.911-916 (1999)

[6.1627] {Sect. 6.13.2.1} F.C. Cruz, B.C. Young, J.C. Bergquist: Diode-pumpedNd:FAP laser at 1.126 mu m: a possible local oscillator for a Hg+ opticalfrequency standard, Appl Opt 37, p.7801-7804 (1998)

[6.1628] {Sect. 6.13.2.1} P. Dekker, Y.J. Huo, J.M. Dawes, J.A. Piper, P. Wang,B.S. Lu: Continuous wave and Q-switched diode-pumped neodymium,lutetium: yttrium aluminium borate lasers, Opt Commun 151, p.406-412(1998)

[6.1629] {Sect. 6.13.2.1} I. Moshe, S. Jackel, R. Lallouz: Working beyond the staticlimits of laser stability by use of adaptive and polarization-conjugationoptics, Appl Opt 37, p.6415-6420 (1998)

[6.1630] {Sect. 6.13.2.1} X.Y. Zhang, S.Z. Zhao, Q.P. Wang, L.K. Sun, S.J. Zhang,G.T. Yao, Z.Y. Zhang: Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:S-FAP laser, Opt Commun 155, p.55-60 (1998)

[6.1631] {Sect. 6.13.2.1} Y.M. Chen, L. Major, V. Kushawaha: Efficient laser oper-ation of diode-pumped Nd:KGd (WO4)2 crystal at 1.067 mu m, Appl Opt35, p.3203-3206 (1996)

[6.1632] {Sect. 6.13.2.1} N. Lei, B. Xu, Z.H. Jiang: Ti:sapphire laser pumpedNd:tellurite glass laser, Opt Commun 127, p.263-265 (1996)

[6.1633] {Sect. 6.13.2.1} Q.P. Wang, S.Z. Zhao, X.Y. Zhang, L.K. Sun, S.J. Zhang:Laser demonstration of a diode-laser-pumped Nd:Sr-5 (PO4)3F crystal,Opt Commun 128, p.73-75 (1996)

884 6. Lasers

[6.1634] {Sect. 6.13.2.1} C.J. Flood, D.R. Walker, H.M. van Driel: CW diode pump-ing and FM mode locking of a Nd:KGW laser, Appl. Phys. B 60, p.309-312(1995)

[6.1635] {Sect. 6.13.2.1} E. Reed: A flashlamp-Pumped, Q-Switched Cr:Nd:GSGGLaser, IEEE J. QE-21, p.1625-1629 (1985)

[6.1636] {Sect. 6.13.2.1} J.E. Murray: Pulsed Gain and Thermal Lensing ofNd:LiF4, IEEE J. QE-19, p.488-491 (1983)

[6.1637] {Sect. 6.13.2.1} A. Beimowski, G. Huber, D. Pruss, V.V. Laptev, I.A.Shcherbakov, E.V. Zharikov: Efficient Cr3+ Sensitized Nd3+:GdScGa-Garnet Laser at 1.06 µm, Appl. Phys. B 28, p.234-235 (1982)

[6.1638] {Sect. 6.13.2.1} E.J. Sharp, D.J. Horowitz, J.E. Miller: High-efficiencyNd3+:LiYF4 laser, J. Appl. Phys. 44, p.5399-5401 (1973)

[6.1639] {Sect. 6.13.2.1} T. Omatsu, K. Nawata, D. Sauder, A. Minassian,M.J. Damzen: Over 40-watt diffraction-limited Q-switched output fromneodymium- doped YAG ceramic bounce amplifiers, Opt Express 14,p.8198-8204 (2006)

[6.1640] {Sect. 6.13.2.1} D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, C. Fallnich:Core-doped ceramic Nd:YAG laser, Opt Express 14, p.2690-2694 (2006)

[6.1641] {Sect. 6.13.2.1} M. Ostermeyer, I. Brandenburg: Simulation of the extrac-tion of near diffraction limited Gaussian beams from side pumped coredoped ceramic Nd: YAG and conventional laser rods, Opt Express 13,p.10145-10156 (2005)

[6.1642] {Sect. 6.13.2.1} Y.F. Qi, X.L. Zhu, Q.H. Lou, J.H. Ji, J.X. Dong, Y.R.Wei: Nd:YAG ceramic laser obtained high slope-efficiency of 62% in highpower applications, Opt Express 13, p.8725-8729 (2005)

[6.1643] {Sect. 6.13.2.1} T. Omatsu, Y. Ojima, A. Minassian, M.J. Damzen: Powerscaling of highly neodymium-doped YAG ceramic lasers with a bounceamplifier geometry, Opt Express 13, p.7011-7016 (2005)

[6.1644] {Sect. 6.13.2.1} D. Kracht, M. Frede, R. Wilhelm, C. Fallnich: Comparisonof crystalline and ceramic composite Nd: YAG for high power diode end-pumping, Opt Express 13, p.6212-6216 (2005)

[6.1645] {Sect. 6.13.2.1} L. Guo, W. Hou, H.B. Zhang, Z.P. Sun, D.F. Cui, Z.Y. Xu,Y.G. Wang, X.Y. Ma: Diode-end-pumped passively mode-locked ceramicNd:YAG Laser with a semiconductor saturable mirror, Opt Express 13,p.4085-4089 (2005)

[6.1646] {Sect. 6.13.2.1} T. Omatsu, T. Isogami, A. Minassian, M.J. Damzen:>100 kHz Q-switched operation in transversely diode-pumped ceramicNd3+:YAG laser in bounce geometry, Opt Commun 249, p.531-537 (2005)

[6.1647] {Sect. 6.13.2.1} J.H. Lu, J.R. Lu, T. Murai, K. Takaichi, T. Uematsu,J.Q. Xu, K. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii: 36-W diode-pumped continuous-wave 1319-nm Nd : YAG ceramic laser, Optics Letters27, p.1120-1122 (2002)

[6.1648] {Sect. 6.13.2.1} E.A. Khazanov: Thermally induced birefringence in Nd :YAG ceramics, Optics Letters 27, p.716-718 (2002)

[6.1649] {Sect. 6.13.2.2} L. McDonagh, R. Wallenstein, R. Knappe: 47 W, 6 nsconstant pulse duration, highrepetition-rate cavity-dumped Q-switchedTEM00 Nd:YVO4 oscillator, Optics Letters 31, p.3303-3305 (2006)

[6.1650] {Sect. 6.13.2.2} P. Blandin, E. Druon, E. Balembois, P. Georges, S.LevequeFort, M.P. FontaineAupart: Diode-pumped passively mode-lockedNd:YVO4 laser at 914 nm, Optics Letters 31, p.214-216 (2006)

[6.1651] {Sect. 6.13.2.2} A. Agnesi, L. Carr, F. Pirzio, D. Scarpa, A. Tomaselli,G. Reali, C. Vacchi, C. Braggio: High-gain diode-pumped amplifier forgeneration of microjoule-level picosecond pulses, Opt Express 14, p.9244-9249 (2006)

6.13.2 Solid-State Lasers 885

[6.1652] {Sect. 6.13.2.2} Y.Y. Lin, S.Y. Chen, A.C. Chiang, R.Y. Tu, Y.C. Huang:Single-longitudinal-mode, tunable dual-wavelength, CWNd: YVO4 laser,Opt Express 14, p.5329-5334 (2006)

[6.1653] {Sect. 6.13.2.2} A. Schlatter, L. Krainer, M. Golling, R. Paschotta, D.Ebling, U. Keller: Passively mode-locked 914-nm Nd:YVO4 laser, OpticsLetters 30, p.44-46 (2005)

[6.1654] {Sect. 6.13.2.2} P.T. Tai, W.F. Hsieh: Suppression of spatial hole burn-ing in a solid-state laser with the degenerate resonator configuration, OptExpress 13, p.1679-1684 (2005)

[6.1655] {Sect. 6.13.2.2} A. Minassian, B. Thompson, M.J. Damzen: High-powerTEM00 grazing-incidence Nd:YVO4 oscillators in single and multiplebounce configurations, Opt Commun 245, p.295-300 (2005)

[6.1656] {Sect. 6.13.2.2} A.Y. Yao, W. Hou, Y.P. Kong, L. Guo, L.A. Wu, R.N. Li,D.F. Cui, Z.Y. Xu, Y. Bi, Y. Zhou: Double-end-pumped 11-W Nd:YVO4cw laser at 1342 nm, J Opt Soc Am B Opt Physics 22, p.2129-2133 (2005)

[6.1657] {Sect. 6.13.2.2} S. Lecomte, M. Kalisch, L. Krainer, G.J. Spuhler, R.Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B.Schmidt, U. Keller: Diode-pumped passively mode-locked Nd:YVO4 laserswith 40-GHz repetition rate, Ieee J Quantum Electron 41, p.45-52 (2005)

[6.1658] {Sect. 6.13.2.2} P.K. Datta, S. Mukhopadhyay, S.K. Das, L. Tartara, A.Agnesi, V. Degiorgio: Enhancement of stability and efficiency of a nonlin-ear mirror mode- locked Nd:YVO4 oscillator by an active Q-switch, OptExpress 12, p.4041-4046 (2004)

[6.1659] {Sect. 6.13.2.2} P. Shi, D.J. Li, H.L. Zhang, Y.D. Wang, K.M. Du: An 110WNd:YVO4 slab laser with high beam quality output, Opt Commun 229,p.349-354 (2004)

[6.1660] {Sect. 6.13.2.2} Y.F. Chen, Y.C. Chen, S.W. Chen, Y.P. Lan: High-powerefficient diode-pumped passively Q-switched Nd:YVO4/KTP/Cr4+ :YAGeye-safe laser, Opt Commun 234, p.337-342 (2004)

[6.1661] {Sect. 6.13.2.2} A. Minassian, M.J. Damzen: 20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm, Opt Commun 230, p.191-195(2004)

[6.1662] {Sect. 6.13.2.2} D.N. Papadopoulos, S. Forget, M. Delaigue, F. Druon, F.Balembois, P. Georges: Passively mode-locked diode-pumped Nd:YVO4 os-cillator operating at an ultralow repetition rate, Optics Letters 28, p.1838-1840 (2003)

[6.1663] {Sect. 6.13.2.2} H. Ogilvy, M.J. Withford, P. Dekker, J.A. Piper: Efficientdiode double-end-pumped Nd:YVO4 laser operating at 1342nm, Opt Ex-press 11, p.2411-2415 (2003)

[6.1664] {Sect. 6.13.2.2} Y.F. Chen, S.W. Tsai, S.C. Wang, Y.C. Huang, T.C. Lin,B.C. Wong: Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd : YVO4 dual-wavelengthlaser with periodically poled lithium niobate, Optics Letters 27, p.1809-1811 (2002)

[6.1665] {Sect. 6.13.2.2} F. Chen, X.L. Wang, K.M. Wang, Q.M. Lu, D.Y. Shen:Ion-implanted Nd : YVO4 planar waveguide: refractive-index character-ization and propagation mode reduction, Optics Letters 27, p.1111-1113(2002)

[6.1666] {Sect. 6.13.2.2} Y.F. Chen, S.W. Tsai: Diode-pumped Q-switched Nd :YVO4 yellow laser with intracavity sum- frequency mixing, Optics Letters27, p.397-399 (2002)

[6.1667] {Sect. 6.13.2.2} M.J. Damzen, M. Trew, E. Rosas, G.J. Crofts: Continuous-wave Nd : YVO4 grazing-incidence laser with 22.5 W output power and64% conversion efficiency, Opt Commun 196, p.237-241 (2001)

886 6. Lasers

[6.1668] {Sect. 6.13.2.2} C. Becher, K.T. Boller: Low-intensity-noise operation ofNd : YVO4 microchip lasers by pump- noise suppression, J Opt Soc AmB Opt Physics 16, p.286-295 (1999)

[6.1669] {Sect. 6.13.2.2} Y.F. Chen, L.J. Lee, T.M. Huang, C.L. Wan: Study ofhigh-power diode-end-pumped Nd : YVO4 laser at 1.34 mu m: influenceof Auger upconversion, Opt Commun 163, p.198-202 (1999)

[6.1670] {Sect. 6.13.2.2} Y.F. Chen: Design criteria for concentration optimizationin scaling diode end- pumped lasers to sigh powers: Influence of thermalfracture, IEEE J QE-35, p.234-239 (1999)

[6.1671] {Sect. 6.13.2.2} Y.F. Chen: High-power diode-pumped Q-switched intra-cavity frequency-doubled Nd : YVO4 laser with a sandwich-type resonator,Optics Letters 24, p.1032-1034 (1999)

[6.1672] {Sect. 6.13.2.2} T. Graf, A.I. Ferguson, E. Bente, D. Burns, M.D. Dawson:Multi-Watt Nd : YVO4 laser, mode locked by a semiconductor saturableabsorber mirror and side-pumped by a diode-laser bar, Opt Commun 159,p.84-87 (1999)

[6.1673] {Sect. 6.13.2.2} A. Sennaroglu: Efficient continuous-wave operation of adiode-pumped Nd : YVO4 laser at 1342 nm, Opt Commun 164, p.191-197(1999)

[6.1674] {Sect. 6.13.2.2} C. Becher, K.J. Boller: Intensity noise properties ofNd:YVO4 microchip lasers pumped with an amplitude squeezed diodelaser, Opt Commun 147, p.366-374 (1998)

[6.1675] {Sect. 6.13.2.2} A. Agnesi, C. Pennacchio, G.C. Reali, V. Kubecek: High-power diode-pumped picosecond Nd3+:YVO4 laser, Optics Letters 22,p.1645-1647 (1997)

[6.1676] {Sect. 6.13.2.2} R.S. Conroy, A.J. Kemp, G.J. Friel, B.D. Sinclair: Mi-crochip Nd:vanadate lasers at 1342 and 671 nm, Optics Letters 22, p.1781-1783 (1997)

[6.1677] {Sect. 6.13.2.2} K.M. Du, Y. Liao, P. Loosen: Nd:YAG slab laser end-pumped by laser-diode stacks and its beam shaping, Opt Commun 140,p.53-56 (1997)

[6.1678] {Sect. 6.13.2.2} E. Armandillo, C. Norrie, A. Cosentino, P. Laporta,P. Wazen, P. Maine: Diode-pumped high-efficiency high-brightness Q-switched ND:YAG slab laser, Opt. Lett. 22, p.1168-1170 (1997)

[6.1679] {Sect. 6.13.2.2} D.C. Brown, R. Nelson, L. Billings: Efficient cw end-pumped, end-cooled Nd:YVO4 diode-pumped, Appl. Opt. 36, p.8611-8613(1997)

[6.1680] {Sect. 6.13.2.2} D.G. Matthews, J.R. Boon, R.S. Conroy, B.D. Sinclair: Acomparative study of diode pumped microchip laser materials: Nd-dopedYVO4, YOS, SFAP and SVAP, J. Mod. Opt. 43, p.1079-1087 (1996)

[6.1681] {Sect. 6.13.2.2} G. Feugnet, C. Bussac, C. Larat, M. Schwarz, J.P.Pocholle: High Efficiency TEM (00) NdYVO4 Laser LongitudinallyPumped by a High Power Array, Optics Letters 20, p.157-159 (1995)

[6.1682] {Sect. 6.13.2.2} J.E. Bernard, A.J. Alcock: High-repetition-rate diode-pumped Nd:YVO4 slab laser, Opt. Lett. 19, p.1861 (1994)

[6.1683] {Sect. 6.13.2.2} J.E. Bernard, A.J. Alcock: High-efficiency diode-pumpedNd:YVO4 slab laser, Opt. Lett. 18, p.968-970 (1993)

[6.1684] {Sect. 6.13.2.2} R.A. Fields, M. Birnbaum, C.L. Fincher: Highly efficientNd:YVO4 diode-laser end-pumped laser, Appl. Phys. Lett. 51, p.1885-1886(1987)

[6.1685] {Sect. 6.13.2.2} A.W. Tucker, M. Birnbaum, C.L. Fincher, J.W. Erler:Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4, J.Appl. Phys. 48, p.4907-4911 (1977)

6.13.2 Solid-State Lasers 887

[6.1686] {Sect. 6.13.2.2} A. Major, N. Langford, T. Graf, D. Burns, A.I. Ferguson:Diode-pumped passively mode-locked Nd : KGd(WO4)(2) laser with 1-Waverage output power, Optics Letters 27, p.1478-1480 (2002)

[6.1687] {Sect. 6.13.2.2} Y. Kalisky, L. Kravchik, C. Labbe: Repetitive modulationand passively Q-switching of diode-pumped Nd- KGW laser, Opt Commun189, p.113-125 (2001)

[6.1688] {Sect. 6.13.2.2} E. Herault, F. Balembois, P. Georges: Nd:GdVO4 as athree-level laser at 879 nm, Optics Letters 31, p.2731-2733 (2006)

[6.1689] {Sect. 6.13.2.2} P. Li, Y.F. Li, Y.M. Sun, X.Y. Hou, H.J. Zhang, J.Y.Wang: Passively Q-switched 1.34 mu m Nd: YxGd1-xVO4 laser with Co2+:LaMgAl11O19 saturable absorber, Opt Express 14, p.7730-7736 (2006)

[6.1690] {Sect. 6.13.2.2} C. Gerhard, F. Druon, P. Georges, V. Couderc, P. Lep-roux: Stable mode-locked operation of a low repetition rate diode-pumpedNd:GdVO4 laser by combining quadratic polarisation switching and asemiconductor saturable absorber mirror, Opt Express 14, p.7093-7098(2006)

[6.1691] {Sect. 6.13.2.2} N. Pavel, T. Taira: Continuous-wave high-power multi-passpumped thin-disc Nd:GdVO4 laser, Opt Commun 260, p.271-276 (2006)

[6.1692] {Sect. 6.13.2.2} Y.F. Chen, M.L. Ku, K.W. Su: High-power efficient tun-able Nd: GdVO4 laser at 1083 nm, Optics Letters 30, p.2107-2109 (2005)

[6.1693] {Sect. 6.13.2.2} W.W. Ge, H.J. Zhang, J.Y. Wang, X.F. Cheng, M.H.Jiang, C.L. Du, S.C. Yuan: Pulsed laser output of LD-end-pumped 1.34 mum Nd: GdVO4 laser with Co: LaMgAl11O19 crystal as saturable absorber,Opt Express 13, p.3883-3889 (2005)

[6.1694] {Sect. 6.13.2.2} H.F. Pan, S.X. Xu, H.P. Zeng: Passively Q-switched single-longitudinal- mode c-cut Nd:GdVO4 laser with a twisted-mode cavity, OptExpress 13, p.2755-2760 (2005)

[6.1695] {Sect. 6.13.2.2} S.P. Ng, D.Y. Tang, J. Kong, Z.J. Xiong, T. Chen, L.J.Qin, X.L. Meng: Quasi-cw diode-pumped Nd:GdVO4 laser passively Q-switched and mode- locked by Cr4+:YAG saturable absorber, Opt Com-mun 250, p.168-173 (2005)

[6.1696] {Sect. 6.13.2.2} H.J. Zhang, J.H. Liu, J.Y. Wang, X.G. Xu, M.H. Jiang:Continuous-wave laser performance of Nd:LuVO4 crystal operating at 1.34mu m, Appl Opt 44, p.7439-7441 (2005)

[6.1697] {Sect. 6.13.2.2} J.H. Liu, H.J. Zhang, Z.P. Wang, J.Y. Wang, Z.S. Shao,M.H. Jiang, H. Weber: Continuous-wave and pulsed laser performance ofNd:LuVO4 crystal, Optics Letters 29, p.168-170 (2004)

[6.1698] {Sect. 6.13.2.2} A. Agnesi, A. Guandalini, G. Reali, S. DellAcqua, G. Pic-cinno: High-brightness 2.4-W continuous-wave Nd:GdVO4 laser at 670 nm,Optics Letters 29, p.56-58 (2004)

[6.1699] {Sect. 6.13.2.2} N.W. Rimington, S.L. Schieffer, W.A. Schroeder, B.K.Brickeen: Thermal lens shaping in Brewster gain media: A high-power,diode- pumped Nd:GdVO4 laser, Opt Express 12, p.1426-1436 (2004)

[6.1700] {Sect. 6.13.2.2} Y.A. He, X.Y. Hou, L.J. Qin, Y.M. Sun, Y.F. Li, H.J. Qi,L. Pan: Laser-diode pumped passively Q-switched Nd:Y Gd-x(1-x) VO4laser with a GaAs saturable absorber, Opt Commun 234, p.305-308 (2004)

[6.1701] {Sect. 6.13.2.2} S. Zhang, E. Wu, H.F. Pan, H.P. Zeng: Passive mode lock-ing in a diode-pumped Nd:GdVO4 laser with a semiconductor saturableabsorber mirror, Ieee J Quantum Electron 40, p.505-508 (2004)

[6.1702] {Sect. 6.13.2.2} B.Y. Zhang, G. Li, M. Chen, Z.G. Zhang, Y.G. Wang: Pas-sive mode locking of a diode-end-pumped Nd:GdVO4 laser with a semicon-ductor saturable absorber mirror, Optics Letters 28, p.1829-1831 (2003)

888 6. Lasers

[6.1703] {Sect. 6.13.2.2} J.L. He, C.K. Lee, J.Y.J. Huang, S.C. Wang, C.L. Pan,K.F. Huang: Diode-pumped passively mode-locked multiwatt Nd:GdVO4laser with a saturable Bragg reflector, Appl Opt 42, p.5496-5499 (2003)

[6.1704] {Sect. 6.13.2.2} C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S.Kutovoi, Y. Zavartsev: Continuous wave diode pumped intracavity doubledNd : GdVO4 laser with 840 mW output power at 456 nm, Opt Commun205, p.361-365 (2002)

[6.1705] {Sect. 6.13.2.2} C.L. Du, L.J. Qin, X.L. Meng, G.B. Xu, Z.P. Wang, X.G.Xu, L. Zhu, B.C. Xu, Z.S. Shao: High-power Nd : GdVO4 laser at 1.34 mum end-pumped by laser-diode- array, Opt Commun 212, p.177-181 (2002)

[6.1706] {Sect. 6.13.2.3} A.K. Sharma, M. Raghuramaiah, K.K. Mishra, P.A. Naik,S.R. Kumbhare, P.D. Gupta: Characteristics of a stable, injection Q-switched Nd:phosphate glass regenerative amplifier for a chirped pulseamplification based Table Top Terawatt laser system, Opt Commun 252,p.369-380 (2005)

[6.1707] {Sect. 6.13.2.3} J.A. derAu, F.H. Loesel, F. MorierGenoud, M. Moser, U.Keller: Femtosecond diode-pumped Nd:glass laser with more than 1W ofaverage output power, Optics Letters 23, p.271-273 (1998)

[6.1708] {Sect. 6.13.2.3} C. Horvath, A. Braun, H. Liu, T. Juhasz, G. Mourou: Com-pact directly diode-pumped femtosecond Nd:glass chirped-pulse-amplifica-tion laser system, Optics Letters 22, p.1790-1792 (1997)

[6.1709] {Sect. 6.13.2.3} S. Basu, T.J. Kane, R.L. Byer: A Proposed 1 kW AveragePower Moving Slab Nd:Glass Laser, IEEE J. QE-22, p.2052-2057 (1986)

[6.1710] {Sect. 6.13.2.3} J.M. Eggleston, G.F. Albrecht, R.A. Petr, J.F. Zumdieck:A High Average Power Dual Slab Nd:Glass Zigzag Laser System, IEEE J.QE-22, p.2092-2098 (1986)

[6.1711] {Sect. 6.13.2.3} J.M. Eggleston, R.L. Byer, T.J. Kane, J. Unternahrer:Slab Geometry ND Glass Laser Performance Studies, Optics Letters 7,p.405-407 (1982)

[6.1712] {Sect. 6.13.2.3} T.J. Kane, R.L. Byer: Proposed Kilowatt Average PowerND Glass Laser, J Opt Soc Am 72, p.1755 (1982)

[6.1713] {Sect. 6.13.2.3} S.M. Yarema, D. Milam: Gain Saturation in PhosphateLaser Glasses, IEEE J. QE-18, p.1941-1946 (1982)

[6.1714] {Sect. 6.13.2.3} W.W. Simmons, J.T. Hunt, W.E. Warren: Light Propa-gation Through Large Laser Systems, IEEE J. QE-17, p.1727-1744 (1981)

[6.1715] {Sect. 6.13.2.3} M.J. Weber, D. Milam, W.L. Smith: Nonlinear RefractiveIndex of Glasses and Crystals, Opt. Eng. 17, p.463-469 (1978)

[6.1716] {Sect. 6.13.2.3} D. Duston, K. Rose: Measurement of Terminal Level Life-time in Nd-Doped Laser Glass, IEEE J. QE-6, p.3 (1970)

[6.1717] {Sect. 6.13.2.3} M. Naftaly, A. Jha: Nd3+-doped fluoroaluminate glassesfor a 1.3 mu m amplifier, J Appl Phys 87, p.2098-2104 (2000)

[6.1718] {Sect. 6.13.2.4} L.D. DeLoach, S.A. Payne, L.L. Chase, L.K. Smith, W.L.Kway, W.F. Krupke: Evalutation of absorption and emission propertiesof Yb3+ doped crystals for laser applications, IEEE Journal of QuantumElectronics 29, p.1179-1191 (1993)

[6.1719] {Sect. 6.13.2.4} M. Hildebrandt, M. Frede, P. Kwee, B. Willke, D. Kracht:Single-frequency master-oscillator photonic crystal fiber amplifier with 148W output power, Opt Express 14, p.11071-11076 (2006)

[6.1720] {Sect. 6.13.2.4} T. Dascalu, T. Taira: Highly efficient pumping configura-tion for microchip solid-state laser, Opt Express 14, p.670-677 (2006)

[6.1721] {Sect. 6.13.2.4} F. DiTeodoro, C.D. Brooks: Multistage Yb-doped fiberamplifier generating megawatt peak-power, subnanosecond pulses, OpticsLetters 30, p.3299-3301 (2005)

6.13.2 Solid-State Lasers 889

[6.1722] {Sect. 6.13.2.4} A.A. Lagatsky, A.R. Sarmani, C.T.A. Brown, W. Sibbett,V.E. Kisel, A.G. Selivanov, I.A. Denisov, A.E. Troshin, K.V. Yumashev,N.V. Kuleshov, V.N. Matrosov, T.A. Matrosova, M.I. Kupchenko: Yb3+-doped YVO4 crystal for efficient Kerr-lens mode locking in solid- statelasers, Optics Letters 30, p.3234-3236 (2005)

[6.1723] {Sect. 6.13.2.4} Q. Liu, M. Gong, F.Y. Lu, W.P. Gong, C. Li: 520-Wcontinuous-wave diode corner-piumped composite Yb:YAG slab laser, Op-tics Letters 30, p.726-728 (2005)

[6.1724] {Sect. 6.13.2.4} S.R. Bowman, S.R. OConnor, S. Biswal: Ytterbium laserwith reduced thermal loading, Ieee J Quantum Electron 41, p.1510-1517(2005)

[6.1725] {Sect. 6.13.2.4} D.J. Ripin, J. Ochoa, R.L. Aggarwal, T.Y. Fan: 300-Wcryogenically cooled Yb:YAG laser, Ieee J Quantum Electron 41, p.1274-1277 (2005)

[6.1726] {Sect. 6.13.2.4} D.J. Ripin, J.R. Ochoa, R.L. Aggarwal, T.Y. Fan: 165-Wcryogenically cooled Yb:YAG laser, Optics Letters 29, p.2154-2156 (2004)

[6.1727] {Sect. 6.13.2.4} G.D. Goodno, S. Palese, J. Harkenrider, H. Injeyan: Yb :YAG power oscillator with high brightness and linear polarization, OpticsLetters 26, p.1672-1674 (2001)

[6.1728] {Sect. 6.13.2.4} G.D. Goodno, S. Palese, J. Harkenrider, H. Injeyan:Yb:YAG power oscillator with high brightness and linear polarization, Op-tics Letters 25, p.1672-1674 (2001)

[6.1729] {Sect. 6.13.2.4} A. Breinier, G. Boulon: New criteria to choose the bestYb3+-doped laser crystals, Europhysics Letters 55, p.647-652 (2001)

[6.1730] {Sect. 6.13.2.4} E.C. Honea, R.C. Beach, S.C. Mitchell, J.A. Skidmore,M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, D.G.Harris: High-power dual-rod Yb:YAG laser, Optics Letters 25, p.805-807(2000)

[6.1731] {Sect. 6.13.2.4} D.S. Sumida, A. Betin, H. Bruesselbach, R. Byren, S.Matthews, R. Reeder, M.S. Mangir: Diode-pumped Yb:YAG catches upwith Nd:YAG, Laser Focus World June, p.63-70 (1999)

[6.1732] {Sect. 6.13.2.4} J. Aus der Au, G.J. Spuhler, T. Sudmeyer, R. Paschotta,R. Hovel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, U. Keller: 16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disklaser, Opt. Lett. 25, p.859-861 (2000)

[6.1733] {Sect. 6.13.2.4} E.C. Honea, R.J. Beach, S.C. Mitchell, J.A. Skidmore,M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. M. Monroe,D.G. Harris: High-power dual-rod Yb:YAG laser, Opt. Lett. 25, p.805-807(2000)

[6.1734] {Sect. 6.13.2.4} J. AusderAu, S.F. Schaer, R. Paschotta, C. Honninger, U.Keller, M. Moser: High-power diode-pumped passively mode-locked Yb :YAG lasers, Optics Letters 24, p.1281-1283 (1999)

[6.1735] {Sect. 6.13.2.4} E.C. Honea, R.J. Beach, S.C. Mitchell, P.V. Avizonis: 183-W, M-2 = 2.4 Yb : YAG Q-switched laser, Optics Letters 24, p.154-156(1999)

[6.1736] {Sect. 6.13.2.4} C. Bibeau, R.J. Beach, S.C. Mitchell, M.A. Emanuel, J.Skidmore, C.A. Ebbers, S.B. Sutton, K.S. Jancaitis: High-average-power1-mu m performance and frequency conversion of a diode-end-pumpedYb:YAG laser, IEEE J QE-34, p.2010-2019 (1998)

[6.1737] {Sect. 6.13.2.4} H.W. Bruesselbach, D.S. Sumida, R.A. Reeder,R.W.Byren: Low-Heat High-Power Scaling Using InGaAs-Diode-PumpedYb:YAG Lasers, IEEE J. QE-3p.105-116 (1997)

[6.1738] {Sect. 6.13.2.4} H. Bruesselbach, D.S. Sumida: 69-W-average-powerYb:YAG laser, Optics Letters 21, p.480-482 (1996)

890 6. Lasers

[6.1739] {Sect. 6.13.2.4} U.Brauch, A. Giesen, M. Karszewski, Chr. Stewen, A.Voss: Multiwatt diode-pumped Yb:YAG thinh disk laser continuously tun-able between 1018 and 1053 nm, Opt. Lett. 20, p.713-715 (1995)

[6.1740] {Sect. 6.13.2.4} D.S. Sumida, T.Y. Fan: Room-temperature 50-mJ/pulseside-diode-pumped Yb:YAG laser, Opt. Lett. 20, p.2384-2386 (1995)

[6.1741] {Sect. 6.13.2.4} E. Snitzer, R. Woodcock: Yb3+-Er3+ Glass Laser, Appl.Phys. Lett. 6, p.45-46 (1965)

[6.1742] {Sect. 6.13.2.4} G. Galzerano, P. Laporta, E. Sani, L. Bonelli, A. Ton-celli, M. Tonelli, A. Pesatori, C. Svelto: Room-temperature diode-pumpedYb:KYF4 laser, Optics Letters 31, p.3291-3293 (2006)

[6.1743] {Sect. 6.13.2.4} G.R. Holtom: Mode-locked Yb: KGW laser longitudinallypumped by polarization- coupled diode bars, Optics Letters 31, p.2719-2721 (2006)

[6.1744] {Sect. 6.13.2.4} Y. Zaouter, J. Didierjean, E. Balembois, G.L. Leclin, F.Druon, P. Georges, J. Petit, P. Goldner, B. Viana: 47-fs diode-pumpedYb3+: CaGdAlO4 laser, Optics Letters 31, p.119-121 (2006)

[6.1745] {Sect. 6.13.2.4} Y.E. Romanyuk, C.N. Borca, M. Pollnau, S. Rivier, V.Petrov, U. Griebner: Yb-doped KY(WO4)(2) planar waveguide laser, Op-tics Letters 31, p.53-55 (2006)

[6.1746] {Sect. 6.13.2.4} M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H.Yagi, S. Hosokawa, T. Yanagitani, A.A. Kaminskii: Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser, Opt Express 14, p.12832-12838 (2006)

[6.1747] {Sect. 6.13.2.4} A. Major, V. Barzda, P.A.E. Piunno, S. Musikhin, U.J.Krull: An extended cavity diode-pumped femtosecond Yb: KGW laser forapplications in optical DNA sensor technology based on fluorescence life-time measurements, Opt Express 14, p.5285-5294 (2006)

[6.1748] {Sect. 6.13.2.4} J. Du, X.Y. Liang, Y. Xu, R.X. Li, Z.Z. Xu, C.F. Yan, G.J.Zhao, L.B. Su, J. Xu: Tunable and efficient diode-pumped Yb3+:GYSOlaser, Opt Express 14, p.3333-3338 (2006)

[6.1749] {Sect. 6.13.2.4} S. Ito, T. Nakajyo, T. Yanagida, F. Sakai, A. Endo, K.Torizuka: Diode-pumped, chirped-pulse Yb:S-FAP regenerative amplifierfor laser- Compton X-ray generation, Opt Commun 259, p.812-815 (2006)

[6.1750] {Sect. 6.13.2.4} M. Hildebrandt, U. Bunting, U. Kosch, D. Haussmann, T.Levy, M. Krause, O. Muller, U. Bartuch, W. Viol: Diode-pumped Yb:KYWthin-disk laser operation with wavelength tuning to small quantum defects,Opt Commun 259, p.796-798 (2006)

[6.1751] {Sect. 6.13.2.4} M.L. Gong, F.Y. Lu, Q. Liu, W.P. Gong, C. Li: Efficientcorner-pumped Yb:YAG/YAG composite slab laser, Appl Opt 45, p.3806-3810 (2006)

[6.1752] {Sect. 6.13.2.4} J.H. Liu, X. Mateos, H.J. Zhang, J.Y. Wang, M.H. Jiang,U. Griebner, V. Petrov: Continuous-wave laser operation of Yb:LuVO4,Optics Letters 30, p.3162-3164 (2005)

[6.1753] {Sect. 6.13.2.4} S. Rivier, X. Mateos, V. Petrov, U. Griebner, A. Aznar, O.Silvestre, R. Sole, M. Aguilo, F. Diaz, M. Zorn, M. Weyers: Mode-lockedlaser operation of epitaxially grown Yb:KLu(WO4)(2) composites, OpticsLetters 30, p.2484-2486 (2005)

[6.1754] {Sect. 6.13.2.4} J. Petit, P. Goldner, B. Viana: Laser emission with lowquantum defect in Yb: CaGdAlO4, Optics Letters 30, p.1345-1347 (2005)

[6.1755] {Sect. 6.13.2.4} V.E. Kisel, A.E. Troshin, V.G. Shcherbitsky, N.V.Kuleshov, V.N. Matrosov, T.A. Matrosova, M.I. Kupchenko: Femtosec-ond pulse generation with a diode-pumped Yb3+ : YVO4 laser, OpticsLetters 30, p.1150-1152 (2005)

[6.1756] {Sect. 6.13.2.4} F. Druon, S. Chenais, E. Balembois, P. Georges, R.Gaume, B. Viana: Diode-pumped continuous-wave and femtosecond laser

6.13.2 Solid-State Lasers 891

operations of a heterocomposite crystal Yb3+:SrY4(SiO4)(3)O vertical barvertical bar Y2Al5O12, Optics Letters 30, p.857-859 (2005)

[6.1757] {Sect. 6.13.2.4} F.J. Grawert, J.T. Gopinath, F.O. Ilday, H.M. Shen, E.P.Ippen, F.X. Kartner, S. Akiyama, J. Liu, K. Wada, L.C. Kimerling: 220-fserbium-ytterbium:glass laser mode locked by a broadband low- loss sili-con/germanium saturable absorber, Optics Letters 30, p.329-331 (2005)

[6.1758] {Sect. 6.13.2.4} X.Y. Zhang, A. Brenier, Q.P. Wang, Z.P. Wang, J. Chang,P. Li, S.J. Zhang, S.H. Ding, S.T. Li: Passive Q-switching characteristicsof Yb3+:Gd3Ga5O12 crystal, Opt Express 13, p.7708-7719 (2005)

[6.1759] {Sect. 6.13.2.4} U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M.Weyers, X. Mateos, M. Aguilo, J. Massons, F. Diaz: Passively mode-lockedYb:KLu(WO4)(2) oscillators, Opt Express 13, p.3465-3470 (2005)

[6.1760] {Sect. 6.13.2.4} R. Guo, Y.C. Wu, P.Z. Fu, F.L. Jing: Growth andspectroscopic properties of ytterbium-doped lanthanum calcium borate(Yb3+:La2CaB10O19) crystal, Opt Commun 244, p.321-325 (2005)

[6.1761] {Sect. 6.13.2.4} U. Griebner, J.H. Liu, S. Rivier, A. Aznar, R. Grunwald,R.M. Sole, M. Aguilo, F. Diaz, V. Petrov: Laser operation of epitaxiallygrown Yb: KLu(WO4)(2)-KLu(WO4)(2) composites with monoclinic crys-talline structure, Ieee J Quantum Electron 41, p.408-414 (2005)

[6.1762] {Sect. 6.13.2.4} J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, B.Ferrand: Laser oscillation with low quantum defect in Yb:GdVO4, a crystalwith high thermal conductivity, Optics Letters 29, p.833-835 (2004)

[6.1763] {Sect. 6.13.2.4} M. Rico, J. Liu, U. Griebner, V. Petrov, M.D. Serrano, F.EstebanBetagon, C. Cascales, C. Zaldo: Tunable laser operation of ytter-bium in disordered single crystals of Yb: NaGd(WO4)(2), Opt Express 12,p.5362-5367 (2004)

[6.1764] {Sect. 6.13.2.4} A.A. Lagatsky, C.T.A. Brown, W. Sibbett: Highly efficientand low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,Opt Express 12, p.3928-3933 (2004)

[6.1765] {Sect. 6.13.2.4} P. Klopp, V. Petrov, U. Griebner, V. Nesterenko, V.Nikolov, M. Marinov, M.A. Bursukova, M. Galan: Continuous-wave las-ing of a stoichiometric Yb laser material: KYb(WO4)(2), Optics Letters28, p.322-324 (2003)

[6.1766] {Sect. 6.13.2.4} F. Druon, S. Chenais, P. Raybaut, F. Balembois, P.Georges, R. Gaume, P.H. Haumesser, B. Viana, D. Vivien, S. Dhellemmes,V. Ortiz, C. Larat: Apatite-structure crystal, Yb3+: SrY4(SiO4)(3)O, forthe development of diode-pumped femtosecond lasers, Optics Letters 27,p.1914-1916 (2002)

[6.1767] {Sect. 6.13.2.4} F. Brunner, T. Sudmeyer, E. Innerhofer, F. MorierGenoud,R. Paschotta, V.E. Kisel, V.G. Shcherbitsky, N.V. Kuleshov, J. Gao, K.Contag, A. Giesen, U. Keller: 240-fs pulses with 22-W average power from amode-locked thin-disk Yb : KY(WO4)(2) laser, Optics Letters 27, p.1162-1164 (2002)

[6.1768] {Sect. 6.13.2.4} H.H. Liu, J. Nees, G. Mourou: Directly diode-pumped Yb: KY(WO4)(2) regenerative amplifiers, Optics Letters 27, p.722-724 (2002)

[6.1769] {Sect. 6.13.2.4} M.J. Lederer, M. Hildebrandt, V.Z. Kolev, B. Luther-Davies, B. Taylor, J. Dawes, P. Dekker, J. Piper, H.H. Tan, C. Jagadish:Passive mode locking of a self-frequency-doubling Yb : YAl3(BO3)(4) laser,Optics Letters 27, p.436-438 (2002)

[6.1770] {Sect. 6.13.2.4} J. Kawanaka, K. Yamakawa, H. Nishioka, K. Ueda: Im-proved high-field laser characteristics of a diode-pumped Yb : LiYF4 crys-tal at low temperature, Opt Express 10, p.455-460 (2002)

892 6. Lasers

[6.1771] {Sect. 6.13.2.4} P.A. Burns, J.M. Dawes, P. Dekker, J.A. Piper, J. Li, J.Y.Wang: Coupled-cavity, single-frequency, yellow microchip tunable cw Yb :YAB laser, Opt Commun 207, p.315-320 (2002)

[6.1772] {Sect. 6.13.2.4} P. Adel, M. Auerbach, C. Fallnich, S. Unger, H.R. Muller:Super-stretched mode-locked Yb3+-fiber ring laser with 40 nm bandwidth,9.5 nJ pulse energy and 630 mW output power, Opt Commun 211, p.283-287 (2002)

[6.1773] {Sect. 6.13.2.4} S. Chenais, F. Druon, F. Balembois, P. Georges, R. Gaume,P.H. Haumesser, B. Viana, G.P. Aka, D. Vivien: Spectroscopy and efficientlaser action from diode pumping of a new broadly tunable crystal: Yb3+:Sr3Y(BO3)(3), J Opt Soc Am B Opt Physics 19, p.1083-1091 (2002)

[6.1774] {Sect. 6.13.2.4} P. Dekker, J.M. Dawes, J.A. Piper, Y.G. Liu, J.Y. Wang:1.1 WCW self-frequency-doubled diode-pumped Yb : YAl3(BO3)(4) laser,Opt Commun 195, p.431-436 (2001)

[6.1775] {Sect. 6.13.2.4} J. Kim, P. Dupriez, C. Codemard, J. Nilsson, J.K. Sahu:Suppression of stimulated Raman scattering in a high power Yb-dopedfiber amplifier using a W-type core with fundamental mode cut-off, OptExpress 14, p.5103-5113 (2006)

[6.1776] {Sect. 6.13.2.4} F. Druon, F. Auge, F. Balembois, P. Georges, A. Brun,A. Aron, F. Mougel, G. Aka, D. Vivien: Efficient, tunable, zero-line diode-pumped, continuous-wave Yb3+: Ca (4)LnO (BO3) (3) (Ln = Gd,Y) lasersat room temperature and application to miniature lasers, J Opt Soc AmB Opt Physics 17, p.18-22 (2000)

[6.1777] {Sect. 6.13.2.4} X. Feng, C.H. Qi, F.Y. Lin, H.F. Hu: Spectroscopic prop-erties and laser performance assessment of Yb3+ in borophosphate glasses,J Amer Ceram Soc 82, p.3471-3475 (1999)

[6.1778] {Sect. 6.13.2.4} A.A. Lagatsky, N.V. Kuleshov, V.P. Mikhailov: Diode-pumped CW lasing of Yb : KYW and Yb : KGW, Opt Commun 165,p.71-75 (1999)

[6.1779] {Sect. 6.13.2.4} E. Montoya, J. Capmany, L.E. Bausa, T. Kellner, A. Dien-ing, G. Huber: Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3 : MgO, Appl Phys Lett 74, p.3113-3115 (1999)

[6.1780] {Sect. 6.13.2.4} L.A.W. Gloster, P. Cormont, A.M. Cox, T.A. King,B.H.T. Chai: Diode-pumped Q-switched Yb:S-FAP laser, Opt Commun146, p.177-180 (1998)

[6.1781] {Sect. 6.13.2.4} D.A. Hammons, J.M. Eichenholz, Q. Ye, B.H.T. Chai, L.Shah, R.E. Peale, M. Richardson, H. Qiu: Laser action in (Yb3+:YCOB(Yb3+:YCa (4)OiBO (3)) (3)), Opt Commun 156, p.327-330 (1998)

[6.1782] {Sect. 6.13.2.4} N.V. Kuleshov, A.A. Lagatsky, A.V. Podlipensky, V.P.Mikhailov, G. Huber: Pulsed laser operation of Yb-doped KY (WO4) (2)and KGd (WO4) (2), Optics Letters 22, p.1317-1319 (1997)

[6.1783] {Sect. 6.13.2.4} V. Petrov, U. Griebner, D. Ehrt, W. Seeber: Femtosecondself mode locking of Yb:fluoride phosphate glass laser, Optics Letters 22,p.408-410 (1997)

[6.1784] {Sect. 6.13.2.4} C.D. Marshall, L.K. Smith, R.J. Beach, M.A. Emanuel,K.I. Schaffers, J. Skidmore, S.A. Payne, B.H.T. Chai: Diode-pumpedytterbium-doped Sr-5 (PO4) (3)F laser performance, IEEE J QE-32, p.650-656 (1996)

[6.1785] {Sect. 6.13.2.4} H.B. Yin, P.Z. Deng, F.X. Gan: Defects in YAG:Yb crys-tals, J Appl Phys 83, p.3825-3828 (1998)

[6.1786] {Sect. 6.13.2.4} S.V. Marchese, T. Sudmeyer, M. Golling, R. Grange, U.Keller: Pulse energy scaling to 5 mu J from a femtosecond thin disk laser,Optics Letters 31, p.2728-2730 (2006)

6.13.2 Solid-State Lasers 893

[6.1787] {Sect. 6.13.2.4} F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M.Jacquemet, P. Georges: Efficient diode-pumped Yb3+:Y2SiO5 andYb3+:Lu2SiO5 high-power femtosecond laser operation, Optics Letters 31,p.1555-1557 (2006)

[6.1788] {Sect. 6.13.2.4} J.R. Buckley, S.W. Clark, E.W. Wise: Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation,Optics Letters 31, p.1340-1342 (2006)

[6.1789] {Sect. 6.13.2.4} A. Major, R. Cisek, V. Barzda: FemtosecondYb:KGd(WO4)(2) laser oscillator pumped by a high power fiber-coupleddiode laser module, Opt Express 14, p.12163-12168 (2006)

[6.1790] {Sect. 6.13.2.4} S. Rivier, X. Mateos, J.H. Liu, V. Petrov, U. Griebner,M. Zorn, M. Weyers, H.J. Zhang, J.Y. Wang, M.H. Jiang: Passively mode-locked Yb:LuVO4 oscillator, Opt Express 14, p.11668-11671 (2006)

[6.1791] {Sect. 6.13.2.4} F. Hoos, S. Pricking, H. Giessen: Compact portable 20MHz solid-state femtosecond whitelight-laser, Opt Express 14, p.10913-10920 (2006)

[6.1792] {Sect. 6.13.2.4} A. Chong, J. Buckley, W. Renninger, F. Wise: All-normal-dispersion femtosecond fiber laser, Opt Express 14, p.10095-10100 (2006)

[6.1793] {Sect. 6.13.2.4} A. Isomaki, O.G. Okhotnikov: Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber, Opt Ex-press 14, p.9238-9243 (2006)

[6.1794] {Sect. 6.13.2.4} B. Ortac, A. Hideur, M. Brunel, C. Chedot, J. Limpert,A. Tunnermann, F.O. Ilday: Generation of parabolic bound pulses from aYb-fiber laser, Opt Express 14, p.6075-6083 (2006)

[6.1795] {Sect. 6.13.2.4} A. Isomaki, O.G. Okhotnikov: All-fiber ytterbium solitonmode-locked laser with dispersion control by solid-core photonic bandgapfiber, Opt Express 14, p.4368-4373 (2006)

[6.1796] {Sect. 6.13.2.4} W.X. Li, H.F. Pan, L.E. Ding, H.P. Zeng, G.J. Zhao, C.F.Yan, L.B. Su, J. Xu: Diode-pumped continuous-wave and passively mode-locked Yb:GSO laser, Opt Express 14, p.686-695 (2006)

[6.1797] {Sect. 6.13.2.4} M. Trobs, P. Wessels, C. Fallnich: Phase-noise propertiesof an ytterbium-doped fiber amplifier for the Laser Interferometer SpaceAntenna, Optics Letters 30, p.789-791 (2005)

[6.1798] {Sect. 6.13.2.4} G. DellaValle, R. Osellame, N. Chiodo, S. Taccheo, G.Cerullo, P. Laporta, A. Killi, U. Morgner, M. Lederer, D. Kopf: C-bandwaveguide amplifier produced by femtosecond laser writing, Opt Express13, p.5976-5982 (2005)

[6.1799] {Sect. 6.13.2.4} N.G. Usechak, G.P. Agrawal, J.D. Zuegel: FM mode-lockedfiber lasers operating in the autosoliton regime, Ieee J Quantum Electron41, p.753-761 (2005)

[6.1800] {Sect. 6.13.2.4} E. Innerhofer, T. Sudmeyer, F. Brunner, R. Haring, A.Aschwanden, R. Paschotta, C. Honninger, M. Kumkar, U. Keller: 60-Waverage power in 810-fs pulses from a thin-disk Yb:YAG laser, Optics Let-ters 28, p.367-369 (2003)

[6.1801] {Sect. 6.13.2.4} J.I. Mackenzie, D.P. Shepherd: End-pumped, passively Q-switched Yb : YAG double-clad waveguide laser, Optics Letters 27, p.2161-2163 (2002)

[6.1802] {Sect. 6.13.2.4} L. Lefort, J.H.V. Price, D.J. Richardson, G.J. Spuhler, R.Paschotta, U. Keller, A.R. Fry, J. Weston: Practical low-noise stretched-pulse Yb3+-doped fiber laser, Optics Letters 27, p.291-293 (2002)

[6.1803] {Sect. 6.13.2.4} P. Adel, C. Fallnich: High-power ultra-broadband mode-locked Yb3+-fiber laser with 118 nm bandwidth, Opt Express 10, p.622-627(2002)

894 6. Lasers

[6.1804] {Sect. 6.13.2.4} H. Liu, J. Nees, G. Mourou: Diode-pumped Kerr-lensmode-locked Yb : KY(WO4)(2) laser, Optics Letters 26, p.1723-1725(2001)

[6.1805] {Sect. 6.13.2.4} F. Brunner, R. Paschotta, J. AusderAu, G.J. Spuhler, F.MorierGenoud, R. Hovel, M. Moser, S. Erhard, M. Karszewski, A. Giesen,U. Keller: Widely tunable pulse durations from a passively mode-lockedthin-disk Yb : YAG laser, Optics Letters 26, p.379-381 (2001)

[6.1806] {Sect. 6.13.2.5} I. Matsushima, H. Yashiro, T. Tomie: 10 kHz 40WTi:sapphire regenerative ring amplifier, Optics Letters 31, p.2066-2068(2006)

[6.1807] {Sect. 6.13.2.5} D.M. Gaudiosi, E. Gagnon, A.L. Lytle, J.L. Fiore, E.A.Gibson, S. Kane, J. Squier, M.M. Murnane, H.C. Kapteyn, R. Jimenez,S. Backus: Multi-kilohertz repetition rate Ti:sapphire amplifier based ondown- chirped pulse amplification, Opt Express 14, p.9277-9283 (2006)

[6.1808] {Sect. 6.13.2.5} K.H. Hong, S. Kostritsa, T.J. Yu, J.H. Sung, I.W. Choi,Y.C. Noh, D.K. Ko, J. Lee: 100-kHz high-power femtosecond Ti:sapphirelaser based on downchirped regenerative amplification, Opt Express 14,p.970-978 (2006)

[6.1809] {Sect. 6.13.2.5} W.J. Ling, Y.L. Jia, J.H. Sun, Z.H. Wang, Z.Y. Wei: Low-threshold self-starting femtosecond Ti:sapphire laser, Appl Opt 45, p.2495-2498 (2006)

[6.1810] {Sect. 6.13.2.5} M.P. Kalashnikov, E. Risse, H. Schonnagel, W. Sandner:Double chirped-pulse-amplification laser: a way to clean pulses temporally,Optics Letters 30, p.923-925 (2005)

[6.1811] {Sect. 6.13.2.5} R.T. Zinkstok, S. Witte, W. Hogervorst, K.S.E. Eikema:High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control, Optics Letters 30, p.78-80 (2005)

[6.1812] {Sect. 6.13.2.5} S. Witte, R.T. Zinkstok, W. Hogervorst, K.S.E. Eikema:Generation of few-cycle terawatt light pulses using optical parametricchirped pulse amplification, Opt Express 13, p.4903-4908 (2005)

[6.1813] {Sect. 6.13.2.5} T.A. Planchon, J.P. Rousseau, F. Burgy, G. Cheriaux, J.P.Chambaret: Adaptive wavefront correction on a 100-TW/10-Hz chirpedpulse amplification laser and effect of residual wavefront on beam propa-gation, Opt Commun 252, p.222-228 (2005)

[6.1814] {Sect. 6.13.2.5} N. Zhavoronkov: All-solid-state femtosecond multi-kilohertz laser system based on a new cavity-dumped oscillator design,J Opt Soc Am B Opt Physics 22, p.567-571 (2005)

[6.1815] {Sect. 6.13.2.5} D.M. Gaudiosi, A.L. Lytle, P. Kohl, M.M. Murnane, H.C.Kapteyn, S. Backus: 11-W average power Ti:sapphire amplifier system us-ing downchirped pulse amplification, Optics Letters 29, p.2665-2667 (2004)

[6.1816] {Sect. 6.13.2.5} N. Zhavoronkov, G. Korn: Regenerative amplification offemtosecond laser pulses in Ti:sapphire at multikilohertz repetition rates,Optics Letters 29, p.198-200 (2004)

[6.1817] {Sect. 6.13.2.5} J. Wojtkiewicz, C.G. Durfee: High-energy, high-contrast,double-confocal multipass amplifier, Opt Express 12, p.1383-1388 (2004)

[6.1818] {Sect. 6.13.2.5} A. Sennaroglu, A.M. Kowalevicz, E.P. Ippen, J.G. Fuji-moto: Compact femtosecond lasers based on novel multipass cavities, IeeeJ Quantum Electron 40, p.519-528 (2004)

[6.1819] {Sect. 6.13.2.5} R.A. Ganeev, T. Kanai, A. Ishizawa, T. Ozaki, H. Kuroda:Development and applications of a compact hybrid tabletop terawattchirped-pulse amplification Ti:sapphire-Nd:glass laser for x-ray lasing andharmonic generation, Appl Opt 43, p.1396-1403 (2004)

6.13.2 Solid-State Lasers 895

[6.1820] {Sect. 6.13.2.5} J. Seres, A. Muller, E. Seres, K. OKeeffe, M. Lenner, R.F.Herzog, D. Kaplan, C. Spielmann, F. Krausz: Sub-10-fs, terawatt-scaleTi:sapphire laser system, Optics Letters 28, p.1832-1834 (2003)

[6.1821] {Sect. 6.13.2.5} A. Sennaroglu, A.M. Kowalevicz, F.X. Kartner, J.G.Fujimoto: High,performance, compact, prismless, low-threshold 30-MHzTi:Al2O3 laser, Optics Letters 28, p.1674-1676 (2003)

[6.1822] {Sect. 6.13.2.5} A.M. Kowalevicz, T.R. Schibli, F.X. Kartner, J.G. Fuji-moto: Ultralow-threshold Kerr-lens mode-locked Ti : Al2O3 laser, OpticsLetters 27, p.2037-2039 (2002)

[6.1823] {Sect. 6.13.2.5} H. Baumhacker, G. Pretzler, K.J. Witte, M. Hegelich, M.Kaluza, S. Karsch, A. Kudryashov, V. Samarkin, A. Roukossouev: Correc-tion of strong phase and amplitude modulations by two deformable mirrorsin a multistaged Ti : sapphire laser, Optics Letters 27, p.1570-1572 (2002)

[6.1824] {Sect. 6.13.2.5} A.J.S. McGonigle, D.W. Coutts: A Ti : sapphire laserend-pumped by a fibre-coupled copper vapour laser, Opt Commun 209,p.217-221 (2002)

[6.1825] {Sect. 6.13.2.5} J.J. Zayhowski, A.S.L. Wilson: Miniature, pulsed Ti : Sap-phire laser system, Ieee J Quantum Electron 38, p.1449-1454 (2002)

[6.1826] {Sect. 6.13.2.5} E.A. Cummings, M.S. Hicken, S.D. Bergeson: Demonstra-tion of a 1-W injection-locked continuous-wave titanium : sapphire laser,Appl Opt 41, p.7583-7587 (2002)

[6.1827] {Sect. 6.13.2.5} S.H. Cho, F.X. Kartner, U. Morgner, E.P. Ippen, J.G.Fujimoto, J.E. Cunningham, W.H. Knox: Generation of 90-nJ pulses witha 4-MHz repetition-rate Kerr-lens mode-locked Ti : Al2O3 laser operatingwith net positive and negative intracavity dispersion, Optics Letters 26,p.560-562 (2001)

[6.1828] {Sect. 6.13.2.5} J.H. Sun, R.B. Zhang, Q.Y. Wang, L. Chai, D.Q. Pang,J.M. Dai, Z.G. Zhang, K. Torizuka, T. Nakagawa, T. Sugaya: High-average-power self-starting mode-locked Ti : sapphire laser with a broadband semi-conductor saturable-absorber mirror, Appl Opt 40, p.3539-3541 (2001)

[6.1829] {Sect. 6.13.2.5} T. Beddard, W. Sibbett, D.T. Reid, J. GardunoMejia, N.Jamasbi, M. Mohebi: High-average-power, 1-MW peak-power self-mode-locked Ti : sapphire oscillator, Optics Letters 24, p.163-165 (1999)

[6.1830] {Sect. 6.13.2.5} S.H. Cho, B.E. Bouma, E.P. Ippen, J.G. Fujimoto: Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti : Al2O3 laserwith a multiple-pass cavity, Optics Letters 24, p.417-419 (1999)

[6.1831] {Sect. 6.13.2.5} J.R. Demers, F.C. DeLucia: Modulating and scanning themode-lock frequency of an 800-MHz femtosecond Ti : sapphire laser, OpticsLetters 24, p.250-252 (1999)

[6.1832] {Sect. 6.13.2.5} J.H. Geng, S. Wada, Y. Urata, H. Tashiro: Widely tun-able, narrow-linewidth, subnanosecond pulse generation in an electroni-cally tuned Ti : sapphire laser, Optics Letters 24, p.676-678 (1999)

[6.1833] {Sect. 6.13.2.5} Z.L. Liu, S. Izumida, S. Ono, H. Ohtake, N. Sarukura:High-repetition-rate, high-average-power, mode-locked Ti : sapphire laserwith an intracavity continuous-wave amplification scheme, Appl Phys Lett74, p.3622-3623 (1999)

[6.1834] {Sect. 6.13.2.5} M.D. Perry, D. Pennington, B.C. Stuart, G. Tietbohl,J.A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller et al.:Petawatt laser pulses, Optics Letters 24, p.160-162 (1999)

[6.1835] {Sect. 6.13.2.5} F. Siebe, K. Siebert, R. Leonhardt, H.G. Roskos: A fullytunable dual-color CWTi : Al2O3 laser, IEEE J QE-35, p.1731-1736 (1999)

[6.1836] {Sect. 6.13.2.5} W.J. Wadsworth, D.W. Coutts, C.E. Webb: Kilohertzpulse repetition frequency slab Ti : sapphire lasers with high average power(10 W), Appl Opt 38, p.6904-6911 (1999)

896 6. Lasers

[6.1837] {Sect. 6.13.2.5} H. Wang, S. Backus, Z. Chang, R. Wagner, K. Kim, X.Wang, D. Umstadter, T. Lei, M. Murnane, H. Kapteyn: Generation of 10-W average-power, 40-TW peak-power, 24-fs pulses from a Ti : sapphireamplifier system, J Opt Soc Am B Opt Physics 16, p.1790-1794 (1999)

[6.1838] {Sect. 6.13.2.5} Y. Nabekawa, Y. Kuramoto, T. Togashi, T. Sekikawa, S.Watanabe: Generation of 0.66-TW pulses at 1 kHz by a Ti:sapphire laser,Optics Letters 23, p.1384-1386 (1998)

[6.1839] {Sect. 6.13.2.5} L. Xu, G. Tempea, C. Spielmann, F. Krausz, A. Stingl,K. Ferencz, S. Takano: Continuous-wave mode-locked Ti:sapphire laser fo-cusable to 5 x 10 (13) W/cm (2), Optics Letters 23, p.789-791 (1998)

[6.1840] {Sect. 6.13.2.5} K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Aka-hane, H. Takuma: 100-TW sub-20-fs Ti:sapphire laser system operating ata 10-Hz repetition rate, Optics Letters 23, p.1468-1470 (1998)

[6.1841] {Sect. 6.13.2.5} K. Yamakawa, M. Aoyama, S. Matsuoka, H. Takuma,C.P.J. Barty, D. Fittinghoff: Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rate with efficient Ti:sapphire amplifiers, Optics Letters 23,p.525-527 (1998)

[6.1842] {Sect. 6.13.2.5} M. Aoyama, K. Yamakawa: Noise characterization of anall-solid-state mirror- dispersion-controlled 10-fs Ti:sapphire laser, OptCommun 140, p.255-258 (1997)

[6.1843] {Sect. 6.13.2.5} A. Hoffstadt: Design and performance of a high-average-power flashlamp- pumped Ti:Sapphire laser and amplifier, IEEE J QE-33,p.1850-1863 (1997)

[6.1844] {Sect. 6.13.2.5} B.C. Stuart, M.D. Perry, J. Miller, G. Tietbohl, S. Herman,J.A. Britten, C. Brown, D. Pennington, V. Yanovsky, K. Wharton: 125-TWTi:sapphire/Nd:glass laser system, Optics Letters 22, p.242-244 (1997)

[6.1845] {Sect. 6.13.2.5} A. Hoffstadt: Design and Performance of a High-Average-Power Flashlamp-Pumped Ti:Sapphire Laser and Amplifier, IEEE J. QE-33, p.1850-1863 (1997)

[6.1846] {Sect. 6.13.2.5} Y. Nabekawa, K. Sajiki, D. Yoshitomi, K. Kondo, S.Watanabe: High-repetition-rate high-average-power 300-fs KrF/Ti: sap-phire hybrid laser, Optics Letters 21, p.647-649 (1996)

[6.1847] {Sect. 6.13.2.5} A. Sullivan, J. Bonlie, D.F. Price, W.E. White: 1.1-J, 120-fs laser system based on Nd:glass-pumped Ti: sapphire, Optics Letters 21,p.603-605 (1996)

[6.1848] {Sect. 6.13.2.5} D.S. Knowles, D.J.W. Brown: Compact 24-kHz copperlaser pumped Ti:sapphire laser, Optics Letters 20, p.569-571 (1995)

[6.1849] {Sect. 6.13.2.5} G. Guochang, L. Ziyao: A multi-joule Ti:sapphire laserwith coaxial flashlamp excitation, Opt. Comm. 120, p.63-64 (1995)

[6.1850] {Sect. 6.13.2.5} J. Harrison, A. Finch, D.M. Rines, G.A. Rines, P.F. Moul-ton: Low-threshold, cw, all-solid-state Ti:Al2O3 laser, Opt. Lett. 16, p.581-583 (1991)

[6.1851] {Sect. 6.13.2.5} T.R. Steele, D.C. Gerstenberger, A. Drobshoff, R.W. Wal-lace: Broadly tunable high-power operation of an all-solid-state titanium-doped sapphire laser system, Opt. Lett. 16, p.399-401 (1991)

[6.1852] {Sect. 6.13.2.5} G.T. Maker, A.I. Ferguson: Ti:sapphire laser pumped by afrequency-doubled diode-pumped Nd:YLF laser, Opt. Lett. 15, p.375-377(1990)

[6.1853] {Sect. 6.13.2.5} J.M. Eggleston, L.G. DeShazer, K.W. Kangas: Charac-teristics and Kinetics of Laser-Pumped Ti:Sapphire Oscillators, IEEE J.QE-24, p.1009-1015 (1988)

[6.1854] {Sect. 6.13.2.5} G.F. Albrecht, J.M. Egglestone, J.J. Ewing: Measurementsof Ti3+:Al2O3 as material, Opt. Comm. 52, p.401-404 (1985)

6.13.2 Solid-State Lasers 897

[6.1855] {Sect. 6.13.2.6} R.E. Samad, S.L. Baldochi, G.E. Nogueira, N.D. Vieira: 30W Cr:LiSrAlF6 flashlamp-pumped pulsed laser, Optics Letters 32, p.50-52(2007)

[6.1856] {Sect. 6.13.2.6} A. Isemann, P. Wessels, C. Fallnich: Directly diode-pumped Colquiriite regenerative amplifiers, Opt Commun 260, p.211-222(2006)

[6.1857] {Sect. 6.13.2.6} T.M. Liu, F.X. Kartner, J.G. Fujimoto, C.K. Sun: Multi-plying the repetition rate of passive mode-locked femtosecond lasers by anintracavity flat surface with low reflectivity, Optics Letters 30, p.439-441(2005)

[6.1858] {Sect. 6.13.2.6} B. Stormont, A.J. Kemp, L.G. Cormack, B. Agate, C.T.A.Brown, W. Sibbett: Broad tunability from a compact, low-thresholdCr:LiSAF laser incorporating an improved birefringent filter and multiple-cavity Gires-Tournois interferometer mirrors, J Opt Soc Am B Opt Physics22, p.1236-1243 (2005)

[6.1859] {Sect. 6.13.2.6} P. Wagenblast, R. Ell, U. Morgner, F. Grawert, F.X. Kart-ner: Diode-pumped 10-fs Cr3+:LiCAF laser, Optics Letters 28, p.1713-1715 (2003)

[6.1860] {Sect. 6.13.2.6} R.P. Prasankumar, Y. Hirakawa, A.M. Kowalevicz, F.X.Kaertner, J.G. Fujimoto, W.H. Knox: An extended cavity femtosecondCr:LiSAF laser pumped by low cost diode lasers, Opt Express 11, p.1265-1269 (2003)

[6.1861] {Sect. 6.13.2.6} A. Isemann, C. Fallnich: High-power Colquiriite lasers withhigh slope efficiencies pumped by broad-area laser diodes, Opt Express 11,p.259-264 (2003)

[6.1862] {Sect. 6.13.2.6} B. Agate, A.J. Kemp, C.T.A. Brown, W. Sibbett: Efficient,high repetition-rate femtosecond blue source using a compact Cr : LiSAFlaser, Opt Express 10, p.824-831 (2002)

[6.1863] {Sect. 6.13.2.6} B. Agate, B. Stormont, A.J. Kemp, C.T.A. Brown, U.Keller, W. Sibbett: Simplified cavity designs for efficient and compact fem-tosecond Cr : LiSAF lasers, Opt Commun 205, p.207-213 (2002)

[6.1864] {Sect. 6.13.2.6} D.E. Klimek, A. Mandl: Power scaling of a flashlamp-pumped Cr : LiSAF thin-slab zig-zag laser, Ieee J Quantum Electron 38,p.1607-1613 (2002)

[6.1865] {Sect. 6.13.2.6} D. ParsonsKaravassilis, R. Jones, M.J. Cole, P.M.W.French, J.R. Taylor: Diode-pumped all-solid-state ultrafast Cr : LiSGAFlaser oscillator- amplifier system applied to laser ablation, Opt Commun175, p.389-396 (2000)

[6.1866] {Sect. 6.13.2.6} A. Robertson, U. Ernst, R. Knappe, R. Wallenstein, V.Scheuer, T. Tschudi, D. Burns, M.D. Dawson, A.I. Ferguson: Prismlessdiode-pumped mode-locked femtosecond Cr : LiSAF laser, Opt Commun163, p.38-43 (1999)

[6.1867] {Sect. 6.13.2.6} H. Tsuchida: Pulse timing stabilization of a mode-lockedCr : LiSAF laser, Optics Letters 24, p.1641-1643 (1999)

[6.1868] {Sect. 6.13.2.6} S. Uemura, K. Torizuka: Generation of 12-fs pulses from adiode-pumped Kerr-lens mode-locked Cr : LiSAF laser, Optics Letters 24,p.780-782 (1999)

[6.1869] {Sect. 6.13.2.6} N. Zhavoronkov, V. Petrov, F. Noack: Powerful and tun-able operation of a 1-2-kHz repetition-rate gain-switched Cr : forsteritelaser and its frequency doubling, Appl Opt 38, p.3285-3293 (1999)

[6.1870] {Sect. 6.13.2.6} K.M. Gabel, P. Russbuldt, R. Lebert, A. Valster: Diodepumped Cr3+: LiCAF fs-laser, Opt Commun 157, p.327-334 (1998)

[6.1871] {Sect. 6.13.2.6} A. Mandl, A. Zavriyev, D.E. Klimek: Flashlamp-pumpedCr:LiSAF thin-slab zigzag laser, IEEE J QE-34, p.1992-1995 (1998)

898 6. Lasers

[6.1872] {Sect. 6.13.2.6} A. Robertson, R. Knappe, R. Wallenstein: Diode-pumpedbroadly tunable (809-910 nm) femtosecond Cr:LiSAF laser, Opt Commun147, p.294-298 (1998)

[6.1873] {Sect. 6.13.2.6} M. Tsunekane, M. Ihara, N. Taguchi, H. Inaba: Analysisand design of widely tunable diode-pumped Cr:LiSAF lasers with externalgrating feedback, IEEE J QE-34, p.1288-1296 (1998)

[6.1874] {Sect. 6.13.2.6} N.J. Vasa, H. Parhat, T. Okada, M. Maeda, O. Uchino:Performance of an optical fiber butt-coupled Cr3+:LiSrAlF6 laser, OptCommun 147, p.196-202 (1998)

[6.1875] {Sect. 6.13.2.6} J.M. Hopkins, G.J. Valentine, W. Sibbett, J. Aus derAu, F. Morier-Genoud, U. Keller, A. Valster: Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser, Opt. Comm. 154, p.54-58 (1998)

[6.1876] {Sect. 6.13.2.6} F. Balembois, F. Druon, F. Falcoz, P. Georges, A. Brun:Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous- wave diode-pumped Q-switched operation, Optics Letters 22, p.387-389 (1997)

[6.1877] {Sect. 6.13.2.6} D. Kopf, U. Keller, M.A. Emanuel, R.J. Beach, J.A. Skid-more: 1.1-W cw Cr:LiSAF laser pumped by a 1-cm diode array, OpticsLetters 22, p.99-101 (1997)

[6.1878] {Sect. 6.13.2.6} S. Uemura, K. Miyazaki: Operation of a femtosecondCr:LiSAF solitary laser near zero group-delay dispersion, Opt Commun133, p.201-204 (1997)

[6.1879] {Sect. 6.13.2.6} S. Uemura, K. Miyazaki: Femtosecond Cr:LiSAF laserpumped by a single diode laser, Opt Commun 138, p.330-332 (1997)

[6.1880] {Sect. 6.13.2.6} S. Uemura, K. Miyazaki: Femtosecond Cr:LiSAF laserpumped by a single diode laser, Opt. Comm. 138, p.330-332 (1997)

[6.1881] {Sect. 6.13.2.6} D. Burns, M.P. Critten, W. Sibbett: Low-threshold diode-pumped femtosecond Cr3+:LiSrAlF6 laser, Optics Letters 21, p.477-479(1996)

[6.1882] {Sect. 6.13.2.6} P.A. Beaud, M. Richardson, E.J. Miesak: Multi-TerawattFemtosecond Cr:LiSAF Laser, IEEE J. QE-31, p.317-325 (1995)

[6.1883] {Sect. 6.13.2.6} P.M.W. French, R. Mellish, J.R. Taylor, P.J. Delfyett, L.T.Florez: All-solid-state diode-pumped modelocked Cr:LiSAF laser, Elec-tron. Lett. 29, p.1262-1263 (1993)

[6.1884] {Sect. 6.13.2.6} S.A. Payne, W.F. Krupke, L.K. Smith, W.L. Kway, L.D.DeLoach, J.B. Tassano: 752 nm Wing-Pumped Cr:LiSAF Laser, IEEE J.QE-28, p.1188-1196 (1992)

[6.1885] {Sect. 6.13.2.6} R. Scheps, J.F. Myers, H. Serreze, A. Rosenberg, R.C.Morris, M. Long: Diode-pumped Cr:LiSrAlF6 laser, Opt. Lett. 16, p.820-822 (1991)

[6.1886] {Sect. 6.13.2.6} M. Stalder, B.H.T. Chai, M. Bass: Flashlamp pumpedCr:LiSrAlF6 laser, Appl. Phys. Lett. 58, p.216-218 (1991)

[6.1887] {Sect. 6.13.2.6} S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, H.W.Newkirk: Laser performance of LiSrAlF6:Cr3+, J. Appl. Phys. 66, p.1051-1056 (1989)

[6.1888] {Sect. 6.13.2.6} S.A. Payne, L.L. Chase, H.W. Newkirk, L.K. Smith, W.F.Krupke: LiCaAlF6:Cr3+: A Promising New Solid-State Laser Material,IEEE J. QE-24, p.2243-2252 (1988)

[6.1889] {Sect. 6.13.2.6} I.T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, A.V.Shestakov: Directly diode-pumped tunable continuous-wave room-temper-ature Cr4+: YAG laser, Optics Letters 24, p.1578-1580 (1999)

[6.1890] {Sect. 6.13.2.6} Z. Zhang, T. Nakagawa, K. Torizuka, T. Sugaya, K.Kobayashi: Self-starting mode-locked Cr4+: YAG laser with a low-lossbroadband semiconductor saturable-absorber mirror, Optics Letters 24,p.1768-1770 (1999)

6.13.2 Solid-State Lasers 899

[6.1891] {Sect. 6.13.2.6} Y. Ishida, K. Naganuma: Compact diode-pumped all-solid-state femtosecond Cr4+:YAG laser, Optics Letters 21, p.51-53 (1996)

[6.1892] {Sect. 6.13.2.6} A.A. Lagatsky, C.G. Leburn, C.T.A. Brown, W. Sibbett,W.H. Knox: Compact self-starting femtosecond Cr4+:YAG laser diodepumped by a Yb- fiber laser, Opt Commun 217, p.363-367 (2003)

[6.1893] {Sect. 6.13.2.6} A. Sennaroglu: Broadly tunable continuous-wave orange-red source based on intracavity-doubled Cr4+: forsterite laser, Appl Opt41, p.4356-4359 (2002)

[6.1894] {Sect. 6.13.2.6} A. Agnesi, E. Piccinini, G. Reali: Threshold optimizationof all-solid-state Cr : forsterite lasers, J Opt Soc Am B Opt Physics 17,p.198-201 (2000)

[6.1895] {Sect. 6.13.2.6} A.J.S. McGonigle, D.W. Coutts, C.E. Webb: 530-mW 7-kHz cerium LiCAF laser pumped by the sum-frequency-mixed output of acopper-vapor laser, Optics Letters 24, p.232-234 (1999)

[6.1896] {Sect. 6.13.2.6} B. Chassagne, G. Jonusauskas, J. Oberle, C. Rulliere: Mul-tipulse operation regime in a self-mode-locked Cr4+: forsterite femtosecondlaser, Opt Commun 150, p.355-362 (1998)

[6.1897] {Sect. 6.13.2.6} J.M. Evans, V. Petricevic, R.R. Alfano, Q. Fu: KilohertzCr:forsterite regenerative amplifier, Optics Letters 23, p.1692-1694 (1998)

[6.1898] {Sect. 6.13.2.6} G. Jonusauskas, J. Oberle, C. Rulliere: 54-fs, 1-GW, 1-kHzpulse amplification in Cr : forsterite, Optics Letters 23, p.1918-1920 (1998)

[6.1899] {Sect. 6.13.2.6} J.M. Evans, V. Petricevic, A.B. Bykov, A. Delgado,R.R. Alfano: Direct diode-pumped continuous-wave near-infrared tunablelaser operation of Cr4+:forsterite and Cr4+:Ca2GeO4, Optics Letters 22,p.1171-1173 (1997)

[6.1900] {Sect. 6.13.2.6} L.J. Qian, X. Liu, F. Wise: Cr:forsterite laser pumped bybroad-area laser diodes, Optics Letters 22, p.1707-1709 (1997)

[6.1901] {Sect. 6.13.2.6} N. Zhavoronkov, A. Avtukh, V. Mikhailov: Chromium-doped forsterite laser with 1.1 W of continuous- wave output power atroom temperature, Appl Opt 36, p.8601-8605 (1997)

[6.1902] {Sect. 6.13.2.6} A. Agnesi, S. DellAcqua, P.G. Gobbi: All-solid-state gain-switched Cr4+: Forsterite laser, Opt Commun 127, p.273-276 (1996)

[6.1903] {Sect. 6.13.2.6} B. Golubovic, B.E. Bouma, I.P. Bilinsky, J.G. Fujimoto,V.P. Mikhailov: Thin crystal, room-temperature Cr4+:forsterite laser us-ing near-infrared pumping, Optics Letters 21, p.1993-1995 (1996)

[6.1904] {Sect. 6.13.2.6} I.T. McKinnie, L.A.W. Gloster, Z.X. Jiang, T.A. King:Chromium-doped forsterite: The influence of crystal characteristics on laserperformance, Appl Opt 35, p.4159-4165 (1996)

[6.1905] {Sect. 6.13.2.6} V. Petricevic, S.K. Gayen, R.R. Alfano, K. Yamagishi, H.Anzai, Y. Yamaguchi: Laser action in chromium-doped forsterite, Appl.Phys. Lett. 52, p.1040-1042 (1988)

[6.1906] {Sect. 6.13.2.6} V. Petricevic, S.K. Gayen, R.R. Alfano: Laser action inchromium-activated forsterite for near-infrared excitation: Is Cr4+ the las-ing ion?, Appl. Phys. Lett. 53, p.2590-2592 (1988)

[6.1907] {Sect. 6.13.2.6} H.R. Verdun, L.M. Thomas, D.M. Andrauskas, T. Mc-Collum, A. Pinto: Chromium-doped forsterite laser pumped with 1.06 µmradiation, Appl. Phys. Lett. 53, p.2593-2595 (1988)

[6.1908] {Sect. 6.13.2.6} V.F. Lebedev, S.Y. Tenyakov, A.V. Gaister, A.S. Pod-stavkin, A.V. Shestakov, V.N. Sorokin: Tunable continuous-wave operationof a Cr3+,Li+ : Mg2SiO4 laser, Optics Letters 31, p.1438-1440 (2006)

[6.1909] {Sect. 6.13.2.6} S.B. Mirov, V.V. Fedorov, K. Graham, I.S. Moskalev: Er-bium fiber laser-pumped continuous-wave microchip Cr2+: ZnS and Cr2+:ZnSe lasers, Optics Letters 27, p.909-911 (2002)

900 6. Lasers

[6.1910] {Sect. 6.13.2.6} U. Hommerich, X. Wu, V.R. Davis, S.B. Trivedi, K.Grasza, R.J. Chen, S. Kutcher: Demonstration of room-temperature laseraction at 2.5 mu m from Cr2+:Cd0.85Mn0.15Te, Optics Letters 22, p.1180-1182 (1997)

[6.1911] {Sect. 6.13.2.6} V. Petricevic, A.B. Bykov, J.M. Evans, R.R. Al-fano: Room-temperature near-infrared tunable laser operation of Cr4+:Ca2GeO4, Optics Letters 21, p.1750-1752 (1996)

[6.1912] {Sect. 6.13.2.7} H. Ogilvy, M.J. Withford, J.A. Piper: Stable, red laserpumped, multi-kilohertz Alexandrite laser, Opt Commun 260, p.207-210(2006)

[6.1913] {Sect. 6.13.2.7} S. Imai, H. Ito: Long-pulse ultraviolet-laser sources basedon tunable alexandrite lasers, IEEE J QE-34, p.573-576 (1998)

[6.1914] {Sect. 6.13.2.7} R.C. Sam, J.J. Yeh, K.R. Leslie, W.R. Rapoport: Designand Performance of a 250 Hz Alexandrite Laser, IEEE J. QE-24, p.1151-1166 (1988)

[6.1915] {Sect. 6.13.2.7} J.C. Walling, J.A. Pete, H. Samelson, D.J. Harter, R.C.Morris, D.F. Heller: Tunable Alexandrite Lasers: Development and Perfor-mance, IEEE J. QE-21, p.1568-1581 (1985)

[6.1916] {Sect. 6.13.2.7} M.L. Shand, H.P. Jenssen: Temperature Dependence ofthe Excited-State Absorption of Alexandrite, IEEE J. QE-19, p.480-483(1983)

[6.1917] {Sect. 6.13.2.7} S. Guch, C.E. Jones: Alexandrite-laser performance athigh temperature, Opt. Lett. 7, p.608-610 (1982)

[6.1918] {Sect. 6.13.2.7} J.C. Walling, O.G. Peterson, H.P. Jenssen, R.C. Mor-ris, E.W. O’Dell: Tunable Alexandrit Lasers, IEEE J. QE-16, p.1302-1315(1980)

[6.1919] {Sect. 6.13.2.8} X.S. Zhu, R. Jain: 10-W-level diode-pumped compact 2.78mu m ZBLAN fiber laser, Optics Letters 32, p.26-28 (2007)

[6.1920] {Sect. 6.13.2.8} A.A. Fotiadi, P. Megret: Self-Q-switched Er-Brillouin fibersource with extra-cavity generation of a Raman supercontinuum in adispersion-shifted fiber, Optics Letters 31, p.1621-1623 (2006)

[6.1921] {Sect. 6.13.2.8} D.Y. Shen, J.K. Sahu, W.A. Clarkson: Highly efficientin-band pumped Er:YAG laser with 60 W of output at 1645 nm, OpticsLetters 31, p.754-756 (2006)

[6.1922] {Sect. 6.13.2.8} K. Spariosu, V. Leyva, R.A. Reeder, M.J. Klotz: EfficientEr:YAG laser operating at 1645 and 1617 nm, Ieee J Quantum Electron42, p.182-186 (2006)

[6.1923] {Sect. 6.13.2.8} A. Schlatter, B. Rudin, S.C. Zeller, R. Paschotta, G.J.Spuhler, L. Krainer, N. Haverkamp, H.R. Telle, U. Keller: Nearly quantum-noise-limited timing jitter from miniature Er:Yb:glass lasers, Optics Let-ters 30, p.1536-1538 (2005)

[6.1924] {Sect. 6.13.2.8} G.J. Spuhler, L. Krainer, E. Innerhofer, R. Paschotta,K.J. Weingarten, U. Keller: Soliton mode-locked Er:Yb:glass laser, OpticsLetters 30, p.263-265 (2005)

[6.1925] {Sect. 6.13.2.8} S. Taccheo, G. DellaValle, R. Osellame, G. Cerullo, N.Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, D. Kopf:Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses, Op-tics Letters 29, p.2626-2628 (2004)

[6.1926] {Sect. 6.13.2.8} Y.E. Young, S.D. Setzler, K.J. Snell, P.A. Budni, T.M.Pollak, E.P. Chicklis: Efficient 1645-nm Er:YAG laser, Optics Letters 29,p.1075-1077 (2004)

[6.1927] {Sect. 6.13.2.8} S. Georgescu, O. Toma, H. Totia: Intrinsic limits of theefficiency of erbium 3-mu m lasers, Ieee J Quantum Electron 39, p.722-732(2003)

6.13.2 Solid-State Lasers 901

[6.1928] {Sect. 6.13.2.8} C. Ziolek, H. Ernst, G.F. Will, H. Lubatschowski,H. Welling, W. Ertmer: High-repetition-rate, high-average-power, diode-pumped 2.94-mu m Er : YAG laser, Optics Letters 26, p.599-601 (2001)

[6.1929] {Sect. 6.13.2.8} J.R. Yu, B.C. Trieu, E.A. Modlin, U.N. Singh, M.J.Kavaya, S.S. Chen, Y.X. Bai, P.J. Petzar, M. Petros: 1 J/pulse Q-switched2 mu m solid-state laser, Optics Letters 31, p.462-464 (2006)

[6.1930] {Sect. 6.13.2.8} S. So, J.I. Mackenzie, D.P. Shepherd, W.A. Clarkson, J.G.Betterton, E.K. Gorton, J.A.C. Terry: Intra-cavity side-pumped Ho:YAGlaser, Opt Express 14, p.10481-10487 (2006)

[6.1931] {Sect. 6.13.2.8} M.S. Gaponenko, A.M. Malyarevich, K.V. Yumashev, H.Raaben, A.A. Zhilin, A.A. Lipovskii: Holmium lasers passively Q-switchedwith PbS quantum-dot-doped glasses, Appl Opt 45, p.536-539 (2006)

[6.1932] {Sect. 6.13.2.8} P.A. Budni, C.R. Ibach, S.D. Setzler, E.J. Gustafson, R.T.Castro, E.P. Chicklis: 50-mJ, Q-switched, 2.09-mu m holmium laser reso-nantly pumped by a diode-pumped 1.9-mu m thulium laser, Optics Letters28, p.1016-1018 (2003)

[6.1933] {Sect. 6.13.2.8} S.D. Jackson, S. Mossman: Diode-cladding-pumped Yb3+,Ho3+-doped silica fiber laser operating at 2.1-mu m, Appl Opt 42, p.3546-3549 (2003)

[6.1934] {Sect. 6.13.2.8} W.J. He, B.Q. Yao, Y.L. Ju, Y.Z. Wang: Diode-pumpedefficient Tm,Ho:GdVO4 laser with near-diffraction limited beam quality,Opt Express 14, p.11653-11659 (2006)

[6.1935] {Sect. 6.13.2.8} D.Y. Shen, J.K. Sahu, W.A. Clarkson: High-power widelytunable Tm: fibre lasers pumped by an Er, Yb co- doped fibre laser at 1.6mu m, Opt Express 14, p.6084-6090 (2006)

[6.1936] {Sect. 6.13.2.8} N. Coluccelli, G. Galzerano, P. Laporta, D. Parisi, A. Ton-celli, M. Tonelli: Room-temperature Q-switched Tm:BaY2F8 laser pumpedby CW diode laser, Opt Express 14, p.1518-1523 (2006)

[6.1937] {Sect. 6.13.2.8} M.M. Kozak, D. Goebel, W. Kowalsky, R. Caspary: Ex-cited state absorption spectroscopy for thulium-doped zirconium fluoride,Opt Commun 259, p.154-157 (2006)

[6.1938] {Sect. 6.13.2.8} X. Mateos, V. Petrov, J.H. Liu, M.C. Pujol, U. Griebner,M. Aguilo, F. Diaz, M. Galan, G. Viera: Efficient 2-mu m continuous-wave laser oscillation of Tm3+:KLu(WO4)(2), Ieee J Quantum Electron42, p.1008-1015 (2006)

[6.1939] {Sect. 6.13.2.8} M. Eichhorn: High-peak-power Tm-doped double-clad flu-oride fiber amplifier, Optics Letters 30, p.3329-3331 (2005)

[6.1940] {Sect. 6.13.2.8} G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M.Tonelli: Widely tunable 1.94-mu m Tm:BaY2F8 laser, Optics Letters 30,p.854-856 (2005)

[6.1941] {Sect. 6.13.2.8} G. Imeshev, M.E. Fermann: 230-kW peak power femtosec-ond pulses from a high power tunable source based on amplification inTm-doped fiber, Opt Express 13, p.7424-7431 (2005)

[6.1942] {Sect. 6.13.2.8} B.Q. Yao, Y.Z. Wang, Y.L. Ju, W.J. He: Performance ofAO Q-switched Tm, Ho:GdVO4 laser pumped by a 794nm laser diode,Opt Express 13, p.5157-5162 (2005)

[6.1943] {Sect. 6.13.2.8} X.L. Zhang, Y.L. Ju, Y.Z. Wang: Diode-end-pumped roomtemperature Tm, Ho:YLF lasers, Opt Express 13, p.4056-4063 (2005)

[6.1944] {Sect. 6.13.2.8} Y.J. Zhang, B.Q. Yao, Y.L. Ju, Y.Z. Wang: Gain-switchedTm3+-doped double-clad silica fiber laser, Opt Express 13, p.1085-1089(2005)

[6.1945] {Sect. 6.13.2.8} A.G. Bluiett, N.J. Condon, S. OConnor, S.R. Bowman,M. Logie, J. Ganem: Thulium-sensitized neodymium in KPb2Cl5 for mid-

902 6. Lasers

infrared laser development, J Opt Soc Am B Opt Physics 22, p.2250-2256(2005)

[6.1946] {Sect. 6.13.2.8} Y. Urata, S. Wada: 808-nm diode-pumped continuous-wave Tm:GdVO4 laser at room temperature, Appl Opt 44, p.3087-3092(2005)

[6.1947] {Sect. 6.13.2.8} A. Sato, K. Asai, K. Mizutani: Lasing characteristics andoptimizations of a diode-side-pumped Tm, Ho:GdVO4 laser, Optics Letters29, p.836-838 (2004)

[6.1948] {Sect. 6.13.2.8} G. Galzerano, E. Sani, A. Toncelli, G. DellaValle, S.Taccheo, M. Tonelli, P. Laporta: Widely tunable continuous-wave diode-pumped 2-mu m Tm-Ho:KYF4 laser, Optics Letters 29, p.715-717 (2004)

[6.1949] {Sect. 6.13.2.8} Y.H. Tsang, D.J. Coleman, T.A. King: High power 1.9 mum Tm3+ -silica fibre laser pumped at 1.09 mu m by a Yb3+ -silica fibrelaser, Opt Commun 231, p.357-364 (2004)

[6.1950] {Sect. 6.13.2.8} C. Nagasawa, D. Sakaizawa, H. Hara, K. Mizutani: Lasingcharacteristics of a CWTm,Ho:YLF double cavity microchip laser, OptCommun 234, p.301-304 (2004)

[6.1951] {Sect. 6.13.2.8} M. Schellhorn, A. Hirth, C. Kieleck: Ho:YAG laser in-tracavity pumped by a diode-pumped Tm:YLF laser, Optics Letters 28,p.1933-1935 (2003)

[6.1952] {Sect. 6.13.2.8} A.F. ElSherif, T.A. King: High-peak-power operation of aQ-switched Tm3+-doped silica fiber laser operating near 2 mu m, OpticsLetters 28, p.22-24 (2003)

[6.1953] {Sect. 6.13.2.8} S. Vatnik, E. Balashov, A. Pavljuk, E. Golikova, A. Lyutet-skiy: Measurement of gain and evaluation of photon avalanche efficiencyin 10% Tm:KY(WO4)(2) crystal pumped by free-running Nd:YAG laser,Opt Commun 220, p.397-400 (2003)

[6.1954] {Sect. 6.13.2.8} A.F. ElSherif, T.A. King: Analysis and optimization ofQ-switched operation of a Tm3+-doped silica fiber laser operating at 2mu m, Ieee J Quantum Electron 39, p.759-765 (2003)

[6.1955] {Sect. 6.13.2.8} S.D. Jackson, S. Mossman: Efficiency dependence on theTm3+ and Al3+ concentrations for Tm3+- doped silica double-clad fiberlasers, Appl Opt 42, p.2702-2707 (2003)

[6.1956] {Sect. 6.13.2.8} W.A. Clarkson, N.P. Barnes, P.W. Turner, J. Nilsson,D.C. Hanna: High-power cladding-pumped Tm-doped silica fiber laser withwavelength tuning from 1860 to 2090 nm, Optics Letters 27, p.1989-1991(2002)

[6.1957] {Sect. 6.13.2.8} V. Sudesh, K. Asai, K. Shimamura, T. Fukuda: Pulsedlaser action in Tm,Ho : LuLiF4 and Tm,Ho : YLiF4 crystals using a novelquasi-end-pumping technique, Ieee J Quantum Electron 38, p.1102-1109(2002)

[6.1958] {Sect. 6.13.2.8} G.J. Koch, M. Petros, J.R. Yu, U.N. Singh: Precise wave-length control of a single-frequency pulsed Ho : Tm : YLF laser, Appl Opt41, p.1718-1721 (2002)

[6.1959] {Sect. 6.13.2.8} G.L. Bourdet, G. Lescroart: Theoretical modeling anddesign of a Tm, Ho : YLiF4 microchip laser, Appl Opt 38, p.3275-3281(1999)

[6.1960] {Sect. 6.13.2.8} C. Li, D.Y. Shen, J. Song, Y.H. Cao, N.S. Kim, K. Ueda:Flash-lamp pumped normal-mode and Q-switched Cr-Tm : YAG laser per-formance at room temperature, Opt Commun 164, p.63-67 (1999)

[6.1961] {Sect. 6.13.2.8} C. Bollig, W.A. Clarkson, R.A. Hayward, D.C. Hanna:Efficient high-power Tm:YAG laser at 2 mu m, end-pumped by a diodebar, Opt Commun 154, p.35-38 (1998)

6.13.2 Solid-State Lasers 903

[6.1962] {Sect. 6.13.2.8} G.L. Bourdet, G. Lescroart: Theoretical modelling of modeformation in Tm3+:YVO4 microchip lasers, Opt Commun 150, p.136-140(1998)

[6.1963] {Sect. 6.13.2.8} G.L. Bourdet, G. Lescroart: Theoretical modelling anddesign of a Tm:YVO4 microchip laser, Opt Commun 149, p.404-414 (1998)

[6.1964] {Sect. 6.13.2.8} D. Bruneau, S. Delmonte, J. Pelon: Modeling of Tm,Ho: YAG and Tm,Ho : YLF 2-mu m lasers and calculation of extractableenergies, Appl Opt 37, p.8406-8419 (1998)

[6.1965] {Sect. 6.13.2.8} A. Diening, P.E.A. Mobert, G. Huber: Diode-pumpedcontinuous-wave, quasi-continuous-wave, and Q-switched laser operationof Yb3+, Tm3+: YLiF4 at 1.5 and 2.3 mu m, J Appl Phys 84, p.5900-5904 (1998)

[6.1966] {Sect. 6.13.2.8} I.F. Elder, M.J.P. Payne: YAP versus YAG as a diode-pumped host for thulium, Opt Commun 148, p.265-269 (1998)

[6.1967] {Sect. 6.13.2.8} F.F. Heine, G. Huber: Tunable single frequency thulium:YAG microchip laser with external feedback, Appl Opt 37, p.3268-3271(1998)

[6.1968] {Sect. 6.13.2.8} F. Matsuzaka, T. Yokozawa, H. Hara: Saturation param-eter and small-signal gain of a laser-diode-pumped Tm:YAG laser, ApplOpt 37, p.5710-5712 (1998)

[6.1969] {Sect. 6.13.2.8} T. Rothacher, W. Luthy, H.P. Weber: Diode pumping andlaser properties of Yb:Ho:YAG, Opt Commun 155, p.68-72 (1998)

[6.1970] {Sect. 6.13.2.8} A. Sato, K. Asai, T. Itabe: Double-pass-pumped Tm:YAGlaser with a simple cavity configuration, Appl Opt 37, p.6395-6400 (1998)

[6.1971] {Sect. 6.13.2.8} T.M. Taczak, D.K. Killinger: Development of a tunable,narrow-linewidth, cw 2.066-mu m Ho : YLF laser for remote sensing ofatmospheric CO2 and H2O, Appl Opt 37, p.8460-8476 (1998)

[6.1972] {Sect. 6.13.2.8} C.P. Wyss, W. Luthy, H.P. Weber, V.I. Vlasov, Y.D.Zavartsev, P.A. Studenikin, A.I. Zagumennyi, I.A. Shcherbakov: A diode-pumped 1.4-w Tm3+:GdVO4 microchip laser at 1.9 mu m, IEEE J QE-34,p.2380-2382 (1998)

[6.1973] {Sect. 6.13.2.8} C.P. Wyss, W. Luthy, H.P. Weber, V.I. Vlasov, Y.D.Zavartsev, P.A. Studenikin, A.I. Zagumennyi, I.A. Shcherbakov: Perfor-mance of a Tm3+: (G)dVO (4) microchip laser at 1.9 mu m, Opt Commun153, p.63-67 (1998)

[6.1974] {Sect. 6.13.2.8} J.R. Yu, U.N. Singh, N.P. Barnes, M. Petros: 125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser, Optics Letters 23,p.780-782 (1998)

[6.1975] {Sect. 6.13.2.8} N.P. Barnes, K.E. Murray, M.G. Jani: Flash-lamp-pumpedHo:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: Modeling of a single, long pulselength comparison, Appl Opt 36, p.3363-3374 (1997)

[6.1976] {Sect. 6.13.2.8} M.G. Jani, N.P. Barnes, K.E. Murray, D.W. Hart, G.J.Quarles, V.K. Castillo: Diode-pumped Ho:Tm:LuLiF4 laser at room tem-perature, IEEE J QE-33, p.112-115 (1997)

[6.1977] {Sect. 6.13.2.8} Y. Takenaka, J. Nishimae, M. Tanaka, Y. Motoki: High-power CO2 laser with a Gauss-core resonator for high- speed cutting ofthin metal sheets, Optics Letters 22, p.37-39 (1997)

[6.1978] {Sect. 6.13.2.8} T.Y. Fan, G. Huber, R.L. Byer, Mitzscherlich: Spec-troscopy and Diode Laser-Pumped Operation of Tm, Ho:YAG, IEEE J.QE-24, p.924-933 (1988)

[6.1979] {Sect. 6.13.2.8} G. Huber, E.W. Duczynski, K. Petermann: Laser pumpingof Ho-, Tm-, Er-doped garnet at room temperature, IEEE J. QE-24, p.920-923 (1988)

904 6. Lasers

[6.1980] {Sect. 6.13.2.8} M. Datwyler, W. Luthy, H.P. Weber: New wavelengths ofthe YALO3:Er Laser, IEEE J. QE-23, p.158-159 (1987)

[6.1981] {Sect. 6.13.2.8} N.P. Barnes, R.E. Allen, E.P. Chicklis, L. Esterowitz, H.P.Jensen, M.G. Knights: Operation of an Er:YLF laser at 1.73 µm, IEEE J.QE-22, p.337343 (1986)

[6.1982] {Sect. 6.13.2.8} N.P. Barnes, D.J. Gettemy: Pulsed Ho:YAG Oscillator andAmplifier, IEEE J. QE-17, p.1303-1308 (1981)

[6.1983] {Sect. 6.13.2.8} W.F. Krupke, J.B. Gruber: Energy Levels of Er3+ in LaF3and Coherent Emission at 1.61 µ, J. Chem. Phys. 41, p.1225-1232 (1964)

[6.1984] {Sect. 6.13.2.8} M. Pollnau, C. Ghisler, W. Luthy, H.P. Weber, J. Schnei-der, U.B. Unrau: Three-transition cascade erbium laser at 1.7, 2.7, and1.6mu m, Optics Letters 22, p.612-614 (1997)

[6.1985] {Sect. 6.13.2.8} S. Georgescu, V. Lupei, M. Trifan, R.J. Sherlock, T.J.Glynn: Population dynamics of the three-micron emitting level of Er3+ inYAlO3, J Appl Phys 80, p.6610-6613 (1996)

[6.1986] {Sect. 6.13.2.8} B. Majaron, T. Rupnik, M. Lukac: Temperature andgain dynamics in flashlamp-pumped Er:YAG, IEEE J QE-32, p.1636-1644(1996)

[6.1987] {Sect. 6.13.2.8} S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H.P. Weber,R.A. Mcfarlane, C. Harder, H.P. Meier: Performance of a diode-pumpedBaY2F8:Er3+ (7.5at.%) laser at 2.8 mu m, Opt Commun 132, p.107-110(1996)

[6.1988] {Sect. 6.13.2.8} C.E. Hamilton, R.J. Beach, S.B. Sutton, L.H. Furu, W.F.Krupke: 1-W average power levels and tunability from a diode-pumped2.94-µm Er:YAG oscillator, Opt. Lett. 19, p.1627-1629 (1994)

[6.1989] {Sect. 6.13.2.8} C.E. Hamilton, R.J. Beach, S.B. Sutton, L.H. Furu, W.F.Krupke: 1-W average power levels and tunability from a diode-pumped2.94-µm Er:YAG oscillator, Opt. Lett. 19, p.1627-1629 (1994)

[6.1990] {Sect. 6.13.2.8} Y. Morishige, S. Kishida, K. Washio, H. Toratani, M.Nakazawa: Output-stabilized high-repetition-rate 1.545-µm Q-switchedEr:glass laser, Opt. Lett. 9, p.147-149 (1984)

[6.1991] {Sect. 6.13.2.8} M.J. Weber, M. Bass, G.A. deMars: Laser Action andSpectroscopic Properties of Er3+ in YAIO3, J. Appl. Phys. 42, p.301-305(1971)

[6.1992] {Sect. 6.13.2.8} E. Snitzer, R.F. Woodcock, J. Segre: Phosphate GlassEr3+ Laser, IEEE J. QE-4, p.360 (1968)

[6.1993] {Sect. 6.13.2.8} C. Bollig, R.A. Hayward, W.A. Clarkson, D.C. Hanna: 2-W Ho:YAG laser intracavity pumped by a diode-pumped Tm:YAG laser,Optics Letters 23, p.1757-1759 (1998)

[6.1994] {Sect. 6.13.2.8} M.E. Storm: Holmium YLF Amplifier Performance andthe Prospects for Multi-Joule Energies Using Diode-Laser Pumping, IEEEJ. QE-29, p.440-451 (1993)

[6.1995] {Sect. 6.13.2.8} B.T. McGuckin, R.T. Menzies: Efficient CW Diode-Pumped Tm, Ho:YLF Laser with Tunability Near 2.067 µm, IEEE J.QE-28, p.1025-1028 (1992)

[6.1996] {Sect. 6.13.2.8} D.P. Devor, B.H. Soffer: 2.1-µm Laser of 20-W OutputPower and 4-Percent Efficiency from Ho3+ in Sensitized YAG, IEEE J.QE-8, p.231-234 (1972)

[6.1997] {Sect. 6.13.2.8} E.P. Chicklis, C.S. Naiman, R.C. Folweiler: High-EfficiencyRoom-Temperature 2.06-µm Laser Using Sensitized Ho3+:YLF, Appl.Phys. Lett. 19, p.119-121 (1971)

[6.1998] {Sect. 6.13.2.8} D.W. Chen, C.L. Fincher, T.S. Rose, F.L. Vernon, R.A.Fields: Diode-pumped 1-W continuous-wave Er : YAG 3-mu m laser, OpticsLetters 24, p.385-387 (1999)

6.13.2 Solid-State Lasers 905

[6.1999] {Sect. 6.13.2.8} I.F. Elder, J. Payne: Diode-pumped, room-temperatureTm:YAP laser, Appl Opt 36, p.8606-8610 (1997)

[6.2000] {Sect. 6.13.2.8} E.C. Honea, R.J. Beach, S.B. Sutton, J.A. Speth, S.C.Mitchell, J.A. Skidmore, M.A. Emanuel, S.A. Payne: 115-W Tm:YAGdiode-pumped solid-state laser, IEEE J QE-33, p.1592-1600 (1997)

[6.2001] {Sect. 6.13.2.8} I.V. Mochalov, G.T. Petrovskii, A.V. Sandulenko, V.A.Sandulenko, M. Cervantes, V.S. Terpugov: Investigation of Cr:Tm:Er:YAGlaser crystals in a resonator with various degrees of spectral selectivity,Appl Opt 36, p.4090-4093 (1997)

[6.2002] {Sect. 6.13.2.8} R. Moncorge, N. Garnier, P. Kerbrat, C. Wyon, C. Borel:Spectroscopic investigation and two-micron laser performance of Tm3+:CaYAlO4 single crystals, Opt Commun 141, p.29-34 (1997)

[6.2003] {Sect. 6.13.2.8} XA. Rameix, C. Borel, B. Chambaz, B. Ferrand, D.P.Shepherd, T.J. Warburton, D.C. Hanna, A.C. Tropper: An efficient, diode-pumped, 2 mu m Tm:YAG waveguide laser, Opt Commun 142, p.239-243(1997)

[6.2004] {Sect. 6.13.2.8} N.P. Barnes, E.D. Filer, C.A. Morrison, C.J. Lee: Ho:Tmlasers. 1. Theoretical, IEEE J QE-32, p.92-103 (1996)

[6.2005] {Sect. 6.13.2.8} I.J. Booth, C.J. Mackechnie, B.F. Ventrudo: Operation ofdiode laser pumped Tm3+ ZBLAN upconversion fiber laser at 482 nm,IEEE J QE-32, p.118-123 (1996)

[6.2006] {Sect. 6.13.2.8} C.J. Lee, G.W. Han, N.P. Barnes: Ho:Tm lasers. 2. Ex-periments, IEEE J QE-32, p.104-111 (1996)

[6.2007] {Sect. 6.13.2.8} T. Yokozawa, H. Hara: Laser-diode end-pumped Tm3+:YAG eye-safe laser, Appl Opt 35, p.1424-1426 (1996)

[6.2008] {Sect. 6.13.2.8} P.J.M. Suni, S.W. Henderson: 1-mJ/pulse Tm:YAG laserpumped by a 3-W diode laser, Opt. Lett. 16, p.817-819 (1991)

[6.2009] {Sect. 6.13.2.8} R.C. Stoneman, L. Esterowitz: Efifcient, broadly tunable,laser-pumped Tm:YAG and Tm:YSGG cw lasers, Opt. Lett. 15, p.486-488(1990)

[6.2010] {Sect. 6.13.2.10} D.Y. Tang, L.M. Zhao: Generation of 47-fs pulses directlyfrom an erbium-doped fiber laser, Optics Letters 32, p.41-43 (2007)

[6.2011] {Sect. 6.13.2.10} F.J. Grawert, E.O. Ilday, D.E. Kielpinski, J.T. Gopinath,G.S. Petrich, L.A. Kolodziejski, E.P. Ippen, F.X. Kartner: Automatic feed-back control of an Er-doped fiber laser with an intracavity loss modulator,Optics Letters 30, p.1066-1068 (2005)

[6.2012] {Sect. 6.13.2.10} T. Qiu, S. Suzuki, A. Schulzgen, L. Li, A. Polynkin,V. Temyanko, J.V. Moloney, N. Peyghambarian: Generation of watt-levelsingle-longitudinal-mode output from cladding-pumped short fiber lasers,Optics Letters 30, p.2748-2750 (2005)

[6.2013] {Sect. 6.13.2.10} P. Polynkin, A. Polynkin, M. Mansuripur, J. Moloney, N.Peyghambarian: Single-frequency laser oscillator with watts-level outputpower at 1.5 mu m by use of a twisted-mode technique, Optics Letters 30,p.2745-2747 (2005)

[6.2014] {Sect. 6.13.2.10} L. Li, A. Schulzgen, V.L. Temyanko, T. Qiu, M.M. Mor-rell, Q. Wang, A. Mafi, J.V. Moloney, N. Peyghambarian: Short-lengthmicrostructured phosphate glass fiber lasers with large mode areas, OpticsLetters 30, p.1141-1143 (2005)

[6.2015] {Sect. 6.13.2.10} M. Eichhorn: High-gain Tm-doped fluoride fiber ampli-fier, Optics Letters 30, p.456-458 (2005)

[6.2016] {Sect. 6.13.2.10} A. Polynkin, P. Polynkin, A. Schulzgen, M. Mansuripur,N. Peyghambarian: Watts-level, short all-fiber laser at 1.5 mu m with alarge core and diffraction-limited output via intracavity spatial-mode fil-tering, Optics Letters 30, p.403-405 (2005)

906 6. Lasers

[6.2017] {Sect. 6.13.2.10} A. Ruehl, H. Hundertmark, D. Wandt, C. Fallnich, D.Kracht: 0.7W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses, Opt Express 13, p.6305-6309 (2005)

[6.2018] {Sect. 6.13.2.10} M. Salhi, H. Leblond, F. Sanchez: High power tunable allfiber double-clad Er:Yb:silicate fiber laser, Opt Commun 247, p.181-185(2005)

[6.2019] {Sect. 6.13.2.10} A. Tnnermann, S. Hfer, A. Liem, J. Limpert, M. Reich,F. Rser, T. Schreiber, H. Zellmer, T. Peschel, V. Guyenot: Power scaling ofhigh-power fiber lasers and amplifiers, Laser Physics 13, p.107-117 (2005)

[6.2020] {Sect. 6.13.2.10} Y. Jeong, J.K. Sahu, D.N. Payne, J. Nilsson: Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,Optics Express 12, p.6088-6091 (2004)

[6.2021] {Sect. 6.13.2.10} O.G. Okhotnikov, T. Jouhti, J. Konttinen, S. Karirinne,M. Pessa: 1.5-mu m monolithic GaInNAs semiconductor saturable-absorber mode locking of an erbium fiber laser, Optics Letters 28, p.364-366(2003)

[6.2022] {Sect. 6.13.2.10} A. Liem, J. Limpert, H. Zellmer, A. Tnnermann: 100-Wsingle-frequency master-oscillator fiber power amplifier, Optics Letters 28,p.1537-1539 (2003)

[6.2023] {Sect. 6.13.2.10} W.J. Wadsworth, R.M. Percival, G. Bouwmans, J.C.Knight, P.St.J Russell: High-power air-clad photonic crystal fibre laser,Optics Express 11, p.48-53 (2003)

[6.2024] {Sect. 6.13.2.10} S.D. Jackson, T. Ryan, S. Mossman: High power Tm3+-doped silica fibre laser fabricated using chelate delivery deposition, OptCommun 216, p.401-404 (2003)

[6.2025] {Sect. 6.13.2.10} X.Y. Dong, H.Y. Tam, B.O. Guan, C.L. Zhao, X.Y. Dong:High power erbium-doped fiber ring laser with widely tunable range over100 nm, Opt Commun 224, p.295-299 (2003)

[6.2026] {Sect. 6.13.2.10} J. Limpert, A. Liem, H. Zellmer, A. Tnnermann: 500 Wcontinuous-wave fibre laser with excellent beam quality, Electronics Letters39, p.645-647 (2003)

[6.2027] {Sect. 6.13.2.10} M. Laroche, A.M. Chardon, J. Nilsson, D.P. Shepherd,W.A. Clarkson, S. Girard, R. Moncorge: Compact diode-pumped pas-sively Q-switched tunable Er-Yb double-clad fiber laser, Optics Letters27, p.1980-1982 (2002)

[6.2028] {Sect. 6.13.2.10} A.V. Kiryanov, V.N. Filippov, A.N. Starodumov: Cw-pumped erbium-doped fiber laser passively Q switched with Co2+: ZnSecrystal: modeling and experimental study, J Opt Soc Am B Opt Physics19, p.353-359 (2002)

[6.2029] {Sect. 6.13.2.10} J.A. AlvarezChavez, H.L. Offerhaus, J. Nilsson, P.W.Turner, W.A. Clarkson, D.J. Richardson: High-energy, high-power ytter-bium-doped Q-switched fiber laser, Optics Letters 25, p.37-39 (2000)

[6.2030] {Sect. 6.13.2.10} B. Srinivasan, R.K. Jain, G. Monnom: Indirect measure-ment of the magnitude of ion clustering at high doping densities in Er:ZBLAN fibers, J Opt Soc Am B Opt Physics 17, p.178-181 (2000)

[6.2031] {Sect. 6.13.2.10} C.J. daSilva, M.T. deAraujo, E.A. Gouveia, A.S. Gou-veiaNeto: Fourfold output power enhancement and threshold reductionthrough thermal effects in an Er3+/Yb3+-codoped optical fiber laser ex-cited at 1.064 mu m, Optics Letters 24, p.1287-1289 (1999)

[6.2032] {Sect. 6.13.2.10} L. Goldberg, J.P. Koplow, D.A.V. Kliner: Highly efficient4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode, OpticsLetters 24, p.673-675 (1999)

6.13.2 Solid-State Lasers 907

[6.2033] {Sect. 6.13.2.10} R. Hofer, M. Hofer, G.A. Reider: High energy, sub-picosecond pulses from a Nd-doped double-clad fiber laser, Opt Commun169, p.135-139 (1999)

[6.2034] {Sect. 6.13.2.10} V.A. Kozlov, J. HernandezCordero, T.F. Morse: All-fibercoherent beam combining of fiber lasers, Optics Letters 24, p.1814-1816(1999)

[6.2035] {Sect. 6.13.2.10} R. Paschotta, R. Haring, E. Gini, H. Melchior, U. Keller,H.L. Offerhaus, D.J. Richardson: Passively Q-switched 0.1-mJ fiber lasersystem at 1.53 mu m, Optics Letters 24, p.388-390 (1999)

[6.2036] {Sect. 6.13.2.10} T. Sandrock, D. Fischer, P. Glas, M. Leitner, M. Wrage,A. Diening: Diode-pumped 1-W Er-doped fluoride glass M-profile fiberlaser emitting at 2.8 mu m, Optics Letters 24, p.1284-1286 (1999)

[6.2037] {Sect. 6.13.2.10} A. Cucinotta, S. Selleri, L. Vincetti, M. Zoboli: Numericaland experimental analysis of erbium-doped fiber linear cavity lasers, OptCommun 156, p.264-270 (1998)

[6.2038] {Sect. 6.13.2.10} P. Glas, M. Naumann, A. Schirrmacher, S. Unger, T.Pertsch: Short-length 10-W cw neodymium-doped M-profile fiber laser,Appl Opt 37, p.8434-8437 (1998)

[6.2039] {Sect. 6.13.2.10} P. Glas, M. Naumann, A. Schirrmacher, T. Pertsch: Themulticore fiber – a novel design for a diode pumped fiber laser, Opt Com-mun 151, p.187-195 (1998)

[6.2040] {Sect. 6.13.2.10} S.D. Jackson, T.A. King: CW operation of a 1.064-mum pumped Tm-Ho-doped silica fiber laser, IEEE J QE-34, p.1578-1587(1998)

[6.2041] {Sect. 6.13.2.10} D.S. Lim, H.K. Lee, K.H. Kim, S.B. Kang, J.T. Ahn,M.Y. Jeon: Generation of multiorder Stokes and anti-Stokes lines in aBrillouin erbium fiber laser with a Sagnac loop mirror, Optics Letters 23,p.1671-1673 (1998)

[6.2042] {Sect. 6.13.2.10} R. Naftali, B. Fischer, J.R. Simpson: Large core-areaerbium-doped fibre laser, Opt Commun 149, p.317-320 (1998)

[6.2043] {Sect. 6.13.2.10} Y. Nishida, M. Yamada, T. Kanamori, K. Kobayashi, J.Temmyo, S. Sudo, Y. Ohishi: Development of an efficient praseodymium-doped fiber amplifier, IEEE J QE-34, p.1332-1339 (1998)

[6.2044] {Sect. 6.13.2.10} H.L. Offerhaus, N.G. Broderick, D.J. Richardson, R.Sammut, J. Caplen, L. Dong: High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-dopedfiber, Optics Letters 23, p.1683-1685 (1998)

[6.2045] {Sect. 6.13.2.10} J. Porta, A.B. Grudinin, Z.J. Chen, J.D. Minelly, N.J.Traynor: Environmentally stable picosecond ytterbium fiber laser with abroad tuning range, Optics Letters 23, p.615-617 (1998)

[6.2046] {Sect. 6.13.2.10} C.T.A. Brown, J. Amin, D.P. Shepherd, A.C. Tropper, M.Hempstead, J.M. Almeida: 900-nm Nd:Ti:LiNbO3 waveguide laser, OpticsLetters 22, p.1778-1780 (1997)

[6.2047] {Sect. 6.13.2.10} P. Glas, M. Naumann, A. Schirrmacher, S. Unger, T.Pertsch: A high power neodymium-doped fiber laser using a novel fibergeometry, Opt Commun 141, p.336-342 (1997)

[6.2048] {Sect. 6.13.2.10} R. Hofer, M. Hofer, G.A. Reider, M. Cernusca, M.H.Ober: Modelocking of a Nd-fiber laser at 920 nm, Opt Commun 140, p.242-244 (1997)

[6.2049] {Sect. 6.13.2.10} R. Paschotta, J. Nilsson, A.C. Tropper, D.C. Hanna:Ytterbium-doped fiber amplifiers, IEEE J QE-33, p.1049-1056 (1997)

[6.2050] {Sect. 6.13.2.10} J. Schneider, C. Carbonnier, U.B. Unrau: Characteriza-tion of a Ho3+-doped fluoride fiber laser with a 3.9-mu m emission wave-length, Appl Opt 36, p.8595-8600 (1997)

908 6. Lasers

[6.2051] {Sect. 6.13.2.10} M.E. Fermann, D. Harter, J.D. Minelly, G.G. Vienne:Cladding-pumped passively mode-locked fiber laser generating femtosec-ond and picosecond pulses, Optics Letters 21, p.967-969 (1996)

[6.2052] {Sect. 6.13.2.10} M.E. Fermann, J.D. Minelly: Cladding-pumped passiveharmonically mode-locked fiber laser, Optics Letters 21, p.970-972 (1996)

[6.2053] {Sect. 6.13.2.10} C. Ghisler, W. Luthy, H.P. Weber: Cladding-pumping ofa Tm3+:Ho3+ silica fibre laser, Opt Commun 132, p.474-478 (1996)

[6.2054] {Sect. 6.13.2.10} P. Glas, M. Naumann, A. Schirrmacher: A novel designfor a high brightness diode pumped fiber laser source, Opt Commun 122,p.163-168 (1996)

[6.2055] {Sect. 6.13.2.10} K. Hattori, T. Kitagawa, Y. Ohmori: Gain switchingof an erbium-doped silica-based planar waveguide laser, J Appl Phys 79,p.1238-1243 (1996)

[6.2056] {Sect. 6.13.2.10} W.H. Loh, L. Dong, J.E. Caplen: Single-sided outputSn/Er/Yb distributed feedback fiber laser, Appl Phys Lett 69, p.2151-2153(1996)

[6.2057] {Sect. 6.13.2.10} M. Pollnau, R. Spring, C. Ghisler, S. Wittwer, W. Luthy,H.P. Weber: Efficiency of erbium 3-mu m crystal and fiber lasers, IEEE JQE-32, p.657-663 (1996)

[6.2058] {Sect. 6.13.2.10} B. Desthieux, R.I. Laming, D.N. Payne: 111 kW (0.5 mJ)pulse amplification at 1.5 µm using a gated cascade of three erbium-dopedfiber amplifiers, Appl. Phys. Lett. 63, p.586-588 (1993)

[6.2059] {Sect. 6.13.2.10} M.J.F. Digonnet, C.J. Gaeta: Theoretical analysis of op-tical fiber laser amplifiers and oscillators, Appl. Opt. 24, p.333-342 (1985)

[6.2060] {Sect. 6.13.2.10} C.A. Burrus, J. Stone: Single-crystal fiber optical devices:A Nd:YAG fiber laser, Appl. Phys. Lett.26, p.318-320 (1975)

[6.2061] {Sect. 6.13.2.10} S. Sudo: Optical Fiber Amplifiers (Artech House, Boston,London, 1997)

[6.2062] {Sect. 6.13.2.11} Y.W. Lee, S. Sinha, M.J.E. Digonnet, R.L. Byer, S. Jiang:20 W single-mode Yb3+-doped phosphate fiber laser, Optics Letters 31,p.3255-3257 (2006)

[6.2063] {Sect. 6.13.2.11} P. Dupriez, C. Finot, A. Malinowski, J.K. Sahu, J. Nils-son, D.J. Richardson, K.G. Wilcox, H.D. Foreman, A.C. Tropper: High-power, high repetition rate picosecond and femtosecond sources based onYb-doped fiber amplification of VECSELs, Opt Express 14, p.9611-9616(2006)

[6.2064] {Sect. 6.13.2.11} C.G. Ye, M.L. Gong, P. Yan, Q. Liu, G. Chen: Linearly-polarized single-transverse-mode high-energy multi-ten nanosecond fiberamplifier with 50W average power, Opt Express 14, p.7604-7609 (2006)

[6.2065] {Sect. 6.13.2.11} A. Seifert, M. Sinther, T. Walther, E.S. Fry: Narrow-linewidth, multi-Watt Yb-doped fiber amplifier at 1014.8 nm, Appl Opt45, p.7908-7911 (2006)

[6.2066] {Sect. 6.13.2.11} Y. Jeong, J. Nilsson, J.K. Sahu, D.B.S. Soh, P. Dupriez,C.A. Codemard, S. Baek, D.N. Payne, R. Horley, J.A. AlvarezChavez, P.W.Turner: Single-mode plane-polarized ytterbium-doped large-core fiber laserwith 633-W continuous-wave output power, Optics Letters 30, p.955-957(2005)

[6.2067] {Sect. 6.13.2.11} J. Limpert, N. DeguilRobin, I. ManekHonninger, F. Salin,T. Schreiber, A. Liem, E. Roser, H. Zellmer, A. Tunnermann, A. Courjaud,C. Honninger, E. Mottay: High-power picosecond fiber amplifier based onnonlinear spectral compression, Optics Letters 30, p.714-716 (2005)

[6.2068] {Sect. 6.13.2.11} D.Y. Shen, J.K. Sahu, W.A. Clarkson: Highly efficient Er,Yb-doped fiber laser with 188W free-running and >100W tunable outputpower, Opt Express 13, p.4916-4921 (2005)

6.13.2 Solid-State Lasers 909

[6.2069] {Sect. 6.13.2.11} J. Limpert, N.D. Robin, I. ManekHonninger, F. Salin,F. Roser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, J.Broeng, A. Petersson, C. Jakobsen: High-power rod-type photonic crystalfiber laser, Opt Express 13, p.1055-1058 (2005)

[6.2070] {Sect. 6.13.2.11} A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K.Ueda, J.R. Folkenberg, J. Broeng: Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulsesat 1.55 mu m, Opt Express 13, p.1221-1227 (2005)

[6.2071] {Sect. 6.13.2.11} A. Malinowski, A. Piper, J.H.V. Price, K. Furusawa,Y. Jeong, J. Nilsson, D.J. Richardson: Ultrashort-pulse Yb3+-fiber-basedlaser and amplifier system producing >25-W average power, Optics Letters29, p.2073-2075 (2004)

[6.2072] {Sect. 6.13.2.11} L. Lombard, A. Brignon, J.P. Huignard, E. Lallier, G.LucasLeclin, P. Georges, G. Pauliat, G. Roosen: Diffraction-limited polar-ized emission from a multimode ytterbium fiber amplifier after a nonlinearbeam converter, Optics Letters 29, p.989-991 (2004)

[6.2073] {Sect. 6.13.2.11} Y.X. Fan, F.Y. Lu, S.L. Hu, K.C. Lu, H.J. Wang, X.Y.Dong, J.L. He, H.T. Wang: Tunable high-peak-power, high-energy hybridQ-switched double-clad fiber laser, Optics Letters 29, p.724-726 (2004)

[6.2074] {Sect. 6.13.2.11} J.J. Larsen, G. Vienne: Side pumping of double-clad pho-tonic crystal fibers, Optics Letters 29, p.436-438 (2004)

[6.2075] {Sect. 6.13.2.11} F.C. McNeillie, E. Riis, J. Broeng, J.R. Folkenberg, A.Petersson, H. Simonsen, C. Jacobsen: Highly polarized photonic crystalfiber laser, Opt Express 12, p.3981-3987 (2004)

[6.2076] {Sect. 6.13.2.11} Y. Jeong, J.K. Sahu, S. Baek, C. Alegria, D.B.S. Soh, C.Codemard, J. Nilsson: Cladding-pumped ytterbium-doped large-core fiberlaser with 610 W of output power, Opt Commun 234, p.315-319 (2004)

[6.2077] {Sect. 6.13.2.11} J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber,H.J. Fuchs, H. Zellmer, E.B. Kley, A. Tunnermann: High-average-powerfemtosecond fiber chirped-pulse amplification system, Optics Letters 28,p.1984-1986 (2003)

[6.2078] {Sect. 6.13.2.11} A. MartinezRios, A.N. Starodumov, H. Po, Y. Wang,A.A. Demidov: Efficient operation of double-clad Yb3+-doped fiber laserswith a novel circular cladding geometry, Optics Letters 28, p.1642-1644(2003)

[6.2079] {Sect. 6.13.2.11} F. DiTeodoro, J.P. Koplow, S.W. Moore, D.A.V. Kliner:Diffraction-limited, 300-kW peak-power pulses from a coiled multimodefiber amplifier, Optics Letters 27, p.518-520 (2002)

[6.2080] {Sect. 6.13.2.11} F.O. Ilday, F.W. Wise: Nonlinearity management: a routeto high-energy soliton fiber lasers, J Opt Soc Am B Opt Physics 19, p.470-476 (2002)

[6.2081] {Sect. 6.13.2.11} M. Auerbach, D. Wandt, C. Fallnich, H. Welling, S.Unger: High-power tunable narrow line width ytterbium-doped double-clad fiber laser, Opt Commun 195, p.437-441 (2001)

[6.2082] {Sect. 6.13.3.1} E. Takahashi, L.L. Losev, Y. Matsumoto, I. Okuda, S.Kato, T. Aota, Y. Owadano: 1 ps, 3 mJ KrF laser pulses generated us-ing stimulated Raman scattering and fast Pockels cell, Opt Commun 247,p.149-152 (2005)

[6.2083] {Sect. 6.13.3.1} Y. Nabekawa, D. Yashitomi, T. Sekikawa, S. Watanabe:50-W average-power, 480-fs KrF excimer laser with gated gain amplifica-tion, Optics Letters 26, p.807-809 (2001)

[6.2084] {Sect. 6.13.3.1} T. Kasamatsu, M. Tsunekane, H. Sekita, Y. Morishige,S. Kishida: 1 pm spectrally narrowed ArF excimer laser injection locked

910 6. Lasers

by fourth harmonic seed source of 773.6 nm Ti: sapphire laser, Appl PhysLett 67, p.3396-3398 (1995)

[6.2085] {Sect. 6.13.3.1} S. Izawa, A. Suda, M. Obara: Experimental observationof unstable resonator mode evolution in a high-power KrF laser, J. Appl.Phys. 58, p.3987-3990 (1985)

[6.2086] {Sect. 6.13.3.1} Y. Nabekawa, Y. Kuramoto, T. Sekikawa, S. Watanabe:High-power sub-100-fs UV pulse generation from a spectrally controlledKrF laser, Optics Letters 22, p.724-726 (1997)

[6.2087] {Sect. 6.13.3.2} P. Richter, J.D. Kimel, G.C. Moulton: Pulsed uv nitrogenlaser: dynamical behavior, Appl. Opt. 15, p.756-760 (1976)

[6.2088] {Sect. 6.13.3.3} S.V. Kukhlevsky, L. Kozma: Diffraction-limited transvers-coherent radiation of pulsed capillary gas lasers with waveguide resonators,Opt. Comm. 122, p.35-39 (1995)

[6.2089] {Sect. 6.13.3.3} H. Golnabi: Reliable spark gap switch for laser triggering,Rev. Sci.Instrum. 63, p.5804-5805 (1992)

[6.2090] {Sect. 6.13.3.5} J. Bonnetgamard, J. Bleuse, N. Magnea, J.L. Pautrat:Optical gain and laser emission in HgCdTe heterostructures, J Appl Phys78, p.6908-6915 (1995)

[6.2091] {Sect. 6.13.3.6} D. Gay, N. Mccarthy: Improvement of the pulse and spec-trum characteristics of a mode-locked argon laser with a phase-conjugatingexternal cavity, Opt Commun 137, p.83-88 (1997)

[6.2092] {Sect. 6.13.3.6} N.A. Robertson, S. Hoggan, J.B. Mangan, J. Hough: In-tensity Stabilization of an Argon Laser Using an Electro-Optic Modulator– Performance and Limitations, Appl. Phys. B 39, p.149-153 (1986)

[6.2093] {Sect. 6.13.3.6} L.L. Steinmetz, J.H. Richardson, B.W. Wallin: A mode-locked krypton ion laser with a 50-psec pulse width in the near uv, Appl.Phys. Lett. 33, p.163-165 (1978)

[6.2094] {Sect. 6.13.3.6} R.J. Freiberg, A.S. Halsted: Properties of Low OrderTransverse Modes in Argon Ion Lasers, Appl. Opt. 8, p.355-362 (1969)

[6.2095] {Sect. 6.13.3.7} E. LeGuyadec, P. Nouvel, P. Regnard: A large volumecopper vapor +HCI-H-2 laser with a high average power, Ieee J QuantumElectron 41, p.879-884 (2005)

[6.2096] {Sect. 6.13.3.7} R.P. Mildren, J.A. Piper: Compact and efficient kineti-cally enhanced copper-vapor lasers of high (100-W) average power, OpticsLetters 28, p.1936-1938 (2003)

[6.2097] {Sect. 6.13.3.7} S. Behrouzinia, R. Sadighi, P. Parvin: Pressure dependenceof the small-signal gain and saturation intensity of a copper vapor laser,Appl Opt 42, p.1013-1018 (2003)

[6.2098] {Sect. 6.13.3.7} D.W. Coutts: Double-pass copper vapor laser master-oscillator power-amplifier systems: Generation of flat-top focused beamsfor fiber coupling and percussion drilling, Ieee J Quantum Electron 38,p.1217-1224 (2002)

[6.2099] {Sect. 6.13.3.7} C. E. Little: Metal Vapour Lasers: Physics, Engineering,and Applications (John Wiley & Sons, Chichester, 1999)

[6.2100] {Sect. 6.13.3.7} E. LeGuyadec, P. Coutance, G. Bertrand, C. Peltier: A280-W average power Cu-Ne-HBr laser amplifier, IEEE J QE-35, p.1616-1622 (1999)

[6.2101] {Sect. 6.13.3.7} M.J. Withford, D.J.W. Brown: A 60-W high-beam-qualitysingle-oscillator copper vapor laser, IEEE J QE-35, p.997-1003 (1999)

[6.2102] {Sect. 6.13.3.7} R.J. Carman, M.J. Withford, D.J.W. Brown, J.A. Piper:Influence of the pre-pulse plasma electron density on the performance ofelemental copper vapour lasers, Opt Commun 157, p.99-104 (1998)

6.13.3 Gas Lasers 911

[6.2103] {Sect. 6.13.3.7} D. Kapitan, D.W. Coutts, C.E. Webb: Efficient generationof near diffraction-limited beam-quality output from medium-scale coppervapor laser oscillators, IEEE J QE-34, p.419-426 (1998)

[6.2104] {Sect. 6.13.3.7} O. Prakash, P.K. Shukla, S.K. Dixit, S. Chatterjee, H.S.Vora, R. Bhatnagar: Spatial coherence of the generalized diffraction-filteredresonator copper vapor laser, Appl Opt 37, p.7752-7757 (1998)

[6.2105] {Sect. 6.13.3.7} M.J. Withford, D.J.W. Brown, J.A. Piper: Repetition-rate scaling of a kinetically enhanced copper-vapor laser, Optics Letters23, p.1538-1540 (1998)

[6.2106] {Sect. 6.13.3.7} M.J. Withford, D.J.W. Brown, R.J. Carman, J.A. Piper:Enhanced performance of elemental copper-vapor lasers by use of H-2-HCl-Ne buffer-gas mixtures, Optics Letters 23, p.706-708 (1998)

[6.2107] {Sect. 6.13.3.7} O. Prakash, P.K. Shukla, S.K. Dixit, S. Chatterjee, H.S.Vora, R. Bhatnagar: Spatial coherence of the generalized diffraction-filteredresonator copper vapor laser, Appl. Opt. 37, p.7752-7757 (1998)

[6.2108] {Sect. 6.13.3.7} D.N. Astadjov, K.D. Dimitrov, D.R. Jones, V. Kirkov, L.Little, C.E. Little, N.V. Sabotinov, N.K. Vuchkov: Influence on operat-ing characteristics of scaling sealed- off CuBr lasers in active length, OptCommun 135, p.289-294 (1997)

[6.2109] {Sect. 6.13.3.7} D.N. Astadjov, K.D. Dimitrov, D.R. Jones, V.K. Kirkov,C.E. Little, N.V. Sabotinov, N.K. Vuchkov: Copper bromide laser of 120-Waverage output power, IEEE J QE-33, p.705-709 (1997)

[6.2110] {Sect. 6.13.3.7} D.J.W. Brown, C.G. Whyte, D.R. Jones, C.E. Little: High-beam quality, high-power copper HyBrID laser injection-seeded oscillatorsystem, Opt Commun 137, p.158-164 (1997)

[6.2111] {Sect. 6.13.3.7} R.J. Carman: Modelling of the kinetics and parametricbehaviour of a copper vapour laser: Output power limitation issues, J ApplPhys 82, p.71-83 (1997)

[6.2112] {Sect. 6.13.3.7} H. Kimura, M. Chinen, T. Nayuki, H. Saitoh: Improvementof the lasing performance of copper vapor laser by adding Sc atoms asenergy donors, Appl Phys Lett 71, p.312-314 (1997)

[6.2113] {Sect. 6.13.3.8} Q. Wang, Z.S. Tian, W. Du: Tunable Q-switched/cavity-Dumped z-fold CO2 waveguide laser with two channels and common elec-trodes, Ieee J Quantum Electron 41, p.994-996 (2005)

[6.2114] {Sect. 6.13.3.8} S.Y. Tochitsky, R. Narang, C. Filip, C.E. Clayton, K.A.Marsh, C. Joshi: Generation of 160-ps terawatt-power CO2 laser pulses,Optics Letters 24, p.1717-1719 (1999)

[6.2115] {Sect. 6.13.3.8} J.J. Wendland, H.J. Baker, D.R. Hall: Operation of a cw(CO2)-C-14-O-16 laser in the 12 mu m spectral region, Opt Commun 154,p.329-333 (1998)

[6.2116] {Sect. 6.13.3.8} P. Repond, M.W. Sigrist: Continuously tunable high-pressure CO2 laser for spectroscopic studies on trace gases, IEEE J QE-32,p.1549-1559 (1996)

[6.2117] {Sect. 6.13.3.8} S.W.C. Scott, J.D. Strohschein, H.J.J. Seguin, C.E. Cap-jack, H.W. Reshef: Optical performance of a burst-mode multikilowattCO2 laser, Appl Opt 35, p.4740-4748 (1996)

[6.2118] {Sect. 6.13.3.8} Y. Takenaka, Y. Motoki, J. Nishimae: High-power CO2laser using gauss-core resonator for 6-kW large-volume TEM (00) modeoperation, IEEE J QE-32, p.1299-1305 (1996)

[6.2119] {Sect. 6.13.3.8} W.F. Krupke, W.R. Sooy: Properties of an Unstable Con-focal Resonator CO2 Laser System, IEEE J. QE-5, p.575-586 (1969)

[6.2120] {Sect. 6.13.3.8} H.C. Miller, J. McCord, G.D. Hager, S.J. Davis, W.J.Kessler, D.B. Oakes: Optically pumped mid-infrared vibrational hydrogenchloride laser, J Appl Phys 84, p.3467-3473 (1998)

912 6. Lasers

[6.2121] {Sect. 6.13.4.0} H. Azzouz, L. Alkhafadiji, S. Balslev, J. Johansson, N.A.Mortensen, S. Nilsson, A. Kristensen: Levitated droplet dye laser, OptExpress 14, p.4374-4379 (2006)

[6.2122] {Sect. 6.13.4.0} R. Bhatnagar, R. Chaube, N. Singh: Effect of opticalturbulence in the dye medium on the bandwidth of a narrowband, high-repetition-rate dye laser, Appl Opt 44, p.6962-6970 (2005)

[6.2123] {Sect. 6.13.4.0} D. Schumacher, O. Marshall, J. Holt, M.L. Bajema, R.vanLeeuwen, T.F. Gallagher: kHz dye laser for use with ultrafast lasersystems, Appl Opt 41, p.1722-1724 (2002)

[6.2124] {Sect. 6.13.4.0} R. Bornemann, U. Lemmer, E. Thiel: Continuous-wavesolid-state dye laser, Optics Letters 31, p.1669-1671 (2006)

[6.2125] {Sect. 6.13.4.0} Y. Huang, T.H. Lin, Y. Zhou, S.T. Wu: Enhancing thelaser power by stacking multiple dye-doped chiral polymer films, Opt Ex-press 14, p.11299-11303 (2006)

[6.2126] {Sect. 6.13.4.0} S. Balslev, A. Mironov, D. Nilsson, A. Kristensen: Micro-fabricated single mode polymer dye laser, Opt Express 14, p.2170-2177(2006)

[6.2127] {Sect. 6.13.4.0} M. Alvarez, F. AmatGuerri, A. Costela, I. GarciaMoreno,M. Liras, R. Sastre: Laser emission from mixtures of dipyrromethene dyesin liquid solution and in solid polymeric matrices, Opt Commun 267, p.469-479 (2006)

[6.2128] {Sect. 6.13.4.0} D. Nilsson, S. Balslev, M.M. Gregersen, A. Kristensen:Microfabricated solid-state dye lasers based on a photodefinable polymer,Appl Opt 44, p.4965-4971 (2005)

[6.2129] {Sect. 6.13.4.0} A. Otomo, S. Otomo, S. Yokoyama, S. Mashiko: Photo-chemical stability of encapsulated laser dyes in dendritic nanoboxes againstsinglet oxygen, Optics Letters 27, p.891-893 (2002)

[6.2130] {Sect. 6.13.4.0} M. Ahmad, T.A. King, D.K. Ko, B.H. Cha, J. Lee: Pho-tostability of lasers based on pyrromethene 567 in liquid and solid-statehost media, Opt Commun 203, p.327-334 (2002)

[6.2131] {Sect. 6.13.4.0} Y. Yang, G.D. Qian, Z.Y. Wang, M.Q. Wang: Influenceof the thickness and composition of the solid-state dye laser media on thelaser properties, Opt Commun 204, p.277-282 (2002)

[6.2132] {Sect. 6.13.4.0} Y. Oki, S. Miyamoto, M. Tanaka, D.L. Zuo, M. Maeda:Long lifetime and high repetition rate operation from distributed feedbackplastic waveguided dye lasers, Opt Commun 214, p.277-283 (2002)

[6.2133] {Sect. 6.13.4.0} S.S. Yap, W.O. Siew, T.Y. Tou, S.W. Ng: Red-green-bluelaser emissions from dye-doped poly(Vinyl alcohol) films, Appl Opt 41,p.1725-1728 (2002)

[6.2134] {Sect. 6.13.4.0} G.S. He, T.C. Lin, S.J. Chung, Q.D. Zheng, C.G. Lu,Y.P. Cui, P.N. Prasad: Two-, three-, and four-photon-pumped stimulatedcavityless lasing properties of ten stilbazolium-dyes solutions, J Opt SocAm B Opt Physics 22, p.2219-2228 (2005)

[6.2135] {Sect. 6.13.4.0} R. Duchowicz, L.B. Scaffardi, A. Costela, I. GarciaMoreno,R. Sastre, A.U. Acuna: Photothermal analysis of polymeric dye laser ma-terials excited at different pump rates, Appl Opt 42, p.1029-1035 (2003)

[6.2136] {Sect. 6.13.4.0} H.P. Zeng, F. Liang, Z.R. Sun, Y.Z. Yuan, Z.G. Yao,Z.Z. Xu: Laser action from 1,3,5,7-tetramethyl-2,6-diethyl-8-n-propylpyrromethene-BF2, J Opt Soc Am B Opt Physics 19, p.1349-1354 (2002)

[6.2137] {Sect. 6.13.4.0} S. Sinha, A.K. Ray, S. Kundu, Sasikumar, T.B. Pal, S.K.S.Nair, K. Dasgupta: Spectral characteristics of a binary dye-mixture laser,Appl Opt 41, p.7006-7011 (2002)

6.13.4 Dye Lasers 913

[6.2138] {Sect. 6.13.4.0} A.K. Ray, S. Sinha, S. Kundu, S. Kumar, S.K.S. Nair, T.Pal, K. Dasgupta: High-repetition-rate, narrow-band dye lasers with wateras a solvent for dyes, Appl Opt 41, p.1704-1713 (2002)

[6.2139] {Sect. 6.13.4.0} G.Y. Zhou, D. Wang, X.M. Wang, X.G. Xu, X.F. Cheng,Z.S. Shao, X. Zhao, Q. Fang, M.H. Jiang: Temporal and spectral propertiesof two-photon pumped upconverted fluorescence and cavity lasing of anorganic dye PSPI, Opt Commun 198, p.407-410 (2001)

[6.2140] {Sect. 6.13.4.0} A.E. Vasdekis, G. Tsiminis, J.C. Ribierre, L. OFaolain,T.F. Krauss, G.A. Turnbull, I.D.W. Samuel: Diode pumped distributedBragg reflector lasers based on a dye-to- polymer energy transfer blend,Opt Express 14, p.9211-9216 (2006)

[6.2141] {Sect. 6.13.4.0} A.J.S. McGonigle, A.J. Andrews, D.W. Coutts, G.P.Hogan, K.S. Johnston, J.D. Moorhouse, C.E. Webb: Compact 2.5-W 10-kHz Nd : YLF-pumped dye laser, Appl Opt 41, p.1714-1717 (2002)

[6.2142] {Sect. 6.13.4} F. J. Duarte (ed.): High Power Dye Lasers (Springer, Berlin,Heidelberg, New York, 1991)

[6.2143] {Sect. 6.13.4} F. P. Schafer (ed.): Dye Lasers (Springer, Berlin, Heidelberg,New York, 1990)

[6.2144] {Sect. 6.13.4} U. Brackmann: Lambdachrome Laser Dyes (Lambda PhysikGmbH, Gottingen, 1997)

[6.2145] {Sect. 6.13.4} T.G. Pavlopoulos: Spectroscopy and molecular structure ofefficient laser dyes: Vibronic spin-orbit interactions in heterocyclics, ApplOpt 36, p.4969-4980 (1997)

[6.2146] {Sect. 6.13.4} Y. Assor, Z. Burshtein, S. Rosenwaks: Spectroscopy andlaser characteristics of copper-vapor-laser pumped Pyrromethene-556 andPyrromethene-567 dye solutions, Appl Opt 37, p.4914-4920 (1998)

[6.2147] {Sect. 6.13.4} F. J. Duarte, J. A. Piper: Narrow linewidth, high prf copperlaser-pumped dye-laser oscillators, Appl. Opt. 23, p.1391-1394 (1984)

[6.2148] {Sect. 6.13.4} M. Yamashita, D.J. Bradley, W. Sibbett, D. Welford: IntraCavity 2nd Harmonic Generation in a Synchronously Mode Locked CWDye Laser, J Appl Phys 51, p.3559-3562 (1980)

[6.2149] {Sect. 6.13.4} H.W. Kogelnik, E.P. Ippen, A. Dienes, C.V. Shank: Astig-matically Compensated Cavities for CW Dye Lasers, IEEE J. QE-8, p.373-379 (1972)

[6.2150] {Sect. 6.13.4} R. Gvishi, G. Ruland, P.N. Prasad: New laser medium: Dye-doped sol-gel fiber, Opt Commun 126, p.66-72 (1996)

[6.2151] {Sect. 6.13.4} M. Schutz, U. Heitmann, A. Hese: Development of a dual-wavelength dye-laser system for the UV and ist application to simultaneousmulti-elememt detection, Appl. Phys. B 61, p.339-343 (1995)

[6.2152] {Sect. 6.13.4} T. W. Hansch: Repetitively Pulsed Tunable Dye Laser forHigh Resolution Spectroscopy, Appl. Opt. 11, p.895-898 (1972)

[6.2153] {Sect. 6.13.4} M. Ahmad, M.D. Rahn, T.A. King: Singlet oxygen and dye-triplet-state quenching in solid-state dye lasers consisting of Pyrromethene567-doped poly (Methyl methacrylate), Appl Opt 38, p.6337-6342 (1999)

[6.2154] {Sect. 6.13.4} E.C. Chang, S.A. Chen: Cyano-containing phenylene vinyl-ene-based copolymer as blue luminescent and electron transport materialin polymer light-emitting diodes, J Appl Phys 85, p.2057-2061 (1999)

[6.2155] {Sect. 6.13.4} S.M. Giffin, I.T. McKinnie, W.J. Wadsworth, A.D. Wool-house, G.J. Smith, T.G. Haskell: Solid state dye lasers based on 2-hydroxy-ethyl methacrylate and methyl methacrylate co-polymers, Opt Commun161, p.163-170 (1999)

[6.2156] {Sect. 6.13.4} W.J. Wadsworth, S.M. Giffin, I.T. McKinnie, J.C. Sharpe,A.D. Woolhouse, T.G. Haskell, G.J. Smith: Thermal and optical propertiesof polymer hosts for solid-state dye lasers, Appl Opt 38, p.2504-2509 (1999)

914 6. Lasers

[6.2157] {Sect. 6.13.4} F.J. Duarte, T.S. Taylor, A. Costela, I. Garciamoreno, R.Sastre: Long-pulse narrow-linewidth dispersive solid-state dye-laser oscil-lator, Appl Opt 37, p.3987-3989 (1998)

[6.2158] {Sect. 6.13.4} A.J. Finlayson, N. Peters, P.V. Kolinsky, M.R.W. Venner:Flashlamp pumped polymer dye laser containing Rhodamine 6G, ApplPhys Lett 72, p.2153-2155 (1998)

[6.2159] {Sect. 6.13.4} S. Stagira, M. ZavelaniRossi, M. Nisoli, S. DeSilvestri, G.Lanzani, C. Zenz, P. Mataloni, G. Leising: Single-mode picosecond bluelaser emission from a solid conjugated polymer, Appl Phys Lett 73, p.2860-2862 (1998)

[6.2160] {Sect. 6.13.4} K.C. Yee, T.Y. Tou, S.W. Ng: Hot-press molded poly(methyl methacrylate) matrix for solid-state dye lasers, Appl Opt 37,p.6381-6385 (1998)

[6.2161] {Sect. 6.13.4} O.G. Calderon, J.M. Guerra, A. Costela, I. Garciamoreno,R. Sastre: Laser emission of a flash-lamp pumped Rhodamine 6 G solidcopolymer solution, Appl Phys Lett 70, p.25-27 (1997)

[6.2162] {Sect. 6.13.4} M.J. Cazeca, X.L. Jiang, J. Kumar, S.K. Tripathy: Epoxymatrix for solid-state dye laser applications, Appl Opt 36, p.4965-4968(1997)

[6.2163] {Sect. 6.13.4} S. Chandra, T.H. Allik, J.A. Hutchinson, J. Fox, C. Swim:Tunable ultraviolet laser source based on solid-state dye laser technologyand CsLiB6O10 harmonic generation, Optics Letters 22, p.209-211 (1997)

[6.2164] {Sect. 6.13.4} M. Faloss, M. Canva, P. Georges, A. Brun, F. Chaput, J.P.Boilot: Toward millions of laser pulses with pyrromethene- and perylene-doped xerogels, Appl Opt 36, p.6760-6763 (1997)

[6.2165] {Sect. 6.13.4} A. Costela, I. Garciamoreno, J.M. Figuera, F. Amatguerri,J. Barroso, R. Sastre: Solid-state dye laser based on coumarin 540A-dopedpolymeric matrices, Opt Commun 130, p.44-50 (1996)

[6.2166] {Sect. 6.13.4} A. Mandl, A. Zavriyev, D.E. Klimek: Energy scaling andbeam quality studies of a zigzag solid- state plastic dye laser, IEEE JQE-32, p.1723-1726 (1996)

[6.2167] {Sect. 6.13.4} T. Yamamoto, K. Fujii, A. Tagaya, E. Nihei, Y. Koike, K.Sasaki: High-power optical source using dye-doped polymer optical fiber,J Nonlinear Opt Physics Mat 5, p.73-88 (1996)

[6.2168] {Sect. 6.13.4} M.D. Rahn, T.A. King: Comparison of laser performance ofdye molecules in sol- gel, polycom, ormosil, and poly (methyl methacrylate)host media, Appl Opt 34, p.8260-8271 (1995)

[6.2169] {Sect. 6.13.4} S.-L. Chen, Z.-H. Zhu, K-C. Chen: A Class of Novel LaserDyes: Triphenodioxazinesl, Opt. Comm. 74, 84-86p.84-86 (1989)

[6.2170] {Sect. 6.13.4} F.L. Arbeloa, T.L. Arbeloa, I.L. Arbeloa, I. Garciamoreno,A. Costela, R. Sastre, F. Amatguerri: Photophysical and lasing propertiesof pyrromethene 567 dye in liquid solution. Environment effects, ChemPhys 236, p.331-341 (1998)

[6.2171] {Sect. 6.13.4} T.G. Pavlopoulos, J.H. Boyer, G. Sathyamoorthi: Laser ac-tion from a 2,6,8-position trisubstituted 1,3,5,7-tetramethylpyrromethene-BF2 complex: part 3, Appl Opt 37, p.7797-7800 (1998)

[6.2172] {Sect. 6.13.4} M.D. Rahn, T.A. King, A.A. Gorman, I. Hamblett: Pho-tostability enhancement of Pyrromethene 567 and Perylene Orange inoxygen-free liquid and solid dye lasers, Appl Opt 36, p.5862-5871 (1997)

[6.2173] {Sect. 6.13.4} J.D. Bhawalkar, G.S. He, C.K. Park, C.F. Zhao, G. Ruland,P.N. Prasad: Efficient, two-photon pumped green upconverted cavity lasingin a new dye, Opt Commun 124, p.33-37 (1996)

6.13.4 Dye Lasers 915

[6.2174] {Sect. 6.13.4} G.S. He, J.D. Bhawalkar, C.F. Zhao, P.N. Prasad: Propertiesof two-photon pumped cavity lasing in novel dye doped solid matrices,IEEE J QE-32, p.749-755 (1996)

[6.2175] {Sect. 6.13.4} G.S. He, C.F. Zhao, J.D. Bhawalkar, P.N. Prasad: Two-photon pumped cavity lasing in novel dye doped bulk matrix rods, ApplPhys Lett 67, p.3703-3705 (1995)

[6.2176] {Sect. 6.13.4} A. Mandl, D.E. Klimek: Multipulse operation of a highaverage power, good beam quality zig-zag dye laser, IEEE J QE-32, p.378-382 (1996)

[6.2177] {Sect. 6.13.5} K. Cassou, S. Kazamias, D. Ros, F. Ple, G. Jamelot, A.Klisnick, O. Lundh, F. Lindau, A. Persson, C.G. Wahstrom, S. deRossi, D.Joyeux, B. Zielbauer, D. Ursescu, T. Kuhl: Optimization toward a high-average-brightness soft-x-ray laser pumped at grazing incidence, OpticsLetters 32, p.139-141 (2007)

[6.2178] {Sect. 6.13.5} B.M. Luther, Y. Wang, M.A. Larotonda, D. Alessi, M.Berrill, J.J. Rocca, J. Dunn, R. Keenan, V.N. Shlyaptsev: High repeti-tion rate collisional soft X-ray lasers based on grazing incidence pumping,Ieee J Quantum Electron 42, p.4-13 (2006)

[6.2179] {Sect. 6.13.5} R. Keenan, J. Dunn, P.K. Patel, D.F. Price, R.F. Smith,V.N. Shlyaptsev: High-repetition-rate grazing-incidence pumped x-raylaser operating at 18.9 nm – art. no. 103901, Phys Rev Lett 9410, p.3901(2005)

[6.2180] {Sect. 6.13.5} J.J. Rocca, Y. Wang, M.A. Larotonda, B.M. Luther, M.Berrill, D. Alessi: Saturated 13.2 nm high-repetition-rate laser in nickellikecadmium, Optics Letters 30, p.2581-2583 (2005)

[6.2181] {Sect. 6.13.5} B.M. Luther, Y. Wang, M.A. Larotonda, D. Alessi, M.Berrill, M.C. Marconi, J.J. Rocca, V.N. Shlyaptsev: Saturated high-repetition-rate 18.9-nm tabletop laser in nickellike molybdenum, OpticsLetters 30, p.165-167 (2005)

[6.2182] {Sect. 6.13.5} S. Heinbuch, M. Grisham, D. Martz, J.J. Rocca: Demonstra-tion of a desk-top size high repetition rate soft x-ray laser, Opt Express13, p.4050-4055 (2005)

[6.2183] {Sect. 6.13.5} F. Yan, J. Zhang, X. Lu, J.Y. Zhong: Design of the nickel-like tin x-ray laser at 12.0 nm, J Opt Soc Am B Opt Physics 22, p.786-791(2005)

[6.2184] {Sect. 6.13.5} K.B. Fournier, C. Constantin, J. Poco, M.C. Miller, C.A.Back, L.J. Suter, J. Satcher, J. Davis, J. Grun: Efficient multi-keV x-raysources from Ti-doped aerogel targets – art. no. 165005, Phys Rev Lett9216, p.5005 (2004)

[6.2185] {Sect. 6.13.5} E. Seres, J. Seres, F. Krausz, C. Spielmann: Generation ofcoherent soft-x-ray radiation extending far beyond the titanium L edge –art. no. 163002, Phys Rev Lett 9216, p.3002 (2004)

[6.2186] {Sect. 6.13.5} A. Lucianetti, K.A. Janulewicz, R. Kroemer, G. Priebe, J.Tummler, W. Sandner, P.V. Nickles, V.I. Redkorechev: Transverse spatialcoherence of a transient nickellike silver soft-x- ray laser pumped by a singlepicosecond laser pulse, Optics Letters 29, p.881-883 (2004)

[6.2187] {Sect. 6.13.5} M. Tanaka, M. Nishikino, T. Kawachi, N. Hasegawa, M.Kado, M. Kishimoto, K. Nagashima, Y. Kato: X-ray laser beam withdiffraction-limited divergence generated with two gain media, Optics Let-ters 28, p.1680-1682 (2003)

[6.2188] {Sect. 6.13.5} T. Ozaki, R.A. Ganeev, A. Ishizawa, T. Kanai, H. Kuroda:Highly directive 18.9 nm nickel-like molybdenum X-ray laser operating at150 mJ pump energy – art. no. 253902, Phys Rev Lett 8925, p.3902 (2002)

916 6. Lasers

[6.2189] {Sect. 6.13.5} P.X. Lu, T. Kawachi, M. Kishimoto, K. Sukegawa, M.Tanaka, N. Hasegawa, M. Suzuki, R.Z. Tai, M. Kado, K. Nagashima, H.Daido, Y. Kato, H. Fiedorowicz, A. Bartnik: Demonstration of a transient-gain nickel-like xenon-ion x-ray laser, Optics Letters 27, p.1911-1913 (2002)

[6.2190] {Sect. 6.13.5} J. Dunn, J. Nilsen, A.L. Osterheld, Y.L. Li, V.N. Shlyaptsev:Demonstration of transient gain x-ray lasers near 20 nm for nickellike yt-trium, zirconium, niobium, and molybdenum, Optics Letters 24, p.101-103(1999)

[6.2191] {Sect. 6.13.5} Y. Hironaka, Y. Fujimoto, K.G. Nakamura, K. Kondo: En-hancement of hard x-ray emission from a copper target by multiple shotsof femtosecond laser pulses, Appl Phys Lett 74, p.1645-1647 (1999)

[6.2192] {Sect. 6.13.5} J.J. Rocca, C.H. Moreno, M.C. Marconi, K. Kanizay: Soft-x-ray laser interferometry of a plasma with a tabletop laser and a Lloyd’smirror, Optics Letters 24, p.420-422 (1999)

[6.2193] {Sect. 6.13.5} B.R. Benware, C.D. Macchietto, C.H. Moreno, J.J. Rocca:Demonstration of a high average power tabletop soft X-ray laser, Phys RevLett 81, p.5804-5807 (1998)

[6.2194] {Sect. 6.13.5} J.Y. Lin, G.J. Tallents, J. Zhang, A.G. MacPhee, C.L.S.Lewis, D. Neely, J. Nilsen, G.J. Pert, R.M.N. ORourke, R. Smith et al.:Gain saturation of the Ni-like X-ray lasers, Opt Commun 158, p.55-60(1998)

[6.2195] {Sect. 6.13.5} D. Ros, H. Fiedorowicz, B. Rus, A. Bartnik, M. Szczurek, G.Jamelot, F. Albert, A. Carillon, P. Jaegle, A. Klisnick et al.: Investigationof XUV amplification with Ni-like xenon ions using laser-produced gas puffplasmas, Opt Commun 153, p.368-374 (1998)

[6.2196] {Sect. 6.13.5} B.R. Benware, C.H. Moreno, D.J. Burd, J.J. Rocca: Oper-ation and output pulse characteristics of an extremely compact capillary-discharge tabletop soft-x-ray laser, Optics Letters 22, p.796-798 (1997)

[6.2197] {Sect. 6.13.5} P. Jaegle, S. Sebban, A. Carillon, G. Jamelot, A. Klisnick,P. Zeitoun, B. Rus, M. Nantel, F. Albert, D. Ros: Ultraviolet luminescenceof CsI and CsCl excited by soft x- ray laser, J Appl Phys 81, p.2406-2409(1997)

[6.2198] {Sect. 6.13.5} M.P. Kalashnikov, P.V. Nickles, M. Schnuerer, I. Will, W.Sandner: Multi-terawatt hybrid Ti:Sa-Nd:glass dual-beam laser: A novelXUV laser driver, Opt Commun 133, p.216-220 (1997)

[6.2199] {Sect. 6.13.5} Y.L. Li, H. Schillinger, C. Ziener, R. Sauerbrey: Reinves-tigation of the Duguay soft X-ray laser: a new parameter space for highpower femtosecond laser pumped systems, Opt Commun 144, p.118-124(1997)

[6.2200] {Sect. 6.13.5} Y.L. Li, P.X. Lu, G. Pretzler, E.E. Fill: Lasing in neonlikesulphur and silicon, Opt Commun 133, p.196-200 (1997)

[6.2201] {Sect. 6.13.5} P.V. Nickles, V.N. Shlyaptsev, M. Kalachnikov, M. Schnu-rer, I. Will, W. Sandner: Short pulse x-ray laser 32.6 nm based on transientgain in Ne-like titanium, Phys Rev Lett 78, p.2748-2751 (1997)

[6.2202] {Sect. 6.13.5} J. Nilsen, J.C. Moreno, T.W. Barbee, L.B. DaSilva: Mea-surement of spatial gain distribution for a neonlike germanium 19.6-nmlaser, Optics Letters 22, p.1320-1322 (1997)

[6.2203] {Sect. 6.13.5} P.J. Warwick, C.L.S. Lewis, S. Mccabe, A.G. MacPhee, A.Behjat, M. Kurkcuoglu, G.J. Tallents, D. Neely, E. Wolfrum, S.B. Healy,et al.: A study to optimise the temporal drive pulse structure for efficientXUV lasing on the J=0-1, 19.6 nm line of Ge XXIII, Opt Commun 144,p.192-197 (1997)

[6.2204] {Sect. 6.13.5} J. Zhang, A.G. MacPhee, J. Nilsen, J. Lin, T.W. Barbee,C. Danson, M.H. Key, C.L.S. Lewis, D. Neely, R.M.N. ORourke, et al.:

6.13.5 Other Lasers 917

Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm, PhysRev Lett 78, p.3856-3859 (1997)

[6.2205] {Sect. 6.13.5} P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M.Schnurer, I. Will, W. Sandner: Short Pulse X-Ray Laser at 32.6 nm Basedon Transient Gain in Ne-like Titanium, Phys. Rev. Lett. 78, p.2748-2751(1997)

[6.2206] {Sect. 6.13.5} J. Zhang, A.G. Macphee, J. Lin, E. Wolfrum, R. Smith, C.Danson, M.H. Key, C.L.S. Lewis, D. Neely, J. Nilsen, et al.: A saturatedX-ray laser beam at 7 nanometers, Science 276, p.1097-1100 (1997)

[6.2207] {Sect. 6.13.5} G.F. Cairns, C.L.S. Lewis, M.J. Lamb, A.G. MacPhee, D.Neely, P. Norreys, M.H. Key, S.B. Healy, P.B. Holden, G.J. Pert, et al.:Using low and high prepulses to enhance the J=0-1 transition at 19.6 nmin the Ne-like germanium XUV laser, Opt Commun 123, p.777-789 (1996)

[6.2208] {Sect. 6.13.5} H. Daido, S. Ninomiya, T. Imani, R. Kodama, M. Takagi,Y. Kato, K. Murai, J. Zhang, Y. You, Y. Gu: Nickellike soft-x-ray lasingat the wavelengths between 14 and 7.9 nm, Optics Letters 21, p.958-960(1996)

[6.2209] {Sect. 6.13.5} H. Fiedorowicz, A. Bartnik, Y. Li, P. Lu, E. Fill: Demon-stration of soft x-ray lasing with neonlike argon and nickel-like xenon ionsusing a laser-irradiated gas puff target, Phys Rev Lett 76, p.415-418 (1996)

[6.2210] {Sect. 6.13.5} G.P. Gupta, B.K. Sinha: Estimation of optimum electrontemperature for maximum x- ray laser gain from 3p-3s transitions of neon-like ions in laser plasmas, J Appl Phys 79, p.619-624 (1996)

[6.2211] {Sect. 6.13.5} J. Nilsen, Y.L. Li, P.X. Lu, J.C. Moreno, E.E. Fill: Relativemerits of using curved targets and the prepulse technique to enhance theoutput of the neon-like germanium X-ray laser (vol 124, pg 287, 1996), OptCommun 130, p.415-416 and 124,287 (1996)

[6.2212] {Sect. 6.13.5} J. Nilsen, H. Fiedorowicz, A. Bartnik, Y.L. Li, P.X. Lu, E.E.Fill: Self-photopumped neonlike x-ray laser, Optics Letters 21, p.408-410(1996)

[6.2213] {Sect. 6.13.5} J.F. Pelletier, M. Chaker, J.C. Kieffer: Picosecond soft-x-ray pulses from a high-intensity laser- plasma source, Optics Letters 21,p.1040-1042 (1996)

[6.2214] {Sect. 6.13.5} J. Zhang, E.E. Fill, Y. Li, D. Schlogl, J. Steingruber, M.Holden, G.J. Tallents, A. Demir, P. Zeitoun, C. Danson, et al.: High-gainx-ray lasing at 11.1 nm in sodiumlike copper driven by a 20-J, 2-ps Nd:glasslaser, Optics Letters 21, p.1035-1037 (1996)

[6.2215] {Sect. 6.13.5} R.W. Schoenlein, W.P. Leemans, A.H. Chin, P. Volfbeyn,T.E. Glover, P. Balling, M. Zolotorev, K.J. Kim, S. Chattopadhyay, C.V.Shank: Femtosecond x-ray pulses at 0.4 angstrom generated by 90 degreesThomson scattering: A tool for probing the structural dynamics of mate-rials, Science 274, p.236-238 (1996)

[6.2216] {Sect. 6.13.5} H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G.Yuan, Y. Oshikane, M. Takagi, H. Takabe, F. Koike: Efficient soft x-raylasing at 6 to 8 nm with nickel-like lanthanide ions, Phys Rev Lett 75,p.1074-1077 (1995)

[6.2217] {Sect. 6.13.5} B.E. Lemoff, G.Y. Yin, C.L. Gordon, C.P.J. Barty, S.E.Harris: Demonstration of a 1O-Hz femtosecond pulse-driven XUV laser at41.8 nm in Xe IX, Phys Rev Lett 74, p.1574-1577 (1995)

[6.2218] {Sect. 6.13.5} Y.L. Li, G. Pretzler, E.E. Fill: Observation of lasing on thetwo J=0-1, 3p-3s transitions at 26.1 and 30.4 nm in neonlike vanadium,Optics Letters 20, p.1026-1028 (1995)

[6.2219] {Sect. 6.13.5} J. Nilsen, J.C. Moreno: Lasing at 7.9 nm in nickellikeneodymium, Optics Letters 20, p.1386-1388 (1995)

918 6. Lasers

[6.2220] {Sect. 6.13.5} J. Zhang, M.H. Key, P.A. Norreys, G.J. Tallents, A. Behjat,C. Danson, A. Demir, L. Dwivedi, M. Holden, P.B. Holden, et al.: Demon-stration of high gain in a recombination XUV laser at 18.2 nm driven bya 20 J, 2 ps glass laser, Phys Rev Lett 74, p.1335-1338 (1995)

[6.2221] {Sect. 6.13.5} U. Teubner, J. Bergmann, B. van Wonterghem, F.P. Schafer:Angle-Dependent X-Ray Emission and Resonance Absorption in a Laser-Produced Plasma Generated by a High Intensity Ultrashort Pulse, Phys.Rev. Lett. 70, p.794-797 (1993)

[6.2222] {Sect. 6.13.5} E. Fill (guest ed.): X-Ray Lasers, Appl. Phys. B 50, p.145-146 (1990)

[6.2223] {Sect. 6.13.5} Z.z. Xu, Z.-q. Zhang, P.-z. Fan, S.-s. Chen, L.-h. Lin, P.-x.Lu, X.-p. Feng, X.-f. Wang, J.-z. Zhou, A.-d. Qian: Soft X-Ray Amplifi-cation by Li-Like A.10+ and Si11+ Ions in Recombining Plasmas, Appl.Phys. B. 50, p.147-151 (1990)

[6.2224] {Sect. 6.13.5} C.M. Brown, J.O. Ekberg, U. Feldman, J.F. Seely, M.C.Richardson, F.J. Marshall, W.E. Behring: Transitions in lithiumlike Cu26+and berylliumlike Cu25+ of interest for x-ray lawer research, J. Opt Soc.Am. B 4, p.533-538 (1987)

[6.2225] {Sect. 6.13.5} D. L. Matthews, R. R. Freeman (guest eds.): The generationof coherent XUV and soft X-ray radiation (Introduction), J. Opt. Soc. Am.B 4, p.530 (1987)

[6.2226] {Sect. 6.13.5} W. Theobald, C. Wulker, J. Jasny, J.S. Bakos, J. Jethwa,F.P. Schafer: High-density lithium plasma columns generated by intensesubpicosecond KrF laser pulses, Opt Commun 149, p.289-295 (1998)

[6.2227] {Sect. 6.13.5} K. Matsubara, U. Tanaka, H. Imajo, M. Watanabe: All-solid-state light source for generation of tunable continuous- wave coherentradiation near 202 nm, J Opt Soc Am B Opt Physics 16, p.1668-1671 (1999)

[6.2228] {Sect. 6.13.5} M.A. Klosner, W.T. Silfvast: Intense xenon capillary dis-charge extreme-ultraviolet source in the 10-16-nm-wavelength region, Op-tics Letters 23, p.1609-1611 (1998)

[6.2229] {Sect. 6.13.5} M.A. Klosner, H.A. Bender, W.T. Silfvast, J.J. Rocca: In-tense plasma discharge source at 13.5 nm for extreme-ultraviolet lithogra-phy, Optics Letters 22, p.34-36 (1997)

[6.2230] {Sect. 6.13.5} J.J. Rocca, D.P. Clark, J.L.A. Chilla, V.N. Shlyaptsev: En-ergy extraction and achievement of the saturation limit in a discharge-pumped table-top soft x-ray amplifier, Phys Rev Lett 77, p.1476-1479(1996)

[6.2231] {Sect. 6.13.5} S. Dusterer, P. Radcliffe, G. Geloni, U. Jastrow, M.Kuhlmann, E. Plonjes, K. Tiedtke, R. Treusch, J. Feldhaus, P. Nicolosi,L. Poletto, P. Yeates, H. Luna, J.T. Costello, P. Orr, D. Cubaynes, M.Meyer: Spectroscopic characterization of vacuum ultraviolet free electronlaser pulses, Optics Letters 31, p.1750-1752 (2006)

[6.2232] {Sect. 6.13.5} A. Gatto, M. Yang, N. Kaiser, S. Gunster, D. Ristau, M.Trovo, M. Danailov: Toward resistant vacuum-ultraviolet coatings for free-electron lasers down to 150 nm, Appl Opt 45, p.7316-7318 (2006)

[6.2233] {Sect. 6.13.5} P. Emma, K. Bane, M. Cornacchia, Z. Huang, H. Schlarb, G.Stupakov, D. Walz: Femtosecond and subfemtosecond X-ray pulses froma self-amplified spontaneous-emission-based free-electron laser – art. no.074801, Phys Rev Lett 9207, p.4801 (2004)

[6.2234] {Sect. 6.13.5} G. Dattoli, P.L. Ottaviani, A. Renieri, S.G. Biedron, H.P.Freund, S.V. Milton: A compact free electron laser device operating in theUV-soft X-ray region, Opt Commun 232, p.319-326 (2004)

6.13.5 Other Lasers 919

[6.2235] {Sect. 6.13.5} H.P. Freund, J. Pasour: Efficiency enhancement in free-electron lasers by means of concurrent rf acceleration – art. no. 094801,Phys Rev Lett 9109, p.4801 (2003)

[6.2236] {Sect. 6.13.5} H.N. Chapman, K.A. Nugent: X-ray pulse compression usingstrained crystals, Opt Commun 205, p.351-359 (2002)

[6.2237] {Sect. 6.13.5} C.B. Schroeder, C. Pellegrini, S. Reiche, J. Arthur, P. Emma:Chirped-beam two-stage free-electron laser for high-power femtosecond x-ray pulse generation, J Opt Soc Am B Opt Physics 19, p.1782-1789 (2002)

[6.2238] {Sect. 6.13.5} S.V. Milton, E. Gluskin, N.D. Arnold, C. Benson, W. Berg,S.G. Biedron, M. Borland, Y.C. Chae, R.J. Dejus, P.K. DenHartog, B.Deriy, M. Erdmann, Y.I. Eidelmann, M.W. Hahne, Z. Huang, K.J. Kim,J.W. Lewellen, Y. Li, A.H. Lumpkin, O. Makarov, E.R. Moog, A. Nas-siri, V. Sajaev, R. Soliday, B.J. Tieman, E.M. Trakhtenberg, G. Travish,I.B. Vasserman, N.A. Vinokurov, X.J. Wang, G. Wiemerslage, B.X. Yang:Exponential gain and saturation of a self-amplified spontaneous emissionfree-electron laser, Science 292, p.2037-2041 (2001)

[6.2239] {Sect. 6.13.5} P.G. OShea, H.P. Freund: Laser technology – Free-electronlasers: Status and applications, Science 292, p.1853-1858 (2001)

[6.2240] {Sect. 6.13.5} C.S. Ng, A. Bhattacharjee: Ginzburg-Landau model andsingle-mode operation of a free-electron laser oscillator, Phys Rev Lett 82,p.2665-2668 (1999)

[6.2241] {Sect. 6.13.5} E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov: Statisticalproperties of radiation from VUV and X-ray free electron laser, Opt Com-mun 148, p.383-403 (1998)

[6.2242] {Sect. 6.13.5} R. Bonifacio: A rigorous calculation of coherent noise bunch-ing, Opt Commun 138, p.99-100 (1997)

[6.2243] {Sect. 6.13.5} T. Mizuno, T. Otsuki, T. Ohshima, H. Saito: Single-modeoperations of a circular free-electron laser, Phys Rev Lett 77, p.2686-2689(1996)

[6.2244] {Sect. 6.13.5} A. Abramovich, M. Canter, A. Gover, J. Sokolowski, Y.M.Yakover, Y. Pinhasi, I. Schnitzer, J. Shiloh: High spectral coherence inlong-pulse and continuous free-electron laser: Measurements and theoreti-cal limitations, Phys Rev Lett 82, p.5257-5260 (1999)

[6.2245] {Sect. 6.13.5} V. Telnov: Laser cooling of electron beams for linear collid-ers, Phys Rev Lett 78, p.4757-4760 (1997)

[6.2246] {Sect. 6.13.5} T.T. Basiev, S.V. Vassiliev, V.A. Konjushkin, V.P. Gapont-sev: Pulsed and cw laser oscillations in LiF:F-2(-) color center crystal underlaser diode pumping, Optics Letters 31, p.2154-2156 (2006)

[6.2247] {Sect. 6.13.5} A.G.V. Spivey, V.V. Fedorov, M.M. McKerns, C.M. Lawson,S.B. Mirov: Amplification of narrow line LiF : F-2(+**) color center laseroscillation, Opt Commun 254, p.290-298 (2005)

[6.2248] {Sect. 6.13.5} H.G. Gu, L. Qi: Transversely pumped laser using F-3(+)color centers in LiF crystal at room temperature, Opt Commun 210, p.299-303 (2002)

[6.2249] {Sect. 6.13.5} R.M. Montereali, M. Piccinini: Optical gain of F-2 colourcentres in LiF confining structures realised by electron-beam lithography,Opt Commun 209, p.201-208 (2002)

[6.2250] {Sect. 6.13.5} P.M. Adam, S. Benrezzak, J.L. Bijeon, P. Royer, S. Guy,B. Jacquier, P. Moretti, R.M. Montereali, M. Piccinini, F. Menchini, F.Somma, C. Seassal, H. Rigneault: Fluorescence imaging of submicromet-ric lattices of colour centres in LiF by an apertureless scanning near-fieldoptical microscope, Opt Express 9, p.353-359 (2001)

920 6. Lasers

[6.2251] {Sect. 6.13.5} A.Y. Dergachev, S.B. Mirov: Efficient room temperatureLiF:F-2 (+)** color center laser tunable in 820-1210 nm range, Opt Com-mun 147, p.107-111 (1998)

[6.2252] {Sect. 6.13.5} E.J. Mozdy, M.A. Jaspan, Z.H. Zhu, Y.H. Lo, C.R. Pollock,R. Bhat, M.W. Hong: NaCl:OH- color center laser modelocked by a novelbonded saturable Bragg reflector, Opt Commun 151, p.62-64 (1998)

[6.2253] {Sect. 6.13.5} V.V. Termikirtychev: Diode-pumped tunable room-temper-ature LiF:F-2 (-) color-center laser, Appl Opt 37, p.6442-6445 (1998)

[6.2254] {Sect. 6.13.5} T.T. Basiev, P.G. Zverev, V.V. Fedorov, S.B. Mirov: Multi-line, superbroadband and sun-color oscillation of a LIF:F-2 (-) color-centerlaser, Appl Opt 36, p.2515-2522 (1997)

[6.2255] {Sect. 6.13.5} A. Konate, J.L. Doualan, S. Girard, J. Margerie: Tunablecw laser emission of the (a) variety of (F- 2 (+)) (H) centres in NaCl:OH-,Opt Commun 133, p.234-238 (1997)

[6.2256] {Sect. 6.13.5} V.V. Termikirtychev, T. Tsubo: Ultrabroadband LiF:F-2(+*) color center laser using two- prism spatially-dispersive resonator, OptCommun 137, p.74-76 (1997)

[6.2257] {Sect. 6.13.5} G. Phillips, P. Hinske, W. Demtroder, K. Mollmann, R.Beigang: NaCl-Color Center Laser with Birefringent Tuning, Appl. Phys.B 47, p.127-133 (1988)

[6.2258] {Sect. 6.13.5} R. Beigang, G. Litfin, H. Welling: Frequency behaviour andlinewidth of cw single mode color center lasers, Opt. Comm. 22.p.269-271(1977)

[6.2259] {Sect. 6.13.5} A. Bertolini, G. Carelli, A. Moretti, G. Moruzzi, F. Strumia:Laser action in hydrazine: Observation and characterization of new largeoffset FIR laser lines, IEEE J QE-35, p.12-14 (1999)

[6.2260] {Sect. 6.13.5} S.J. Cooper: Output power optimization and gain and sat-uration irradiance measurements on a RF-pumped HCN waveguide laser,Appl Opt 37, p.4881-4890 (1998)

[6.2261] {Sect. 6.13.5} J.N. Hovenier, A.V. Muravjov, S.G. Pavlov, V.N. Shastin,R.C. Strijbos, W.T. Wenckebach: Active mode locking of a p-Ge hot holelaser, Appl Phys Lett 71, p.443-445 (1997)

[6.2262] {Sect. 6.13.5} G.M.H. Knippels, X. Yan, A.M. MacLeod, W.A. Gillespie,M. Yasumoto, D. Oepts, A.F.G. vanderMeer: Generation and completeelectric-field characterization of intense ultrashort tunable far-infraredlaser pulses, Phys Rev Lett 83, p.1578-1581 (1999)

[6.2263] {Sect. 6.13.5} D.J. Spence, H. Liu, D.W. Coutts: Low-threshold miniatureCe:LiCAF lasers, Opt Commun 262, p.238-240 (2006)

[6.2264] {Sect. 6.13.5} A. Sennaroglu, U. Denurbas, N. Vermeulen, H. Ottevaere,H. Thienpont: Continuous-wave broadly tunable Cr2+ :ZnSe laser pumpedby a thulium fiber laser, Opt Commun 268, p.115-120 (2006)

[6.2265] {Sect. 6.13.5} M. Sharonov, V. Petricevic, A. Bykov, R.R. Alfano: Near-infrared laser operation of Cr3+ centers in chromium-doped LiInGeO4 andLiScGeO4 crystals, Optics Letters 30, p.851-853 (2005)

[6.2266] {Sect. 6.13.5} K. Rademaker, E. Heumann, G. Huber, S.A. Payne, W.E.Krupke, L.I. Isaenko, A. Burger: Laser activity at 1.18, 1.07, and 0.97 mum in the low-phonon-energy hosts KPb2Br5 and RbPb2Br5 doped withNd3+, Optics Letters 30, p.729-731 (2005)

[6.2267] {Sect. 6.13.5} D. Alderighi, G. Toci, M. Vannini, D. Parisi, M. Tonelli:Experimental evaluation of the cw lasing threshold for a Ce:LiCaAlF6laser, Opt Express 13, p.7256-7264 (2005)

[6.2268] {Sect. 6.13.5} J. Du, X.Y. Liang, Y.G. Wang, L.B. Su, W.W. Feng, E.W.Dai, Z.Z. Xu, J. Xu: 1ps passively mode-locked laser operation of Na,Yb:CaF2 crystal, Opt Express 13, p.7970-7975 (2005)

6.13.5 Other Lasers 921

[6.2269] {Sect. 6.13.5} M.H. Xia, L.Q. Hong, Q.Y. Feng, D.J. Xing, W.Y. Rong:5.5W CWYb3+ :Y2O3 ceramic laser pumped with 970 nm laser diode,Opt Commun 246, p.465-469 (2005)

[6.2270] {Sect. 6.13.5} K. Rademaker, S.A. Payne, G. Huber, L.I. Isaenko, E. Osiac:Optical pump-probe processes in Nd (3+)-doped KPb2Br5, RbPb2Br5,and KPb2Cl5, J Opt Soc Am B Opt Physics 22, p.2610-2618 (2005)

[6.2271] {Sect. 6.13.5} P. Dekker, J.M. Dawes, J.A. Piper: 2.27-W Q-switched self-doubling Yb:YAB laser with controllable pulse length, J Opt Soc Am BOpt Physics 22, p.378-384 (2005)

[6.2272] {Sect. 6.13.5} S.D. Setzler, K.J. Snell, T.M. Pollak, P.A. Budni, Y.E.Young, E.P. Chicklis: 5-W repetitively Q-switched Er:LuAG laser reso-nantly pumped by an erbium fiber laser, Optics Letters 28, p.1787-1789(2003)

[6.2273] {Sect. 6.13.5} E. Heumann, S. Br, H. Kretschmann, G. Huber: Diode-pumped continuous-wave green upconversion lasing of Er3+:LiLuF4usinng multipass pumping, Optics Letters 27, p.1699-1701 (2002)

[6.2274] {Sect. 6.13.5} M. Mond, D. Albrecht, E. Heumann, G. Huber, S. Kuck,V.I. Levchenko, V.N. Yakimovich, V.G. Shcherbitsky, V.E. Kisel, N.V.Kuleshov: 1.9-mu m and 2.0-mu m laser diode pumping of Cr2+: ZnSeand Cr2+: CdMnTe, Optics Letters 27, p.1034-1036 (2002)

[6.2275] {Sect. 6.13.5} M.C. Nostrand, R.H. Page, S.A. Payne, L.I. Isaenko, A.P.Yelisseyev: Optical properties of Dy3+- and Nd3+-doped KPb2Cl5, J OptSoc Am B Opt Physics 18, p.264-276 (2001)

[6.2276] {Sect. 6.13.5} T.J. Carrig, G.J. Wagner, A. Sennaroglu, J.Y. Jeong, C.R.Pollock: Mode-locked Cr2+: ZnSe laser, Optics Letters 25, p.168-170(2000)

[6.2277] {Sect. 6.13.5} J.J. Adams, C. Bibeau, R.H. Page, D.M. Krol, L.H. Furu,S.A. Payne: 4.0-4.5-mu m lasing of Fe : ZnSe below 180 K, a new mid-infrared laser material, Optics Letters 24, p.1720-1722 (1999)

[6.2278] {Sect. 6.13.5} A.A. Kaminskii, H.J. Eichler, K. Ueda, N.V. Klassen, B.S.Redkin, L.E. Li, J. Findeisen, D. Jaque, J. GarciaSole, J. Fernandez et al.:Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY (WO4)(2), CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-activeand stimulated Raman scattering-active crystals, Appl Opt 38, p.4533-4547(1999)

[6.2279] {Sect. 6.13.5} S. Kuck, E. Heumann, T. Karner, A. Maaroos: Continuous-wave room-temperature laser oscillation of Cr3+: MgO, Optics Letters 24,p.966-968 (1999)

[6.2280] {Sect. 6.13.5} J.H. Liu, Z.S. Shao, X.L. Meng, H.J. Zhang, L. Zhu, M.H.Jiang: High-power CWNd : GdVO4 solid-state laser end-pumped by adiode-laser- array, Opt Commun 164, p.199-202 (1999)

[6.2281] {Sect. 6.13.5} G.S. Maciel, L.D. Menezes, C.B. deAraujo, Y. Messaddeq:Violet and blue light amplification in Nd3+-doped fluoroindate glasses, JAppl Phys 85, p.6782-6785 (1999)

[6.2282] {Sect. 6.13.5} J. Qiu, M. Shojiya, Y. Kawamoto: Sensitized Ho3+ up-conversion luminescence in Nd3+-Yb3+-Ho3+ co-doped ZrF4-based glass,J Appl Phys 86, p.909-913 (1999)

[6.2283] {Sect. 6.13.5} T. Schweizer, B.N. Samson, J.R. Hector, W.S. Brocklesby,D.W. Hewak, D.N. Payne: Infrared emission and ion-ion interactions inthulium- and terbium- doped gallium lanthanum sulfide glass, J Opt SocAm B Opt Physics 16, p.308-316 (1999)

[6.2284] {Sect. 6.13.5} S.A. vandenBerg, R.H.V. denBezemer, H.F.M. Schoo, G.W.tHooft, E.R. Eliel: From amplified spontaneous emission to laser oscilla-

922 6. Lasers

tion: dynamics in a short cavity polymer laser, Optics Letters 24, p.1847-1849 (1999)

[6.2285] {Sect. 6.13.5} G.J. Wagner, T.J. Carrig, R.H. Page, K.I. Schaffers, J.O.Ndap, X.Y. Ma, A. Burger: Continuous-wave broadly tunable Cr2+: ZnSelaser, Optics Letters 24, p.19-21 (1999)

[6.2286] {Sect. 6.13.5} R. Fluck, R. Haring, R. Paschotta, E. Gini, H. Melchior,U. Keller: Eyesafe pulsed microchip laser using semiconductor saturableabsorber mirrors, Appl Phys Lett 72, p.3273-3275 (1998)

[6.2287] {Sect. 6.13.5} J.P. Foing, E. Scheer, B. Viana, N. Britos: Diode-pumpedemission of Tm3+-doped Ca2Al2SiO7 crystals, Appl Opt 37, p.4857-4861(1998)

[6.2288] {Sect. 6.13.5} E. Martins, C.B. deAraujo, J.R. Delben, A.S.L. Gomes, B.J.daCosta, Y. Messaddeq: Cooperative frequency upconversion in Yb3+-Tb3+ codoped fluoroindate glass, Opt Commun 158, p.61-64 (1998)

[6.2289] {Sect. 6.13.5} P. Rambaldi, R. Moncorge, J.P. Wolf, C. Pedrini, J.Y. Ges-land: Efficient and stable pulsed laser operation of Ce:LiLuF4 around 308nm, Opt Commun 146, p.163-166 (1998)

[6.2290] {Sect. 6.13.5} N. Sarukura, Z.L. Liu, S. Izumida, M.A. Dubinskii, R.Y.Abdulsabirov, S.L. Korableva: All-solid-state tunable ultraviolet subnano-second laser with direct pumping by the fifth harmonic of a Nd:YAG laser,Appl Opt 37, p.6446-6448 (1998)

[6.2291] {Sect. 6.13.5} I. Sokolska, W. RybaRomanowski, S. Golab, M. Baba, T.Lukasiewicz: Spectroscopic assessment of LiTaO3 : Tm3+ as a potentialdiode-pumped laser near 1.9 mu m, J Appl Phys 84, p.5348-5350 (1998)

[6.2292] {Sect. 6.13.5} Y.X. Zhao, S. Fleming: Analysis of the effect of numericalaperture on Pr:ZBLAN upconversion fiber lasers, Optics Letters 23, p.373-375 (1998)

[6.2293] {Sect. 6.13.5} N. Djeu, V.E. Hartwell, A.A. Kaminskii, A.V. Butashin:Room-temperature 3.4-mu m Dy:BaYb2F8 laser, Optics Letters 22, p.997-999 (1997)

[6.2294] {Sect. 6.13.5} N. Sarukura, Z.L. Liu, H. Ohtake, Y. Segawa, M.A. Dubin-skii, V.V. Semashko, A.K. Naumov, S.L. Korableva, R.Y. Abdulsabirov:Ultraviolet short pulses from an all-solid-state Ce:LiCAF master-oscillator-power-amplifier system, Optics Letters 22, p.994-996 (1997)

[6.2295] {Sect. 6.13.5} P.W. Binun, T.L. Boyd, M.A. Pessot, D.H. Tanimoto,D.E. Hargis: Pr:YLF, intracavity-pumped, room-temperature upconver-sion laser, Optics Letters 21, p.1915-1917 (1996)

[6.2296] {Sect. 6.13.5} L.B. Shaw, S.R. Bowman, B.J. Feldman, J. Ganem: Ra-diative and multiphonon relaxation of the Mid-IR transitions of Pr3+ inLaCl3, IEEE J QE-32, p.2166-2172 (1996)

[6.2297] {Sect. 6.13.5} M.A. Foster, A.C. Turner, J.E. Sharping, B.S. Schmidt,M. Lipson, A.L. Gaeta: Broad-band optical parametric gain on a siliconphotonic chip, Nature 441, p.960-963 (2006)

[6.2298] {Sect. 6.13.5} R. Maulini, D.A. Yarekha, J.M. Bulliard, M. Giovannini, J.Faist: Continuous-wave operation of a broadly tunable thermoelectricallycooled external cavity quantum-cascade laser, Optics Letters 30, p.2584-2586 (2005)

[6.2299] {Sect. 6.13.5} C. Faugeras, S. Forget, E. BoerDuchemin, H. Page, J.Y. Ben-gloan, O. Parillaud, M. Calligaro, C. Sirtori, M. Giovannini, K. Faist: High-power room temperature emission quantum cascade lasers at a lambda=9mu m, Ieee J Quantum Electron 41, p.1430-1438 (2005)

[6.2300] {Sect. 6.13.5} R. Birkhahn, M. Garter, A.J. Steckl: Red light emissionby photoluminescence and electroluminescence from Pr-doped GaN on Sisubstrates, Appl Phys Lett 74, p.2161-2163 (1999)

6.13.5 Other Lasers 923

[6.2301] {Sect. 6.13.5} A.J. Steckl, M. Garter, D.S. Lee, J. Heikenfeld, R. Birkhahn:Blue emission from Tm-doped GaN electroluminescent devices, Appl PhysLett 75, p.2184-2186 (1999)

[6.2302] {Sect. 6.13.5} R. Birkhahn, A.J. Steckl: Green emission from Er-dopedGaN grown by molecular beam epitaxy on Si substrates, Appl Phys Lett73, p.2143-2145 (1998)

[6.2303] {Sect. 6.13.5} N.D. Kumar, J.D. Bhawalkar, P.N. Prasad, F.E. Karasz, B.Hu: Solid-state tunable cavity lasing in a poly (para-phenylene vinylene)derivative alternating block co-polymer, Appl Phys Lett 71, p.999-1001(1997)

[6.2304] {Sect. 6.13.5} K. Katayama, H. Yao, F. Nakanishi, H. Doi, A. Saegusa, N.Okuda, T. Yamada, H. Matsubara, M. Irikura, T. Matsuoka et al.: Lasingcharacteristics of low threshold ZnSe-based blue/green laser diodes grownon conductive ZnSe substrates, Appl Phys Lett 73, p.102-104 (1998)

[6.2305] {Sect. 6.13.5} V.G. Kozlov, V. Bulovic, S.R. Forrest: Temperature inde-pendent performance of organic semiconductor lasers, Appl Phys Lett 71,p.2575-2577 (1997)

[6.2306] {Sect. 6.13.5} S. Tanaka, H. Hirayama, Y. Aoyagi, Y. Narukawa, Y.Kawakami, S. Fujita: Stimulated emission from optically pumped GaNquantum dots, Appl Phys Lett 71, p.1299-1301 (1997)

[6.2307] {Sect. 6.13.5} A. Waag, F. Fischer, K. Schull, T. Baron, H.J. Lugauer, T.Litz, U. Zehnder, W. Ossau, T. Gerhard, M. Keim, et al.: Laser diodesbased on beryllium-chalcogenides, Appl Phys Lett 70, p.280-282 (1997)

[6.2308] {Sect. 6.13.5} L.D. Deloach, R.H. Page, G.D. Wilke, S.A. Payne, W.F.Krupke: Transition metal-doped zinc chalcogenides: Spectroscopy and laserdemonstration of a new class of gain media, IEEE J QE-32, p.885-895(1996)

[6.2309] {Sect. 6.13.5} P.A. Ramos, E. Towe: Surface-emitted blue light from [112]-oriented (In, Ga)As/GaAs quantum well edge-emitting lasers, Appl PhysLett 69, p.3321-3323 (1996)

[6.2310] {Sect. 6.13.5} M. Endo, T. Masuda, T. Uchiyama: Supersonic chemicaloxygen-iodine laser with X-shaped streamwise vortex generator, Ieee JQuantum Electron 42, p.71-77 (2006)

[6.2311] {Sect. 6.13.5} J. Handke, W.O. Schall, T. Hall, F. Duschek, K.M.Grunewald: Chemical oxygen-iodine laser power generation with an off-axis hybrid resonator, Appl Opt 45, p.3831-3838 (2006)

[6.2312] {Sect. 6.13.5} O. Spalek, M. Censky, V. Jirasek, J. Kodymova, I. Jakubec,G.D. Hager: Chemical oxygen-iodine laser using a new method of atomiciodine generation, Ieee J Quantum Electron 40, p.564-570 (2004)

[6.2313] {Sect. 6.13.5} B.J. Fang, F. Chen, Y.L. Zhang, F.T. Sang, Y.Q. Jin, Z.Q.Wang, Q.W. Li: A 2-kW COIL with a square pipe-array JSOG and nitrogenbuffer gas, Ieee J Quantum Electron 39, p.1619-1624 (2003)

[6.2314] {Sect. 6.13.5} V.D. Nikolaev, M.V. Zagidullin, M.I. Svistun, B.T. Ander-son, R.E. Tate, G.D. Hager: Results of small-signal gain measurements ona supersonic chemical oxygen iodine laser with an advanced nozzle bank,Ieee J Quantum Electron 38, p.421-428 (2002)

[6.2315] {Sect. 6.13.5} T.L. Rittenhouse, S.P. Phipps, C.A. Helms: Performance ofa high-efficiency 5-cm gain length supersonic chemical oxygen-iodine laser,IEEE J QE-35, p.857-866 (1999)

[6.2316] {Sect. 6.13.5} F. Wani, M. Endo, T. Fujioka: High-pressure, high-efficiencyoperation of a chemical oxygen-iodine laser, Appl Phys Lett 75, p.3081-3083 (1999)

[6.2317] {Sect. 6.13.5} M. Endo, S. Nagatomo, S. Takeda, M.V. Zagidullin, V.D.Nikolaev, H. Fujii, F. Wani, D. Sugimoto, K. Sunako, K. Nanri et al.:

924 6. Lasers

High-efficiency operation of chemical oxygen-iodine laser using nitrogen asbuffer gas, IEEE J QE-34, p.393-398 (1998)

[6.2318] {Sect. 6.13.5} D. Sugimoto, M. Endo, K. Nanri, S. Takeda, T. Fujioka:Output power stabilization of a chemical oxygen-iodine laser with an ex-ternal magnetic field, IEEE J QE-34, p.1526-1532 (1998)

[6.2319] {Sect. 6.13.5} D. Furman, B.D. Barmashenko, S. Rosenwaks: An efficientsupersonic chemical oxygen-iodine laser operating without buffer gas andwith simple nozzle geometry, Appl Phys Lett 70, p.2341-2343 (1997)

[6.2320] {Sect. 6.13.5} Y. Kalisky, K. Waichman, S. Kamin, D. Chuchem: Plasmacathode preionized atmospheric pressure HF chemical laser, Opt Commun137, p.59-63 (1997)

[6.2321] {Sect. 6.13.5} G.N. Tsikrikas, A.A. Serafetinides: Discharge and cir-cuit simulation of a plasma cathode TEA HF laser operating with aHe/SF6/C3H8 gas mixture, Opt Commun 134, p.145-148 (1997)

[6.2322] {Sect. 6.13.5} I. Blayvas, B.D. Barmashenko, D. Furman, S. Rosenwaks,M.V. Zagidullin: Power optimization of small-scale chemical oxygen-iodinelaser with jet-type singlet oxygen generator, IEEE J QE-32, p.2051-2057(1996)

[6.2323] {Sect. 6.13.5} G.D. Hager, C.A. Helms, K.A. Truesdell, D. Plummer, J.Erkkila, P. Crowell: A simplified analytic model for gain saturation andpower extraction in the flowing chemical oxygen-iodine laser, IEEE J QE-32, p.1525-1536 (1996)

[6.2324] {Sect. 6.13.5} S.P. Phipps, C.A. Helms, R.J. Copland, W. Rudolph, K.A.Truesdell, G.D. Hager: Mode locking of a CW supersonic chemical oxygen-iodine laser, IEEE J QE-32, p.2045-2050 (1996)

[6.2325] {Sect. 6.14.0} B.E. Mansour, H. Anis, D. Zeidler, P.B. Corkum, D.M.Villeneuve: Generation of 11 fs pulses by using hollow-core gas-filled fibersat a 100 kHz repetition rate, Optics Letters 31, p.3185-3187 (2006)

[6.2326] {Sect. 6.14.0} I. Jovanovic, C.P.J. Barty, C. Haefner, B. Wattellier: Opticalswitching and contrast enhancement in intense laser systems by cascadedoptical parametric amplification, Optics Letters 31, p.787-789 (2006)

[6.2327] {Sect. 6.14.0} Y.C. Zhao, S.S. Min, H.C. Wang, S. Fleming: High-powerfigure-of-eight fiber laser with passive sub-ring loops for repetition ratecontrol, Opt Express 14, p.10475-10480 (2006)

[6.2328] {Sect. 6.14.0} C.K. Nielsen, K.G. Jespersen, S.R. Keiding: A 158 fs 5.3 nJfiber-laser system at 1 mu m using photonic bandgap fibers for dispersioncontrol and pulse compression, Opt Express 14, p.6063-6068 (2006)

[6.2329] {Sect. 6.14.0} H. Kiriyama, N. Inoue, Y. Akahane, K. Yamakawa: Prepulse-free, multi-terawatt, sub-30-fs laser system, Opt Express 14, p.438-445(2006)

[6.2330] {Sect. 6.14.0} K. Kondo, H. Maeda, Y. Hama, S. Morita, A. Zoubir, R.Kodama, K.A. Tanaka, Y. Kitagawa, Y. Izawa: Control of amplified opticalparametric fluorescence for hybrid chirped-pulse amplification, J Opt SocAm B Opt Physics 23, p.231-235 (2006)

[6.2331] {Sect. 6.14.0} F. Roser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T.Schreiber, J. Limpert, A. Tunnermann: 131 W 220 fs fiber laser system,Optics Letters 30, p.2754-2756 (2005)

[6.2332] {Sect. 6.14.0} N. Ishii, L. Turi, V.S. Yakovlev, T. Fuji, F. Krausz, A. Bal-tuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, A. Piskarskas:Multimillijoule chirped parametric amplification of few-cycle pulses, OpticsLetters 30, p.567-569 (2005)

[6.2333] {Sect. 6.14.0} C.K. Nielsen, B. Ortac, T. Schreiber, J. Limpert, R.Hohmuth, W. Richter, A. Tunnermann: Self-starting self-similar all-polari-

6.14 Modification of Pulse Structure 925

zation maintaining Yb-doped fiber laser, Opt Express 13, p.9346-9351(2005)

[6.2334] {Sect. 6.14.0} A. Killi, J. Dorring, U. Morgner, M.J. Lederer, J. Frei, D.Kopf: High speed electro-optical cavity dumping of mode-locked laser os-cillators, Opt Express 13, p.1916-1922 (2005)

[6.2335] {Sect. 6.14.0} C.Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Kohler, R.Holzwarth, A. Baltuska, A.M. Zheltikov, F. Krausz: Soliton-based pump-seed synchronization for few-cycle OPCPA, Opt Express 13, p.6550-6557(2005)

[6.2336] {Sect. 6.14.0} D.G. Ouzounov, F.R. Ahmad, D. Muller, N. Venkataraman,M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, A.L. Gaeta: Genera-tion of megawatt optical solitons in hollow-core photonic band- gap fibers,Science 301, p.1702-1704 (2003)

[6.2337] {Sect. 6.14.0} F.O. Ilday, J. Buckley, L. Kuznetsova, F.W. Wise: Gener-ation of 36-femtosecond pulses from a ytterbium fiber laser, Opt Express11, p.3550-3554 (2003)

[6.2338] {Sect. 6.14.0} K.S. Abedin, J.T. Gopinath, L.A. Jiang, M.E. Grein,H.A. Haus, E.P. Ippen: Self-stabilized passive, harmonically mode-lockedstretched-pulse erbium fiber ring laser, Optics Letters 27, p.1758-1760(2002)

[6.2339] {Sect. 6.14.0} F.O. Ilday, F.W. Wise, T. Sosnowski: High-energy femtosec-ond stretched-pulse fiber laser with a nonlinear optical loop mirror, OpticsLetters 27, p.1531-1533 (2002)

[6.2340] {Sect. 6.14.0} X.D. Yang, Z.Z. Xu, Y.X. Leng, H.H. Lu, L.H. Lin, Z.Q.Zhang, R.X. Li, W.Q. Zhang, D.J. Yin, B. Tang: Multiterawatt laser sys-tem based on optical parametric chirped pulse amplification, Optics Letters27, p.1135-1137 (2002)

[6.2341] {Sect. 6.14.0} H. Lim, F.O. Ilday, F.W. Wise: Femtosecond ytterbiumfiber laser with photonic crystal fiber for dispersion control, Opt Express10, p.1497-1502 (2002)

[6.2342] {Sect. 6.14.0} J.H.V. Price, K. Furusawa, T.M. Monro, L. Lefort, D.J.Richardson: Tunable, femtosecond pulse source operating in the range 1.06-1.33 mu m based on an Yb3+-doped holey fiber amplifier, J Opt Soc AmB Opt Physics 19, p.1286-1294 (2002)

[6.2343] {Sect. 6.14.2.0} D. Yoshitomi, Y. Kobayashi, H. Takada, M. Kakehata,K. Torizuka: 100-attosecond timing jitter between two-color mode-lockedlasers by active-passive hybrid synchronization, Optics Letters 30, p.1408-1410 (2005)

[6.2344] {Sect. 6.14.2.0} M. Betz, F. Sotier, F. Tauser, S. Trumm, A. Laubereau,A. Leitenstorfer: All-optical phase locking of two femtosecond Ti:sapphirelasers: a passive coupling mechanism beyond the slowly varying amplitudeapproximation, Optics Letters 29, p.629-631 (2004)

[6.2345] {Sect. 6.14.2.0} M.E. Grein, L.A. Jiang, H.A. Haus, E.P. Ippen, C. Mc-Neilage, J.H. Searls, R.S. Windeler: Observation of quantum-limited timingjitter in an active, harmonically mode-locked fiber laser, Optics Letters 27,p.957-959 (2002)

[6.2346] {Sect. 6.14.2.0} W. Seitz, T.R. Schibli, U. Morgner, F.X. Kartner, C.H.Lange, W. Richter, B. Braun: Passive synchronization of two independentlaser oscillators with a Fabry-Perot modulator, Optics Letters 27, p.454-456 (2002)

[6.2347] {Sect. 6.14.2.0} R.K. Shelton, S.M. Foreman, L.S. Ma, J.L. Hall, H.C.Kapteyn, M.M. Murnane, M. Notcutt, J. Ye: Subfemtosecond timing jit-ter between two independent, actively synchronized, mode-locked lasers,Optics Letters 27, p.312-314 (2002)

926 6. Lasers

[6.2348] {Sect. 6.14.2.0} R.K. Shelton, L.S. Ma, H.C. Kapteyn, M.M. Murnane,J.L. Hall, J. Ye: Phase-coherent optical pulse synthesis from separate fem-tosecond lasers, Science 293, p.1286-1289 (2001)

[6.2349] {Sect. 6.14.2.1} Y. Kida, T. Nagahara, S. Zaitsu, M. Matsuse, T. Imasaka:Pulse compression based on coherent molecular motion induced by tran-sient stimulated Raman scattering, Opt Express 14, p.3083-3092 (2006)

[6.2350] {Sect. 6.14.2.1} U. Siegner, M. Haiml, J. Kunde, U. Keller: Adaptive pulsecompression by two-photon absorption in semiconductors, Optics Letters27, p.315-317 (2002)

[6.2351] {Sect. 6.14.2.1} L. Krainer, D. Nodop, G.J. Spuhler, S. Lecomte, M.Golling, R. Paschotta, D. Ebling, T. Ohgoh, T. Hayakawa, K.J. Wein-garten, U. Keller: Compact 10-GHz Nd:GdVO4 laser with 0.5-W averageoutput power and low timing jitter, Optics Letters 29, p.2629-2631 (2004)

[6.2352] {Sect. 6.14.2.1} E.A. Gibson, D.M. Gaudiosi, H.C. Kapteyn, R. Jimenez,S. Kane, R. Huff, C. Durfee, J. Squier: Efficient reflection grisms for pulsecompression and dispersion compensation of femtosecond pulses, OpticsLetters 31, p.3363-3365 (2006)

[6.2353] {Sect. 6.14.2.1} T. Sudmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K.Furusawa, J.C. Baggett, T.M. Monro, D.J. Richardson, U. Keller: Nonlin-ear femtosecond pulse compression at high average power levels by use ofa large-mode-area holey fiber, Optics Letters 28, p.1951-1953 (2003)

[6.2354] {Sect. 6.14.2.1} E. Seres, R. Herzog, J. Seres, D. Kaplan, C. Spielmann:Generation of intense 8 fs laser pulses, Opt Express 11, p.240-247 (2003)

[6.2355] {Sect. 6.14.2.1} S.J. Liu, Z.C. Shen, W.J. Kong, J. Shen, Z.X. Deng, Y.N.Zhao, J.D. Shao, Z.X. Fan: Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor, Opt Commun 267, p.50-57(2006)

[6.2356] {Sect. 6.14.2.1} N. Blanchot, G. Marre, J. Neauport, E. Sibe, C. Rouyer, S.Montant, A. Cotel, C. LeBlanc, C. Sauteret: Synthetic aperture compres-sion scheme for a multipetawatt high-energy laser, Appl Opt 45, p.6013-6021 (2006)

[6.2357] {Sect. 6.14.2.1} C. Radzewicz, P. Wasylczyk, W. Wasilewski, J.S. Krasin-ski: Piezo-driven deformable mirror for femtosecond pulse shaping, OpticsLetters 29, p.177-179 (2004)

[6.2358] {Sect. 6.14.2.1} V. Chvykov, P. Rousseau, S. Reed, G. Kalinchenko, V.Yanovsky: Generation of 10(11) contrast 50 TW laser pulses, Optics Let-ters 31, p.1456-1458 (2006)

[6.2359] {Sect. 6.14.2.1} D. Kraemer, R. Hua, M.L. Cowan, K. Franjic, R.J.D.Miller: Ultrafast noncollinear optical parametric chirped pulse amplifica-tion in KTiOAsO4, Optics Letters 31, p.981-983 (2006)

[6.2360] {Sect. 6.14.2.1} D.A. Bender, M.P. Hasselbeck, M. SheikBahae: Sensitiveultrashort pulse chirp measurement, Optics Letters 31, p.122-124 (2006)

[6.2361] {Sect. 6.14.2.1} S. Witte, R.T. Zinkstok, A.L. Wolf, W. Hogervorst, W.Ubachs, K.S.E. Eikema: A source of 2 terawatt, 2.7 cycle laser pulses basedon noncollinear optical parametric chirped pulse amplification, Opt Ex-press 14, p.8168-8177 (2006)

[6.2362] {Sect. 6.14.2.1} V.V. Lozhkarev, G.I. Freidman, V.N. Ginzburg, E.V.Katin, E.A. Khazanov, A.V. Kirsanov, G.A. Luchinin, A.N. Malshakov,M.A. Martyanov, O.V. Palashov, A.K. Poteomkin, A.M. Sergeev, A.A.Shaykin, I.V. Yakovlev, S.G. Garanin, S.A. Sukharev, N.N. Rukavishnikov,A.V. Charukhchev, R.R. Gerke, V.E. Yashin: 200 TW 45 fs laser based onoptical parametric chirped pulse amplification, Opt Express 14, p.446-454(2006)

6.14.2 Pulse Compression and Optical Gates 927

[6.2363] {Sect. 6.14.2.1} G. Steinmeyer: Brewster-angled chirped mirrors for high-fidelity dispersion compensation and bandwidths exceeding one optical oc-tave, Opt Express 11, p.2385-2396 (2003)

[6.2364] {Sect. 6.14.2.1} I. Jovanovic, C.A. Ebbers, C.P.J. Barty: Hybrid chirped-pulse amplification, Optics Letters 27, p.1622-1624 (2002)

[6.2365] {Sect. 6.14.2.1} H. Liu, J. Nees, G. Mourou, S. Biswal, G.J. Spuhler, U.Keller, N.V. Kuleshov: Yb : KGd(WO4)(2) chirped-pulse regenerative am-plifiers, Opt Commun 203, p.315-321 (2002)

[6.2366] {Sect. 6.14.2.1} L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M.M.Fejer, J.P. Meyn: Generation of sub-6-fs blue pulses by frequency doublingwith quasi- phase-matching gratings, Optics Letters 26, p.614-616 (2001)

[6.2367] {Sect. 6.14.2.1} D. Nickel, A. Liem, J. Limpert, H. Zellmer, U. Griebner,S. Unger, G. Korn, A. Tunnermann: Fiber based high repetition rate, highenergy laser source applying chirped pulse amplification, Opt Commun190, p.309-315 (2001)

[6.2368] {Sect. 6.14.2.1} G. Boyer: High-power femtosecond-pulse reshaping nearthe zero-dispersion wavelength of an optical fiber, Optics Letters 24, p.945-947 (1999)

[6.2369] {Sect. 6.14.2.1} P. Ceccherini, M.G. Pelizzo, P. Villoresi, S. DeSilvestri, M.Nisoli, S. Stagira: Surface damage of extreme-ultraviolet gratings exposedto high-energy 20-fs laser pulses, Appl Opt 38, p.4720-4724 (1999)

[6.2370] {Sect. 6.14.2.1} O. Duhr, E.T.J. Nibbering, G. Korn, G. Tempea, F.Krausz: Generation of intense 8-fs pulses at 400 nm, Optics Letters 24,p.34-36 (1999)

[6.2371] {Sect. 6.14.2.1} C.G. Durfee, S. Backus, H.C. Kapteyn, M.M. Murnane:Intense 8-fs pulse generation in the deep ultraviolet, Optics Letters 24,p.697-699 (1999)

[6.2372] {Sect. 6.14.2.1} L. Lefort, K. Puech, S.D. Butterworth, Y.P. Svirko, D.C.Hanna: Generation of femtosecond pulses from order-of-magnitude pulsecompression in a synchronously pumped optical parametric oscillator basedon periodically poled lithium niobate, Optics Letters 24, p.28-30 (1999)

[6.2373] {Sect. 6.14.2.1} X. Liu, L.J. Qian, F. Wise: High-energy pulse compressionby use of negative phase shifts produced by the cascade chi ((2)):chi ((2))nonlinearity, Optics Letters 24, p.1777-1779 (1999)

[6.2374] {Sect. 6.14.2.1} V.N. Malkin, G. Shvets, N.J. Fisch: Fast compression oflaser beams to highly overcritical powers, Phys Rev Lett 82, p.4448-4451(1999)

[6.2375] {Sect. 6.14.2.1} N.A. Papadogiannis, B. Witzel, C. Kalpouzos, D. Char-alambidis: Observation of attosecond light localization in higher order har-monic generation, Phys Rev Lett 83, p.4289-4292 (1999)

[6.2376] {Sect. 6.14.2.1} T. Sekikawa, T. Ohno, T. Yamazaki, Y. Nabekawa, S.Watanabe: Pulse compression of a high-order harmonic by compensatingthe atomic dipole phase, Phys Rev Lett 83, p.2564-2567 (1999)

[6.2377] {Sect. 6.14.2.1} A.V. Sokolov, D.D. Yavuz, S.E. Harris: Subfemtosecondpulse generation by rotational molecular modulation, Optics Letters 24,p.557-559 (1999)

[6.2378] {Sect. 6.14.2.1} A.V. Sokolov: Subfemtosecond compression of periodiclaser pulses, Optics Letters 24, p.1248-1250 (1999)

[6.2379] {Sect. 6.14.2.1} E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Mur-nane, G. Mourou, H. Kapteyn, G. Vdovin: Pulse compression by use ofdeformable mirrors, Optics Letters 24, p.493-495 (1999)

[6.2380] {Sect. 6.14.2.1} B.J. Eggleton, G. Lenz, R.E. Slusher, N.M. Litchinitser:Compression of optical pulses spectrally broadened by self-phase modula-

928 6. Lasers

tion with a fiber Bragg grating in transmission, Appl Opt 37, p.7055-7061(1998)

[6.2381] {Sect. 6.14.2.1} M.A. Arbore, A. Galvanauskas, D. Harter, M.H. Chou,M.M. Fejer: Engineerable compression of ultrashort pulses by use ofsecond-harmonic generation in chirped-period-poled lithium niobate, Op-tics Letters 22, p.1341-1343 (1997)

[6.2382] {Sect. 6.14.2.1} A. Baltuska, Z.Y. Wei, M.S. Pshenichnikov, D.A. Wiersma:Optical pulse compression to 5 fs at a 1-MHz repetition rate, Optics Letters22, p.102-104 (1997)

[6.2383] {Sect. 6.14.2.1} N.G.R. Broderick, D. Taverner, D.J. Richardson, M. Ibsen,R.I. Laming: Experimental observation of nonlinear pulse compression innonuniform Bragg gratings, Optics Letters 22, p.1837-1839 (1997)

[6.2384] {Sect. 6.14.2.1} A. Dreischuh, I. Buchvarov, E. Eugenieva, A. Iliev, S.Dinev: Experimental demonstration of pulse shaping and shortening byspatial filtering of an induced-phase-modulated probe wave, IEEE J QE-33, p.329-335 (1997)

[6.2385] {Sect. 6.14.2.1} A. Dubietis, G. Valiulis, G. Tamosauskas, R. Danielius,A. Piskarskas: Nonlinear second-harmonic pulse compression with tiltedpulses, Optics Letters 22, p.1071-1073 (1997)

[6.2386] {Sect. 6.14.2.1} J. Itatani, Y. Nabekawa, K. Kondo, S. Watanabe: Gen-eration of 13-TW, 26-fs pulses in a Ti:Sapphire laser, Opt Commun 134,p.134-138 (1997)

[6.2387] {Sect. 6.14.2.1} M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipocs, K. Ferencz,C. Spielmann, S. Sartania, F. Krausz: Compression of high-energy laserpulses below 5 fs, Optics Letters 22, p.522-524 (1997)

[6.2388] {Sect. 6.14.2.1} S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, C. Spiel-mann, F. Krausz, K. Ferencz: Generation of O.1-TW 5-fs optical pulses ata 1-kHz repetition rate, Optics Letters 22, p.1562-1564 (1997)

[6.2389] {Sect. 6.14.2.1} A. Baltuska, Z. Wei, M.S. Pshenichnikov, D.A. Wiersma,R Szipocs: All-solid-state cavity-dumped sub-5-fs laser, Appl. Phys. B 65,p.175-188 (1997)

[6.2390] {Sect. 6.14.2.1} J.A. Britten, M.D. Perry, B.W. Shore, R.D. Boyd: Univer-sal grating design for pulse stretching and compression in the 800-1200-nmrange, Optics Letters 21, p.540-542 (1996)

[6.2391] {Sect. 6.14.2.1} J.P. Chambaret, C. LeBlanc, G. Cheriaux, P. Curley, G.Darpentigny, P. Rousseau, G. Hamoniaux, A. Antonetti, F. Salin: Gen-eration of 25-TW, 32-fs pulses at 10 Hz, Optics Letters 21, p.1921-1923(1996)

[6.2392] {Sect. 6.14.2.1} M. Nisoli, S. DeSilvestri, O. Svelto: Generation of highenergy 10 fs pulses by a new pulse compression technique, Appl Phys Lett68, p.2793-2795 (1996)

[6.2393] {Sect. 6.14.2.1} R.L. Fork, C.H. Brito Cruz, P.C. Becker, C.V. Shank:Compression of optical pulses to six femtoseconds by using cubic phasecompensation, Opt. Lett. 12, p.483-485 (1987)

[6.2394] {Sect. 6.14.2.1} J.G. Fujimoto, A.M.Weiner, E.P. Ippen: Generation andmeasurement of optical pulses as short as 16 fs, Appl. Phys. Lett. 44,p.832-834 (1984)

[6.2395] {Sect. 6.14.2.1} B. Nicolaus, D. Grischkowsky: 90-fs tunable optical pulsesoptained by two-stage pulse compression, Appl. Phys. Lett. 43, p.228-230(1983)

[6.2396] {Sect. 6.14.2.1} C.V. Shank, R.L. Fork, R.Yen, R.H. Stolen, W.J. Tom-linson: Compression of femtosecond optical pulses, Appl. Phys. Lett. 40,p.761-763 (1982)

6.14.2 Pulse Compression and Optical Gates 929

[6.2397] {Sect. 6.14.2.1} M.A. Duguay, J.W. Hansen: Compression of pulses froma mode-locked He-Ne laser, Appl. Phys. Lett. 14, p.14-16 (1969)

[6.2398] {Sect. 6.14.2.1} E.B. Treacy: Optical pulse compression with diffractiongratings, IEEE J. QE-5, p.454-458 (1969)

[6.2399] {Sect. 6.14.2.1} Y. Nabekawa, T. Shimizu, T. Okino, K. Furusawa, H.Hasegawa, K. Yamanouchi, K. Midorikawa: Interferometric autocorrelationof an attosecond pulse train in the single-cycle regime – art. no. 153904,Phys Rev Lett 9715, p.3904 (2006)

[6.2400] {Sect. 6.14.2.1} Y. Nabekawa, T. Shimizu, T. Okino, K. Furusawa, H.Hasegawa, K. Yamanouchi, K. Midorikawa: Conclusive evidence of an at-tosecond pulse train observed with the mode-resolved autocorrelation tech-nique – art. no. 083901, Phys Rev Lett 9608, p.3901 (2006)

[6.2401] {Sect. 6.14.2.1} J. Mauritsson, P. Johnsson, E. Gustafsson, A. LHuillier,K.J. Schafer, M.B. Gaarde: Attosecond pulse trains generated using twocolor laser fields – art. no. 013001, Phys Rev Lett 9701, p.3001 (2006)

[6.2402] {Sect. 6.14.2.1} T. Pfeifer, L. Gallmann, M.J. Abel, D.M. Neumark, S.R.Leone: Single attosecond pulse generation in the multicycle-driver regimeby adding a weak second-harmonic, Optics Letters 31, p.975-977 (2006)

[6.2403] {Sect. 6.14.2.1} I.P. Christov: Reshaping of attosecond x-ray pulses in thincrystals, Optics Letters 31, p.280-282 (2006)

[6.2404] {Sect. 6.14.2.1} J. Xiao, Z.R. Sun, X.Y. Zhang, Y.F. Wang, W.P. Zhang,Z.G. Wang, R.X. Li, Z.Z. Xu: Optimization of single attosecond x-raypulses by genetic algorithm control of the chirp and initial phase of 5 fslaser pulses, J Opt Soc Am B Opt Physics 23, p.771-775 (2006)

[6.2405] {Sect. 6.14.2.1} K. Varju, Y. Mairesse, P. Agostini, P. Breger, B. Carre,L.J. Frasinski, E. Gustafsson, P. Johnsson, J. Mauritsson, H. Merdji, P.Monchicourt, A. LHuillier, P. Salieres: Reconstruction of attosecond pulsetrains using an adiabatic phase expansion – art. no. 243901, Phys Rev Lett9524, p.3901 (2005)

[6.2406] {Sect. 6.14.2.1} M. Lein: Attosecond probing of vibrational dynamics withhigh-harmonic generation – art. no. 053004, Phys Rev Lett 9405, p.3004(2005)

[6.2407] {Sect. 6.14.2.1} D. Zeidler, A. Staudte, A.B. Bardon, D.M. Villeneuve, R.Dorner, P.B. Corkum: Controlling attosecond double ionization dynamicsvia molecular alignment – art. no. 203003, Phys Rev Lett 9520, p.3003(2005)

[6.2408] {Sect. 6.14.2.1} H. Niikura, D.M. Villeneuve, P.B. Corkum: Mapping at-tosecond electron wave packet motion – art. no. 083003, Phys Rev Lett9408, p.3003 (2005)

[6.2409] {Sect. 6.14.2.1} M. Wickenhauser, J. Burgdorfer, F. Krausz, M. Drescher:Time resolved Fano resonances – art. no. 023002, Phys Rev Lett 9402,p.3002 (2005)

[6.2410] {Sect. 6.14.2.1} R. LopezMartens, K. Varju, P. Johnsson, J. Mauritsson, Y.Mairesse, P. Salieres, M.B. Gaarde, K.J. Schafer, A. Persson, S. Svanberg,C.G. Wahlstrom, A. LHuillier: Amplitude and phase control of attosecondlight pulses, Phys Rev Lett 9403, p.3001 (2005)

[6.2411] {Sect. 6.14.2.1} Y.P. Huo, Z.N. Zeng, Y.X. Leng, R.X. Li, Z.Z. Xu, C.L.Guo, Z.R. Sun, Y. Rhee: Attosecond pulse extreme-ultraviolet photoion-ization in a two-color laser field, Optics Letters 30, p.564-566 (2005)

[6.2412] {Sect. 6.14.2.1} N.M. Naumova, J.A. Nees, I.V. Sokolov, B. Hou,G.A. Mourou: Relativistic generation of isolated attosecond pulses in alambda(3) focal volume – art. no. 063902, Phys Rev Lett 9206, p.3902(2004)

930 6. Lasers

[6.2413] {Sect. 6.14.2.1} K.J. Schafer, M.B. Gaarde, A. Heinrich, J. Biegert, U.Keller: Strong field quantum path control using attosecond pulse trains –art. no. 023003, Phys Rev Lett 9202, p.3003 (2004)

[6.2414] {Sect. 6.14.2.1} N. Milosevic, P.B. Corkum, T. Brabec: How to use lasersfor imaging attosecond dynamics of nuclear processes – art. no. 013002,Phys Rev Lett 9201, p.3002 (2004)

[6.2415] {Sect. 6.14.2.1} N.M. Naumova, J.A. Nees, B.X. Hou, G.A. Mourou, I.V.Sokolov: Isolated attosecond pulses generated by relativistic effects in awavelength-cubed focal volume, Optics Letters 29, p.778-780 (2004)

[6.2416] {Sect. 6.14.2.1} T. Sekikawa, A. Kosuge, T. Kanai, S. Watanabe: Nonlinearoptics in the extreme ultraviolet, Nature 432, p.605-608 (2004)

[6.2417] {Sect. 6.14.2.1} F. Quere, J. Itatani, G.L. Yudin, P.B. Corkum: Attosecondspectral shearing interferometry – art. no. 073902, Phys Rev Lett 9007,p.3902 (2003)

[6.2418] {Sect. 6.14.2.1} X.M. Tong, Z.X. Zhao, C.D. Lin: Probing molecular dy-namics at attosecond resolution with femtosecond laser pulses – art. no.233203, Phys Rev Lett 9123, p.3203 (2003)

[6.2419] {Sect. 6.14.2.1} H. Niikura, F. Legare, R. Hasbani, M.Y. Ivanov, D.M.Villeneuve, P.B. Corkum: Probing molecular dynamics with attosecondresolution using correlated wave packet pairs, Nature 421, p.826-829 (2003)

[6.2420] {Sect. 6.14.2.1} R. Kienberger, M. Hentschel, M. Uiberacker, C. Spiel-mann, M. Kitzler, A. Scrinzi, M. Wieland, T. Westerwalbesloh, U.Kleineberg, U. Heinzmann, M. Drescher, F. Krausz: Steering attosecondelectron wave packets with light, Science 297, p.1144-1148 (2002)

[6.2421] {Sect. 6.14.2.1} M. Lewenstein: Physics: Resolving physical processes onthe attosecond time scale, Science 297, p.1131-1132 (2002)

[6.2422] {Sect. 6.14.2.1} N.A. Papadogiannis, G. Nersisyan, E. Goulielmakis, T.P.Rakitzis, E. Hertz, D. Charalambidis, G.D. Tsakiris, K. Witte: Tempo-ral characterization of short-pulse third-harmonic generation in an atomicgas by a transmission-grating Michelson interferometer, Optics Letters 27,p.1561-1563 (2002)

[6.2423] {Sect. 6.14.2.1} A. Nazarkin, G. Korn, T. Elsaesser: All-linear control ofattosecond pulse generation, Opt Commun 203, p.403-412 (2002)

[6.2424] {Sect. 6.14.2.1} E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov: Scheme forattophysics experiments at a X-ray SASE FEL, Opt Commun 212, p.377-390 (2002)

[6.2425] {Sect. 6.14.2.1} H. Niikura, F. Legare, R. Hasbani, A.D. Bandrauk, M.Y.Ivanov, D.M. Villeneuve, P.B. Corkum: Sub-laser-cycle electron pulses forprobing molecular dynamics, Nature 417, p.917-922 (2002)

[6.2426] {Sect. 6.14.2.1} M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C.Spielmann, G.A. Reider, P.B. Corkum, F. Krausz: X-ray pulses approach-ing the attosecond frontier, Science 291, p.1923-1927 (2001)

[6.2427] {Sect. 6.14.2.1} D.T. Reid: Laser physics – Toward attosecond pulses, Sci-ence 291, p.1911 (2001)

[6.2428] {Sect. 6.14.2.1} M. Hentschel, R. Kienberger, C. Spielmann, G.A. Rei-der, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F.Krausz: Attosecond metrology, Nature 414, p.509-513 (2001)

[6.2429] {Sect. 6.14.2.1} Y. Silberberg: Laser science – Physics at the attosecondfrontier, Nature 414, p.494-495 (2001)

[6.2430] {Sect. 6.14.2.2} A.A. Shilov, G.A. Pasmanik, O.V. Kulagin, K. Deki:High-peak-power diode-pumped Nd : YAG laser with a Brillouin phase-conjugation-pulse-compression mirror, Optics Letters 26, p.1565-1567(2001)

6.14.2 Pulse Compression and Optical Gates 931

[6.2431] {Sect. 6.14.2.2} A.A. Shilov, G.A. Pasmanik , O.V. Kulagin: High-peak-power diode-pumped Nd:YAG laser with a Brillouin phase-conjugation-pulse-compression mirror, Optics Letters 25, p.1565-1567 (2001)

[6.2432] {Sect. 6.14.2.2} S.V. Kurbasov, L.L. Losev: Raman compression of picosec-ond microjoule laser pulses in KGd (WO4) (2) crystal, Opt Commun 168,p.227-232 (1999)

[6.2433] {Sect. 6.14.2.2} V. Kmetik, H. Fiedorowicz, A.A. Andreev, K.J. Witte,H. Daido, H. Fujita, M. Nakatsuka, T. Yamanaka: Reliable stimulatedBrillouin scattering compression of Nd:YAG laser pulses with liquid flu-orocarbon for long-time operation at 10 Hz, Appl Opt 37, p.7085-7090(1998)

[6.2434] {Sect. 6.14.2.2} S. Schiemann, W. Hogervorst, W. Ubachs: Fourier-trans-form-limited laser pulses tunable in wavelength and in duration (400-2000ps), IEEE J QE-34, p.407-412 (1998)

[6.2435] {Sect. 6.14.2.2} N.G.R. Broderick, D. Taverner, D.J. Richardson, M. Ibsen,R.I. Laming: Optical pulse compression in fiber Bragg gratings, Phys RevLett 79, p.4566-4569 (1997)

[6.2436] {Sect. 6.14.2.2} P. Klovekorn, J. Munch: Variable stimulated Brillouinscattering pulse compressor for nonlinear optical measurements, Appl Opt36, p.5913-5917 (1997)

[6.2437] {Sect. 6.14.2.2} S. Schiemann, W. Ubachs, W. Hogervorst: Efficient tempo-ral compression of coherent nanosecond pulses in compact SBS generator-amplifier setup, IEEE J QE-33, p.358-366 (1997)

[6.2438] {Sect. 6.14.2.2} P. Klovekorn, J. Munch: Variable stimulated Brillouinscattering pulse compressor for nonlinear optical measurements, Appl. Opt.36, p.5913-5917 (1997)

[6.2439] {Sect. 6.14.2.2} A. Galvanauskas, P.A. Krug, D. Harter: Nanosecond-to-picosecond pulse compression with fiber gratings in a compact fiber-basedchirped-pulse- amplification system, Optics Letters 21, p.1049-1051 (1996)

[6.2440] {Sect. 6.14.2.2} Yu. Nizienko, A. Mamin, P. Nielsen, B. Brown: 300 psruby laser using stimulated Brillouin scattering pulse compression, Rev.Sci. Instrum. 65, p.2460-2463 (1994)

[6.2441] {Sect. 6.14.2.2} S. Kinoshita, W. Tsurumaki, Y. Shimada, T. Yagi: Rela-tionship between coherent acoustic wave generation and a coherence spikein an impulsive stimulated Brillouin scattering experiment, J. Opt. Soc.Am. B. 10, p.1017-1024 (1993)

[6.2442] {Sect. 6.14.2.2} V.V. Krushas, A.S. Piskarskas, V.I. Smil’gyavichyus, G.P.Shlekis: High-power subnanosecond optical parameter oscillator pumpedby a laser with a stimulated Brillouin scattering compressor, Sov. J. Quan-tum Electron. 17, p.1054-1055 (1987)

[6.2443] {Sect. 6.14.2.2} O.L. Bourne, A.J. Alcock: Simplified Technique for Sub-nanosecond Pulse Generation and Injection Mode-Locking of a XeCl Laser,Appl. Phys. B 36, p.181-185 (1985)

[6.2444] {Sect. 6.14.2.2} M.J. Damzen, M.H.R. Hutchinson: Pulse compression ina phase-conjugating Brillouin cavity, Opt. Lett. 9, p.282-284 (1984)

[6.2445] {Sect. 6.14.2.2} M.J. Damzen, M.H.R. Hutchinson: High-efficiency laser-pulse compression by stimulated Brillouin scattering, Opt. Lett. 8, p.313-315 (1983)

[6.2446] {Sect. 6.14.2.2} M.J. Damzen, M.H.R. Hutchinson: Laser Pulse Compres-sion by Stimulated Brillouin Scattering in Tapered Waveguides, IEEE J.QE-19, p.7-14 (1983)

[6.2447] {Sect. 6.14.2.2} V.A. Gorbunov, S.B. Papernyl, V.F. Petrov, V.R. Startsev:Time compression on pulses in the course of stimulated Brillouin scatteringin gases, Sov. J. Quantum Electron. 13, p.900-905 (1983)

932 6. Lasers

[6.2448] {Sect. 6.14.2.2} I.V. Tomov, R. Fedosefevs, D.C.D. McKen, C. Domier,A.A. Offenberger: Phase conjugation and pulse compression of KrF-laserradiation by stimulated raman scattering, Opt. Lett. 8, p.9-11 (1983)

[6.2449] {Sect. 6.14.2.2} D.T. Hon: Pulse compression by stimulated Brillouin scat-tering, Opt. Lett. 5, p.516-518 (1980)

[6.2450] {Sect. 6.14.2.3} P. Antoine, A. LHuillier, M. Lewenstein: Attosecond pulsetrains using high-order harmonics, Phys Rev Lett 77, p.1234-1237 (1996)

[6.2451] {Sect. 6.14.2.3} P. Zhou, H. Schulz, P. Kohns: Atomic spectroscopy withultrashort laser pulses using frequency-resolved optical gating, Opt Com-mun 123, p.501-504 (1996)

[6.2452] {Sect. 6.14.2.3} M.A. Duguay, J.W. Hansen: An ultrafast light gate, Appl.Phys. Lett. 15, p.192-194 (1969)

[6.2453] {Sect. 6.14.2.3} A.N. Starodumov, L.A. Zenteno, N. Arzate, P. Gavrilovic:Nonlinear-optical modulator for high-power fiber lasers, Optics Letters 22,p.286-288 (1997)

[6.2454] {Sect. 6.14.2.4} J. Knittel, D.P. Scherrer, F.K. Kneubuhl: A plasma shutterfor far-infrared laser radiation, IEEE J QE-32, p.2058-2063 (1996)

[6.2455] {Sect. 6.14.2.4} T. Nagamura, T. Hamada: Novel all optical light mod-ulation based on complex refractive index changes of organic die-dopedpolymer film upon photoexcitation, Appl Phys Lett 69, p.1191-1193 (1996)

[6.2456] {Sect. 6.14.2.4} T. Tsang, M.A. Krumbugel, K.W. Delong, D.N. Fit-tinghoff, R. Trebino: Frequency-resolved optical-gating measurements ofultrashort pulses using surface third-harmonic generation, Optics Letters21, p.1381-1383 (1996)

[6.2457] {Sect. 6.14.2.4} S.P. Nikitin, Y.L. Li, T.M. Antonsen, H.M. Milchberg:Ionization-induced pulse shortening and retardation of high intensity fem-tosecond laser pulses, Opt Commun 157, p.139-144 (1998)

[6.2458] {Sect. 6.14.2.4} K. Sasaki, T. Nagamura: Ultrafast air-optical switch usingcomplex refractive index changes of thin films containing photochromicdye, Appl Phys Lett 71, p.434-436 (1997)

[6.2459] {Sect. 6.14.2.4} L. Gallmann, G. Steinmeyer, D.H. Sutter, N. Matuschek,U. Keller: Collinear type II second-harmonic-generation frequency-resolvedoptical gating for the characterization of sub-10-fs optical pulses, OpticsLetters 25, p.269-271 (2000)

[6.2460] {Sect. 6.14.2.5} N. Kamiya, H. Ohtani, T. Sekikawa, T. Kobayashi: Sub-picosecond fluorescence spectroscopy of the M intermediate in the photo-cycle of bacteriorhodopsin by using up-conversion fluorometry, Chem PhysLett 305, p.15-20 (1999)

[6.2461] {Sect. 6.14.2.5} A. Mokhtari, A. Chebira, J. Chesnoy: Subpicosecond flu-orescence dynamics of dye molecules, J. Opt. Soc. Am. B 7, p.1551-1557(1990)

[6.2462] {Sect. 6.14.2.5} G.S. Beddard, T. Doust, G. Porter: Picosecond fluores-cence depolarization measured by frequency conversion, Chem. Phys. 61,p.17-23 (1981)

[6.2463] {Sect. 6.15.0} A.V. Smith, D.J. Armstrong, W.J. Alford: Increased ac-ceptance bandwidths in optical frequency conversion by use of multiplewalk-off-compensating nonlinear crystals, J. Opt. Soc. Am. B 15, p.122-141 (1998)

[6.2464] {Sect. 6.15.0} D.H. Jundt: Temperature-dependent Sellmeier equation forthe index of refraction, ne, in congruent lithium niobate, Opt. Lett. 22,p.1553-1555 (1997)

[6.2465] {Sect. 6.15.0} M. Taya, M.C. Bashaw, M.M. Fejer: Photorefractive effectsin periodically poled ferroelectrics, Opt. Lett. 21, p.857-859 (1996)

6.15 Frequency Transformation 933

[6.2466] {Sect. 6.15.0} K. Asaumi: Approximate effective nonlinear coefficient ofsecond-harmonic generation in KTiOPO4, Appl. Opt. 32, p.5983-5985(1993)

[6.2467] {Sect. 6.15.0} L.K. Cheng, L.-T. Cheng, J.D. Bierlein, F.C. Zumsteg: Prop-erties of doped and undoped crystals of single domain KTiOAsO4, Appl.Phys. Lett. 62, p.346-348 (1993)

[6.2468] {Sect. 6.15.0} J. Yao, W. Sheng, W. Shi: Accurate calculation of the op-timum phase-matching parameters in three-wave interactions with biaxialnonlinear-optical crystals, J. Opt. Soc. Am. B 9, p.891-902 (1992)

[6.2469] {Sect. 6.15.0} D.N. Nikogosyan: Beta Barium Borate BBO – A Review ofits Properties and Applications, Appl. Phys. A 52, p.359-368 (1991)

[6.2470] {Sect. 6.15.0} R.C. Eckardt, H. Masuda, Y.X. Fan, R.L. Byer: Abso-lute and Relative Nonlinear Optical Coefficients of KDP, KD*P, BaB2O4,LiIO3, MgO:LiNbO3, and KTP Measured by Phase-Matched Second-Harmonic Generation, IEEE J. QE-26, p.922-933 (1990)

[6.2471] {Sect. 6.15.0} S. Lin, Z. Sun, B. Wu, Ch. Chen: The nonlinear opticalcharacteristics of a LiB3O5 crystal, J. Appl. Phys. 67, p.634-638 (1990)

[6.2472] {Sect. 6.15.0} J.D. Bierlein, H. Vanherzeele, A.A. Ballman: Linear andnonlinear properties of flux-grown KTiOAsO4, Appl. Phys. Lett. 54, p.783-785 (1989)

[6.2473] {Sect. 6.15.0} J.D. Bierlein, H. Vanherzeele: Potassium titanyl phosphate:properties and new applications, J. Opt. Soc. Am. B 6, p.622-633 (1989)

[6.2474] {Sect. 6.15.0} W.L. Bosenberg, L.K. Cheng, C.L. Tang: Ultraviolet opti-cal parametric oscillation in beta-BaB2O4, Appl. Phys. Lett. 54, p.13-15(1989)

[6.2475] {Sect. 6.15.0} D. Eimerl, L. Davis, S. Velsko, E.K. Graham, A. Zalkin:Optical, mechanical, and thermal properties of barium borate, J. Appl.Phys. 62, p.1968-1983 (1987)

[6.2476] {Sect. 6.15.0} D. Eimerl: Quadrature Frequency Conversion, IEEE J. QE-23, p.1361-1371 (1987)

[6.2477] {Sect. 6.15.0} T.Y. Fan, C.E. Huang, B.Q. Hu, R.C. Eckardt, Y.X. Fan,R.L. Byer, R.S. Feigelson: Second harmonic generation and accurate in-dex of refraction measurements in flux-grown KTiOPO4, Appl. Opt. 26,p.2390-2394 (1987)

[6.2478] {Sect. 6.15.0} J.Q. Yao, T.S. Fahlen: Calculations of optimum phase matchparameters for the biaxial crystal KTiOPO4, J. Appl. Phys. 55, p.65-68(1984)

[6.2479] {Sect. 6.15.0} R. Hilbig, R. Wallenstein: Narrowband tunable VUV radi-ation generated by nonresonant sum- and difference-frequency mixing inxenon and krypton, Appl. Opt. 21, p.913-917 (1982)

[6.2480] {Sect. 6.15.0} R.S. Craxton, S.D. Jacobs, J.E. Rizzo, R. Boni: Basic Prop-erties of KDP Related to the Frequency Conversion of 1 µm Laser Radia-tion, IEEE J. QE-17, p.1782-1786 (1981)

[6.2481] {Sect. 6.15.0} D.T. Hon: Electrooptical Compensation for Self-Heating inCD*A During Second-Harmonic Generation, IEEE J. QE-12, p.148-151(1976)

[6.2482] {Sect. 6.15.0} A.M. Glass, D. von der Linde, T.J. Negran: High-voltagebulk photovoltaic effect and the photorefractive process in LiNbO3, Appl.Phys. Lett. 25, p.233-235 (1974)

[6.2483] {Sect. 6.15.0} K. Kato: High Efficient UV Generation at 3572 A in RDA,IEEE J. QE-10, p.622-624 (1974)

[6.2484] {Sect. 6.15.1} F.Q. Jia, Q. Zheng, Q.H. Xue, Y.K. Bu, L.S. Qian: Yellowlight generation by frequency doubling of a diode-pumped Nd:YAG laser,Opt Commun 259, p.212-215 (2006)

934 6. Lasers

[6.2485] {Sect. 6.15.1} M. Jacquemet, F. Druon, F. Balembois, P. Georges: Blue-green single-frequency laser based on intracavity frequency doubling of adiode-pumped Ytterbium-doped laser, Opt Express 13, p.2345-2350 (2005)

[6.2486] {Sect. 6.15.1} M.V. Okhapkin, M.N. Skvortsov, N.L. Kvashnin, S.N.Bagayev: Single-frequency intracavity doubled Yb:YAG ring laser, OptCommun 256, p.347-351 (2005)

[6.2487] {Sect. 6.15.1} M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Fogli-etti, S. Takekawa, M. Nakamura, K. Kitamura: Optical-damage-free guidedsecond-harmonic generation in 1% MgO-doped stoichiometric lithium tan-talate, Optics Letters 31, p.83-85 (2006)

[6.2488] {Sect. 6.15.1} H.B. Peng, W. Hou, Y.H. Chen, D.F. Cui, Z.Y. Xu, C.T.Chen, F.D. Fan, Y. Zhu: Generation of 7.6-W blue laser by frequency-tripling of a Nd:YAG laser in LBO crystals, Opt Express 14, p.6543-6549(2006)

[6.2489] {Sect. 6.15.1} H.B. Peng, W. Hou, Y.H. Chen, D.F. Cui, Z.Y. Xu, C.Chen, F.D. Fan, Y. Zhu: 28W red light output at 659.5nm by intracavityfrequency doubling of a Nd:YAG laser using LBO, Opt Express 14, p.3961-3967 (2006)

[6.2490] {Sect. 6.15.1} X.J. Guo, W. Hou, H.B. Peng, H.L. Zhang, G.L. Wang, Y.Bi, A.C. Geng, Y.H. Chen, D.F. Cui, Z.Y. Xu: 4.44 W of CW 515 nmgreen light generated by intracavity frequency doubling Yb:YAG thin disklaser with LBO, Opt Commun 267, p.451-454 (2006)

[6.2491] {Sect. 6.15.1} A. Mitra, H. Yoshida, H. Fujita, M. Nakatsuka: Study ofsecond harmonic generation by non-linear crystals with phase conjugation,Opt Commun 261, p.342-348 (2006)

[6.2492] {Sect. 6.15.1} K.J. Yang, S.Z. Zhao, G.Q. Li, J. Zou: Diode-pumped, pas-sively Q-switched Nd: GdVO4 green laser with periodically poled KTPand Cr4+ :YAG saturable absorber, J Opt Soc Am B Opt Physics 23,p.671-675 (2006)

[6.2493] {Sect. 6.15.1} M. Ghotbi, M. EbrahimZadeh: 990 mW average power, 52%efficient, high-repetition-rate picosecond- pulse generation in the blue withBiB3O6, Optics Letters 30, p.3395-3397 (2005)

[6.2494] {Sect. 6.15.1} A.A. Lagatsky, E.U. Rafailov, A.R. Sarmani, C.T.A. Brown,W. Sibbett, L. Ming, P.G.R. Smith: Efficient femtosecond green-lightsource with a diode-pumped mode- locked Yb3+ : KY(WO4)2 laser, OpticsLetters 30, p.1144-1146 (2005)

[6.2495] {Sect. 6.15.1} A.P. Liu, M.A. Norsen, R.D. Mead: 60-W green output byfrequency doubling of a polarized Yb-doped fiber laser, Optics Letters 30,p.67-69 (2005)

[6.2496] {Sect. 6.15.1} M. Rusu, S. Kivisto, C.B.E. Gawith, O.G. Okhotnikov:Red-green-blue (RGB) light generator using tapered fiber pumped witha frequency-doubled Yb-fiber laser, Opt Express 13, p.8547-8554 (2005)

[6.2497] {Sect. 6.15.1} A. Bouchier, G. LucasLeclin, P. Georges: Frequency doublingof an efficient continuous wave single-mode Yb- doped fiber laser at 978 nmin a periodically-poled MgO:LiNbO3 waveguide, Opt Express 13, p.6974-6979 (2005)

[6.2498] {Sect. 6.15.1} C.L. Du, S.C. Ruan, Y.Q. Yu, F. Zeng: 6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm, OptExpress 13, p.2013-2018 (2005)

[6.2499] {Sect. 6.15.1} R. LeTargat, J.J. Zondy, P. Lemonde: 75%-efficiency bluegeneration from an intracavity PPKTP frequency doubler, Opt Commun247, p.471-481 (2005)

[6.2500] {Sect. 6.15.1} D.G. Xu, J.Q. Yao, B.G. Zhang, R. Zhou, E.B. Li, S.Y. Zhao,X. Ding, W.Q. Wen, Y.X. Niu, J.G. Hu, P. Wang: 110 W high stability

6.15.1 Harmonic Generation (SHG, THG, FHG, XHG) 935

green laser using type II phase matching KTiOPO4 (KTP) crystal withboundary temperature control, Opt Commun 245, p.341-347 (2005)

[6.2501] {Sect. 6.15.1} R. Guo, Y.C. Wu, P.Z. Fu, F.L. Jing: Optical assessmenton a new self-frequency doubling crystal: neodymium-doped lanthanumcalcium borate, J Opt Soc Am B Opt Physics 22, p.831-834 (2005)

[6.2502] {Sect. 6.15.1} A.Y. Yao, W. Hou, Y. Bi, A.C. Geng, X.C. Lin, Y.P. Kong,D.F. Cui, L.A. Wu, Z.Y. Xu: High-power cw 671 nm output by intracavityfrequency doubling of a double-end-pumped Nd:YVO4 laser, Appl Opt 44,p.7156-7160 (2005)

[6.2503] {Sect. 6.15.1} V. Bagnoud, M.J. Guardalben, J. Puth, J.D. Zuegel, T.Mooney, P. Dumas: High-energy, high-average-power laser with Nd:YLFrods corrected by magnetorheological finishing, Appl Opt 44, p.282-288(2005)

[6.2504] {Sect. 6.15.1} N. Pavel, I. Shoji, T. Taira, K. Mizuuchi, A. Morikawa,T. Sugita, K. Yamamoto: Room-temperature, continuous-wave 1-W greenpower by single-pass frequency doubling in a bulk periodically poledMgO:LiNbO3 crystal, Optics Letters 29, p.830-832 (2004)

[6.2505] {Sect. 6.15.1} P. Xu, K. Li, G. Zhao, S.N. Zhu, Y. Du, S.H. Ji, Y.Y. Zhu,N.B. Ming, L. Luo, K.F. Li, K.W. Cheah: Quasi-phase-matched generationof tunable blue light in a quasi- periodic structure, Optics Letters 29, p.95-97 (2004)

[6.2506] {Sect. 6.15.1} Z.P. Sun, R.N. Li, Y. Bi, X.D. Yang, Y. Bo, W. Hou, X.C.Lin, H.B. Zhang, D.F. Cui, Z.Y. Xu, Z.P. Sun, Y. Bi, X.D. Yang, X.C.Lin: Generation of 4.3-W coherent blue light by frequency-tripling of aside-pumped Nd: YAG laser in LBO crystals, Opt Express 12, p.6428-6433(2004)

[6.2507] {Sect. 6.15.1} A.Y. Yao, W. Hou, X.C. Lin, Y. Bi, R.N. Li, D.F. Cui, Z.Y.Xu: High power red laser at 671 nm by intracavity-doubled Nd:YVO4 laserusing LiB3O5, Opt Commun 231, p.413-416 (2004)

[6.2508] {Sect. 6.15.1} S. Greenstein, M. Rosenbluh: Dynamics of cw intra-cavitysecond harmonic generation by PPKTP, Opt Commun 238, p.319-327(2004)

[6.2509] {Sect. 6.15.1} Z.P. Sun, R.N. Li, B. Yong, X.D. Yang, B. Yong, Z. Ying,G.L. Wang, W.L. Zhao, H.B. Zhang, H. Wei, D.F. Cui, Z.Y. Xu: Generationof 11.5 W coherent red-light by intra-cavity frequency- doubling of a side-pumped Nd:YAG laser in a 4-cm LBO, Opt Commun 241, p.167-172 (2004)

[6.2510] {Sect. 6.15.1} I.A. Begishev, M. Kalashnikov, V. Karpov, P. Nickles, H.Schonnagel, I.A. Kulagin, T. Usmanov: Limitation of second-harmonic gen-eration of femtosecond Ti:sapphire laser pulses, J Opt Soc Am B OptPhysics 21, p.318-322 (2004)

[6.2511] {Sect. 6.15.1} B. Agate, E.U. Rafailov, W. Sibbett, S.M. Saltiel, P. Bat-tle, T. Fry, E. Noonan: Highly efficient blue-light generation from a com-pact, diode-pumped femtosecond laser by use of a periodically poled KTPwaveguide crystal, Optics Letters 28, p.1963-1965 (2003)

[6.2512] {Sect. 6.15.1} C. Czeranowsky, E. Heumann, G. Huber: All-solid-statecontinuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W out-put power at 473 nm, Optics Letters 28, p.432-434 (2003)

[6.2513] {Sect. 6.15.1} Y. Asakawa, H. Kumagai, K. Midorikawa, M. Obara: 50%frequency doubling efficiency of 1.2-W cw Ti:sapphire laser at 746 nm, OptCommun 217, p.311-315 (2003)

[6.2514] {Sect. 6.15.1} E. Gerster, I. Ecker, S. Lorch, C. Hahn, S. Menzel, P.Unger: Orange-emitting frequency-doubled GaAsSb/GaAs semiconductordisk laser, J Appl Phys 94, p.7397-7401 (2003)

936 6. Lasers

[6.2515] {Sect. 6.15.1} S. Favre, T.C. Sidler, R.P. Salathe: High-power long-pulsesecond harmonic generation and optical damage with free-running Nd:YAG laser, Ieee J Quantum Electron 39, p.733-740 (2003)

[6.2516] {Sect. 6.15.1} H. Kumagai, Y. Asakawa, T. Iwane, K. Midorikawa, M.Obara: Efficient frequency doubling of 1-W continuous-wave Ti:sapphirelaser with a robust high-finesse external cavity, Appl Opt 42, p.1036-1039(2003)

[6.2517] {Sect. 6.15.1} D. Woll, J. Schumacher, A. Robertson, M.A. Tremont, R.Wallenstein, M. Katz, D. Eger, A. Englander: 250 mW of coherent blue460-nm light genertated by single-pass frequency doubling of the outputof a mode-locked high-power diode laser in periodically poled KTP, OpticsLetters 27, p.1055-1057 (2002)

[6.2518] {Sect. 6.15.1} C.T. Chen, J.H. Lu, T. Togashi, T. Suganuma, T. Sekikawa,S. Watanabe, Z.Y. Xu, J.Y. Wang: Second-harmonic generation from aKBe2BO3F2 crystal in the deep ultraviolet, Optics Letters 27, p.637-639(2002)

[6.2519] {Sect. 6.15.1} H. Kiriyama, F. Nakano, K. Yamakawa: High-efficiency fre-quency doubling of a Nd : YAG laser in a two-pass quadrature frequency-conversion scheme using CsLiB6O10 crystals, J Opt Soc Am B Opt Physics19, p.1857-1864 (2002)

[6.2520] {Sect. 6.15.1} E. Jurdik, J. Hohlfeld, A.F. vanEtteger, A.J. Toonen, W.L.Meerts, H. vanKempen, T. Rasing: Performance optimization of an exter-nal enhancement resonator for optical second-harmonic generation, J OptSoc Am B Opt Physics 19, p.1660-1667 (2002)

[6.2521] {Sect. 6.15.1} S.M. Giffin, G.W. Baxter, I.T. McKinnie, V.V. TerMikir-tychev: Efficient 550-600-nm tunable laser based on noncritically phase-matched frequency doubling of room-temperature LiF : F-2(-) in lithiumtriborate, Appl Opt 41, p.4331-4335 (2002)

[6.2522] {Sect. 6.15.1} X.Y. Chen, M.L. Huang, Z.D. Luo, Y.D. Huang: Determi-nation of the optimum phase-matching directions for the self- frequencyconversion of Nd : GdCOB and Nd : YCOB crystals, Opt Commun 196,p.299-307 (2001)

[6.2523] {Sect. 6.15.1} J.H. Liu, Z.P. Wang, S.J. Zhang, J.Y. Wang, H.C. Chen,Z.S. Shao, M.H. Jiang: Second-harmonic generation of 1.06 mu m in Srdoped GdCa4O(BO3)(3) crystal, Opt Commun 195, p.267-271 (2001)

[6.2524] {Sect. 6.15.1} S. Konno, T. Kojima, S. Fujikawa, K. Yasui: High-brightness138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser, Optics Letters 25, p.105-107 (2000)

[6.2525] {Sect. 6.15.1} J.J. Chang, E.P. Dragon, C.A. Ebbers, I.L. Bass, C.W.Cochran: An efficient diode-pumped Nd:YAG laser with 451 W of CWIR and 182 W of pulsed green output, Advanced Solid State Lasers 19,p.300-304 (1998)

[6.2526] {Sect. 6.15.1} M.L. Huang, Y.J. Chen, X.Y. Chen, Y.D. Huang, Z.D.Luo: A CW blue laser emission by self-sum-frequency-mixing in Nd3+:GdAl3(BO3)(4) crystal, Opt Commun 208, p.163-166 (2002)

[6.2527] {Sect. 6.15.1} S. Cialdi, M. Petrarca, C. Vicario: High-power third-harmonic flat pulse laser generation, Optics Letters 31, p.2885-2887 (2006)

[6.2528] {Sect. 6.15.1} S. Konno, T. Kojima, S. Fujikawa, K. Yasui: High-brightness138-W green laser based on an intracavity-frequency- doubled diode-side-pumped Q-switched Nd : YAG laser, Optics Letters 25, p.105-107 (2000)

[6.2529] {Sect. 6.15.1} J.D. Bhawalkar, Y. Mao, H. Po, A.K. Goyal, P. Gavrilovic,Y. Conturie, S. Singh: High-power 390-nm laser source based on efficientfrequency doubling of a tapered diode laser in an external resonant cavity,Optics Letters 24, p.823-825 (1999)

6.15.1 Harmonic Generation (SHG, THG, FHG, XHG) 937

[6.2530] {Sect. 6.15.1} J.C. Diettrich, I.T. McKinnie, D.M. Warrington: Tunablehigh-repetition-rate visible solid-state lasers based on intracavity frequencydoubling of Cr : forsterite, IEEE J QE-35, p.1718-1723 (1999)

[6.2531] {Sect. 6.15.1} S.M. Giffin, I.T. McKinnie: Tunable visible solid-state lasersbased on intracavity frequency doubling of Cr : forsterite in KTP, OpticsLetters 24, p.884-886 (1999)

[6.2532] {Sect. 6.15.1} A.K. Goyal, J.D. Bhawalkar, Y. Conturie, P. Gavrilovic, Y.Mao, H. Po, J. Guerra: High beam quality of ultraviolet radiation generatedthrough resonant enhanced frequency doubling of a diode laser, J Opt SocAm B Opt Physics 16, p.2207-2216 (1999)

[6.2533] {Sect. 6.15.1} Y. Inoue, S. Konno, T. Kojima, S. Fujikawa: High-powerred beam generation by frequency-doubling of a Nd : YAG laser, IEEE JQE-35, p.1737-1740 (1999)

[6.2534] {Sect. 6.15.1} J.G. Liu, D. Kim: Optimization of intracavity doubled pas-sively Q-switched solid-state lasers, IEEE J QE-35, p.1724-1730 (1999)

[6.2535] {Sect. 6.15.1} M. Mlejnek, E.M. Wright, J.V. Moloney, N. Bloembergen:Second harmonic generation of femtosecond pulses at the boundary of anonlinear dielectric, Phys Rev Lett 83, p.2934-2937 (1999)

[6.2536] {Sect. 6.15.1} K. Otsuka, R. Kawai, Y. Asakawa: Intracavity second-harmonic and sum-frequency generation with a laser- diode-pumped multi-transition-oscillation LiNdP4O12 laser, Optics Letters 24, p.1611-1613(1999)

[6.2537] {Sect. 6.15.1} I.I. Smolyaninov, C.H. Lee, C.C. Davis: Giant enhancementof surface second harmonic generation in BaTiO3 due to photorefractivesurface wave excitation, Phys Rev Lett 83, p.2429-2432 (1999)

[6.2538] {Sect. 6.15.1} T. Sugita, K. Mizuuchi, Y. Kitaoka, K. Yamamoto: 31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode, OpticsLetters 24, p.1590-1592 (1999)

[6.2539] {Sect. 6.15.1} K. Tei, M. Kato, F. Matsuoka, Y. Niwa, Y. Maruyama, T.Matoba, T. Arisawa: High-repetition rate 1-J green laser system, Appl Opt38, p.4548-4551 (1999)

[6.2540] {Sect. 6.15.1} D. Woll, B. Beier, K.J. Boller, R. Wallenstein, M. Hagberg,S. OBrien: 1 W of blue 465-nm radiation generated by frequency dou-bling of the output of a high-power diode laser in critically phase-matchedLiB3O5, Optics Letters 24, p.691-693 (1999)

[6.2541] {Sect. 6.15.1} A. Agnesi, G.C. Reali, P.G. Gobbi: 430-mW single-transverse-mode diode-pumped Nd:YVO4 laser at 671 nm, IEEE J QE-34,p.1297-1300 (1998)

[6.2542] {Sect. 6.15.1} Y.F. Chen, T.M. Huang, C.L. Wang, L.J. Lee: Compact andefficient 3.2-W diode-pumped Nd:YVO4/KTP green laser, Appl Opt 37,p.5727-5730 (1998)

[6.2543] {Sect. 6.15.1} J.M. Eichenholz, M. Richardson, G. Mizell: Diode pumped,frequency doubled LiSAF microlaser, Opt Commun 153, p.263-266 (1998)

[6.2544] {Sect. 6.15.1} M. Hofer, M.E. Fermann, A. Galvanauskas, D. Harter, R.S.Windeler: High-power 100-fs pulse generation by frequency doubling of anerbium- ytterbium-fiber master oscillator power amplifier, Optics Letters23, p.1840-1842 (1998)

[6.2545] {Sect. 6.15.1} E.C. Honea, C.A. Ebbers, R.J. Beach, J.A. Speth, J.A.Skidmore, M.A. Emanuel, S.A. Payne: Analysis of an intracavity-doubleddiode-pumped Q-switched Nd: YAG laser producing more than 100 W ofpower at 0.532 mu m, Optics Letters 23, p.1203-1205 (1998)

938 6. Lasers

[6.2546] {Sect. 6.15.1} T. Kaing, M. Houssin: Ring cavity enhanced second har-monic generation of a diode laser using LBO crystal, Opt Commun 157,p.155-160 (1998)

[6.2547] {Sect. 6.15.1} S. Konno, S. Fujikawa, K. Yasui: Highly efficient 68-W green-beam generation by use of an intracavity frequency-doubled diode side-pumped Q-switched Nd:YAG rod laser, Appl Opt 37, p.6401-6404 (1998)

[6.2548] {Sect. 6.15.1} I.D. Lindsay, M. Ebrahimzadeh: Efficient continuous-waveand Q-switched operation of a 946-nm Nd:YAG laser pumped by aninjection-locked broad-area diode laser, Appl Opt 37, p.3961-3970 (1998)

[6.2549] {Sect. 6.15.1} P.E.A. Mobert, E. Heumann, G. Huber, B.H.T. Chai: 540mW of blue output power at 425 nm generated by intracavity frequencydoubling an upconversion-pumped Er3+:YLiF4 laser, Appl Phys Lett 73,p.139-141 (1998)

[6.2550] {Sect. 6.15.1} V. Pasiskevicius, S.H. Wang, J.A. Tellefsen, F. Laurell,H. Karlsson: Efficient Nd:YAG laser frequency doubling with periodicallypoled KTP, Appl Opt 37, p.7116-7119 (1998)

[6.2551] {Sect. 6.15.1} D.Y. Shen, A.P. Liu, J. Song, K. Ueda: Efficient operationof an intracavity-doubled Nd:YVO4/KTP laser end pumped by a high-brightness laser diode, Appl Opt 37, p.7785-7788 (1998)

[6.2552] {Sect. 6.15.1} C.L. Wang, K.H. Lin, T.M. Hwang, Y.F. Chen, S.C. Wang,C.L. Pan: Mode-locked diode-pumped self-frequency-doubling neodymiumyttrium aluminum borate laser, Appl Opt 37, p.3282-3285 (1998)

[6.2553] {Sect. 6.15.1} E.C. Honea, Ch.A. Ebbers, R.J. Beach, J.A. Speth, J.A.Skidmore, M.A. Emanuel, S.A. Payne: Analysis of an intracavity-doubleddiode-pumped Q-switched Nd:YAG laser producing more than 100 W ofpower at 0.532 µm, Opt. Lett. 23, p.1203-1205 (1998)

[6.2554] {Sect. 6.15.1} A. Agnesi, E. Piccinini, G.C. Reali, C. Solcia: All-solid-state picosecond tunable source of near-infrared radiation, Optics Letters22, p.1415-1417 (1997)

[6.2555] {Sect. 6.15.1} M.A. Arbore, M.M. Fejer, M.E. Fermann, A. Hariharan,A. Galvanauskas, D. Harter: Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate, Optics Letters 22,p.13-15 (1997)

[6.2556] {Sect. 6.15.1} J. Bartschke, R. Knappe, K.J. Boller, R. Wallenstein: Inves-tigation of efficient self-frequency-doubling Nd:YAB lasers, IEEE J QE-33,p.2295-2300 (1997)

[6.2557] {Sect. 6.15.1} B. Beier, D. Woll, M. Scheidt, K.J. Boller, R. Wallenstein:Second harmonic generation of the output of an AlGaAs diode oscillatoramplifier system in critically phase matched LiB3O5 and beta-BaB2O4,Appl Phys Lett 71, p.315-317 (1997)

[6.2558] {Sect. 6.15.1} M. Bode, I. Freitag, A. Tunnermann, H. Welling: Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source inthe blue spectral region, Optics Letters 22, p.1220-1222 (1997)

[6.2559] {Sect. 6.15.1} A. Brenier: Modelling of the NYAB self-doubling laser withfocused Gaussian beams, Opt Commun 141, p.221-228 (1997)

[6.2560] {Sect. 6.15.1} A. Englander, R. Lavi, M. Katz, M. Oron, D. Eger, E.Lebiush, G. Rosenman, A. Skliar: Highly efficient doubling of a high-repetition-rate diode-pumped laser with bulk periodically poled KTP, Op-tics Letters 22, p.1598-1599 (1997)

[6.2561] {Sect. 6.15.1} S. Falter, K.M. Du, Y. Liao, M. Quade, J. Zhang, P. Loosen,R. Poprawe: Dynamics and stability of a laser system with second-ordernonlinearity, Optics Letters 22, p.609-611 (1997)

6.15.1 Harmonic Generation (SHG, THG, FHG, XHG) 939

[6.2562] {Sect. 6.15.1} X. Liu, L.J. Qian, F.W. Wise: Efficient generation of 50-fsred pulses by frequency doubling in LiB3O5, Opt Commun 144, p.265-268(1997)

[6.2563] {Sect. 6.15.1} K.I. Martin, W.A. Clarkson, D.C. Hanna: Stable, high-power, single-frequency generation at 532 nm from a diode-bar-pumpedNd:YAG ring laser with an intracavity LBO frequency doubler, Appl Opt36, p.4149-4152 (1997)

[6.2564] {Sect. 6.15.1} K.I. Martin, W.A. Clarkson, D.C. Hanna: Self-suppressionof axial mode hopping by intracavity second-harmonic generation, OpticsLetters 22, p.375-377 (1997)

[6.2565] {Sect. 6.15.1} I.T. McKinnie, A.M.L. Oien: Tunable red-yellow laser basedon second harmonic generation of Cr:forsterite in KTP, Opt Commun 141,p.157-161 (1997)

[6.2566] {Sect. 6.15.1} G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M.Fejer, R.L. Byer: 42%-efficient single-pass cw second-harmonic generationin periodically poled lithium niobate, Optics Letters 22, p.1834-1836 (1997)

[6.2567] {Sect. 6.15.1} Y. Uchiyama, M. Tsuchiya, H.F. Liu, T. Kamiya: Efficientultraviolet-light (345-nm) generation in a bulk LiIO3 crystal by frequencydoubling of a self-seeded gain- switched AlGaInP Fabry-Perot semiconduc-tor laser, Optics Letters 22, p.78-80 (1997)

[6.2568] {Sect. 6.15.1} A. Harada, Y. Nihei, Y. Okazaki, and H. Hyuga: Intracavityfrequency doubling of a diode-pumped 946-nm Nd:YAG laser with bulkberiodically poled MgO-LiNbO3, Opt. Lett. 22, p.805-807 (1997)

[6.2569] {Sect. 6.15.1} J. P. Meyn, M. M. Fejer: Tunable ultraviolet radiation bysecond-harmonic generation in periodically poled lithium tantalate, Opt.Lett. 22, p.1214-1216 (1997)

[6.2570] {Sect. 6.15.1} B. Braun, C. Honninger, G. Zhang, U. Keller, F. Heine, T.Kellner, G. Huber: Efficient intracavity frequency doubling of a passivelymode-locked diode-pumped neodymium lanthanum scandium borate laser,Optics Letters 21, p.1567-1569 (1996)

[6.2571] {Sect. 6.15.1} A. Brenier: Numerical investigation of the CW end-pumpedNYAB and LiNbO3:MgO: Nd self-doubling lasers, Opt Commun 129, p.57-61 (1996)

[6.2572] {Sect. 6.15.1} B.J. Legarrec, G.J. Raze, P.Y. Thro, M. Gilbert: High-average-power diode-array-pumped frequency-doubled YAG laser, OpticsLetters 21, p.1990-1992 (1996)

[6.2573] {Sect. 6.15.1} H. Nagai, M. Kume, A. Yoshikawa, K. Itoh, C. Hamaguchi:Periodic pulse oscillation in an intracavity-doubled Nd: YVO4 laser, ApplOpt 35, p.5392-5394 (1996)

[6.2574] {Sect. 6.15.1} K. Schneider, S. Schiller, J. Mlynek, M. Bode, I. Freitag:1.1-W single-frequency 532-nm radiation by second-harmonic generationof a miniature Nd:YAG ring laser, Optics Letters 21, p.1999-2001 (1996)

[6.2575] {Sect. 6.15.1} K.I. Martin, W.A. Clarkson, D.C. Hanna: 3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser, Opt. Lett. 21, p.875-877 (1996)

[6.2576] {Sect. 6.15.1} S.H. Ashworth, M. Joschko, M. Woerner, E. Riedle, T. El-saesser: Generation of 16-fs pulses at 425 nm by extracavity frequency dou-bling of a mode-locked Ti:sapphire laser, Optics Letters 20, p.2120-2122(1995)

[6.2577] {Sect. 6.15.1} C.Y. Chien, G. Korn, J.S. Coe, J. Squier, G. Mourou: Highlyefficient second harmonic generation of ultraintense Nd: glass laser pulses,Optics Letters 20, p.353-355 (1995)

940 6. Lasers

[6.2578] {Sect. 6.15.1} D.W. Coutts: Optimization of line-focusing geometry forefficient nonlinear frequency conversion from copper-vapor lasers, IEEE JQE-31, p.2208-2214 (1995)

[6.2579] {Sect. 6.15.1} V. Krylov, A. Rebane, A.G. Kalintsev, H. Schwoerer, U.P.Wild: 2nd Harmonic Generation of Amplified Femtosecond Ti SapphireLaser Pulses, Optics Letters 20, p.198-200 (1995)

[6.2580] {Sect. 6.15.1} H. Hemmati, J.R. Lesh: 3.5-W Q-switched 532-nm Nd:YAGlaser pumped with fiber-coupled diode lasers, Optics Lett. 19, p.1322-1324(1994)

[6.2581] {Sect. 6.15.1} J.-P. Meyn, G. Huber: Intracavity frequency doubling ofa continouos-wave, diode-laser-pumped neodymium lanthanum scandiumborate laser, Opt. Lett. 19, p.1436-1438 (1994)

[6.2582] {Sect. 6.15.1} V. Magni, G. Cerullo, S. De Silvestri, O. Svelto, L.J. Qian,M. Danailov: Intracavity frequency doubling of a cw high-power TEM00Nd:YLF laser, Opt. Lett. 18, p.2111-2113 (1993)

[6.2583] {Sect. 6.15.1} L.R. Marshall, A. Kaz, O. Aytur: Continously tunable diode-pumped UV-blue laser source, Opt. Lett. 18, p.817-819 (1993)

[6.2584] {Sect. 6.15.1} M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer: Quasi-phase-matched second harmonic generation, IEEE J. QE-28, p.2631-2654(1992)

[6.2585] {Sect. 6.15.1} G.P.A. Malcolm, J. Ebrahimzadeh, A.I. Ferguson: EfficientFrequency Conversion of Mode-Locked Diode-Pumped Lasers and TunableAll-Solid-State Laser Sources, IEEE J. QE-28, p.1172-1178 (1992)

[6.2586] {Sect. 6.15.1} W.S. Pelouch, P.E. Powers, C.L. Tang: Ti:sapphire-pumped,high-repetition-rate femtosecond optical parametric oscillator, Opt. Lett.17, p.1070-1072 (1992)

[6.2587] {Sect. 6.15.1} C.H. Brito Cruz, A.G. Prosser, P.C. Becker: Generation oftunable femtosecond pulses in the 690-750 nm wavelength region, Opt.Comm. 86, p.65-69 (1991)

[6.2588] {Sect. 6.15.1} K.M. Yoo, Q. Xing, R.R. Alfano: Imaging objects hiddenin highly scattering media using femtosecond second-harmonic-generationcross-correlation time gating, Opt. Lett. 16, p.1019-1021 (1991)

[6.2589] {Sect. 6.15.1} G.E. James, E.M. Harrell II, C. Bracikowski, K. Wiesenfeld,R. Roy: Elimination of chaos in an intracavity-doubled Nd:YAG laser, Opt.Lett. 15, p.1141-1143 (1990)

[6.2590] {Sect. 6.15.1} W.S. Pelouch, T. Ukachi, E.S. Wachman, C.L. Tang: Eval-uation of LiB3O5 for second-harmonic generation of femtosecond opticalpulses, Appl. Phys. Lett. 57, p.111-113 (1990)

[6.2591] {Sect. 6.15.1} J.R.M. Barr, D.W. Hughes: Coupled Cavity Modelocking ofa Nd:YAG Laser Using Second-Harmonic Generation, Appl. Phys. B 49,p.323-325 (1989)

[6.2592] {Sect. 6.15.1} K. Bratengeier, H.-G. Purucker, A. Laubereau: Free induc-tion decay of inhomogeneously broadened lines, Opt. Comm. 70, p.393-398(1989)

[6.2593] {Sect. 6.15.1} Y. Li, L. Wang, P. Neos, G. Zhang, X.C. Liang, R.R. Al-fano: Ultrafast noncollinear secnd-harmonic-generation-based 4 x 4 opticalswitching array, Opt. Lett. 14, p.347-349 (1989)

[6.2594] {Sect. 6.15.1} A. Mokhtari, J. Chesnoy, A. Laubereau: Femtosecond time-and frequency-resolved fluorescence spectroscopy of a dye molecule, Chem.Phys. Lett. 155, p.593-598 (1989)

[6.2595] {Sect. 6.15.1} M. Woerner, A. Seilmeier, W. Kaiser: Reshaping of infraredpicosecond pulses after passage through atmospheric CO2, Opt. Lett. 14,p.636-638 (1989)

6.15.1 Harmonic Generation (SHG, THG, FHG, XHG) 941

[6.2596] {Sect. 6.15.1} D. Josse, R. Hierle, I. Ledoux, J. Zyss: Highly efficientsecond-harmonic generation of picosecond pulses at 1.32 µm in 3-methyl-4-nitropyridine-1-oxide, Appl. Phys. Lett. 53, p.2251-2253 (1988)

[6.2597] {Sect. 6.15.1} W.J. Kozlovsky, C.D. Nabors, R.L. Byer: Efficient SecondHarmonic Generaton of a Diode-Laser-Pumped CW Nd:YAG Laser Us-ing Monolithic MgO:LiNbO3 External Resonant Cavities, IEEE J. QE-24,p.913-919 (1988)

[6.2598] {Sect. 6.15.1} F. Laermer, J. Dobler, T. Elsaesser: Generation of Femtosec-ond UV Pulses by Intracavity Frequency Doubling in a Modelocked DyeLaser, Opt. Comm.67, p.58-62 (1988)

[6.2599] {Sect. 6.15.1} M. Maroncelli, G. R. Fleming: Comparision of time-resolvedfluorescence Stokes shift measurements to a molecular theory of solvationdynamics, J. Chem. Phys. 89, p.875-881 (1988)

[6.2600] {Sect. 6.15.1} M. Oka, S. Kubota: Stable intracavity doubling of orthogo-nal linearly polarized modes in diode-pumped Nd:YAG lasers, Opt. Lett.13, p.805-807 (1988)

[6.2601] {Sect. 6.15.1} A. Penzkofer, F. Ossig, P. Qiu: Picosecond Third-HarmonicLight Generation in Calcite, Appl. Phys. B 47, p.71-81 (1988)

[6.2602] {Sect. 6.15.1} P. Qiu, A. Penzkofer: Picosecond Third-Harmonic LightGeneration in beta-BaB2O4, Appl. Phys. B 45, p.225-236 (1988)

[6.2603] {Sect. 6.15.1} A. Seilmeier, M. Worner, H.-J. Hubner, W. Kaiser: Distor-tion of infrared picosecond pulses after propagation in atmospheric air,Appl. Phys. Lett. 53, p.2468-2470 (1988)

[6.2604] {Sect. 6.15.1} J. Shah: Ultrafast Luminescence Spectroscopy Using SumFrequency Generation, IEEE J. QE-24, p.276-288 (1988)

[6.2605] {Sect. 6.15.1} K.A. Stankov, J. Jethwa: A New Mode-Locking TechniqueUsing a Nonlinear Mirror, Opt. Comm. 66, p.41-46 (1988)

[6.2606] {Sect. 6.15.1} R.R. Alfano, Q.Z. Wang, T. Jimbo, P.P. Ho, R.N. Bhargava,B.J. Fitzpatrick: Induced spectral broadening about a second harmonicgenerated by an intense primary ultrashort laser pulse in ZnSe crystals,Phys. Rev. A 35, p.459-462 (1987)

[6.2607] {Sect. 6.15.1} J. Collet, T. Amand: Picosecond Cascadable Inverter GateUsing Second Harmonic Pumping, Opt. Comm. 62, p.353-356 (1987)

[6.2608] {Sect. 6.15.1} Y. Ishida, T. Yajima: Characteristics of a New-Type SHGCrystala beta-BaB2O2 in the Femtosecond Region, Opt. Comm. 62, p.197-200 (1987)

[6.2609] {Sect. 6.15.1} J.N. Moore, P.A. Hansen, R.M. Hochstrasser: A new methodfor picosecond time-resolved infrared spectroscopy: applications to COphotodissociation from iron porphyrins, Chem. Phys. Lett. 138, p.110-114(1987)

[6.2610] {Sect. 6.15.1} P.E. Perkins, T.S. Fahlen: 20-W average power KTP intra-cavity doubled Nd:YAG laser, J. Opt. Soc. Am. B 4, p.1066-1071 (1987)

[6.2611] {Sect. 6.15.1} T. Baer: Large-amplitude fluctuations due to longitudinalmode coupling in diode-pumped intracavity-doubled Nd:YAG lasers, J.Opt. Soc. Am. B 3, p.1175-1180 (1986)

[6.2612] {Sect. 6.15.1} K. Kato: Second-Harmonic Generation to 2048 A in Beta-BaB2O4, IEEE J. QE-22, p.1013-1014 (1986)

[6.2613] {Sect. 6.15.1} J.-C. Baumert, J. Hoffnagle, P. Gunter: High-efficiency in-tracavity frequency doubling of a styril-9 dye laser with KNbO3 crystals,Appl. Opt. 24, p.1299-1301 (1985)

[6.2614] {Sect. 6.15.1} Ch. Chuangtian, W. Bochang, J. Aidong, Y. Giuming: Anew-type ultraviolet SHG crystal BaB2O4, Scientia Sinica B 28, p.235-243(1985)

942 6. Lasers

[6.2615] {Sect. 6.15.1} Y.S. Liu, D. Dentz, R. Belt: High-average-power intracavitysecond-harmonic generation using KTiOPO4 in an acousto-optically Q-switched Nd:YAG laser oscillator at 5 kHz, Opt. Lett. 9, p.76-78 (1984)

[6.2616] {Sect. 6.15.1} G.J. Linford, R.D. Boyd, D. Eimerl, J.S. Hildum, J.T. Hunt,B.C. Johnson, W.E. Martin, W.L. Smith, K. Snyder, C.L. Vercimak: LargeAperture Harmonic Conversion Experiments at Lawrence Livermore Na-tional Laboratory, Appl Opt 21, p.3633-3643 (1982)

[6.2617] {Sect. 6.15.1} J. Reintjes, R.C. Echardt: Efficient harmonic generationfrom 532 to 266 nm in ADP und KD*P, Appl. Phys. Lett. 30, p.91-93(1977)

[6.2618] {Sect. 6.15.1} J. Falk: A Theory of the Mode-Locked, Internally Frequency-Doubled Laser, IEEE J. QE-11, p.21-31 (1975)

[6.2619] {Sect. 6.15.1} K. Kato: Second-Harmonic Generation in CDA and CD*A,IEEE J. QE-10, p.616-618 (1974)

[6.2620] {Sect. 6.15.1} R.S. Adhav, R.W. Wallace: Second Harmonic Generation in90 Phase-Matched KDP Isomorphs, IEEE J. QE-9, p.855-856 (1973)

[6.2621] {Sect. 6.15.1} O. Bernecker: Limitations for Mode-Locking Enhancementof Internal SHG in a Laser, IEEE J. QE-9, p.897-900 (1973)

[6.2622] {Sect. 6.15.1} K. Kato: Efficient Second Harmonic Generation in CDA,Opt. Commun. 9, p.249-251 (1973)

[6.2623] {Sect. 6.15.1} D.B. Anderson, J.T. Boyd: Wideband CO2 Laser SecondHarmonic Generation Phase Matched in GaAs Thin-Film Waveguides,Appl. Phys. Lett. 19, p.266-268 (1971)

[6.2624] {Sect. 6.15.1} C.B. Hitz, L.M. Osterink: Simultaneous Intracavity Fre-quency Doubling and Mode Locking in a Nd:YAG Laser, Appl. Phys. Lett.18, p.378-380 (1971)

[6.2625] {Sect. 6.15.1} R.R. Rice, G.H. Burkhart: Efficient Mode-LockedFrequency-Doubled Operation of an Nd:YAlO3 Laser, Appl. Phys. Lett.19, p.225-227 (1971)

[6.2626] {Sect. 6.15.1} T.R. Gurski: Simultaneous Mode-Locking and Second- Har-monic Generation by the Same Nonlinear Crystal, Appl. Phys. Lett. 15,p.36682 (1969)

[6.2627] {Sect. 6.15.1} J.E. Geusic, H.J. Levinstein, S. Singh, R.C. Smith, L.G. VanUitert: Continous 0.532-µ Solid-State Source Using Ba2NaNb5O15, Appl.Phys. Lett. 12, p.306-308 (1968)

[6.2628] {Sect. 6.15.1} P.D. Maker, R.W. Terhune, M. Nisenoff, C.M. Savage: Ef-fects of Dispersion and Focusing on the Production of optical Harmonics,Phys. Rev. Lett. 8, p.21-22 (1962)

[6.2629] {Sect. 6.15.1} P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich: Gener-ation of Optical Harmonics, Phys. Rev. Lett. 7, p.118-119 (1961)

[6.2630] {Sect. 6.15.1} I. Alexeev, A.C. Ting, D.F. Gordon, E. Briscoe, B. Hafizi, P.Sprangle: Characterization of the third-harmonic radiation generated byintense laser self-formed filaments propagating in air, Optics Letters 30,p.1503-1505 (2005)

[6.2631] {Sect. 6.15.1} X.D. Mu, Y.J. Ding: Efficient generation of coherent bluelight at 440 nm by intracavity- frequency-tripling 1319-nm emission froma Nd:YAG laser, Optics Letters 30, p.1372-1374 (2005)

[6.2632] {Sect. 6.15.1} P.P. Markowicz, V.K.S. Hsiao, H. Tiryaki, A.N. Cartwright,P.N. Prasad, K. Dolgaleva, N.N. Lepeshkin, R.W. Boyd: Enhancement ofthird-harmonic generation in a polymer-dispersed liquid-crystal grating –art. no. 051102, Appl Phys Lett 87, p.51102 (2005)

[6.2633] {Sect. 6.15.1} A.K. Mohamed, A. Mustellier, J.P. Faleni, E. Rosencher:Tunable ultraviolet intracavity tripled Ti : sapphire laser, Optics Letters27, p.1457-1459 (2002)

6.15.1 Harmonic Generation (SHG, THG, FHG, XHG) 943

[6.2634] {Sect. 6.15.1} X.D. Mu, X.H. Gu, M.V. Makarov, Y.J. Ding, J.Y. Wang,I.Q. Wei, Y.G. Liu: Third-harmonic generation by cascading second-ordernonlinear processes in a cerium-doped KTiOPO4 crystal, Optics Letters25, p.117-119 (2000)

[6.2635] {Sect. 6.15.1} F. Druon, F. Balembois, P. Georges, A. Brun: High-repeti-tion-rate 300-ps pulsed ultraviolet source with a passively Q-switched mi-crochip laser and a multipass amplifier, Optics Letters 24, p.499-501 (1999)

[6.2636] {Sect. 6.15.1} J.M. Eichenholz, D.A. Hammons, L. Shah, Q. Ye, R.E. Peale,M. Richardson, B.H.T. Chai: Diode-pumped self-frequency doubling in aNd3+: YCa4O (BO3) (3) laser, Appl Phys Lett 74, p.1954-1956 (1999)

[6.2637] {Sect. 6.15.1} D. Jaque, J. Capmany, J.G. Sole: Continuous wave laserradiation at 669 nm from a self-frequency-doubled laser of YAl3 (BO3)(4): Nd3+, Appl Phys Lett 74, p.1788-1790 (1999)

[6.2638] {Sect. 6.15.1} F. Balembois, M. Gaignet, P. Georges, A. Brun, N. Stel-makh, J.M. Lourtioz: Tunable picosecond blue and ultraviolet pulses froma diode-pumped laser system seeded by a gain-switched laser diode, ApplOpt 37, p.4876-4880 (1998)

[6.2639] {Sect. 6.15.1} G. Hilber, A. Lago, R. Wallenstein: Broadly tunable VUV/XUV-radiation generated by resonant third-order frequency conversion inKr, J. Opt. Soc. Am. B 4, p.1753-1764 (1987)

[6.2640] {Sect. 6.15.1} R.S. Craxton: High Efficiency Frequency Tripling Schemesfor High-Power Nd:Glass Lasers, IEEE J. QE-17, p.1771-1782 (1981)

[6.2641] {Sect. 6.15.1} W. Seka, S.D. Jacobs, J.E. Rizzo, R. Boni, R.S. Craxton:Demonstration of High Efficiency Third Harmonic Conversion of HighPower Nd-Glass Laser Radiation, Opt. Commun. 34, p.469-473 (1980)

[6.2642] {Sect. 6.15.1} G.L. Wang, A.C. Geng, Y. Bo, H.Q. Li, Z.P. Sun, Y. Bi,D.F. Cui, Z.Y. Xu, X. Yuan, X.Q. Wang, G.Q. Shen, D.Z. Shen: 28.4 W266 nm ultraviolet-beam generation by fourth-harmonic generation of anall-solid-state laser, Opt Commun 259, p.820-822 (2006)

[6.2643] {Sect. 6.15.1} H. Ogilvy, J.A. Piper: Compact, all solid-state, high-repetition-rate 336nm source based on a frequency quadrupled, Q-switched, diode-pumped Nd: YVO4 laser, Opt Express 13, p.9465-9471(2005)

[6.2644] {Sect. 6.15.1} X.F. Chen, Y.P. Chen, Y.X. Xia: Direct quasi-phase-matched fourth-harmonic generation, Appl Opt 44, p.1028-1031 (2005)

[6.2645] {Sect. 6.15.1} L.B. Chang, S.C. Wang, A.H. Kung: Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system, Opt Commun 209, p.397-401 (2002)

[6.2646] {Sect. 6.15.1} T. Kojima, S. Konno, S. Fujikawa, K. Yasui, K. Yoshizawa,Y. Mori, T. Sasaki, M. Tanaka, Y. Okada: 20-W ultraviolet-beam gen-eration by fourth-harmonic generation of an all-solid-state laser, OpticsLetters 25, p.58-60 (2000)

[6.2647] {Sect. 6.15.1} V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittel-mann, R. Komatsu: Frequency conversion of Ti : sapphire-based femtosec-ond laser systems to the 200-nm spectral region using nonlinear opticalcrystals, IEEE J Sel Top Quantum Electr 5, p.1532-1542 (1999)

[6.2648] {Sect. 6.15.1} J.P. Koplow, D.A.V. Kliner, L. Goldberg: Development of anarrow-band, tunable, frequency-quadrupled diode laser for UV absorptionspectroscopy, Appl Opt 37, p.3954-3960 (1998)

[6.2649] {Sect. 6.15.1} A.H. Kung, J.I. Lee, P.J. Chen: An efficient all-solid-stateultraviolet laser source, Appl Phys Lett 72, p.1542-1544 (1998)

[6.2650] {Sect. 6.15.1} F. Rotermund, V. Petrov: Generation of the fourth harmonicof a femtosecond Ti:sapphire laser, Optics Letters 23, p.1040-1042 (1998)

944 6. Lasers

[6.2651] {Sect. 6.15.1} XS. Bourzeix, B. deBeauvoir, F. Nez, F. Detomasi, L. Julien,F. Biraben: Ultra-violet light generation at 205 nm by two frequency dou-bling steps of a cw titanium-sapphire laser, Opt Commun 133, p.239-244(1997)

[6.2652] {Sect. 6.15.1} D.A.V. Kliner, J.P. Koplow, L. Goldberg: Narrow-band,tunable, semiconductor-laser-based source for deep-UV absorption spec-troscopy, Optics Letters 22, p.1418-1420 (1997)

[6.2653] {Sect. 6.15.1} J. Knittel, A.H. Kung: 39.5% conversion of low-power Q-switched Nd:YAG laser radiation to 266 nm by use of a resonant ringcavity, Optics Letters 22, p.366-368 (1997)

[6.2654] {Sect. 6.15.1} R. Komatsu, T. Sugawara, K. Sassa, N. Sarukura, Z. Liu,S. Izumida, Y. Segawa, S. Uda, T. Fukuda, K. Yamanouchi: Growth andultraviolet application of Li2B4O7 crystals: Generation of the fourth andfifth harmonics of Nd: Y3Al5O12 lasers, Appl Phys Lett 70, p.3492-3494(1997)

[6.2655] {Sect. 6.15.1} G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, G. Tamo-sauskas: Efficient femtosecond pulse generation at 264 nm, Opt Commun138, p.333-336 (1997)

[6.2656] {Sect. 6.15.1} L.B. Shama, H. Daido, Y. Kato, S. Nakai, T. Zhang, Y. Mori,T. Sasaki: Fourth-harmonic generation of picosecond glass laser pulses withcesium lithium borate crystals, Appl Phys Lett 69, p.3812-3814 (1996)

[6.2657] {Sect. 6.15.1} T.J. Zhang, Y. Kato, H. Daido: Fourth harmonic generationand pulse compression of a picosecond laser pulse, Opt Commun 124, p.83-89 (1996)

[6.2658] {Sect. 6.15.1} A. Dubietis, G. Tamosauskas, A. Varanavicius, G. Valiulis,R. Danielius: Highly efficient subpicosecond pulse generation at 211 nm, JOpt Soc Am B Opt Physics 17, p.48-52 (2000)

[6.2659] {Sect. 6.15.1} R.A. Ganeev, P.A. Naik, H. Singhal, J.A. Chakera, P.D.Gupta: Strong enhancement and extinction of single harmonic intensityin the mid- and end-plateau regions of the high harmonics generated inweakly excited laser plasmas, Optics Letters 32, p.65-67 (2007)

[6.2660] {Sect. 6.15.1} D.M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham,M. Berrill, O. Cohen, B.C. Walker, M.M. Murnane, H.C. Kapteyn, J.J.Rocca: High-order harmonic generation from ions in a capillary discharge– art. no. 203001, Phys Rev Lett 9620, p.3001 (2006)

[6.2661] {Sect. 6.15.1} J.C. Painter, M. Adams, N. Brimhall, E. Christensen, G.Giraud, N. Powers, M. Turner, M. Ware, J. Peatross: Direct observation oflaser filamentation in high-order harmonic generation, Optics Letters 31,p.3471-3473 (2006)

[6.2662] {Sect. 6.15.1} R.A. Ganeev, H. Singhal, P.A. Naik, V. Arora, U.Chakravarty, J.A. Chakera, R.A. Khan, P.V. Redkin, M. Raghurama-iah, P.D. Gupta: Single-harmonic enhancement by controlling the chirp ofthe driving laser pulse during high-order harmonic generation from GaAsplasma, J Opt Soc Am B Opt Physics 23, p.2535-2540 (2006)

[6.2663] {Sect. 6.15.1} I.J. Kim, C.M. Kim, H.T. Kim, G.H. Lee, Y.S. Lee, J.Y.Park, D.J. Cho, C.H. Nam: Highly efficient high-harmonic generation inan orthogonally polarized two-color laser field – art. no. 243901, Phys RevLett 9424, p.3901 (2005)

[6.2664] {Sect. 6.15.1} R. Ganeev, M. Suzuki, M. Baba, H. Kuroda, T. Ozaki: High-order harmonic generation from boron plasma in the extreme- ultravioletrange, Optics Letters 30, p.768-770 (2005)

[6.2665] {Sect. 6.15.1} R.A. Ganeev, H. Kuroda: Frequency conversion of femtosec-ond radiation in magnesium plasma, Opt Commun 256, p.242-247 (2005)

6.15.1 Harmonic Generation (SHG, THG, FHG, XHG) 945

[6.2666] {Sect. 6.15.1} S. Greenstein, M. Rosenbluh: The influence of nonlinearspectral bandwidth on single longitudinal mode intra-cavity second har-monic generation, Opt Commun 248, p.241-248 (2005)

[6.2667] {Sect. 6.15.1} T. Kanai, S. Minemoto, H. Sakai: Quantum interferenceduring high-order harmonic generation from aligned molecules, Nature 435,p.470-474 (2005)

[6.2668] {Sect. 6.15.1} R.A. Ganeev, M. Suzuki, M. Baba, H. Kuroda: High-orderharmonic generation from carbon plasma, J Opt Soc Am B Opt Physics22, p.1927-1933 (2005)

[6.2669] {Sect. 6.15.1} E.A. Gibson, A. Paul, N. Wagner, R. Tobey, S. Backus, I.P.Christov, M.M. Murnane, H.C. Kapteyn: High-order harmonic generationup to 250 eV from highly ionized argon – art. no. 033001, Phys Rev Lett9203, p.3001 (2004)

[6.2670] {Sect. 6.15.1} P. Monot, G. Doumy, S. Dobosz, M. Perdrix, P. DOliveira,F. Quere, F. Reau, P. Martin, P. Audebert, J.C. Gauthier, L.P. Geindre:High-order harmonic generation by nonlinear reflection of an intense high-contrast laser pulse on a plasma, Optics Letters 29, p.893-895 (2004)

[6.2671] {Sect. 6.15.1} P. Villoresi, S. Bonora, M. Pascolini, L. Poletto, G. Tondello,C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. DeSilvestri: Optimizationof high-order harmonic generation by adaptive control of a sub-10-fs pulsewave front, Optics Letters 29, p.207-209 (2004)

[6.2672] {Sect. 6.15.1} R.A. Bartels, A. Paul, H. Green, H.C. Kapteyn, M.M. Mur-nane, S. Backus, I.P. Christov, Y.W. Liu, D. Attwood, C. Jacobsen: Gener-ation of spatially coherent light at extreme ultraviolet wavelengths, Science297, p.376-378 (2002)

[6.2673] {Sect. 6.15.1} D. Yoshitomi, T. Shimizu, T. Sekikawa, S. Watanabe: Gen-eration and focusing of submilliwatt-average-power 50-nm pulses by thefifth harmonic of a KrF laser, Optics Letters 27, p.2170-2172 (2002)

[6.2674] {Sect. 6.15.1} D.A.V. Kliner, F. DiTeodoro, J.P. Koplow, S.W. Moore,A.V. Smith: Efficient second, third, fourth, and fifth harmonic generationof a Yb-doped fiber amplifier, Opt Commun 210, p.393-398 (2002)

[6.2675] {Sect. 6.15.1} K. Moutzouris, F. Adler, F. Sotier, D. Trutlein, A. Leiten-storfer: Multimilliwatt ultrashort pulses continuously tunable in the visiblefrom a compact fiber source, Optics Letters 31, p.1148-1150 (2006)

[6.2676] {Sect. 6.15.1} S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Y.M.Andreev, G. Lanskii, V.V. Badikov: Tunable middle infrared radiation withHgGa2S4 crystal, Opt Commun 259, p.868-872 (2006)

[6.2677] {Sect. 6.15.1} J.L. Mortensen, A. McWilliam, C.G. Leburn, P. Tideman-dLichtenberg, M. Thorhauge, J. Janousek, C.T.A. Brown, A.A. Lagatsky,P. Buchhave, W. Sibbett: Up to 30 mW of broadly tunable CW green-to-orange light, based on sum- frequency mixing of Cr4+ :forsterite andNd:YVO4 lasers, Opt Commun 260, p.637-640 (2006)

[6.2678] {Sect. 6.15.1} A.B. Fedotov, E.E. Serebryannikov, A.A. Ivanov, D.A.SidorovBiryukov, L.A. Melnikov, A.V. Shcherbakov, C.K. Sun, M.V. Alfi-mov, A.M. Zhetikov: Highly nonlinear photonic-crystal fibers for the spec-tral transformation of Cr: forsterite laser pulses, Opt Commun 267, p.505-510 (2006)

[6.2679] {Sect. 6.15.1} S. Das, C. Ghosh, S. Gangopadhyay, U. Chatterjee, G.C.Bhar, V.G. Voevodin, O.G. Voevodina: Tunable coherent infrared sourcefrom 5-16 mu m based on difference- frequency mixing in an indium-dopedGaSe crystal, J Opt Soc Am B Opt Physics 23, p.282-288 (2006)

[6.2680] {Sect. 6.15.1} Y. Nabekawa, H. Hasegawa, E.J. Takahashi, K. Midorikawa:Production of doubly charged helium ions by two-photon absorption of an

946 6. Lasers

intense sub-10-fs soft x-ray pulse at 42 eV photon energy – art. no. 043001,Phys Rev Lett 9404, p.3001 (2005)

[6.2681] {Sect. 6.15.1} S. Johansson, S.H. Wang, V. Pasiskevicius, F. Laurell: Com-pact 492-nm light source based on sum-frequency mixing, Opt Express 13,p.2590-2595 (2005)

[6.2682] {Sect. 6.15.1} J. Janousek, S. Johansson, P. TidemandLichtenberg, S.H.Wang, J.L. Mortensen, P. Buchhave, F. Laurell: Efficient all solid-statecontinuous-wave yellow-orange light source, Opt Express 13, p.1188-1192(2005)

[6.2683] {Sect. 6.15.1} J. Zheng, K.A. Tanaka, T. Sato, T. Yabuuchi, T. Kura-hashi, Y. Kitagawa, R. Kodama, T. Norimatsu, T. Yamanaka: Study ofhot electrons by measurement of optical emission from the rear surface ofa metallic foil irradiated with ultraintense laser pulse – art. no. 165001,Phys Rev Lett 9216, p.5001 (2004)

[6.2684] {Sect. 6.15.1} S. Kuznetsov, G. Pasmanik, A. Shilov, L. Tiour: Highlyefficient narrow-line generation by difference-frequency mixing of a greenpump and the Stokes seed in RbTiOPO4 crystals: excitation of 943-nmemission, Optics Letters 29, p.848-850 (2004)

[6.2685] {Sect. 6.15.1} H. Kumagai, K. Midorikawa, T. Iwane, M. Obara: Efficientsum-frequency generation of continuous-wave single- frequency coherentlight at 252 nm with dual wavelength enhancement, Optics Letters 28,p.1969-1971 (2003)

[6.2686] {Sect. 6.15.1} D.A. Akimov, E.E. Serebryannikov, A.M. Zheltikov, M.Schmitt, R. Maksimenka, W. Kiefer, K.V. Dukelskii, V.S. Shevandin, Y.N.Kondratev: Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber, Optics Letters28, p.1948-1950 (2003)

[6.2687] {Sect. 6.15.1} S.B. Mirov, V.V. Fedorov, B. Boczar, R. Frost, B. Pryor: All-solid-state laser system tunable in deep ultraviolet based on sum- frequencygeneration in CLBO, Opt Commun 198, p.403-406 (2001)

[6.2688] {Sect. 6.15.1} M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, G. Szabo:Programmable femtosecond laser pulses in the ultraviolet, J Opt Soc AmB Opt Physics 18, p.866-871 (2001)

[6.2689] {Sect. 6.15.1} Y. Dong, J. Xu, G.J. Zhao, C.F. Yan, G.Q. Zhou, L.B.Su, L.Y. Yang, J.R. Qiu, L.H. Lin, X.Y. Liang, R.X. Li, Z.Z. Xu, Q.S.Ren: Simultaneous three-photon-excited violet upconversion luminescenceof Ce3+:Lu2Si2O7 single crystals by femtosecond laser irradiation, OpticsLetters 31, p.2175-2177 (2006)

[6.2690] {Sect. 6.15.1} A. Richter, N. Pavel, E. Heumann, G. Huber, D. Parisi, A.Toncelli, M. Tonelli, A. Diening, W. Seelert: Continuous-wave ultravioletgeneration at 320 nm by intracavity frequency doubling of red-emittingpraseodymium lasers, Opt Express 14, p.3282-3287 (2006)

[6.2691] {Sect. 6.15.1} Y.J. Dong, J. Xu, G.Q. Zhou, G.J. Zhao, M.Y. Jie, L.Y.Yang, L.B. Su, J.R. Qiu, W.W. Feng, L.H. Lin: Blue upconversion lumi-nescence generation in Ce3+:Gd2SiO5 crystals by infrared femtosecondlaser irradiation, Opt Express 14, p.1899-1904 (2006)

[6.2692] {Sect. 6.15.1} A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, A.Diening: Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser,Optics Letters 29, p.2638-2640 (2004)

[6.2693] {Sect. 6.15.1} J.J. Ju, M.H. Lee, M. Cha: Energy transfer in clusteredsites of Er3+ ions in LiNbO3 crystals, J Opt Soc Am B Opt Physics 20,p.1990-1995 (2003)

[6.2694] {Sect. 6.15.1} A.V. Kiryanov, V. Aboites, A.M. Belovolov, M.I. Timo-shechkin, M.I. Belovolov, M.J. Damzen, A. Minassian: Powerful visible

6.15.1 Harmonic Generation (SHG, THG, FHG, XHG) 947

(530-770 nm) luminescence in Yb,Ho : GGG with IR diode pumping, OptExpress 10, p.832-839 (2002)

[6.2695] {Sect. 6.15.1} I. Iparraguirre, R. Balda, M. Voda, M. AlSaleh, J. Fer-nandez: Infrared-to-visible upconversion in K5Nd(MoO4)(4) stoichiomet-ric laser crystal, J Opt Soc Am B Opt Physics 19, p.2911-2920 (2002)

[6.2696] {Sect. 6.15.2} S. Desinoulins, F. DiTeodoro: Watt-level, high-repetition-rate, mid-infrared pulses generated by wavelength conversion of an eye-safefiber source, Optics Letters 32, p.56-58 (2007)

[6.2697] {Sect. 6.15.2} J. Saikawa, M. Fujii, H. Ishizuki, T. Taira: 52 mJ narrow-bandwidth degenerated optical parametric system with a large-apertureperiodically poled MgO: LiNbO3 device, Optics Letters 31, p.3149-3151(2006)

[6.2698] {Sect. 6.15.2} M. Ghotbi, A. EstebanMartin, M. EbrahimZadeh: BiB3O6femtosecond optical parametric oscillator, Optics Letters 31, p.3128-3130(2006)

[6.2699] {Sect. 6.15.2} N. Forget, S. Bahbah, C. Drag, F. Bretenaker, E. Rosencher:Actively mode-locked optical parametric oscillator, Optics Letters 31,p.972-974 (2006)

[6.2700] {Sect. 6.15.2} T.V. Andersen, O. Schmidt, C. Bruchmann, J. Limpert,C. Aguergaray, E. Cormier, A. Tunnermann: High repetition rate tunablefemtosecond pulses and broadband amplification from fiber laser pumpedparametric amplifier, Opt Express 14, p.4765-4773 (2006)

[6.2701] {Sect. 6.15.2} H. Ishizuki, T. Taira: High-energy quasi-phase-matched op-tical parametric oscillation in a periodically poled MgO:LiNbO3 devicewith a 5 mm X 5 mm aperture, Optics Letters 30, p.2918-2920 (2005)

[6.2702] {Sect. 6.15.2} J.J. Zondy, V. Vedenyapin, A. Yelisseyev, S. Lobanov, L.Isaenko, V. Petrov: LiInSe2 nanosecond optical parametric oscillator, Op-tics Letters 30, p.2460-2462 (2005)

[6.2703] {Sect. 6.15.2} Y.J. Deng, Q. Lin, F. Lu, G.P. Agrawal, W.H. Knox: Broadlytunable femtosecond parametric oscillator using a photonic crystal fiber,Optics Letters 30, p.1234-1236 (2005)

[6.2704] {Sect. 6.15.2} N.A. Naz, H.S.S. Hung, M.V. OConnor, D.C. Hanna, D.P.Shepherd: Adaptively shaped mid-infrared pulses from a synchronouslypumped optical parametric oscillator, Opt Express 13, p.8400-8405 (2005)

[6.2705] {Sect. 6.15.2} S. Shimizu, Y. Nabekawa, M. Obara, K. Midorikawa: Spec-tral phase transfer for indirect phase control of sub-20-fs deep UV pulses,Opt Express 13, p.6345-6353 (2005)

[6.2706] {Sect. 6.15.2} X.Y. Peng, L. Xu, A. Asundi: Highly efficient high-repetition-rate tunable all-solid-state optical parametric oscillator, Ieee JQuantum Electron 41, p.53-61 (2005)

[6.2707] {Sect. 6.15.2} T. Sudmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T.Usami, H. Ito, S. Kurimura, K. Kitamura, D.C. Hanna, U. Keller: High-power femtosecond fiber-feedback optical parametric oscillator based onperiodically poled stoichiometric LiTaO3, Optics Letters 29, p.1111-1113(2004)

[6.2708] {Sect. 6.15.2} J. Sakuma, Y. Asakawa, T. Imahoko, M. Obara: Generationof all-solid-state, high-power continuous-wave 213-nm light based on sum-frequency mixing in CsLiB6O10, Optics Letters 29, p.1096-1098 (2004)

[6.2709] {Sect. 6.15.2} A.A. Mani, Z.D. Schultz, A.A. Gewirth, J.O. White, Y.Caudano, C. Humbert, L. Dreesen, P.A. Thiry, A. Peremans: Picosecondlaser for performance of efficient nonlinear spectroscopy from 10 to 21 mum, Optics Letters 29, p.274-276 (2004)

[6.2710] {Sect. 6.15.2} H.Q. Li, H.B. Zhang, Z. Bao, J. Zhang, Z.P. Sun, Y.P. Kong,Y. Bi, X.C. Lin, A.Y. Yao, G.L. Wang, W. Hou, R.N. Li, D.F. Cui, Z.Y.

948 6. Lasers

Xu: High-power nanosecond optical parametric oscillator based on a longLiB3O5 crystal, Opt Commun 232, p.411-415 (2004)

[6.2711] {Sect. 6.15.2} S. Haidar, Y. Sasaki, E. Niwa, K. Masumoto, H. Ito: Electro-optic tuning of a periodically poled LiNbO3 optical parametric oscillatorand mixing its output waves to generate mid-IR tunable from 9.4 to 10.5mu m, Opt Commun 229, p.325-330 (2004)

[6.2712] {Sect. 6.15.2} S. Haidar, K. Miyamoto, H. Ito: Generation of tunable mid-IR (5.5-9.3 mu m) from a 2-mu m pumped ZnGeP2 optical parametricoscillator, Opt Commun 241, p.173-178 (2004)

[6.2713] {Sect. 6.15.2} G. Arisholm, R. Paschotta, T. Sudmeyer: Limits to thepower scalability of high-gain optical parametric amplifiers, J Opt Soc AmB Opt Physics 21, p.578-590 (2004)

[6.2714] {Sect. 6.15.2} M.A. Watson, M.V. OConnor, D.P. Shepherd, D.C. Hanna:Synchronously pumped CdSe optical parametric oscillator in the 9-10 mum region, Optics Letters 28, p.1957-1959 (2003)

[6.2715] {Sect. 6.15.2} D.J.M. Stothard, P.Y. Fortin, A. Carleton, M.Ebrahimzadeh, M.H. Dunn: Comparison of continuous-wave optical para-metric oscillators based on periodically poled LiNbO3 and periodicallypoled RbTiOAsO4 pumped internal to a high-power Nd:YVO4 laser, JOpt Soc Am B Opt Physics 20, p.2102-2108 (2003)

[6.2716] {Sect. 6.15.2} C.W. Hoyt, M. SheikBahae, M. Ebrahimzadeh: High-powerpicosecond optical parametric oscillator based on periodically poled lithiumniobate, Optics Letters 27, p.1543-1545 (2002)

[6.2717] {Sect. 6.15.2} J. Mes, M. Leblans, W. Hogervorst: Single-longitudinal-mode optical parametric oscillator for spectroscopic applications, OpticsLetters 27, p.1442-1444 (2002)

[6.2718] {Sect. 6.15.2} G. Arisholm, E. Lippert, G. Rustad, K. Stenersen: Efficientconversion from 1 to 2 mu m by a KTP-based ring optical parametricoscillator, Optics Letters 27, p.1336-1338 (2002)

[6.2719] {Sect. 6.15.2} M.V. OConnor, M.A. Watson, D.P. Shepherd, D.C. Hanna,J.H.V. Price, A. Malinowski, J. Nilsson, N.G.R. Broderick, D.J. Richard-son: Synchronously pumped optical parametric oscillator driven by a fem-tosecond mode-locked fiber laser, Optics Letters 27, p.1052-1054 (2002)

[6.2720] {Sect. 6.15.2} M. vanHerpen, S.T. Hekkert, S.E. Bisson, F.J.M. Harren:Wide single-mode tuning of a 3.0-3.8-mu m, 700-mW, continuous-wave Nd: YAG-pumped optical parametric oscillator based on periodically poledlithium niobate, Optics Letters 27, p.640-642 (2002)

[6.2721] {Sect. 6.15.2} P. Gross, M.E. Klein, T. Walde, K.J. Boller, M. Auerbach, P.Wessels, C. Fallnich: Fiber-laser-pumped continuous-wave singly resonantoptical parametric oscillator, Optics Letters 27, p.418-420 (2002)

[6.2722] {Sect. 6.15.2} A. Brenier, C.Y. Tu, J.F. Li, Z.J. Zhu, B.C. Wu: Self-sum-and -difference-frequency mixing in GdAl3(BO3)(4): Nd3+ for generationof tunable ultraviolet and infrared radiation, Optics Letters 27, p.240-242(2002)

[6.2723] {Sect. 6.15.2} W. Shi, Y.J. Ding: Coherent radiation in the range of 15-28mu m in a cadmium-selenide crystal, Opt Commun 207, p.273-277 (2002)

[6.2724] {Sect. 6.15.2} P. Tzankov, I. Buchvarov, T. Fiebig: Broadband opticalparametric amplification in the near UV-VIS, Opt Commun 203, p.107-113 (2002)

[6.2725] {Sect. 6.15.2} J. Piel, M. Beutter, E. Riedle: 20-50-fs pulses tunable acrossthe near infrared from a blue-pumped noncollinear parametric amplifier,Optics Letters 25, p.180-182 (2000)

[6.2726] {Sect. 6.15.2} U. Bader, J.P. Meyn, J. Bartschke, T. Weber, A. Borsutzky,R. Wallenstein, R.G. Batchko, M.M. Fejer, R.L. Byer: Nanosecond period-

6.15.2 OPOs and OPAs 949

ically poled lithium niobate optical parametric generator pumped at 532nm by a single-frequency passively Q-switched Nd : YAG laser, OpticsLetters 24, p.1608-1610 (1999)

[6.2727] {Sect. 6.15.2} R.S. Conroy, C.F. Rae, M.H. Dunn, B.D. Sinclair, J.M. Ley:Compact, actively Q-switched optical parametric oscillator, Optics Letters24, p.1614-1616 (1999)

[6.2728] {Sect. 6.15.2} T. Graf, G. McConnell, A.I. Ferguson, E. Bente, D. Burns,M.D. Dawson: Synchronously pumped optical parametric oscillation in pe-riodically poled lithium niobate with 1-W average output power, Appl Opt38, p.3324-3328 (1999)

[6.2729] {Sect. 6.15.2} P. LozaAlvarez, C.T.A. Brown, D.T. Reid, W. Sibbett, M.Missey: High-repetition-rate ultrashort-pulse optical parametric oscillatorcontinuously tunable from 2.8 to 6.8 mu m, Optics Letters 24, p.1523-1525(1999)

[6.2730] {Sect. 6.15.2} M. Sato, T. Hatanaka, S. Izumi, T. Taniuchi, H. Ito: Gen-eration of 6.6-mu m optical parametric oscillation with periodically poledLiNbO3, Appl Opt 38, p.2560-2563 (1999)

[6.2731] {Sect. 6.15.2} U. Strossner, A. Peters, J. Mlynek, S. Schiller, J.P. Meyn,R. Wallenstein: Single-frequency continuous-wave radiation from 0.77 to1.73 mu m generated by a green-pumped optical parametric oscillator withperiodically poled LiTaO3, Optics Letters 24, p.1602-1604 (1999)

[6.2732] {Sect. 6.15.2} P.E. Britton, N.G.R. Broderick, D.J. Richardson, P.G.R.Smith, G.W. Ross, D.C. Hanna: Wavelength-tunable high-power picosec-ond pulses from a fiber-pumped diode-seeded high-gain parametric ampli-fier, Optics Letters 23, p.1588-1590 (1998)

[6.2733] {Sect. 6.15.2} G. Cerullo, M. Nisoli, S. Stagira, S. DeSilvestri: Sub-8-fspulses from an ultrabroadband optical parametric amplifier in the visible,Optics Letters 23, p.1283-1285 (1998)

[6.2734] {Sect. 6.15.2} T.J. Edwards, G.A. Turnbull, M.H. Dunn, M.Ebrahimzadeh, F.G. Colville: High-power, continuous-wave, singly reso-nant, intracavity optical parametric oscillator, Appl Phys Lett 72, p.1527-1529 (1998)

[6.2735] {Sect. 6.15.2} G.M. Gibson, R.S. Conroy, A.J. Kemp, B.D. Sinclair, M.J.Padgett, M.H. Dunn: Microchip laser-pumped continuous-wave doubly res-onant optical parametric oscillator, Optics Letters 23, p.517-518 (1998)

[6.2736] {Sect. 6.15.2} G. Hansson, D.D. Smith: Mid-infrared-wavelength genera-tion in 2-mu m pumped periodically poled lithium niobate, Appl Opt 37,p.5743-5746 (1998)

[6.2737] {Sect. 6.15.2} M. Nisoli, S. Stagira, S. DeSilvestri, O. Svelto, G. Valiulis,A. Varanavicius: Parametric generation of high-energy 14.5-fs light pulsesat 1.5 mu m, Optics Letters 23, p.630-632 (1998)

[6.2738] {Sect. 6.15.2} T.W. Tukker, C. Otto, J. Greve: A narrow-bandwidth op-tical parametric oscillator, Opt Commun 154, p.83-86 (1998)

[6.2739] {Sect. 6.15.2} K.L. Vodopyanov: Megawatt peak power 8-13 mu m CdSeoptical parametric generator pumped at 2.8 mu m, Opt Commun 150,p.210-212 (1998)

[6.2740] {Sect. 6.15.2} M.S. Webb, P.F. Moulton, J.J. Kasinski, R.L. Burnham, G.Loiacono, R. Stolzenberger: High-average-power KTiOAsO4 optical para-metric oscillator, Optics Letters 23, p.1161-1163 (1998)

[6.2741] {Sect. 6.15.2} T. Chuang, R. Burnham: Multiband generation of mid in-frared by use of periodically poled lithium niobate, Opt. Lett. 23, p.43-45(1998)

[6.2742] {Sect. 6.15.2} K. Druhl: Diffractive effects in singly resonant continuous-wave parametric oscillators, Appl. Phys. B 66, p.677-683 (1998)

950 6. Lasers

[6.2743] {Sect. 6.15.2} S. Guha: Focusing dependence of the efficiency of a singlyresonant optical parametric oscillator, Appl. Phys. B 66, p.663-675 (1998)

[6.2744] {Sect. 6.15.2} T. Kartaloglu, K.G. Koprulu, O. Aytur, M. Sundheimer,W.P. Risk: Femtosecond optical parametric oscillator based on periodicallypoled KTiOPO4, Opt. Lett. 23, p.61-63 (1998)

[6.2745] {Sect. 6.15.2} M. E. Klein, D.-H. Lee, J.-P. Meyn, B. Beier, K.-J. Boller, R.Wallenstein: Diode-pumped continuous-wave widely tunable optical para-metric oscillator based on periodically poled lithium tantalate, Opt. Lett.23, p.831-833 (1998)

[6.2746] {Sect. 6.15.2} S. Schiller, J. Mlynek (guest eds.): Continous-wave opticalparametric oscillators, Appl. Phys. B 52, p.661-760 (1998)

[6.2747] {Sect. 6.15.2} C. Schwob, P.F. Cohadon, C. Fabre, M.A.M. Marte, H.Ritsch, A. Gatti, L. Lugiato: Transverse effects and mode couplings inOPOS, Appl. Phys. B 66, p.685-699 (1998)

[6.2748] {Sect. 6.15.2} G.A. Turnbull, M.H. Dunn, M. Ebrahimzadeh: Continuous-wave, intracavity optical parametric oscillators: an analysis of power char-acteristics, Appl. Phys. B 66, p.701-710 (1998)

[6.2749] {Sect. 6.15.2} T.H. Allik, S. Chandra, D.M. Rines, P.G. Schunemann, J.A.Hutchinson, R. Utano: Tunable 7-12-mu m optical parametric oscillatorusing a Cr, Er: YSGG laser to pump CdSe and ZnGeP2 crystals, OpticsLetters 22, p.597-599 (1997)

[6.2750] {Sect. 6.15.2} F.G. Colville, M.H. Dunn, M. Ebrahimzadeh: Continuous-wave, singly resonant, intracavity parametric oscillator, Optics Letters 22,p.75-77 (1997)

[6.2751] {Sect. 6.15.2} J.C. Deak, L.K. Iwaki, D.D. Dlott: High-power picosecondmid-infrared optical parametric amplifier for infrared Raman spectroscopy,Optics Letters 22, p.1796-1798 (1997)

[6.2752] {Sect. 6.15.2} A. Galvanauskas, M.A. Arbore, M.M. Fejer, M.E. Fermann,D. Harter: Fiber-laser-based femtosecond parametric generator in bulk pe-riodically poled LiNbO3, Optics Letters 22, p.105-107 (1997)

[6.2753] {Sect. 6.15.2} T. Kartaloglu, K.G. Koprulu, O. Aytur: Phase-matched self-doubling optical parametric oscillator, Optics Letters 22, p.280-282 (1997)

[6.2754] {Sect. 6.15.2} S.W. Lee, S.H. Kim, D.K. Ko, J.M. Han, J.M. Lee: High-efficiency and low-threshold operation of the pump reflection configurationin the noncollinear phase matching optical parametric oscillator, Opt Com-mun 144, p.241-244 (1997)

[6.2755] {Sect. 6.15.2} D. Wang, C. Grasser, R. Beigang, R. Wallenstein: The gen-eration of tunable blue ps-light-pulses from a cw mode-locked LBO opticalparametric oscillator, Opt Commun 138, p.87-90 (1997)

[6.2756] {Sect. 6.15.2} K.C. Burr, C.L. Tang, M.A. Arbore, M.M. Fejer: Broadlytunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate, Opt. Lett. 22,p.1458-1460 (1997)

[6.2757] {Sect. 6.15.2} L.E. Myers, W.R. Bosenberg: Periodically Polded LithiumNiobate and Quasi-Phase-Matched Optical Parametric Oscillators, IEEEJ. QE-33, p.1663-1672 (1997)

[6.2758] {Sect. 6.15.2} W.R. Bosenberg, A. Drobshoff, J.I. Alexander, L.E. Myers,R.L. Byer: 93% pump depletion, 3.5-W continuous-wave, singly resonantoptical parametric oscillator, Optics Letters 21, p.1336-1338 (1996)

[6.2759] {Sect. 6.15.2} S.D. Butterworth, V. Pruneri, D.C. Hanna: Opticalparametric oscillation in periodically poled lithium niobate based oncontinuous-wave synchronous pumping at 1.047 mu m, Optics Letters 21,p.1345-1347 (1996)

6.15.2 OPOs and OPAs 951

[6.2760] {Sect. 6.15.2} R. Lavi, A. Englander, R. Lallouz: Highly efficient low-threshold tunable all-solid-state intracavity optical parametric oscillatorin the mid infrared, Optics Letters 21, p.800-802 (1996)

[6.2761] {Sect. 6.15.2} L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R.Bosenberg, J.W. Pierce: Quasi-phase-matched optical parametric oscilla-tors in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B 12, p.2102-2116(1995)

[6.2762] {Sect. 6.15.2} U.Simon, S. Waltman, I. Loa, F.K. Tittel, L. Hollberg:External-cavity difference-frequency source near 3.2 µm, based on combin-ing a tunable diode laser with a diode-pumped Nd:YAG laser in AgGaS2,J. Opt. Soc. Am. B 12, p.323-327 (1995)

[6.2763] {Sect. 6.15.2} D.R. Walker, C.J. Flood, H.M. van Driel: Kilohertz all-solid-state picosecond lithium triborate optical parametric generator, Opt. Lett.20, p.145-147 (1995)

[6.2764] {Sect. 6.15.2} M.J.T. Milton, T.D. Gardiner, G. Chourdakis, P.T. Woods:Injection seeding of an infrared optical parametric oscillator with a tunablediode laser, Opt. Lett. 19, p.281-283 (1994)

[6.2765] {Sect. 6.15.2} R. Danielius, A. Piskarsdas, A. Stabinis, G.P. Banfi, P. DiTrapani, R. Righini: Traveling-wave parametric generation of widely tun-able, highly coherent femtosecond light pulses, J. Opt. Soc. Am. B 10,p.2222-2232 (1993)

[6.2766] {Sect. 6.15.2} Q. Fu, G. Mak, H.M. van Driel: High-power, 62-fs in-frared optical parametric oscillator synchronously pumped by a 76-MHzTi:sapphire laser, Opt. Lett. 17, p.1006-1008 (1992)

[6.2767] {Sect. 6.15.2} H.-J. Krause, W. Daum: Efficient parametric generationof high-power coherent picosecond pulses in lithium borate tunable from0.405 to 2.4 µm, Appl. Phys. Lett. 60, p.2180-2182 (1992)

[6.2768] {Sect. 6.15.2} G. Mak, Q. Fu, H.M. van Driel: Externally pumped highrepetition rate femtosecond infrared optical parametric oscillator, Appl.Phys. Lett. 60, p.542-544 (1992)

[6.2769] {Sect. 6.15.2} K. Kato: Parametric Oscillation at 3.2 µm in KTP Pumpedat 1.064 µm, IEEE J. QE-27, p.1137-1139 (1991)

[6.2770] {Sect. 6.15.2} E.S. Wachmann, W.S. Pelouch, C.L. Tang: cw femtosecondpulses tunable in the near- and midinfrared, J. Appl. Phys. 70, p.1893-1895(1991)

[6.2771] {Sect. 6.15.2} J.T. Lin, J.L. Montgomery: Generation of Tunable MID-IR (1.8-2.4 µm) Laser from Optical Parametric Oscillation in KTP, Opt.Commun. 75, p.315-320 (1990)

[6.2772] {Sect. 6.15.2} E.S. Wachmann, D.C. Edelstein, C.L. Tang: Continuous-wave mode-locked and dispersion-compensated femtosecond optical para-metric oscillator, Opt. Lett. 15, p.136-138 (1990)

[6.2773] {Sect. 6.15.2} D.C. Edelstein, E.S. Wachmann, C.L. Tang: Brodly tunablehigh repetition rate femtosecond optical parametric oscillator, Appl. Phys.Lett. 54, p.1728-1730 (1989)

[6.2774] {Sect. 6.15.2} T.Y. Fan, R.C. Eckardt, R.L. Byer, J. Nolting, R. Wallen-stein: Visible BaB2O4 optical parametric oscillator pumped at 355 nm by asingle-axial-mode pulsed source, Appl. Phys. Lett. 53, p.2014-2016 (1988)

[6.2775] {Sect. 6.15.2} M.J. Rosker, C.L. Tang: Widely tunable optical parametricoscillator using urea, J. Opt. Soc. Am. B 2, p.691-696 (1985)

[6.2776] {Sect. 6.15.2} S.J. Brosnan, R.L. Byer: Optical Parametric OscillatorThreshold and Linewidth Studies, IEEE J. QE-15, p.415-431 (1979)

[6.2777] {Sect. 6.15.2} V. Wilke, W. Schmidt: Tunable Coherent Radiation SourceCovering a Spectral Range from 185 to 880 nm, Appl Phys. 18, p.177-181(1979)

952 6. Lasers

[6.2778] {Sect. 6.15.3} E. Takahashi, L.L. Losev, T. Tabuchi, Y. Matsumoto, S.Kato, I. Okuda, T. Aota, Y. Owadano: Generation of 30 pure rotationalRaman sidebands using two-color pumping of D-2 gas by KrF laser, OptCommun 257, p.133-138 (2006)

[6.2779] {Sect. 6.15.3} S. Blair, K. Zheng: Microresonator-enhanced Raman ampli-fication, J Opt Soc Am B Opt Physics 23, p.1117-1123 (2006)

[6.2780] {Sect. 6.15.3} A.A. Demidovich, A.S. Grabtchikov, V.A. Lisinetskii, V.N.Burakevich, V.A. Orlovich, W. Kiefer: Continuous-wave Raman generationin a diode-pumped Nd3+:KGd(WO4)(2) laser, Optics Letters 30, p.1701-1703 (2005)

[6.2781] {Sect. 6.15.3} J. Cheng, A.Y.S. Cheng, Y.H. He, H.Y. Zuo, J.G. Yang:Enhancement of stimulated Raman scattering of CS2 by using fluorescenceof R6G, Opt Commun 246, p.141-145 (2005)

[6.2782] {Sect. 6.15.3} F. Benabid, F. Couny, J.C. Knight, T.A. Birks, P.S. Russell:Compact, stable and efficient all-fibre gas cells using hollow-core photoniccrystal fibres, Nature 434, p.488-491 (2005)

[6.2783] {Sect. 6.15.3} D.A. Chestnut, J.R. Taylor: Compact, synchronously diode-pumped tunable fiber Raman source of subpicosecond solitons around 1.6mu m, Optics Letters 29, p.262-264 (2004)

[6.2784] {Sect. 6.15.3} P. Almoro, M. Cadatal, W. Garcia, C. Saloma: Pulsed full-color digital holography with a hydrogen Raman shifter, Appl Opt 43,p.2267-2271 (2004)

[6.2785] {Sect. 6.15.3} A.S. Grabtchikov, R.V. Chulkov, V.A. Orlovich, M. Schmitt,R. Maksimenko, W. Kiefer: Observation of Raman conversion for 70-fspulses in KGd(WO4)2 crystal in the regime of impulsive stimulated Ramanscattering, Optics Letters 28, p.926-928 (2003)

[6.2786] {Sect. 6.15.3} L.L. Losev, J. Song, J.F. Xia, D. Strickland, V.V.Brukhanov: Multifrequency parametric infrared Raman generation inKGd(WO4)(2) crystal with biharmonic ultrashort-pulse pumping, OpticsLetters 27, p.2100-2102 (2002)

[6.2787] {Sect. 6.15.3} S. Uetake, R.S.D. Sihombing, K. Hakuta: Stimulated Ramanscattering of a high-Q liquid-hydrogen droplet in the ultraviolet region,Optics Letters 27, p.421-423 (2002)

[6.2788] {Sect. 6.15.3} P. Cerny, H. Jelinkova: Near-quantum-limit efficiency of pi-cosecond stimulated Raman scattering in BaWO4 crystal, Optics Letters27, p.360-362 (2002)

[6.2789] {Sect. 6.15.3} P. Cerny, H. Jelinkova, T.T. Basiev, P.G. Zverev: Highlyefficient picosecond Raman generators based on the BaWO4 crystal in thenear infrared, visible, and ultraviolet, Ieee J Quantum Electron 38, p.1471-1478 (2002)

[6.2790] {Sect. 6.15.3} J. Findeisen, H.J. Eichler, P. Peuser, A.A. Kaminskii, J.Hulliger: Diode-pumped Ba (NO3)2 and NaBrO3 Raman Lasers, Appl.Phys. B. 70, p.159-162 (2000)

[6.2791] {Sect. 6.15.3} I.G. Koprinkov, A. Suda, P.Q. Wang, K. Midorikawa: High-energy conversion efficiency of transient stimulated Raman scattering inmethane pumped by the fundamental of a femtosecond Ti : sapphire laser,Optics Letters 24, p.1308-1310 (1999)

[6.2792] {Sect. 6.15.3} A.J. Merriam, S.J. Sharpe, H. Xia, D.A. Manuszak, G.Y.Yin, S.E. Harris: Efficient gas-phase VUV frequency up-conversion, IEEEJ Sel Top Quantum Electr 5, p.1502-1509 (1999)

[6.2793] {Sect. 6.15.3} H.M. Pask, J.A. Piper: Efficient all-solid-state yellow lasersource producing 1.2-W average power, Optics Letters 24, p.1490-1492(1999)

6.15.3 Raman Shifter 953

[6.2794] {Sect. 6.15.3} Y. Urata, S. Wada, H. Tashiro, T. Fukuda: Fiber-like lan-thanum tungstate crystal for efficient stimulated Raman scattering, ApplPhys Lett 75, p.636-638 (1999)

[6.2795] {Sect. 6.15.3} H.M. Pask, J.A. Piper: Practical 580nm source based onfrequency doubling of an intracavity- Raman-shifted Nd:YAG laser, OptCommun 148, p.285-288 (1998)

[6.2796] {Sect. 6.15.3} V. Simeonov, V. Mitev, H. vandenBergh, B. Calpini: Ra-man frequency shifting in a CH4:H-2:Ar mixture pumped by the fourthharmonic of a Nd:YAG laser, Appl Opt 37, p.7112-7115 (1998)

[6.2797] {Sect. 6.15.3} D.V. Wick, M.T. Gruneisen, P.R. Peterson: Phase-preserving wavefront amplification at 590 nm by stimulated Raman scat-tering, Opt Commun 148, p.113-116 (1998)

[6.2798] {Sect. 6.15.3} L. Deschoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H.vandenBergh: Experimental investigation of high-power single-pass Ramanshifters in the ultraviolet with Nd:YAG and KrF lasers, Appl Opt 36,p.5026-5043 (1997)

[6.2799] {Sect. 6.15.3} G.G.M. Stoffels, P. Schmidt, N. Dam, J.J. terMeulen: Gener-ation of 224-nm radiation by stimulated Raman scattering of ArF excimerlaser radiation in a mixture of H-2 and D-2, Appl Opt 36, p.6797-6801(1997)

[6.2800] {Sect. 6.15.3} J.P. Watson, H.C. Miller: Raman shifting in the absenceof multiple Stokes orders with a Nd:YAG laser in hydrogen: Evidence ofcoupling between the forward and backward Stokes processes, IEEE J QE-33, p.1288-1293 (1997)

[6.2801] {Sect. 6.15.3} M. Jain, H. Xia, G.Y. Yin, A.J. Merriam, S.E. Harris: Effi-cient nonlinear frequency conversion with maximal atomic coherence, PhysRev Lett 77, p.4326-4329 (1996)

[6.2802] {Sect. 6.15.3} D.J. Brink, H.P. Burger, T.N. de Kock, J.A. Strauss, D.R.Preussler: Importance of focusing geometry with stimulated Raman scat-tering of Nd:YAG laser light in methane, J. Phys. D: Appl. Phys. 19,p.1421-1427 (1986)

[6.2803] {Sect. 6.15.3} K. Ludewigt, K. Birkmann, B. Wellegehausen: Anti-StokesRaman Laser Investigations on Atomic Tl and Sn, Appl Phys B 33, p.133-139 (1984)

[6.2804] {Sect. 6.15.3} R.L. Byer, W.R. Trunta: 16-µm generation by CO2-pumpedrotational Raman scattering in H2, Opt. Lett. 3, p.144-146 (1978)

[6.2805] {Sect. 6.15.3} A.Z. Grasiuk, I.G. Zubarev: High Power Tunable IR RamanLasers, Appl. Phys. 17, p.211-232 (1978)

[6.2806] {Sect. 6.15.3} V. Wilke, W. Schmidt: Tunable UV-Radiation by StimulatedRaman Scattering in Hydrogen, Appl. Phys. 16, p.151-154 (1978)

[6.2807] {Sect. 6.15.3} R.H. Stolen, E.P. Ippen, A.R. Tynes: Raman Oscillation inGlass Optical Waveguide, Appl. Phys. Lett. 20, p.62-64 (1972)

[6.2808] {Sect. 6.15.3} I.S. Grudinin, L. Maleki: Ultralow-threshold Raman lasingwith CaF2 resonators, Optics Letters 32, p.166-168 (2007)

[6.2809] {Sect. 6.15.3} J.D. AniaCastanon, T.J. Ellingham, R. Ibbotson, X. Chen,L. Zhang, S.K. Turitsyn: Ultralong raman fiber lasers as virtually losslessoptical media, Phys Rev Lett 9602, p.3902 (2006)

[6.2810] {Sect. 6.15.3} C.A. Codemard, P. Dupriez, Y. Jeong, J.K. Sahu, M. Ib-sen, J. Nilsson: High-power continuous-wave cladding-pumped Raman fiberlaser, Optics Letters 31, p.2290-2292 (2006)

[6.2811] {Sect. 6.15.3} T.T. Basiev, S.V. Vassiliev, M.E. Doroshenko, V.V. Osiko,V.M. Puzikov, M.B. Kosmyna: Laser and self-Raman-laser oscillations ofPbMoO4:Nd3+ crystal under laser diode pumping, Optics Letters 31, p.65-67 (2006)

954 6. Lasers

[6.2812] {Sect. 6.15.3} A.V. Okishev, J.D. Zuegel: Intracavity-pumped Raman laseraction in a mid-IR, continuous-wave (Cw) MgO:PPLN optical parametricoscillator, Opt Express 14, p.12169-12173 (2006)

[6.2813] {Sect. 6.15.3} X.Y. Dong, P. Shum, N.Q. Ngo, C.C. Chan: MultiwavelengthRaman fiber laser with a continuously-tunable spacing, Opt Express 14,p.3288-3293 (2006)

[6.2814] {Sect. 6.15.3} S. Pearce, C.L.M. Ireland, P.E. Dyer: Solid-state Ramanlaser generating <1 ns, multi-kilohertz pulses at 1096 nm, Opt Commun260, p.680-686 (2006)

[6.2815] {Sect. 6.15.3} A. Hamano, S. Pleasants, M. Okida, M. Itoh, T. Yatagai, T.Watanabe, M. Fujii, Y. Iketaki, K. Yamamoto, T. Omatsu: Highly efficient1181 nm output from a transversely diode-pumped Nd3+ :KGd(WO4)(2)self-stimulating Raman laser, Opt Commun 260, p.675-679 (2006)

[6.2816] {Sect. 6.15.3} G.Y. Sun, Z.P. Cai, C.C. Ye: Dual-order Raman fiber laserwith suppressed low-frequency pump-to- stokes RIN transfer, Opt Com-mun 260, p.645-648 (2006)

[6.2817] {Sect. 6.15.3} A.I. Vodchits, V.P. Kozich, V.A. Orlovich, P.A. Aparlase-vich: Z-scan studies of KYW, KYbW, KGW, and Ba(NO3)(2) crystals,Opt Commun 263, p.304-308 (2006)

[6.2818] {Sect. 6.15.3} S.H. Ding, X.Y. Zhang, Q.P. Wang, F.F. Su, P. Jia, S.T.Li, S.Z. Fan, J. Chang, S.S. Zhang, Z.J. Liu: Theoretical and experimentalstudy on the self-Raman laser with Nd:YVO4 crystal, Ieee J QuantumElectron 42, p.927-933 (2006)

[6.2819] {Sect. 6.15.3} S.H. Ding, X.Y. Zhang, Q.P. Wang, F.F. Su, S.T. Li, S.Z.Fan, Z.J. Liu, J. Chang, S. Zhang, S.M. Wang, Y.R. Liu: Highly efficientRaman frequency converter with strontium tungstate crystal, Ieee J Quan-tum Electron 42, p.78-84 (2006)

[6.2820] {Sect. 6.15.3} Y.F. Chen, K.W. Su, H.J. Zhang, J.Y. Wang, M.H. Jiang:Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavityRaman laser, Optics Letters 30, p.3335-3337 (2005)

[6.2821] {Sect. 6.15.3} H.M. Pask: Continuous-wave, all-solid-state, intracavity Ra-man laser, Optics Letters 30, p.2454-2456 (2005)

[6.2822] {Sect. 6.15.3} R.P. Mildren, H.M. Pask, H. Ogilvy, J.A. Piper: Discretelytunable, all-solid-state laser in the green, yellow, and red, Optics Letters30, p.1500-1502 (2005)

[6.2823] {Sect. 6.15.3} S.H. Ding, X.Y. Zhang, Q.P. Wang, F.F. Su, S.T. Li, S.Z.Fan, Z.J. Liu, J. Chang, S.S. Zhang, S.M. Wang, Y.R. Liu: Theoreticaland experimental research on the multi-frequency Raman converter withKGd(WO4)(2) crystal, Opt Express 13, p.10120-10128 (2005)

[6.2824] {Sect. 6.15.3} D. Georgiev, V.P. Gapontsev, A.G. Dronov, M.Y. Vyatkin,A.B. Rulkov, S.V. Popov, J.R. Taylor: Watts-level frequency doubling ofa narrow line linearly polarized Raman fiber laser to 589 nm, Opt Express13, p.6772-6776 (2005)

[6.2825] {Sect. 6.15.3} Y.C. Zhao, S.D. Jackson: Highly efficient free running cas-caded Raman fiber laser that uses broadband pumping, Opt Express 13,p.4731-4736 (2005)

[6.2826] {Sect. 6.15.3} Y. Feng, K. Ueda: Self-pulsed fiber Raman master oscillatorpower amplifiers, Opt Express 13, p.2611-2616 (2005)

[6.2827] {Sect. 6.15.3} Y.C. Zhao, S.D. Jackson: Highly efficient first order Ramanfibre lasers using very short Ge- doped silica fibres, Opt Commun 253,p.172-176 (2005)

[6.2828] {Sect. 6.15.3} M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D.L.Sivco, A.Y. Cho: Raman injection laser, Nature 433, p.845-848 (2005)

6.15.3 Raman Shifter 955

[6.2829] {Sect. 6.15.3} H.S. Rong, R. Jones, A.S. Liu, O. Cohen, D. Hak, A. Fang,M. Paniccia: A continuous-wave Raman silicon laser, Nature 433, p.725-728(2005)

[6.2830] {Sect. 6.15.3} H.S. Rong, A.S. Liu, R. Jones, O. Cohen, D. Hak, R. Nico-laescu, A. Fang, M. Paniccia: An all-silicon Raman laser, Nature 433, p.292-294 (2005)

[6.2831] {Sect. 6.15.3} Y.F. Chen: Efficient 1521-nm Nd:GdVO4 Raman laser, Op-tics Letters 29, p.2632-2634 (2004)

[6.2832] {Sect. 6.15.3} S.H. Baek, W.B. Roh: Single-mode Raman fiber laser basedon a multimode fiber, Optics Letters 29, p.153-155 (2004)

[6.2833] {Sect. 6.15.3} J.H. Lee, J. Kim, Y.G. Han, S.H. Kim, S.B. Lee: Investiga-tion of Raman fiber laser temperature probe based on fiber Bragg gratingsfor long-distance remote sensing applications, Opt Express 12, p.1747-1752(2004)

[6.2834] {Sect. 6.15.3} R.P. Mildren, M. Convery, H.M. Pask, J.A. Piper, T. Mckay:Efficient, all-solid-state, Raman laser in the yellow, orange and red, OptExpress 12, p.785-790 (2004)

[6.2835] {Sect. 6.15.3} T. Omatsu, Y. Ojima, H.M. Pask, J.A. Piper, P. Dekker:Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)(2) laser, Opt Commun 232, p.327-331 (2004)

[6.2836] {Sect. 6.15.3} J. Simons, H. Pask, P. Dekker, J. Piper: Small-scale, all-solid-state, frequency-doubled intracavity Raman laser producing 5 mWyellow-orange output at 598 nm, Opt Commun 229, p.305-310 (2004)

[6.2837] {Sect. 6.15.3} J.K. Brasseur, R.F. Teehan, P.A. Roos, B. Soucy, D.K. Neu-mann, J.L. Carlsten: High-power deuterium Raman laser at 632 nm, ApplOpt 43, p.1162-1166 (2004)

[6.2838] {Sect. 6.15.3} C.J.S. deMatos, S.V. Popov, J.R. Taylor: Short-pulse, all-fiber, Raman laser with dispersion compensation in a holey fiber, OpticsLetters 28, p.1891-1893 (2003)

[6.2839] {Sect. 6.15.3} H.M. Pask, S. Myers, J.A. Piper, J. Richards, T. McKay:High average power, all-solid-state external resonator Raman laser, OpticsLetters 28, p.435-437 (2003)

[6.2840] {Sect. 6.15.3} G.M.A. Gad, H.J. Eichler, A.A. Kaminskii: Highly efficient1.3-mu m second-Stokes PbWO4 Raman laser, Optics Letters 28, p.426-428(2003)

[6.2841] {Sect. 6.15.3} L.S. Meng, P.A. Roos, J.L. Carlsten: Continuous-wave ro-tational Raman laser in H-2, Optics Letters 27, p.1226-1228 (2002)

[6.2842] {Sect. 6.15.3} J.K. Brasseur, T.L. Henshaw, D.K. Neumann, R.F. Teehan,R.J. Knize: Highly efficient, resonant Raman molecular iodine laser, OpticsLetters 27, p.930-932 (2002)

[6.2843] {Sect. 6.15.3} P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc,K. Kopczynski: Efficient diode-pumped passively Q-switched Raman laseron barium tungstate crystal, Opt Commun 209, p.403-409 (2002)

[6.2844] {Sect. 6.15.3} A.A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi,J. Hanuza, M. Maczka, H.J. Eichler, G.M.A. Gad: Monoclinic bismuthtriborate BiB3O6 – a new efficient X-(2)+X-(3)- nonlinear crystal: multiplestimulated Raman scattering and self-sum- frequency lasing effects, OptCommun 206, p.179-191 (2002)

[6.2845] {Sect. 6.15.3} W.B. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N.Takeuchi, Y. Usuki: Diode-pumped, self-stimulating, passively Q-switchedNd3+: PbWO4 Raman laser, Opt Commun 194, p.401-407 (2001)

[6.2846] {Sect. 6.15.3} A.A. Kaminskii, K. Ueda, H.J. Eichler, Y. Kuwano, H.Kouta, S.N. Bagaev, T.H. Chyba, J.C. Barnes, G.M.A. Gad, T. Murai,

956 6. Lasers

J.R. Lu: Tetragonal vanadates YVO4 and GdVO4 – new efficient chi((3))-materials for Raman lasers, Opt Commun 194, p.201-206 (2001)

[6.2847] {Sect. 6.15.3} J. Findeisen, H.J. Eichler, A.A. Kaminskii: Efficient picosec-ond PbWO4 and two-wavelength KGd (WO4) (2) Raman lasers in the IRand visible, IEEE J QE-35, p.173-178 (1999)

[6.2848] {Sect. 6.15.3} V.I. Karpov, E.M. Dianov, V.M. Paramonov, O.I. Medved-kov, M.M. Bubnov, S.L. Semyonov, S.A. Vasiliev, V.N. Protopopov, O.N.Egorova, V.F. Hopin et al.: Laser-diode-pumped phosphosilicate-fiber Ra-man laser with an output power of 1 W at 1.48 mu m, Optics Letters 24,p.887-889 (1999)

[6.2849] {Sect. 6.15.3} D.I. Chang, J.Y. Lee, H.J. Kong: Raman shifting of Nd:YAPlaser radiation with a Brillouin resonator coupled with a Raman half-resonator, Appl Opt 36, p.1177-1179 (1997)

[6.2850] {Sect. 6.15.3} I.K. Ilev, H. Kumagai, K. Toyoda: Ultraviolet and blue dis-cretely tunable double-pass fiber Raman laser, Appl Phys Lett 70, p.3200-3202 (1997)

[6.2851] {Sect. 6.15.3} I.K. Ilev, H. Kumagai, K. Toyoda: A powerful and widelytunable double-pass fiber Raman laser, Opt Commun 138, p.337-340 (1997)

[6.2852] {Sect. 6.15.3} A. Suda, T. Takasaki, K. Sato, K. Nagasaka, H. Tashiro:High-power generation of 16-mu m second-Stokes pulses in an ortho-deuterium Raman laser, Opt Commun 133, p.185-188 (1997)

[6.2853] {Sect. 6.15.3} I.K. Ilev, H. Kumagai, K. Toyoda: A widely tunable (0.54-1.01 mu m) double-pass fiber Raman laser, Appl Phys Lett 69, p.1846-1848(1996)

[6.2854] {Sect. 6.15.3} J.C. White, D. Henderson: Anti-Stokes Raman laser, Phys.Rev. A 25, p.1226-1229 (1982)

[6.2855] {Sect. 6.15.3} W. Hartig, W. Schmidt: A Broadly Tunable IR WaveguideRaman Laser Pumped by a Dye Laser, Appl. Phys. 18, p.235-241 (1979)

[6.2856] {Sect. 6.15.3} P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor: Efficienttunable H2 Raman laser, Appl. Phys. Lett. 35, p.739-741 (1979)

[6.2857] {Sect. 6.15.3} E.P. Ippen: Low-Power Quasi-cw Raman Oscillator, Appl.Phys. Lett. 16, p.303-305 (1970)

[6.2858] {Sect. 6.16} M. Lenner, A. Fiedler, C. Spielmann: Reliability of laser safetyeye wear in the femtosecond regime, Opt Express 12, p.1329-1334 (2004)

[6.2859] {Sect. 6.16} A. R. Henderson: A Guide to Laser Safety (Chapman & Hall,London, 1997)

[6.2860] {Sect. 6.16} A.M. Clarke: Ocular Hazards. In Handbook of Lasers withSelected Data on Optical Technology (CRC Press, Cleveland 1977)

[6.2861] {Sect. 6.16} W.T. Ham, Jr, H.A. Mueller, J.J. Ruffolo, Jr, A.M. Clarke:Sensitivity of the Retina to Radiation Damage as a Function of Wave-length, Photochemistry and Photobiology 29, p.735-743 (1979)

[6.2862] {Sect. 6.16} A.F. Bais: Absolute spectral measurements of direct solarultraviolet irradiance with a Brewer spectrophotometer, Appl Opt 36,p.5199-5204 (1997)

7.1.5 Light Beam Parameters 957

7. Nonlinear Optical Spectroscopy

[7.1] {Sect. 7.1.5.1} J. Kusba, J.R. Lakowicz: Definition and properties of theemission anisotropy in the absence of cylindrical symmetry of the emissionfield: Application to the light quenching experiments, J Chem Phys 111,p.89-99 (1999)

[7.2] {Sect. 7.1.5.1} I.S. Osad’ko, S.L. Soldatov, A.U. Jalmukhambetov: Theintensity and polarization aspects of photochemical hole burning, Chem.Phys. Lett. 118, p.97-100 (1985)

[7.3] {Sect. 7.1.5.1} F. Pellegrino, A. Dagen, R.R. Alfano: Fluorescence polar-ization anisotropy and kinetics of malachite green measured as a functionof solvent viscosity, Chem. Phys. 67, p.111-117 (1982)

[7.4] {Sect. 7.1.5.1} D. Reiser, A. Laubereau: Picosecond Polarization Spec-troscopy of Dye Molecules, Ber. Bunsenges. Phys. Chem. 86, p.1106-1114(1982)

[7.5] {Sect. 7.1.5.1} M.D. Barkley, A.A. Kowalczyk, L. Brand: Fluorescence de-cay studies of anisotropic rotations of small molecules, J. Chem. Phys. 75,p.3581-3593 (1981)

[7.6] {Sect. 7.1.5.1} D.P. Millar, R. Shah, A.H. Zewail: Picosecond saturationspectroscopy of cresyl violet: Rotational diffusion by a ”sticking” boundarycondition in the liquid phase, Chem. Phys. Lett. 66, p.435-440 (1979)

[7.7] {Sect. 7.1.5.1} A. v. Jena, H.E. Lessing: Rotational Diffusion of Prolateand Oblate Molecules from Absorption Relaxation, Ber. Bunsenges. Phys.Chem. 83, p.181-191 (1979)

[7.8] {Sect. 7.1.5.1} H.E. Lessing, A. von Jena: Orientation of S1-Sn transitionmoments of oxazine dyes from continuous picosecond photometry, Chem.Phys. Lett. 59, p.249-254 (1978)

[7.9] {Sect. 7.1.5.1} H.E. Lessing, A. von Jena: Separation of rotational diffusionand level kinetics in transient absorption spectroscopy, Chem. Phys. Lett.42, p.213-217 (1976)

[7.10] {Sect. 7.1.5.1} H.E. Lessing, A. von Jena, M. Reichert: Orientational aspectof transient absorption in solutions, Chem. Phys. Lett. 36, p.517-522 (1975)

[7.11] {Sect. 7.1.5.1} D.W. Vahey: The effects of molecular reorientation on theabsorption of intense light by organic-dye solutions, Chem. Phys. 10, p.261-270 (1975)

[7.12] {Sect. 7.1.5.1} T.J. Chuang, K.B. Eisenthal: Theory of Fluorescence Depo-larization by Anisotropic Rotational Diffusion, J. Chem. Phys. 57, p.5094-5097 (1972)

[7.13] {Sect. 7.1.5.1} R. Antoine, A.A. TamburelloLuca, P. Hebert, P.F. Brevet,H.H. Girault: Picosecond dynamics of Eosin B at the air/water interfaceby time- resolved second harmonic generation: orientational randomizationand rotational relaxation, Chem Phys Lett 288, p.138-146 (1998)

[7.14] {Sect. 7.1.5.1} R.E. Dipaolo, J.O. Tocho: Polarization anisotropy appliedto the determination of structural changes in the photoisomerization ofDODCI, Chem Phys 206, p.375-382 (1996)

[7.15] {Sect. 7.1.5.1} J.J. Larsen, H. Sakai, C.P. Safvan, I. WendtLarsen, H.Stapelfeldt: Aligning molecules with intense nonresonant laser fields, JChem Phys 111, p.7774-7781 (1999)

[7.16] {Sect. 7.1.5.1} D.S. Wiersma, A. Muzzi, M. Colocci, R. Righini: Time-resolved anisotropic multiple light scattering in nematic liquid crystals,Phys Rev Lett 83, p.4321-4324 (1999)

[7.17] {Sect. 7.1.5.1} Th. Kuhne, P. Vohringer: Transient Anisotropy and Frag-ment Rotational Excitation in the Femtosecond Photodissociation of Triio-dide in Solution, J. Phys. Chem. A 102, p.4177-4185 (1998)

958 7. Nonlinear Optical Spectroscopy

[7.18] {Sect. 7.1.5.2} S. Ashihara, K. Kuroda, Y. OkadaShudo, K. Jarasiunas:Autocorrelation of picosecond pulses in bacteriorhodopsin film using lightself-diffraction from intensity and polarization holograms, Opt Commun165, p.83-89 (1999)

[7.19] {Sect. 7.1.5.2} J.M. Dudley, L.P. Barry, J.D. Harvey, M.D. Thomson, B.C.Thomsen, P.G. Bollond, R. Leonhardt: Complete characterization of ultra-short pulse sources at 1550 nm, IEEE J QE-35, p.441-450 (1999)

[7.20] {Sect. 7.1.5.2} L. Gallmann, D.H. Sutter, N. Matuschek, G. Steinmeyer, U.Keller, C. Iaconis, I.A. Walmsley: Characterization of sub-6-fs optical pulseswith spectral phase interferometry for direct electric-field reconstruction,Optics Letters 24, p.1314-1316 (1999)

[7.21] {Sect. 7.1.5.2} D.J. Kane: Recent progress toward real-time measurementof ultrashort laser pulses, IEEE J QE-35, p.421-431 (1999)

[7.22] {Sect. 7.1.5.2} J.W. Nicholson, F.G. Omenetto, D.J. Funk, A.J. Taylor:Evolving FROGS: phase retrieval from frequency-resolved optical gatingmeasurements by use of genetic algorithms, Optics Letters 24, p.490-492(1999)

[7.23] {Sect. 7.1.5.2} F.G. Omenetto, J.W. Nicholson, A.J. Taylor: Second-harmonic generation-frequency-resolved optical gating analysis of low-intensity shaped femtosecond pulses at 1.55 mu m, Optics Letters 24,p.1780-1782 (1999)

[7.24] {Sect. 7.1.5.2} P.J. Bennett, A. Malinowski, B.D. Rainford, I.R. Shatwell,Y.P. Svirko, N.I. Zheludev: Femtosecond pulse duration measurements uti-lizing an ultrafast nonlinearity of nickel, Opt Commun 147, p.148-152 (1998)

[7.25] {Sect. 7.1.5.2} M. Drabbels, G.M. Lankhuijzen, L.D. Noordam: Demonstra-tion of a far-infrared streak camera, IEEE J QE-34, p.2138-2144 (1998)

[7.26] {Sect. 7.1.5.2} J.K. Ranka, A.L. Gaeta, A. Baltuska, M.S. Pshenichnikov,D.A. Wiersma: Autocorrelation measurement of 6-fs pulses based on thetwo-photon-induced photocurrent in a GaAsP photodiode, Optics Letters22, p.1344-1346 (1997)

[7.27] {Sect. 7.1.5.2} K.W. Delong, D.N. Fittinghoff, R. Trebino: Practical issuesin ultrashort-laser-pulse measurement using frequency-resolved optical gat-ing, IEEE J QE-32, p.1253-1264 (1996)

[7.28] {Sect. 7.1.5.2} Y.M. Li, R. Fedosejevs: Visible single-shot autocorrelator inBaF2 for subpicosecond KrF laser pulses, Appl Opt 35, p.2583-2586 (1996)

[7.29] {Sect. 7.1.5.2} B. LutherDavies, M. Samoc, J. Swiatkiewicza, A. Samoc,M. Woodruff, R. Trebino, K.W. Delong: Diagnostics of femtosecond laserpulses using films of poly (p-phenylenevinylene), Opt Commun 131, p.301-306 (1996)

[7.30] {Sect. 7.1.5.2} A.V. Vinogradov, J. Janszky, T. Kobayashi: A single-molecule interferometer for measurement of femtosecond laser pulse du-ration, Opt Commun 127, p.223-229 (1996)

[7.31] {Sect. 7.1.5.2} I. Will, P. Nickles, M. Schnuerer, M. Kalashnikov, W. Sander:Compact FROG system useful for measurement of multiterawatt laserpulses, Opt Commun 132, p.101-106 (1996)

[7.32] {Sect. 7.1.5.2} D.R. Yankelevich, P. Pretre, A. Knoesen, G. Taft, M.M.Murnane, H.C. Kapteyn, R.J. Twieg: Molecular engineering of polymerfilms for amplitude and phase measurements of Ti:sapphire femtosecondpulses, Optics Letters 21, p.1487-1489 (1996)

[7.33] {Sect. 7.1.5.2} A. Braun, J.V. Rudd, H. Cheng, G. Mourou, D. Kopf, I.D.Jung, K.J. Weingarten, U. Keller: Characterization of short-pulse oscillatorsby means of a high-dynamic-range autocorrelation measurement, OpticsLetters 20, p.1889-1891 (1995)

7.1.5 Light Beam Parameters 959

[7.34] {Sect. 7.1.5.2} G. Taft, A. Rundquist, M.M. Murnane, H.C. Kapteyn, K.W.Delong, R. Trebino, I.P. Christov: Ultrashort optical waveform measure-ments using frequency resolved optical gating, Optics Letters 20, p.743-745(1995)

[7.35] {Sect. 7.1.5.2} G. Szabo, A. Muller: A sensitive single shot method to de-termine duration and chirp of ultrashort pulses with a streak camera, Opt.Comm. 82, p.56-62 (1991)

[7.36] {Sect. 7.1.5.2} S.A. Arakelian, R.N. Gyuzalian, S.B. Sogomonian: Com-ments of the Picosecond Pulse Width Measurement by the Single-Shot Sec-ond Harmonic Beam Technique, Opt. Comm. 44, p.67-72 (1982)

[7.37] {Sect. 7.1.5.2} A.K. Sharma, R.K. Patidar, M. Raghuramaiah, P.A. Naik,P.D. Gupta: Measuring pulse-front tilt in ultrashort pulse laser beams with-out ambiguity of its sign using single-shot tilted pulse-front autocorrelator,Opt Express 14, p.13131-13141 (2006)

[7.38] {Sect. 7.1.5.2} F. Theberge, S.M. Sharifi, S.L. Chin, H. Schroder: Simple 3-D characterization of ultrashort laser pulses, Opt Express 14, p.10125-10131(2006)

[7.39] {Sect. 7.1.5.2} I. AmatRoldan, D. Artigas, I.G. Cormack, P. LozaAlvarez:Simultaneous analytical characterisation of two ultrashort laser pulses usingspectrally resolved interferometric correlations, Opt Express 14, p.4538-4551 (2006)

[7.40] {Sect. 7.1.5.2} C.V. Filip, C. Toth, W.P. Leemans: Optical cross-correlatorbased on supercontinuum generation, Opt Express 14, p.2512-2519 (2006)

[7.41] {Sect. 7.1.5.2} A.K. Sharma, M. Raghuramaiah, P.A. Naik, P.D. Gupta: Useof commercial grade light emitting diode in auto-correlation measurementsof femtosecond and picosecond laser pulses at 1054 nm, Opt Commun 246,p.195-204 (2005)

[7.42] {Sect. 7.1.5.2} G. Figueira, L. Cardoso, N. Lopes, J. Wemans: Mirrorlesssingle-shot tilted-pulse-front autocorrelator, J Opt Soc Am B Opt Physics22, p.2709-2714 (2005)

[7.43] {Sect. 7.1.5.2} I.A. Heisler, R.R.B. Correia, S.L.S. Cunha: Characterizationof ultrashort pulses by a modified grating- eliminated no-nonsense observa-tion of ultrafast incident laser light E fields (GRENOUILLE) method, ApplOpt 44, p.3377-3382 (2005)

[7.44] {Sect. 7.1.5.2} S. Akturk, M. Kimmel, P. OShea, R. Trebino: Extremelysimple device for measuring 20-fs pulses, Optics Letters 29, p.1025-1027(2004)

[7.45] {Sect. 7.1.5.2} A.K. Sharma, P.A. Naik, P.D. Gupta: Simple and sensi-tive method for visual detection of temporal asymmetry of ultrashort laserpulses, Opt Express 12, p.1389-1396 (2004)

[7.46] {Sect. 7.1.5.2} M.A.C. Potenza, S. Minardi, J. Trull, G. Blasi, D. Salerno,A. Varanavicius, A. Piskarskas, P. DiTrapani: Three dimensional imagingof short pulses, Opt Commun 229, p.381-390 (2004)

[7.47] {Sect. 7.1.5.2} G.G. Paulus, F. Lindner, H. Walther, A. Baltuska, E.Goulielmakis, M. Lezius, F. Krausz: Measurement of the phase of few-cyclelaser pulses – art. no. 253004, Phys Rev Lett 9125, p.3004 (2003)

[7.48] {Sect. 7.1.5.2} V.S. Yakovlev, A. Scrinzi: High harmonic imaging of few-cycle laser pulses – art. no. 153901, Phys Rev Lett 9115, p.3901 (2003)

[7.49] {Sect. 7.1.5.2} S. Akturk, M. Kimmel, R. Trebino, S. Naumov, E. Sorokin,I.T. Sorokina: Measuring several-cycle 1.5-mu m pulses using frequency-resolved optical gating, Opt Express 11, p.3461-3466 (2003)

[7.50] {Sect. 7.1.5.2} T. Hirayama, M. SheikBahae: Real-time chirp diagnostic forultrashort laser pulses, Optics Letters 27, p.860-862 (2002)

960 7. Nonlinear Optical Spectroscopy

[7.51] {Sect. 7.1.5.2} C. Dorrer, E.M. Kosik, I.A. Walmsley: Direct space-timecharacterization of the electric fields of ultrashort optical pulses, OpticsLetters 27, p.548-550 (2002)

[7.52] {Sect. 7.1.5.2} K. Ohno, T. Tanabe, F. Kannari: Adaptive pulse shapingof phase and amplitude of an amplified femtosecond pulse laser by directreference to frequency-resolved optical gating traces, J Opt Soc Am B OptPhysics 19, p.2781-2790 (2002)

[7.53] {Sect. 7.1.5.2} L.A. Jiang, S.T. Wong, M.E. Grein, E.P. Ippen, H.A. Haus:Measuring timing jitter with optical cross correlations, Ieee J QuantumElectron 38, p.1047-1052 (2002)

[7.54] {Sect. 7.1.5.2} M. Richter, U. Kroth, A. Gottwald, C. Gerth, K. Tiedtke,T. Saito, I. Tassy, K. Vogler: Metrology of pulsed radiation for 157-nmlithography, Appl Opt 41, p.7167-7172 (2002)

[7.55] {Sect. 7.1.5.2} M. Hosoda, S. Aoshima, M. Fujimoto, Y. Tsuchiya: Fem-tosecond snapshot imaging of propagating light itself, Appl Opt 41, p.2308-2317 (2002)

[7.56] {Sect. 7.1.5.2} Z. Sacks, G. Mourou, R. Danielius: Adjusting pulse-front tiltand pulse duration by use of a single-shot autocorrelator, Optics Letters 26,p.462-464 (2001)

[7.57] {Sect. 7.1.5.2} G.G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli,S. Stagira, E. Priori, S. DeSilvestri: Absolute-phase phenomena in photoion-ization with few-cycle laser pulses, Nature 414, p.182-184 (2001)

[7.58] {Sect. 7.1.5.2} L. Lei, J.H. Wen, Z.X. Jiao, Q. Shou, Y. Wu, L.N. Liu, T.S.Lai, W.Z. Lin: Fringe-free spectral phase interferometry for direct electric-field reconstruction, Acta Phys Sin Chinese Ed, p.244-248 (2006)

[7.59] {Sect. 7.1.5.2} G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A.S. Wyatt,I.A. Walmsley, G. Steinmeyer: Advanced methods for the characterizationof few-cycle light pulses: a comparison, Appl Phys B Lasers Opt, p.511-519(2006)

[7.60] {Sect. 7.1.5.2} J. Wemans, G. Figueira, N. Lopes, L. Cardoso: Self-referencing spectral phase interferometry for direct electric- field reconstruc-tion with chirped pulses, Optics Letters, p.2217-2219 (2006)

[7.61] {Sect. 7.1.5.2} J.H. Wen, L. Lei, Z.X. Jiao, T.S. Lai, W.Z. Lin: Compari-son of accuracy between two spectral phase interferometric methods in thecharacterization of complex pulses, Acta Phys Sin Chinese Ed, p.1883-1888(2006)

[7.62] {Sect. 7.1.5.2} M. Lelek, F. Louradour, A. Barthelemy, C. Froehly: Time re-solved spectral interferometry for single shot femtosecond characterization,Opt Commun, p.124-129 (2006)

[7.63] {Sect. 7.1.5.2} G. Stibenz, G. Steinmeyer: Structures of interferometricfrequency-resolved optical gating, Ieee J Sel Top Quantum Electr, p.286-296(2006)

[7.64] {Sect. 7.1.5.2} P. Baum, E. Riedle: Design and calibration of zero-additional-phase SPIDER, J Opt Soc Am B Opt Physics, p.1875-1883(2005)

[7.65] {Sect. 7.1.5.2} B. Resan, L. Archundia, P.J. Delfyett: FROG measured high-power 185-fs pulses generated by down-chirping of the dispersion-managedbreathing-mode semiconductor mode-locked laser, Ieee Photonic TechnolLett, p.1384-1386 (2005)

[7.66] {Sect. 7.1.5.2} P. Baum, S. Lochbrunner, E. Riedle: Zero-additional-phaseSPIDER: full characterization of visible and sub-20-fs ultraviolet pulses,Optics Letters, p.210-212 (2004)

7.1.5 Light Beam Parameters 961

[7.67] {Sect. 7.1.5.2} L. Chai, T.Y. He, S.J. Yang, Q.Y. Wang, Z.G. Zhang: Op-timization of the parameters for a SPIDER, Acta Phys Sin Chinese Ed,p.114-118 (2004)

[7.68] {Sect. 7.1.5.2} I.A. Roldan, I.G. Cormack, P. LozaAlvarez, E.J. Gualda, D.Artigas: Ultrashort pulse characterisation with SHG collinear-FROG, OptExpress, p.1169-1178 (2004)

[7.69] {Sect. 7.1.5.2} J.Y. Zhang, C.K. Lee, J.Y. Huang, C.L. Pan: Sub femto-joulesensitive single-shot OPA-XFROG and its application in study of white-light supercontinuum generation, Opt Express, p.574-581 (2004)

[7.70] {Sect. 7.1.5.2} T. Sekikawa, T. Kanai, S. Watanabe: Frequency-resolvedoptical gating of femtosecond pulses in the extreme ultraviolet – art. no.103902, Phys Rev Lett, p.3902 (2003)

[7.71] {Sect. 7.1.5.2} Z.H. Wang, Z.Y. Wei, H. Teng, P. Wang, J. Zhang: Mea-surement of femtosecond laser pulses using SHG frequency-resolved opticalgating technique, Acta Phys Sin Chinese Ed, p.362-366 (2003)

[7.72] {Sect. 7.1.5.2} P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U.Keller, E. Riedle: Real-time characterization and optimal phase control oftunable visible pulses with a flexible compressor, Appl Phys B Lasers Opt,p.S219-S224 (2002)

[7.73] {Sect. 7.1.5.2} A.C. Bernstein, T.S. Luk, T.R. Nelson, A. McPherson, J.C.Diels, S.M. Cameron: Asymmetric ultra-short pulse splitting measured inair using FROG, Appl Phys B Lasers Opt, p.119-122 (2002)

[7.74] {Sect. 7.1.5.2} C. Dorrer, I.A. Walmsly: Precision and consistency criteriain spectral phase interferometry for direct electric-field reconstruction, JOpt Soc Am B Opt Physics, p.1030-1038 (2002)

[7.75] {Sect. 7.1.5.2} P.A. Lacourt, J.M. Dudley, J.M. Merolla, H. Porte, J.P.Goedgebuer, W.T. Rhodes: Milliwatt-peak-power pulse characterization at1.55 mu m by wavelength-conversion frequency-resolved optical gating, Op-tics Letters, p.863-865 (2002)

[7.76] {Sect. 7.1.5.2} F.G. Omenetto, Y.J. Chung, D. Yarotski, T. Schaefer, I.Gabitov, A.J. Taylor: Phase analysis of nonlinear femtosecond pulse prop-agation and self- frequency shift in optical fibers, Opt Commun, p.191-196(2002)

[7.77] {Sect. 7.1.5.2} P. OShea, M. Kimmel, R. Trebino: Increased phase-matchingbandwidth in simple ultrashort-laser-pulse measurements, J Opt B Quan-tum Semicl Opt, p.44-48 (2002)

[7.78] {Sect. 7.1.5.2} M. Sato, M. Suzuki, M. Shiozawa, T. Tanabe, K. Ohno, F.Kannari: Adaptive pulse shaping of femtosecond laser pulses in amplitudeand phase through a single-mode fiber by referring to frequency-resolvedoptical gating patterns, Jpn J Appl Phys Pt 1, p.3704-3709 (2002)

[7.79] {Sect. 7.1.5.2} M. ZavelaniRossi, D. Polli, G. Cerullo, S. DeSilvestri, L.Gallmann, G. Steinmeyer, U. Keller: Few-optical-cycle laser pulses by OPA:broadband chirped mirror compression and SPIDER characterization, ApplPhys B Lasers Opt, p.S245-S251 (2002)

[7.80] {Sect. 7.1.5.2} C. Dorrer, M. Joffre: Characterization of the spectral phaseof ultrashort light pulses, C R Acad Sci Ser Iv Phys Astr, p.1415-1426(2001)

[7.81] {Sect. 7.1.5.2} A. Yabushita, T. Fuji, T. Kobayashi: SHG FROG andXFROG methods for phase/intensity characterization of pulses propagatedthrough an absorptive optical medium, Opt Commun, p.227-232 (2001)

[7.82] {Sect. 7.1.5.2} T.M. Shuman, M.E. Anderson, J. Bromage, C. Iaconis, L.Waxer, I.A. Walmsley: Real-time SPIDER: ultrashort pulse characteriza-tion at 20 Hz, Opt Express, p.134-143 (1999)

962 7. Nonlinear Optical Spectroscopy

[7.83] {Sect. 7.1.5.2} Z. Cheng, A. Furbach, S. Sartania, M. Lenzner, C. Spiel-mann, F. Krausz: Amplitude and chirp characterization of high-power laserpulses in the 5-fs regime, Optics Letters, p.247-249 (1999)

[7.84] {Sect. 7.1.5.2} P.J. Delfyett, H. Shi, S. Gee, I. Nitta, J.C. Connolly, G.A.Alphonse: Joint time-frequency measurements of mode-locked semiconduc-tor diode lasers and dynamics using fuequency-resolved optical gating, IeeeJ Quantum Electron, p.487-500 (1999)

[7.85] {Sect. 7.1.5.2} J.M. Dudley, S.F. Boussen, D.M.J. Cameron, J.D. Harvey:Complete characterization of a self-mode-looked Ti : sapphire laser in thevicinity of zero group-delay dispersion by frequency- resolved optical gating,Appl Opt, p.3308-3315 (1999)

[7.86] {Sect. 7.1.5.2} J.M. Dudley, L.P. Barry, J.D. Harvey, M.D. Thomson, B.C.Thomsen, P.G. Bollond, R. Leonhardt: Complete characterization of ultra-short pulse sources at 1550 nm, Ieee J Quantum Electron, p.441-450 (1999)

[7.87] {Sect. 7.1.5.2} H.K. Eaton, T.S. Clement, A.A. Zozulya, S.A. Diddams:Investigating nonlinear femtosecond pulse propagation with frequency- re-solved optical gating, Ieee J Quantum Electron, p.451-458 (1999)

[7.88] {Sect. 7.1.5.2} D.N. Fittinghoff, A.C. Millard, J.A. Squier, M. Muller:Frequency-resolved optical gating measurement of ultrashort pulses pass-ing through a high numerical aperture objective, Ieee J Quantum Electron,p.479-486 (1999)

[7.89] {Sect. 7.1.5.2} D.J. Kane: Recent progress toward real-time measurementof ultrashort laser pulses, Ieee J Quantum Electron, p.421-431 (1999)

[7.90] {Sect. 7.1.5.2} J.W. Nicholson, F.G. Omenetto, D.J. Funk, A.J. Taylor:Evolving FROGS: phase retrieval from frequency-resolved optical gatingmeasurements by use of genetic algorithms, Optics Letters, p.490-492 (1999)

[7.91] {Sect. 7.1.5.2} F.G. Omenetto, B.P. Luce, D. Yarotski, A.J. Taylor: Obser-vation of chirped soliton dynamics at lambda=1.55 mu m in a single-modeoptical fiber with frequency-resolved optical gating, Optics Letters, p.1392-1394 (1999)

[7.92] {Sect. 7.1.5.2} C.W. Siders, J.L.W. Siders, F.G. Omenetto, A.J. Taylor:Multipulse interferometric frequency-resolved optical gating, Ieee J Quan-tum Electron, p.432-440 (1999)

[7.93] {Sect. 7.1.5.2} K.H. Hong, Y.H. Cha, C.H. Nam, J.D. Park: Temporal char-acterization of a femtosecond terawatt Ti:Sapphire laser using frequency-resolved optical gating, J Korean Phys Soc, p.315-319 (1998)

[7.94] {Sect. 7.1.5.2} S.P. Nikitin, Y.L. Li, T.M. Antonsen, H.M. Milchberg:Ionization-induced pulse shortening and retardation of high intensity fem-tosecond laser pulses, Opt Commun, p.139-144 (1998)

[7.95] {Sect. 7.1.5.2} Z.E. Penman, T. Schittkowski, W. Sleat, D.T. Reid, W. Sib-bett: Experimental comparison of conventional pulse characterisation tech-niques and second-harmonic-generation frequency-resolved optical gating,Opt Commun, p.297-300 (1998)

[7.96] {Sect. 7.1.5.2} M.D. Thomson, J.M. Dudley, L.P. Barry, J.D. Harvey: Com-plete pulse characterization at 1.5 mu m by cross-phase modulation in op-tical fibers, Optics Letters, p.1582-1584 (1998)

[7.97] {Sect. 7.1.5.2} D.J. Kane, G. Rodriguez, A.J. Taylor, T.S. Clement: Simul-taneous measurement of two ultrashort laser pulses from a single spectro-gram in a single shot, J Opt Soc Am B-Opt Physics, p.935-943 (1997)

[7.98] {Sect. 7.1.5.2} B.A. Richman, M.A. Krumbugel, R. Trebino: Temporal char-acterization of mid-IR free-electron-laser pulses by frequency-resolved opti-cal gating, Optics Letters, p.721-723 (1997)

7.1.5 Light Beam Parameters 963

[7.99] {Sect. 7.1.5.2} K.W. Delong, D.N. Fittinghoff, R. Trebino: Practical issuesin ultrashort-laser-pulse measurement using frequency-resolved optical gat-ing, Ieee J Quantum Electron, p.1253-1264 (1996)

[7.100] {Sect. 7.1.5.2} K. Michelmann, T. Feurer, R. Fernsler, R. Sauerbrey: Fre-quency resolved optical gating in the UV using the electronic Kerr effect,Appl Phys B-Lasers Opt, p.485-489 (1996)

[7.101] {Sect. 7.1.5.2} T. Tsang, M.A. Krumbugel, K.W. Delong, D.N. Fittinghoff,R. Trebino: Frequency-resolved optical-gating measurements of ultrashortpulses using surface third-harmonic generation, Optics Letters, p.1381-1383(1996)

[7.102] {Sect. 7.1.5.2} I. Will, P. Nickles, M. Schnuerer, M. Kalashnikov, W. Sander:Compact FROG system useful for measurement of multiterawatt laserpulses, Opt Commun, p.101-106 (1996)

[7.103] {Sect. 7.1.5.2} K.W. Delong, C.L. Ladera, R. Trebino, B. Kohler, K.R.Wilson: Ultrashort pulse measurement using noninstantaneous nonlinear-ities: Raman effects in frequency resolved optical gating, Optics Letters,p.486-488 (1995)

[7.104] {Sect. 7.1.5.2} D.N. Fittinhoff, K.W. Delong, R. Trebino, C.L. Ladera:Noise sensitivity in frequency resolved optical-gating measurements of ul-trashort pulses, J Opt Soc Am B-Opt Physics, p.1955-1967 (1995)

[7.105] {Sect. 7.1.5.2} B. Kohler, V.V. Yakovlev, K.R. Wilson, J. Squier, K.W.Delong, R. Trebino: Phase and intensity characterization of femtosecondpulses from a chirped pulse amplifier by frequency resolved optical gating,Optics Letters, p.483-485 (1995)

[7.106] {Sect. 7.1.5.2} K.W. Delong, R. Trebino, J. Hunter, W.E. White: FrequencyResolved Optical Gating with the Use of 2nd Harmonic Generation, J OptSoc Am B-Opt Physics, p.2206-2215 (1994)

[7.107] {Sect. 7.1.5.3} Z. Cheng, A. Furbach, S. Sartania, M. Lenzner, C. Spiel-mann, F. Krausz: Amplitude and chirp characterization of high-power laserpulses in the 5-fs regime, Optics Letters 24, p.247-249 (1999)

[7.108] {Sect. 7.1.5.3} T. Udem, J. Reichert, R. Holzwarth, T.W. Hansch: Accuratemeasurement of large optical frequency differences with a mode-locked laser,Optics Letters 24, p.881-883 (1999)

[7.109] {Sect. 7.1.6.2} W.T. Simpson, D.L. Peterson: Coupling Strength for Res-onance Force Transfer of Electronic Energy in Van der Waals Solids, J.Chem. Phys. 26, p.588-593 (1957)

[7.110] {Sect. 7.1.6.2} F. Rotermund, R. Weigand, A. Penzkofer: J-aggregation anddisaggregation of indocyanine green in water, Chem Phys 220, p.385-392(1997)

[7.111] {Sect. 7.2.0} H. -H. Perkampus: UV-VIS Spectroscopy and Its Applications(Springer, Berlin, Heidelberg, New York, 1992)

[7.112] {Sect. 7.2.0} S. Svanberg: Atomic and Molecular Spectroscopy (Springer,Berlin, Heidelberg, New York, 1997)

[7.113] {Sect. 7.2.0} Y.B. He, B.J. Orr: Ringdown and cavity-enhanced absorptionspectroscopy using a continuous-wave tunable diode laser and a rapidlyswept optical cavity, Chem Phys Lett 319, p.131-137 (2000)

[7.114] {Sect. 7.2.0} D.G. Lancaster, R. Weidner, D. Richter, F.K. Tittel, J.Limpert: Compact CH4 sensor based on difference frequency mixing ofdiode lasers in quasi-phasematched LiNbO3, Opt Commun 175, p.461-468(2000)

[7.115] {Sect. 7.2.0} T.J. Latz, G. Weirauch, V.M. Baev, P.E. Toschek: Externalphotoacoustic detection of a trace vapor inside a multimode laser, Appl Opt38, p.2625-2629 (1999)

964 7. Nonlinear Optical Spectroscopy

[7.116] {Sect. 7.2.0} A. Garnache, A. Campargue, A.A. Kachanov, F. Stoeckel: In-tracavity laser absorption spectroscopy near 9400 cm (-1) with a Nd:glasslaser: application to (N2O)-N-14-O-16, Chem Phys Lett 292, p.698-704(1998)

[7.117] {Sect. 7.2.0} U. Willamowski, D. Ristau, E. Welsch: Measuring the absoluteabsorptance of optical laser components, Appl Opt 37, p.8362-8370 (1998)

[7.118] {Sect. 7.2.0} C. Zander, K.H. Drexhage, K.T. Han, J. Wolfrum, M. Sauer:Single-molecule counting and identification in a microcapillary, Chem PhysLett 286, p.457-465 (1998)

[7.119] {Sect. 7.2.0} M.S. Baptista, C.D. Tran: Near-infrared thermal lens spec-trometer based on an erbium-doped fiber amplifier and an acousto-optictunable filter, and its application in the determination of nucleotides, ApplOpt 36, p.7059-7065 (1997)

[7.120] {Sect. 7.2.0} M.J. Fernee, P.F. Barker, A.E.W. Knight, H. RubinszteinDun-lop: Infrared seeded parametric four-wave mixing for sensitive detection ofmolecules, Phys Rev Lett 79, p.2046-2049 (1997)

[7.121] {Sect. 7.2.0} L. Lehr, P. Hering: Quantitative nonlinear spectroscopy: Adirect comparison of degenerate four-wave mixing with cavity ring-downspectroscopy applied to NaH, IEEE J QE-33, p.1465-1473 (1997)

[7.122] {Sect. 7.2.0} Y. Oki, K. Furukawa, M. Maeda: Extremely sensitive Na de-tection in pure water by laser ablation atomic fluorescence spectroscopy,Opt Commun 133, p.123-128 (1997)

[7.123] {Sect. 7.2.0} D. Romanini, A.A. Kachanov, F. Stoeckel: Diode laser cavityring down spectroscopy, Chem Phys Lett 270, p.538-545 (1997)

[7.124] {Sect. 7.2.1} I. Derzy, V.A. Lozovsky, S. Cheskis: Absorption cross-sectionsand absolute concentration of singlet methylene in methane/air flames,Chem Phys Lett 313, p.121-128 (1999)

[7.125] {Sect. 7.2.1} A.C.R. Pipino: Ultrasensitive surface spectroscopy with aminiature optical resonator, Phys Rev Lett 83, p.3093-3096 (1999)

[7.126] {Sect. 7.2.1} P.H.S. Ribeiro, C. Schwob, A. Maitre, C. Fabre: Sub-shot-noise high-sensitivity spectroscopy with optical parametric oscillator twinbeams, Optics Letters 22, p.1893-1895 (1997)

[7.127] {Sect. 7.2.1} C.T. Hansen, S.C. Wilks, P.E. Young: Spectral evidence forcollisionless absorption in subpicosecond laser- solid interactions, Phys RevLett 83, p.5019-5022 (1999)

[7.128] {Sect. 7.2.4} R. Menzel, W. Kessler: Band Shape Analysis of the AbsorptionBands of Four Triphenylmethane Dyes Using a Self Starting Routine, J.Mol. Liquids 39, p.279-298 (1988)

[7.129] {Sect. 7.2.4} J. Humlicek: Optimized Computation of the Voigt and Com-plex Probability Functions, J. Quant. Spectrosc. Radiat. Transfer 27, p.437-444 (1982)

[7.130] {Sect. 7.2.4} R. Kubo: A stochastic theory of line shape, Adv. Chem. Phys.15, p.101-127 (1969)

[7.131] {Sect. 7.2.4} B.H. Armstrong: Spectrum Line Profiles: The Voigt Function,J. Quant. Spectrosc. Radiat. Transfer 7, p.61-88 (1967)

[7.132] {Sect. 7.2.4} D. Biswas, B. Ray, S. Dutta, P.N. Ghosh: Diode laser spectro-scopic measurement of line shape of (1 + 3 3) band transitions of acetylene,Appl. Phys. B 68, p.1125-1130 (1999)

[7.133] {Sect. 7.2.4} Y. Makdisi: Spectral line broadening of Sr under the influenceof collisions with foreign gas perturbers, Opt Commun 142, p.215-219 (1997)

[7.134] {Sect. 7.2.4} R. Sander, R. Menzel, K.-H. Naumann: Solvent InducedBroadening of Fluorescent Electronic Transitions of Para-Terphenyl, Ber.Bunsenges. Phys. Chem. 96, p.188-194 (1992)

7.2.4 Further Evaluation of Absorption Spectra 965

[7.135] {Sect. 7.2.4} E.T.J. Nibbering, D.A. Wiersma, K. Duppen: FemtosecondNon-Markovian Optical Dynamics in Solution, Phys. Rev. Lett. 66, p.2464-2467 (1991)

[7.136] {Sect. 7.2.4} E.T.J. Nibbering, K. Duppen, D.A. Wiersma: Optical dephas-ing in solution: A line shape and resonance light scattering study of azulenein isopentane and cyclohexane, J. Chem. Phys. 93, p.5477-5484 (1990)

[7.137] {Sect. 7.2.4} E.G. Myers, H.S. Margolis, J.K. Thompson, M.A. Farmer, J.D.Silver, M.R. Tarbutt: Precision measurement of the 1s2p P-3 (2)-P-3 (1)fine structure interval in heliumlike fluorine, Phys Rev Lett 82, p.4200-4203(1999)

[7.138] {Sect. 7.2.4} B. Abel, A. Charvat, S.F. Deppe: Lifetimes of the lowest tripletstate of ozone by intracavity laser absorption spectroscopy, Chem Phys Lett277, p.347-355 (1997)

[7.139] {Sect. 7.2.4} K.S.E. Eikema, W. Ubachs, W. Vassen, W. Hogervorst: Pre-cision measurements in helium at 58 nm: Ground state lamb shift and the1 (1)S-2 (1)P transition isotope shift, Phys Rev Lett 76, p.1216-1219 (1996)

[7.140] {Sect. 7.3.0} J. R. Lakowicz: Principles of Fluorescence Spectroscopy(Plenum Press, New York, London, 1983)

[7.141] {Sect. 7.3.0} J. R. Lakowicz: Topics in Fluorescence Spectroscopy, Vol. 1:Techniques (Plenum Press New York, London, 1991)

[7.142] {Sect. 7.3.0} J. R. Lakowicz: Topics in Fluorescence Spectroscopy, Vol. 2:Principles (Plenum Press New York, London, 1991)

[7.143] {Sect. 7.3.0} J. R. Lakowicz: Topics in Fluorescence Spectroscopy, Vol. 3;Biomedical Applications (Plenum Press New York, London, 1992)

[7.144] {Sect. 7.3.2} J. Enderlein: New approach to fluorescence spectroscopy ofindividual molecules on surfaces, Phys Rev Lett 83, p.3804-3807 (1999)

[7.145] {Sect. 7.3.2} K. Palewska, Z. Ruziewicz, H. Chojnacki: Shpolskii spectraand photophysical properties of dinaphtho (1,2-a;1’,2’-h)Anthracene – AStrongly non-planar, overcrowded aromatic hydrocarbon, J. Luminesc. 39,p.75-85 (1987)

[7.146] {Sect. 7.3.2} G. Swiatkowski, R. Menzel, W. Rapp: Hindrance of the Ro-tational Relaxation in the Excited Singlet State of Biphenyl and Para-Terphenyl in Cooled Solutions by Methyl Substituents, J. Luminesc. 37,p.183-189 (1987)

[7.147] {Sect. 7.3.2} R.A. Lampert, S.R. Meech, J. Metcalfe, D. Phillips: The Re-fractive Index Correction to the Radiative Rate Constant in FluorescenceLifetime Measurements, Chem. Phys. Lett. 94, p.137-140 (1983)

[7.148] {Sect. 7.3.2} F.J. Busselle, N.D. Haig, C. Lewis: Reply to the comment onthe refractive index correction in luminescence spectroscopy, Chem. Phys.Lett. 88, p.128-130 (1982)

[7.149] {Sect. 7.3.2} L.A. Bykovskaya, R.I. Personov, B.M. Kharlamov: Lumines-cence of solutions of 9-aminoacridine at 4.2 K: Sharp narrowing of spectralbands with laser excitation, Chem. Phys. Lett. 27, p.80-83 (1974)

[7.150] {Sect. 7.3.2} R.I. Personov, E.I Al’Shits, L.A. Bykovskaya: The effect offine structure appearance in laser-excited fluorescence spectra of organiccompounds in solid solutions, Opt. Comm. 6, p.169-173 (1972)

[7.151] {Sect. 7.3.2} J.L. Richards, S.A. Rice: Study of Impurity-Host Coupling inShpolskii Matrices, J. Chem. Phys. 54, p.2014-2023 (1971)

[7.152] {Sect. 7.3.2} J.M.G. Levins, D.M. Benton, J. Billowes, P. Campbell, T.G.Cooper, P. Dendooven, D.E. Evans, D.H. Forest, I.S. Grant, J.A.R. Grif-fith et al.: First on-line laser spectroscopy of radioisotopes of a refractoryelement, Phys Rev Lett 82, p.2476-2479 (1999)

[7.153] {Sect. 7.3.2} A.I. Lvovsky, S.R. Hartmann, F. Moshary: Omnidirectionalsuperfluorescence, Phys Rev Lett 82, p.4420-4423 (1999)

966 7. Nonlinear Optical Spectroscopy

[7.154] {Sect. 7.3.2} M. Fukushima: Laser induced fluorescence spectroscopy ofAlNC/AlCN in supersonic free expansions, Chem Phys Lett 283, p.337-344(1998)

[7.155] {Sect. 7.3.3} K. Ohta, T.J. Kang, K. Tominaga, K. Yoshihara: Ultrafastrelaxation processes from a higher excited electronic state of a dye moleculein solution: a femtosecond time-resolved fluorescence study, Chem Phys 242,p.103-114 (1999)

[7.156] {Sect. 7.3.3} T.J. Kang, K. Ohta, K. Tominaga, K. Yoshihara: Femtosecondrelaxation processes from a higher excited electronic state of a dye moleculein solution, Chem Phys Lett 287, p.29-34 (1998)

[7.157] {Sect. 7.3.3} G. Berden, J. Vanrooy, W.L. Meerts, K.A. Zachariasse: Rota-tionally resolved electronic spectroscopy of 4-aminobenzonitrile, Chem PhysLett 278, p.373-379 (1997)

[7.158] {Sect. 7.3.3} T.M. Woudenberg, S.K. Kulkarni, J.E. Kenny: Internal con-version rates for single vibronic levels of S2 in azulene, J. Chem. Phys. 89,p.2789-2796 (1988)

[7.159] {Sect. 7.3.3} Z.S. Ruzevich: Fluorescence and Absorption Spectra of Azu-lene in Frozen Crystalline Solutions, Opt. Spektrosk. 15, p.191-193 (1962)

[7.160] {Sect. 7.3.3} M. Kasha: Characterization of Electronic Transitions in Com-plex Molecules, Disc. Farady Soc. 9, p.14-19 (1950)

[7.161] {Sect. 7.3.4.0} E.S. Medvedev, V.I. Osherov: Radiationless Transitions inPolyatomic Molecules, Springer Ser. in Chem. Phys. 57 (Springer-Verlag1995)

[7.162] {Sect. 7.3.4.1} N. Ito, O. Kajimoto, K. Hara: Picosecond time-resolved fluo-rescence depolarization of p-terphenyl at high pressures, Chem. Phys. Lett.318, p.118-124 (2000)

[7.163] {Sect. 7.3.4.1} S.D. Pack, M.W. Renfro, G.G. King, N.M. Laurendeau:Photon-counting technique for rapid fluorescence-decay measurement, Op-tics Letters 23, p.1215-1217 (1998)

[7.164] {Sect. 7.3.4.1} A.N. Watkins, Ch.M. Ingersoll, G.A. Baker, F.V. Bright:A Parallel Multiharmonic Frequency-Domain Fluorometer for MeasuringExcited-State Decay Kinetics Following One-, Two-, or Three-Photon Ex-citation, Anal. Chem. 70, p.3384-3396 (1998)

[7.165] {Sect. 7.3.4.1} R. Muller, C. Zander, M. Sauer, M. Deimel, D.S. Ko, S.Siebert, J. Ardenjacob, G. Deltau, N.J. Marx, K.H. Drexhage, et al.: Time-resolved identification of single molecules in solution with a pulsed semi-conductor diode laser, Chem Phys Lett 262, p.716-722 (1996)

[7.166] {Sect. 7.3.4.1} W. Nadler, R.A. Marcus: Mean relaxation time descriptionof quasi-dissipative behavior in finite-state quantum systems, Chem. Phys.Lett. 144, p.509-514 (1988)

[7.167] {Sect. 7.3.4.1} W. Rettig, M. Vogel, E. Lippert: The dynamics of adiabaticphotoreactions as studied by means of the time structure of synchrotronradiation, Chem. Phys. 103, p.381-390 (1986)

[7.168] {Sect. 7.3.4.1} G. Calzaferri, Th. Hugentobler: Time-resolved fluorescencespectra derived from multiple frequency phase fluorimetry, Chem. Phys.Lett. 121, p.147-153 (1985)

[7.169] {Sect. 7.3.4.1} K.N. Swamy, W.L. Hase: The heavy-atom effect in in-tramolecular vibrational energy transfer, J. Chem. Phys. 82, p.123-133(1985)

[7.170] {Sect. 7.3.4.1} W. Wild, A. Seilmeier, N.H. Gottfried, W. Kaiser: Ultra-fast investigation of vibrational hot molecules after internal conversion insolution, Chem. Phys. Lett. 119, p.259-263 (1985)

[7.171] {Sect. 7.3.4.1} J. Chesnoy, G.M. Gale: Vibrational energy relaxation inliquids, Ann. Phys. Fr. 9, p.893-949 (1984)

7.3.4 Emission Decay Times, Quantum Yield, Cross-Section 967

[7.172] {Sect. 7.3.4.1} N.H. Gottfried, A. Seilmeier, W. Kaiser: Transient inter-nal temperature on anthracene after picosecond infrared excitation, Chem.Phys. Lett. 111, p.326-332 (1984)

[7.173] {Sect. 7.3.4.1} J.R. Lakowicz: Time-Dependent Rotational Rates of ExcitedFluorophores – A Linkage Between Fluorescence Depolarization and SolventRelaxation, Biophys. Chem. 19, p.13-23 (1984)

[7.174] {Sect. 7.3.4.1} J.R. Lakowicz, G. Laczko, H. Cherek: Analysis of fluores-cence decay kinetics from variable-frequency phase shift and modulationdata, Biophys. J. 46, p.463-477 (1984)

[7.175] {Sect. 7.3.4.1} V. Sundstrom, T. Gillbro: Effects of solvent on TMP pho-tophysics. Transition from no barrier to barrier case, induced by solventproperties, J. Chem. Phys. 81, p.3463-3474 (1984)

[7.176] {Sect. 7.3.4.1} F. Wondrazek, A. Seilmeier, W. Kaiser: Ultrafast intramolec-ular redistribution and intermolecular relaxation of vibrational energy inlarge molecules, Chem. Phys. Lett. 104, p.121-128 (1984)

[7.177] {Sect. 7.3.4.1} W. Zinth, C. Kolmeder, B. Benna, A. Irgens-Defregger, S.F.Fischer, W. Kaiser: Fast and exceptionally slow vibrational energy transferin acetylene and phenylacetylene in solution, J. Chem. Phys.78, p.3916-3921(1983)

[7.178] {Sect. 7.3.4.1} V. Lopez, R.A. Marcus: Heavy mass barrier to intramolec-ular energy transfer, Chem. Phys. Lett. 93, p.232-234 (1982)

[7.179] {Sect. 7.3.4.1} D.P. Millar, R.J. Robbins, A.H. Zewail: Torsion and bend-ing of nucleic acids studied by subnanosecond time-resolved fluorescencedepolarization of intercalated dyes, J. Chem. Phys. 76, p.2080-2094 (1982)

[7.180] {Sect. 7.3.4.1} W. Sibbett, J.R. Taylor, D. Welford: Substituent and Envi-ronmental Effects on the Picosecond Lifetimes of the Polymethine CyanineDyes, IEEE J. QE-17, p.500-509 (1981)

[7.181] {Sect. 7.3.4.1} J.R. Taylor, M.C. Adams, W. Sibbett: Investigation of Vis-cosity Dependent Fluorescence Lifetime Using a Synchronously OperatedPicosecond Streak Camera, App Phys 21, p.13-17 (1980)

[7.182] {Sect. 7.3.4.1} Th. Forster: Zwischenmolekulare Energiewanderung undFluoreszenz, Ann. Phys. 6, p.55-75 (1948)

[7.183] {Sect. 7.3.4.1} D.V. O’Connor, D. Phillips: Time-Correlated Single-PhotonCounting (Academic, New York 1989)

[7.184] {Sect. 7.3.4.1} M. Ameloot, H. Hendrikckx: Extension of the Performanceof Laplace Deconvolution in the Analysis of Fluorescence Dacay Curves,Biophys. J. 44, p.27-38 (1983)

[7.185] {Sect. 7.3.4.1} D. Welford, W. Sibbett, J.R. Taylor: Dual component flu-orescence lifetime of some polymethine saturable absorbing dyes, Opt.Comm. 34, p.175-180 (1980)

[7.186] {Sect. 7.3.4.1} A. Polimeno, P.L. Nordio, G. Moro: Master Equation Rep-resentation of Fokker-Planck Operators in the Energy Diffusion Regime:Strong Collision Versus Random Walk Processes, Chem. Phys. Lett. 144,p.357-361 (1988)

[7.187] {Sect. 7.3.4.1} B. Bagchi, G.R. Fleming, D.W. Oxtoby: Theory of electronicrelaxation in solution in the absence of an activation barrier, J. Chem. Phys.78, p.7375-7385 (1983)

[7.188] {Sect. 7.3.4.3} D.F. Eaton: Reference Materials for Fluorescence Measure-ment, J. Photochem. and Photobiol. B: Biology 2, p.523-531 (1988)

[7.189] {Sect. 7.3.4.3} M. Sonnenschein, A. Amirav, J. Jortner: Absolute fluores-cence quantum yields of large molecules in supersonic expansions, J. Phys.Chem. 88, p.4214-4218 (1984)

[7.190] {Sect. 7.3.4.3} S. Hamal, F. Hirayama: Actinometric Determination of Ab-solute Fluorescence Quantum Yields, J. Phys. Chem. 87, p.83-89 (1983)

968 7. Nonlinear Optical Spectroscopy

[7.191] {Sect. 7.3.4.3} A.I. Akimov, A.N. Solov’ev, V.I. Yuzhakov, M.A. Kir-pichenok: Luminescence spectra and lasing characteristics of some newcoumarins, Sov. J. Quantum Electron. 22, p.999-1001 (1992)

[7.192] {Sect. 7.3.4.3} M. Vogel, W. Rettig, R. Sens, K.H. Drexhage: Structuralrelaxation of rhodamine dyes with different n-substitution patterns: A studyof fluorescence decay times and quantum yields, Chem. Phys. Lett. 147,p.452-460 (1988)

[7.193] {Sect. 7.3.4.3} I. Lopez Arbeloa: Solvent effects on the photophysics of themolecular forms of rhodamine B. Internal conversion mechanism, Chem.Phys. Lett. 129, p.607-614 (1986)

[7.194] {Sect. 7.3.4.3} D.C. Dong, M.A. Winnik: The Py scale of solvent polarities.Solvent effects on the vibronic fine structure of pyrene fluorescence andempirical correlations with Er and Y values, Photochem. and Photobiol.35, p.17-21 (1982)

[7.195] {Sect. 7.3.4.3} J.R. Lakowicz, G. Weber: Quenching of Fluorescence byOxygen. A Probe for Structural Fluctuations in Macromolecules, Biochem.12, p.4161-4170 (1973)

[7.196] {Sect. 7.3.4.3} Th. Forster, G. Hoffmann: Die Viskositatsabhangigkeit derFluoreszenzquantenausbeuten einiger Farbstoffsysteme, Z. Physik Chem.NF 75, p.63-76 (1971)

[7.197] {Sect. 7.3.4.3} W. Siebrand: Nonradiative processes in molecular systems,in Dynamics of Molecular Collisions, ed. W.H. Miller, Modern TheoreticalChemistry, Vol. 1, Part A (Plenum, New York 1976), p. 249-302

[7.198] {Sect. 7.4.2} F. Li, Y.L. Song, K. Yang, S.T. Liu, C.F. Li, Y.Q. Wu, X. Zuo,C.X. Yu, P.W. Zhu: Determination of nonlinear absorption mechanismsusing a single pulse width laser, J Appl Phys 82, p.2004-2006 (1997)

[7.199] {Sect. 7.4.2} T. Robl, A. Seilmeier: Ground State Recovery of ElectronicallyExcited Malachite Green via Transient Vibrational Heating, Chem. Phys.Lett. 147, p.544-550 (1988)

[7.200] {Sect. 7.4.2} M.J. Rosker, F.W. Wiese, C.L. Tang: Femtosecond RelaxationDynamics of Large Molecules, Phys. Rev. Lett. 57, p.321-324 (1986)

[7.201] {Sect. 7.4.2} D. Leupold, M. Scholz: Determination of the energy levelscheme of saturable absorbers by variation of excitation pulse duration.Demonstration with chlorophyll, Chem. Phys. Lett. 115, p.434-436 (1985)

[7.202] {Sect. 7.4.2} S. Oberlander, D. Leupold: Information contained in non-linear absorption curves with extrema, Opt. Comm. 52, p.57-62 (1984)

[7.203] {Sect. 7.4.2} R. Trebino, A.E. Siegman: Subpicosecond relaxation study ofmalachite green using a three-laser frequency-domain technique, J. Chem.Phys. 79, p.3621-3626 (1983)

[7.204] {Sect. 7.4.2} R.W. Eason, R.C. Greenhow, J.A.D. Matthew: Modeling of Pi-cosecond Pump and Probe Photobleaching Experiments on Fast SaturableAbsorbers, IEEE J. QE-17, p.95-102 (1981)

[7.205] {Sect. 7.4.2} A. Penzkofer: Generation of picosecond and subpicosecondlight pulses with saturable absorbers, Opto-Electr. 6, p.87-98 (1974)

[7.206] {Sect. 7.4.2} G. Girard, M. Michon: Transmission of a Kodak 9740 DyeSolution Under Picosecond Pulses, IEEE J. QE-9, p.979-984 (1973)

[7.207] {Sect. 7.4.2} G. Mourou, B. Drouin, M. Bergeron, M. M. Denariez-Roberge:Kinetics of Bleaching in Polymethine Cyanine Dyes, IEEE J. QE-9, p.745-748 (1973)

[7.208] {Sect. 7.4.2} A. Zunger, K. Bar-Eli: Nonlinear Behavior of Solutions Illu-minated by a Ruby Laser, J. Chem. Phys. 57, p.3558-3567 (1972)

[7.209] {Sect. 7.4.2} H. Schuller, H. Puell: Investigations of non-linear absorptionof light in solutions of cryptocyanine, Opt. Comm. 3, p.352-356 (1971)

7.4.2 Evaluation of the Nonlinear Absorption Measurement 969

[7.210] {Sect. 7.4.2} M. Andorn, K.H. Bar-Eli: Optical Bleaching and Deviationsfrom Beer-Lambert’s Law of Solutions Illuminated by Ruby Laser. I. Cry-tocyanine Solutions, J. Chem. Phys. 55, p.5008-5015 (1970)

[7.211] {Sect. 7.4.2} L. Huff, L.G. DeShazer: Saturation of Optical Transitions inOrganic Compounds by Laser Flux, J. Opt. Soc. Am. 60, p.157-165 (1970)

[7.212] {Sect. 7.4.2} M. Hercher: An Analysis of Saturable Absorbers, Appl. Opt.6, p.947-954 (1967)

[7.213] {Sect. 7.4.5} D. Leupold, R. Konig, B. Voigt, R. Menzel: Modell dessattigbaren Absorbers Crytocyanin/Methanol, Opt. Commun. 11, p.78-82(1974)

[7.214] {Sect. 7.5.0} A.J. Kiran, A. Mithun, B.S. Holla, H.D. Shashikala, G. Urnesh,K. Chandrasekharan: Nonlinear optical studies of 1-3-diaryl-propenonescontaining 4- methylthiophenyl moieties, Opt Commun 269, p.235-240(2007)

[7.215] {Sect. 7.5.0} L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulap-purath, G. Boudebs: Nonlinear optical properties of glasses in the systemGe/Ga-Sb-S/Se, Optics Letters 31, p.1495-1497 (2006)

[7.216] {Sect. 7.5.0} W.Q. He, C.M. Gu, W.Z. Shen: Direct evidence of Kerr-likenonlinearity by femtosecond Z-scan technique, Opt Express 14, p.5476-5483(2006)

[7.217] {Sect. 7.5.0} A. Gnoli, L. Razzari, M. Righini: Z-scan measurements usinghigh repetition rate lasers: how to manage thermal effects, Opt Express 13,p.7976-7981 (2005)

[7.218] {Sect. 7.5.0} T. Hasegawa, T. Nagashima, N. Sugimoto: Z-scan study ofthird-order optical nonlinearities in bismuth-based glasses, Opt Commun250, p.411-415 (2005)

[7.219] {Sect. 7.5.0} J.C. Liang, X.Q. Zhou: Application of continuous-wave laserZ-scan technique to photoisomerization, J Opt Soc Am B Opt Physics 22,p.2468-2471 (2005)

[7.220] {Sect. 7.5.0} S.Q. Chen, Z.B. Liu, W.P. Zang, J.G. Tian, W.Y. Zhou, F.Song, C.P. Zhang: Study on Z-scan characteristics for a large nonlinearphase shift, J Opt Soc Am B Opt Physics 22, p.1911-1916 (2005)

[7.221] {Sect. 7.5.0} P. Wang, Y.H. Lu, L. Tang, J.Y. Zhang, H. Ming, J.P. Xie, F.H.Ho, H.H. Chang, H.Y. Lin, D.P. Tsai: Surface-enhanced optical nonlinearityof a gold film, Opt Commun 229, p.425-429 (2004)

[7.222] {Sect. 7.5.0} E. Wu, H. Chen, Z.R. Sun, H.P. Zeng: Broadband saturableabsorber with cobalt-doped tellurite glasses, Optics Letters 28, p.1692-1694(2003)

[7.223] {Sect. 7.5.0} S.L. Qu, Y.C. Gao, X.W. Jiang, H.D. Zeng, Y.L. Song, H.R.Qiu, C.S. Zhu, K. Hirao: Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser, Opt Commun 224,p.321-327 (2003)

[7.224] {Sect. 7.5.0} R.A. Ganeev, A.I. Ryasnyansky, V.I. Redkorechev, K. Fos-tiropoulos, G. Priebe, T. Usmanov: Variations of nonlinear optical charac-teristics of C-60 thin films at 532 nm, Opt Commun 225, p.131-139 (2003)

[7.225] {Sect. 7.5.0} NKMN Srinivas, S.V. Rao, D.N. Rao: Saturable and reversesaturable absorption of rhodamine B in methanol and water, J Opt Soc AmB Opt Physics 20, p.2470-2479 (2003)

[7.226] {Sect. 7.5.0} W.T. Wang, G. Yang, Z.H. Chen, H.B. Lu, Y.L. Zhou,G.Z. Yang, X. Kong: Nonlinear refraction and saturable absorption inAu:BaTiO3 composite films, Appl Opt 42, p.5591-5595 (2003)

[7.227] {Sect. 7.5.0} G. Yang, W.T. Wang, L. Yan, H.B. Lu, G.Z. Yang, Z.H. Chen:Z-scan determination of the large third-order optical nonlinearity of Rh :

970 7. Nonlinear Optical Spectroscopy

BaTiO3 thin films deposited on MgO substrates, Opt Commun 209, p.445-449 (2002)

[7.228] {Sect. 7.5.0} S. Sinha, G.K. Bhowmick, S. Kundu, S. Sasikumar, S.K.S.Nair, T.B. Pal, A.K. Ray, K. Dasgupta: A Z-scan study of nonlinear refrac-tion in sodium vapour, Opt Commun 203, p.427-434 (2002)

[7.229] {Sect. 7.5.0} P. Wang, H. Ming, J.Y. Zhang, Z.C. Liang, Y.H. Lu, Q.J.Zhang, J.P. Xie, Y.P. Tian: Nonlinear optical and optical-limiting propertiesof Azobenzene liquid crystal polymer, Opt Commun 203, p.159-162 (2002)

[7.230] {Sect. 7.5.0} J. Zhou, E.Y.B. Pun, P.S. Chung, X.H. Zhang: Z-scan measure-ment of a novel amorphous molecular material, Opt Commun 191, p.427-433(2001)

[7.231] {Sect. 7.5.0} H.P. Li, C.H. Kam, Y.L. Lam, W. Ji: Optical nonlinearitiesand photo-excited carrier lifetime in CdS at 532 nm, Opt Commun 190,p.351-356 (2001)

[7.232] {Sect. 7.5.0} G. Battaglin, P. Calvelli, E. Cattaruzza, R. Polloni, E.Borsella, T. Cesca, F. Gonella, P. Mazzoldi: Laser-irradiation effects duringZ-scan measurement on metal nanocluster composite glasses, J Opt Soc AmB Opt Physics 17, p.213-218 (2000)

[7.233] {Sect. 7.5.0} A.G. Bezerra, I.E. Borissevitch, A.S.L. Gomes, C.B. deAraujo:Exploitation of the Z-scan technique as a method to optically probe pK (A)in organic materials: application to porphyrin derivatives, Optics Letters 25,p.323-325 (2000)

[7.234] {Sect. 7.5.0} A.G. Bezerra, A.S.L. Gomes, D.A. daSilva, L.H. Acioli, C.B.deAraujo, C.P. deMelo: Molecular hyperpolarizabilities of retinal deriva-tives, J Chem Phys 111, p.5102-5106 (1999)

[7.235] {Sect. 7.5.0} J.A. Hermann, T. Bubner, T.J. Mckay, P.J. Wilson, J. Starom-lynska, A. Eriksson, M. Lindgren, S. Svensson: Optical limiting capabilityof thick nonlinear absorbers, J Nonlinear Opt Physics Mat 8, p.253-275(1999)

[7.236] {Sect. 7.5.0} T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, M. Ueda: Mea-surement of nonlinear refractive index by time-resolved z-scan technique,Opt Commun 160, p.125-129 (1999)

[7.237] {Sect. 7.5.0} R. QuinteroTorres, M. Thakur: Measurement of the nonlinearrefractive index of polydiacetylene using Michelson interferometry and z-scan, J Appl Phys 85, p.401-403 (1999)

[7.238] {Sect. 7.5.0} W.F. Zhang, M.S. Zhang, Z. Yin, Y.Z. Gu, Z.L. Du, B.L. Yu:Large third-order optical nonlinearity in SrBi2Ta2O9 thin films by pulsedlaser deposition, Appl Phys Lett 75, p.902-904 (1999)

[7.239] {Sect. 7.5.0} G. Xiao, J.H. Lim, E.V. Stryland, M. Bass, L. Weichman:Z-Scan Measurement of the Ground and Excited State Absorption CrossSections of Cr4+ in Yttrium Aluminum Garnet, IEEE J. QE-35, p.1086-1091 (1999)

[7.240] {Sect. 7.5.0} X. Chen, B. Lavorel, T. Dreier, N. Genetier, H. Misserey,X. Michaut: Self-focusing in Terbium Gallium Garnet using Z-scan, OptCommun 153, p.301-304 (1998)

[7.241] {Sect. 7.5.0} M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mat-tei, P. Mazzoldi, M. Piovesan, G. Battaglin, R. Polloni: Large third-orderoptical nonlinearity of nanocluster-doped glass formed by ion implantationof copper and nickel in silica, Appl Phys Lett 73, p.288-290 (1998)

[7.242] {Sect. 7.5.0} F.E. Hernandez, A. Marcano, Y. Alvarado, A. Biondi, H. Mail-lotte: Measurement of nonlinear refraction index and two-photon absorptionin a novel organometallic compound, Opt Commun 152, p.77-82 (1998)

7.5 z-Scan Measurements 971

[7.243] {Sect. 7.5.0} B.M. Patterson, W.R. White, T.A. Robbins, R.J. Knize: Lin-ear optical effects in Z-scan measurements of thin films, Appl Opt 37,p.1854-1857 (1998)

[7.244] {Sect. 7.5.0} T.H. Wei, T.H. Huang, M.S. Lin: Signs of nonlinear refractionin chloroaluminum phthalocyanine solution, Appl Phys Lett 72, p.2505-2507(1998)

[7.245] {Sect. 7.5.0} O.V. Prhonska, J.H. Lim, D.J. Hagan, E.W. Vanstryland,M.V. Bondar, Y.L. Slominski: Nonlinear light absorption of polamethinedyes in liquid and solid media, J. Opt. Soc. Am.B15p.802-809 (1998)

[7.246] {Sect. 7.5.0} S. Bian, J. Frejlich, K.H. Ringhofer: Photorefractive saturableKerr-type nonlinearity in photovoltaic crystals, Phys Rev Lett 78, p.4035-4038 (1997)

[7.247] {Sect. 7.5.0} S. Bian: Estimation of photovoltaic field in LiNbO3 crystal byZ- scan, Opt Commun 141, p.292-297 (1997)

[7.248] {Sect. 7.5.0} K. Kandasamy, P.N. Puntambekar, B.P. Singh, S.J. Shetty,T.S. Srivastava: Resonant nonlinear optical studies on porphyrin deriva-tives, J Nonlinear Opt Physics Mat 6, p.361-375 (1997)

[7.249] {Sect. 7.5.0} F. Li, Y.L. Song, K. Yang, S.T. Liu, C.F. Li: Measurementsof the triplet state nonlinearity of C-60 in toluene using a Z-scan techniquewith a nanosecond laser, Appl Phys Lett 71, p.2073-2075 (1997)

[7.250] {Sect. 7.5.0} V. Pilla, P.R. Impinnisi, T. Catunda: Measurement of satura-tion intensities in ion doped solids by transient nonlinear refraction, ApplPhys Lett 70, p.817-819 (1997)

[7.251] {Sect. 7.5.0} M. Terazima, H. Shimizu, A. Osuka: The third-order nonlin-ear optical properties of porphyrin oligomers, J Appl Phys 81, p.2946-2951(1997)

[7.252] {Sect. 7.5.0} F. Michelotti, F. Caiazza, G. Liakhou, S. Paoloni, M.Bertolotti: Effects of nonlinear Fabry-Perot resonator response on Z- scanmeasurements, Opt Commun 124, p.103-110 (1996)

[7.253] {Sect. 7.5.0} R.E. Bridges, G.L. Fischer, R.W. Boyd: Z-scan measurementtechnique for non-Gaussian beams and arbitrary sample thicknesses, OpticsLetters 20, p.1821-1823 (1995)

[7.254] {Sect. 7.5.0} T.H. Wei, D.J. Hagan, M.J. Sence, E.W. Van Stryland, J.W.Perry, D.R. Coulter: Direct Measurement of Nonlinear Absorption and Re-fraction in Solutions of Phthalocyannines, Appl. Phys. B 54, p.46-51 (1992)

[7.255] {Sect. 7.5.0} P. Klovekorn, J. Munch: Investigation of transient nonlinearoptical mechanisms using a variable pulselength laser, IEEE J QE-35, p.187-197 (1999)

[7.256] {Sect. 7.5.0} W.F. Sun, C.C. Byeon, C.M. Lawson, G.M. Gray, D.Y. Wang:Third-order susceptibilities of asymmetric pentaazadentate porphyrin- likemetal complexes, Appl Phys Lett 74, p.3254-3256 (1999)

[7.257] {Sect. 7.5.0} M.O. Martin, L. Canioni, L. Sarger: Measurements of complexthird-order optical susceptibility in a collinear pump-probe experiment, Op-tics Letters 23, p.1874-1876 (1998)

[7.258] {Sect. 7.5.0} J. Vanhanen, V.P. Leppanen, T. Haring, V. Kettunen, T. Jaas-kelainen, S. Parkkinen, J.P.S. Parkkinen: Nonlinear refractive index changeof photoactive yellow protein, Opt Commun 155, p.327-331 (1998)

[7.259] {Sect. 7.5.0} S. Dhanjal, S.V. Popov, I.R. Shatwell, Y.P. Svirko, N.I. Zhe-ludev, V.E. Gusev: Femtosecond optical nonlinearity of metallic indiumacross the solid-liquid transition, Optics Letters 22, p.1879-1881 (1997)

[7.260] {Sect. 7.5.0} H.J. Huang, G. Gu, S.H. Yang, J.S. Fu, P. Yu, G.K.L. Wong,Y.W. Du: Nonlinear optical response of the higher fullerene C-90 – A com-parison with C-60, Chem Phys Lett 272, p.427-432 (1997)

972 7. Nonlinear Optical Spectroscopy

[7.261] {Sect. 7.5.0} I. Kang, T. Krauss, F. Wise: Sensitive measurement of nonlin-ear refraction and two- photon absorption by spectrally resolved two-beamcoupling, Optics Letters 22, p.1077-1079 (1997)

[7.262] {Sect. 7.5.0} P. Klovekorn, J. Munch: Variable stimulated Brillouin scat-tering pulse compressor for nonlinear optical measurements, Appl Opt 36,p.5913-5917 (1997)

[7.263] {Sect. 7.5.0} J.Y. Wu, J. Yan, D.C. Sun, F.M. Li, L.W. Zhou, M. Sun:Third-order nonlinear optical property of a polyphenylene oligomer: Poly(2,5-dialkozyphenylene), Opt Commun 136, p.35-38 (1997)

[7.264] {Sect. 7.5.0} J. Yan, J.Y. Wu, H.Y. Zhu, X.T. Zhang, D.C. Sun, Y.M. Hu,F.M. Li, M. Sun: Excited state enhancement of the third order nonlinearoptical susceptibility of nonether polyphenylquinoxaline, Optics Letters 20,p.255-257 (1995)

[7.265] {Sect. 7.5.0} N.I. Zheludev, P.J. Bennett, H. Loh, S.V. Popov, I.R. Shatwell,Y.P. Svirko, V.E. Gusev, V.F. Kamalov, E.V. Slobodchikov: Cubic opticalnonlinearity of free electrons in bulk gold, Optics Letters 20, p.1368-1370(1995)

[7.266] {Sect. 7.5.0} H. Fei, Z. Wei, Q. Yang, Y. Che: Low-power phase conjugationin push-pull azobenzene compounds, Opt. Lett. 20, p.1518-1520 (1995)

[7.267] {Sect. 7.5.0} A. Marcano O, L. Aranguren: Absolute values of the nonlinearsusceptibility of dye solutions measured by polarization spectroscopy, J.Appl. Phys. 62, p.3100-3103 (1987)

[7.268] {Sect. 7.5.0} E.J. Heilweil, R.M. Hochstrasser: Nonlinear spectroscopy andpicosecond transient grating study of colloidal gold, J. Chem. Phys. 82,p.4762-4770 (1985)

[7.269] {Sect. 7.5.0} J.P.Hermann, J. Ducuing: Third-order polarizabilities of long-chain molecules, J. Appl. Phys. 45, p.5100-5102 (1974)

[7.270] {Sect. 7.5.0} M.D. Levenson, N. Bloembergen: Dispersion of the nonlinearoptical susceptibilities of organic liquids and solutions, J.Chem. Phys. 60,p.1323-1327 (1974)

[7.271] {Sect. 7.5.0} M.D. Levenson, N. Bloembergen: Dispersion of the nonlinearoptical susceptibility tensor in centrosymmetric media, Phys. Rev. B 10,p.4447-4463 (1974)

[7.272] {Sect. 7.5.0} K.C. Rustagi, J. Ducuing: Third-order optical polarizabilityof conjugated organic molecules, Opt. Comm. 10, p.258-261 (1974)

[7.273] {Sect. 7.5.0} J.P. Hermann, D. Ricard: Optical nonlinearities in conjugatedsystems: beta-carotene, Appl. Phys. Lett. 23, p.178-180 (1973)

[7.274] {Sect. 7.5.0} A. Owyoung, R.W. Hellwarth, N. George: Intensity-InducedChanges in Optical Polarizations in Glasses, Phys. Rev. B 5, p.628-633(1972)

[7.275] {Sect. 7.5.0} J.J. Wynne: Nonlinear Optical Spectroscopy of X (3) inLiNbO3, Phys. Rev. Lett. 29, p.650-653 (1972)

[7.276] {Sect. 7.5.2} B. Gu, J. Chen, Y.X. Fan, J.P. Ding, H.T. Wang: Theory ofGaussian beam Z scan with simultaneous third- and fifth- order nonlinearrefraction based on a Gaussian decomposition method, J Opt Soc Am BOpt Physics 22, p.2651-2659 (2005)

[7.277] {Sect. 7.5.2} S.M. Mian, S.B. McGee, N. Melikechi: Experimental and the-oretical investigation of thermal lensing effects in mode-locked femtosecondZ-scan experiments, Opt Commun 207, p.339-345 (2002)

[7.278] {Sect. 7.5.2} F.L.S. Cuppo, A.M.F. Neto, S.L. Gomez, P. PalffyMuhoray:Thermal-lens model compared with the Sheik-Bahae formalism in interpret-ing Z-scan experiments on lyotropic liquid crystals, J Opt Soc Am B OptPhysics 19, p.1342-1348 (2002)

7.5.2 Theoretical Description 973

[7.279] {Sect. 7.5.2} M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. VanStryland: Sensitive Measurement of Optical Nonlinearities Using a SingleBeam, IEEE J. QE-26, p.760-769 (1990)

[7.280] {Sect. 7.5.2} M. Martinelli, S. Bian, J.R. Leite, R.J. Horowicz: Sensitivity-enhanced reflection Z-scan by oblique incidence of a polarized beam, ApplPhys Lett 72, p.1427-1429 (1998)

[7.281] {Sect. 7.5.2} P.B. Chapple, J. Staromlynska, J.A. Hermann, T.J. Mckay,R.G. Mcduff: Single-beam Z-scan: Measurement techniques and analysis, JNonlinear Opt Physics Mat 6, p.251-293 (1997)

[7.282] {Sect. 7.5.2} C.R. Mendonca, L. Misoguti, S.C. Zilio: Z-scan measurementswith Fourier analysis in ion-doped solids, Appl Phys Lett 71, p.2094-2096(1997)

[7.283] {Sect. 7.5.2} P.B. Chapple, P.J. Wilson: Z-scans with near-Gaussian laserbeams, J Nonlinear Opt Physics Mat 5, p.419-436 (1996)

[7.284] {Sect. 7.5.2} W. Zhao, P. Palffy-Muhoray: Z-scan measurement of X (3)using top-hat beams, Appl. Phys. Lett. 65, p.673-675 (1994)

[7.285] {Sect. 7.5.3} G. Xiao, J.H. Lim, E.V. Stryland, M. Bass, L. Weichman:Z-Scan Measurement of the Ground and Excited State Absorption CrossSections of Cr4+ in Yttrium Aluminum Garnet, IEEE J. QE-35, p.1086-1091 (1999)

[7.286] {Sect. 7.5.3} H.S. Loka, S.D. Benjamin, P.W.E. Smith: Optical Character-ization of Low-Temperature-Grown GaAs for Ultrafast All-Optical Switch-ing Devices, IEEE J. QE-34, p.1426-1436 (1998)

[7.287] {Sect. 7.6.1} D. Leupold, I.E. Kochevar: Multiphoton Photochemistry inBiological Systems: Introduction, Photochem. and Photobiol. 66, p.562-565(1997)

[7.288] {Sect. 7.6.1} S. Oberlander, D. Leupold: Instantaneous fluorescence quan-tum yield of organic molecular systems: information content of ist intensitydependence, J. Luminesc. 59, p.125-133 (1994)

[7.289] {Sect. 7.6.1} K.R. Naqvi, D.K. Sharma, G.J. Hoytink: Measurementsof Sub-Nanosecond Lifetimes from Biphotonic Fluorescence Produced byNanosecond Laser Pulses, Chem. Phys. Lett. 22, p.222-225 (1973)

[7.290] {Sect. 7.6.2} N. Kamiya, M. Ishikawa, K. Kasahara, M. Kaneko, N. Ya-mamoto, H. Ohtani: Picosecond fluorescence spectroscopy of the purplemembrane of Halobacterium halobium in alkaline suspension, Chem PhysLett 265, p.595-599 (1997)

[7.291] {Sect. 7.6.2} S. Reindl, A. Penzkofer: Triplet quantum yield determinationby picosecond laser double-pulse fluorescence excitation, Chem Phys 213,p.429-438 (1996)

[7.292] {Sect. 7.6.2} T. Doust: Picosecond Fluorescence Decay Kinetics of CrystalViolet in Low-Viscosity Solvents, Chem. Phys. Lett. 96, p.522-525 (1983)

[7.293] {Sect. 7.6.2} E.F. Hilinski, P.M Rentzepis: Chemical Applications of Pi-cosecond Spectroscopy, Acc. Chem. Res. 16, p.224-232 (1983)

[7.294] {Sect. 7.6.2} V. Sundstrom, T. Gillbro, H. Bergstrom: Picosecond Kineticsof Radiationless Relaxations of Triphenyl Methane Dyes. Evidence for aRapid Excited-State Equilibrium Between States of Differing Geometry,Chem. Phys. 73, p.439-458 (1982)

[7.295] {Sect. 7.6.2} G.R. Fleming, A.E.W. Knight, J.M. Morris, R.J. Robbins,G.W. Robinson: Picosecond spectroscopic studies of spontaneous and stim-ulated emission in organic dye molecules, Chem. Phys. 23p.61-70 (1977)

[7.296] {Sect. 7.6.2} S.H. Lee, I.C. Chen: Non-exponential decays of the S-1 vibroniclevels of acetaldehyde, Chem Phys 220, p.175-189 (1997)

[7.297] {Sect. 7.6.2} V. Sundstrom, T. Gillbro: A Discussion of the Problem ofDetemining Multiple Lifetimes from Picosecond Absorption Recovery Data

974 7. Nonlinear Optical Spectroscopy

as Encountered in Two Carbocyanine Dyes, Appl. Phys. B 31, p.235-247(1983)

[7.298] {Sect. 7.6.2} J.R. Torga, J.I. Etcheverry, M.C. Marconi: Design of a fluo-rescence technique using double laser pulse excitation for the measurementof molecular Brownian dynamics, Opt Commun 143, p.230-234 (1997)

[7.299] {Sect. 7.6.2} B.D. Fainberg, B. Zolotov, D. Huppert: Nonlinear laser spec-troscopy of nonlinear solvation, J Nonlinear Opt Physics Mat 5, p.789-807(1996)

[7.300] {Sect. 7.6.2} J.R. Lakowicz, A. Balter: Differential-Wavelength Deconvolu-tion of Time-Resolved Fluorescence Intensities, Biophys. Chem. 16, p.223-240 (1982)

[7.301] {Sect. 7.6.3} H. Kano, S. Kawata: Two-photon-excited fluorescence en-hanced by a surface plasmon, Optics Letters 21, p.1848-1850 (1996)

[7.302] {Sect. 7.6.3} J. Mertz, C. Xu, W.W. Webb: Single-molecule detection bytwo-photon-excited fluorescence, Optics Letters 20, p.2532-2534 (1995)

[7.303] {Sect. 7.6.4} D. Klemp, B. Nickel: Relative quantum yield of the S2-S1fluorescence from azulene, Chem. Phys. Lett. 130, p.493-497 (1986)

[7.304] {Sect. 7.6.4} Y. Kurabayashi, K. Kikuchi, H. Kokubun, Y. Kaizu, H.Kobayashi: S2-S0 Fluorescence of Some Metallotetraphenylporphyrins, J.Phys. Chem. 88, p.1308-1310 (1984)

[7.305] {Sect. 7.6.4} G.J. Hoytink: The ”anomalous” fluorescence of 1,12-benz-perylene in n-heptane, Chem. Phys. Lett. 22, p.10-12 (1983)

[7.306] {Sect. 7.6.4} A. Maciejewski, R.P. Steer: Effect of solvent on the sub-nanosecond decay of the second excited singlet state of tetramethylin-danethione, Chem. Phys. Lett. 100, p.540-545 (1983)

[7.307] {Sect. 7.6.4} A.A. Krasheninnikov, A.V. Shablya: Determination of lumi-nescence quantum yield from highly excited electronic states of moleculaesby the photo-acoustic effect, Opt. Spectrosc. (USSR) 52, p.159-162 (1982)

[7.308] {Sect. 7.6.4} S. Muralidharan, G. Ferraudi, L.K. Patterson: Luminescencefrom Upper Electronic Excited States of Phthalocyanines, Inorganica Chim-ica Acta 65, p.L235-L236 (1982)

[7.309] {Sect. 7.6.4} B.S. Vogt, S.G. Schulman: Anomalous Fluorescence of 9-Aminofluorene, Chem. Phys. Lett. 89, p.320-323 (1982)

[7.310] {Sect. 7.6.4} V.L. Bogdanov, V.P. Klochkov: Secondary emission ofcoronene molecules with excitation of higher electronic states, Opt. Spec-trosc. (USSR) 50, p.479-484 (1981)

[7.311] {Sect. 7.6.4} K. Teuchner, S. Dahne: The anomalous blue fluorescence ofpseudoisocyanine dyes, J. Luminesc. 23, p.413-422 (1981)

[7.312] {Sect. 7.6.4} E.N. Kaliteevskaya, T.K. Razumova: Photochemical con-versions and short-wavelength luminescence of polymethine dyes. Studiesof short-wavelength luminescence, Opt. Spectrosc. (USSR) 48, p.269-273(1980)

[7.313] {Sect. 7.6.4} M. Orenstein, S. Kimel, S. Speiser: Laser excited S2-S1 andS1-S0 emission spectra and the S2-Sn absorption spectrum of azulene insolution, Chem. Phys. Lett. 58, p.582-585 (1978)

[7.314] {Sect. 7.6.4} J.R. Huber, M. Mahaney: S2-S0 fluorescence in an aromaticthioketone, xanthione, Chem. Phys. Lett. 30, p.410-412 (1975)

[7.315] {Sect. 7.6.4} J.B. Birks: Dual fluorescence of isolated aromatic molecules,Chem. Phys. Lett. 25, p.315-460 (1974)

[7.316] {Sect. 7.6.4} L. Bajema, M. Gouterman: Porphyrens XXIII. Fluorescenceof the Second Excited Singlet and Quasiline Structure of Zinc Tetrabenz-porphin, J. Mol. Spectr. 39, p.421-431 (1971)

[7.317] {Sect. 7.7.1} E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov: Scheme fortime-resolved experiments based on the generation of ferntosecond pulses

7.7.1 Experimental Method 975

by a sideband-seeded soft X-Ray SASE FEL, Opt Commun 205, p.385-396(2002)

[7.318] {Sect. 7.7.1} T.B. Settersten, M.A. Linne: Picosecond pump-probe absorp-tion spectroscopy in gases: models and experimental validation, Appl Opt41, p.2869-2878 (2002)

[7.319] {Sect. 7.7.1} J. Torga, M.C. Marconi, C. GarciaSegundo, M. VillagranMu-niz: Ultra-fast dynamics in Coumarin 153 obtained by differential fluores-cence, Opt Commun 195, p.215-219 (2001)

[7.320] {Sect. 7.7.1} M. Assel, R. Laenen, A. Laubereau: Retrapping and solvationdynamics after femtosecond UV excitation of the solvated electron in water,J Chem Phys 111, p.6869-6874 (1999)

[7.321] {Sect. 7.7.1} V.V. Lozovoy, O.M. Sarkisov, A.S. Vetchinkin, S.Y. Umanskii:Coherent control of the molecular iodine vibrational dynamics by chirpedfemtosecond light pulses: theoretical simulation of the pump- probe exper-iment, Chem Phys 243, p.97-114 (1999)

[7.322] {Sect. 7.7.1} F. Stienkemeier, F. Meier, A. Hagele, H.O. Lutz, E. Schreiber,C.P. Schulz, I.V. Hertel: Coherence and relaxation in potassium-doped he-lium droplets studied by femtosecond pump-probe spectroscopy, Phys RevLett 83, p.2320-2323 (1999)

[7.323] {Sect. 7.7.1} S. Hashimoto: Diffuse reflectance laser photolytic studies ofpyrene included in zeolites – Formation of pyrene anion radicals via excited-state electron transfer between guest molecules, Chem Phys Lett 252, p.236-242 (1996)

[7.324] {Sect. 7.7.1} J.N. Heyman, K. Unterrainer, K. Craig, J. Williams,M.S. Sherwin, K. Campman, P.F. Hopkins, A.C. Gossard, B.N. Murdin,C.J.G.M. Langerak: Far-infrared pump-probe measurements of the inter-subband lifetime in an AlGaAs/GaAs coupled-quantum well, Appl PhysLett 68, p.3019-3021 (1996)

[7.325] {Sect. 7.7.1} P. Tamarat, B. Lounis, J. Bernard, M. Orrit, S. Kummer,R. Kettner, S. Mais, T. Basche: Pump-probe experiments with a singlemolecule: ac-Stark effect and nonlinear optical response, Phys Rev Lett 75,p.1514-1517 (1995)

[7.326] {Sect. 7.7.1} D.S. Kliger, A.C. Albrecht: Polarized Spectroscopy of ExcitesStates of Substituted Anthracenes on a Nanosecond Time Scale, J. Chem.Phys. 53, p.4059-4065 (1970)

[7.327] {Sect. 7.7.1} G. Porter, F.R.S. Topp, M.R. Topp: Nanosecond flash photol-ysis, Proc. Roy. Soc. Lond. A. 315, p.163-184 (1970)

[7.328] {Sect. 7.7.1} H. Takahashi (ed.): Transient Vibrational Spectroscopy, Sprin-ger Proc. Phys, Vol. 68 (Springer, Berlin, Heidelberg 1992)

[7.329] {Sect. 7.7.1} G. Haran, W.D. Sun, K. Wynne, R.M. Hochstrasser: Fem-tosecond far-infrared pump-probe spectroscopy: A new tool for studyinglow-frequency vibrational dynamics in molecular condensed phases, ChemPhys Lett 274, p.365-371 (1997)

[7.330] {Sect. 7.7.1} E. Budiarto, J. Margolies, S. Jeong, J. Son, J. Bokor: High-intensity terahertz pulses at 1-kHz repetition rate, IEEE J QE-32, p.1839-1846 (1996)

[7.331] {Sect. 7.7.2} N. Zhavoronkov, V. Petrov, F. Noack: Transient excited-stateabsorption measurements in chromium-doped forsterite, Phys Rev B 61,p.1866-1870 (2000)

[7.332] {Sect. 7.7.2} G.M. Gale, G. Gallot, F. Hache, N. Lascoux, S. Bratos, J.C.Leicknam: Femtosecond dynamics of hydrogen bonds in liquid water: A realtime study, Phys Rev Lett 82, p.1068-1071 (1999)

976 7. Nonlinear Optical Spectroscopy

[7.333] {Sect. 7.7.2} J.P. Likforman, M. Joffre, D. Hulin: Hyper-Raman gain dueto excitons coherently driven with femtosecond pulses, Phys Rev Lett 79,p.3716-3719 (1997)

[7.334] {Sect. 7.7.2} D. Tittelbachhelmrich, R.P. Steer: Subpicosecond populationdecay time of the first excited singlet state of thioxanthione in fluid solution,Chem Phys Lett 262, p.369-373 (1996)

[7.335] {Sect. 7.7.2} T. Okada, N. Mataga, W. Baumann, A. Siemiarczuk: Picosec-ond Laser Spectroscopy of 4- (9-Anthryl)-N,N-dimethylaniline and RelatedCompounds, J. Phys. Chem. 91, p.4490-4495 (1987)

[7.336] {Sect. 7.7.2} T. Okada, N. Mataga, W. Baumann: Sn-S1 Absorption Spectraof 4- (N,N-Dimethylamino)benzonitrile in Various Solvents: Confirmationof the Intramolecular Ion Pair State in Polar Solvents, J. Phys. Chem. 91,p.760-762 (1987)

[7.337] {Sect. 7.7.2} E. Morikawa, K. Shikichi, R. Katoh, M. Kotani: Transientphotoabsorption by singlet excitons in p-terphenyl single crystals, Chem.Phys. Lett. 131, p.209-212 (1986)

[7.338] {Sect. 7.7.2} C.V. Shank, R. Yen, J. Orenstein, G.L. Baker: Femtosec-ond excited-state relaxation in polyacetylene, Phys. Rev. B 28, p.6095-6096(1983)

[7.339] {Sect. 7.7.2} S.K. Chattopadhyay, P.K. Das: Singlet-singlet absorption spec-tra of Diphenylpolyenes, Chem. Phys. Lett. 87, p.145-150 (1982)

[7.340] {Sect. 7.7.2} T. Okada, N. Tashita, N. Mataga: Direct observation of in-termediate heteroexcimer in the photoinduced hydrogen-atom transfer re-action by picosecond laser spectroscopy, Chem. Phys. Lett. 75, p.220-223(1980)

[7.341] {Sect. 7.7.2} C.V. Shank, E.P. Ippen, R.L. Fork, A. Migus, T. Kobayashi:Application of subpicosecond optical techniques to molecular dynamics,Phil. Trans. R. Soc. Lond. A 298, p.303-308 (1980)

[7.342] {Sect. 7.7.2} S. Tagawa, W. Schnabel: Laser flash photolysis studies onexcited singlet states of benzene, toluene, p-xylene, polystyrene, and poly-alpha-methylstyrene, Chem. Phys. Lett. 75, p.120-122 (1980)

[7.343] {Sect. 7.7.2} A. Muller, J. Schulz-Hennig, H. Tashiro: Excited State Absorp-tion of 1,3,3,1’,3’,3’-Hexamethylindotricarboncyanine Iodide: A Quantita-tive Study by Ultrafast Absorption Spectroscopy, Appl. Phys. 12, p.333-339(1977)

[7.344] {Sect. 7.7.2} D. Magde, M.W. Windsor, D. Holten, M. Gouterman: Picosec-ond flash photolysis: transient absorption in Sn (IV), Pd (II), and Cu (II)porphyrins, Chem. Phys. Lett. 29, p.183-188 (1974)

[7.345] {Sect. 7.7.3} A.B. Myers, R.M. Hochstrasser Comparision of Four-WaveMixing Techniques for Studying Orientational Relaxation, IEEE J. QE-22,p.1482-1492 (1986)

[7.346] {Sect. 7.7.3} T.F. Heinz, S.L. Palfrey, K.B. Eisenthal: Coherent CouplingEffects in pump-probe measurements with collinear, copropagating beams,Opt. Lett. 9, p.359-361 (1984)

[7.347] {Sect. 7.7.3} A. v. Jena, H.E. Lessing: Coherent Coupling Effects in Pi-cosecond Absorption Experiments, Appl. Phys. 19, p.131-144 (1979)

[7.348] {Sect. 7.7.5} C. Brunel, B. Lounis, P. Tamarat, M. Orrit: Triggered sourceof single photons based on controlled single molecule fluorescence, Phys RevLett 83, p.2722-2725 (1999)

[7.349] {Sect. 7.7.5} A. Leitenstorfer, C. Furst, A. Laubereau: Widely tunable twocolor mode locked Ti:sapphire laser with pulse jitter of less than 2 fs, OpticsLetters 20, p.916-918 (1995)

7.7.5 Probe Light Sources and Detection 977

[7.350] {Sect. 7.7.5.3} B.W. Xu, Y. Coello, V.V. Lozovoy, D.A. Harris, M. Dantus:Pulse shaping of octave spanning femtosecond laser pulses, Opt Express 14,p.10939-10944 (2006)

[7.351] {Sect. 7.7.5.3} A.B. Fedotov, D.A. SidorovBiryukov, A.A. Ivanov, M.V.Alfimov, V.I. Beloglazov, N.B. Skibina, C.K. Sun, A.M. Zheltikov: Soft-glass photonic-crystal fibers for frequency shifting and white- light spectralsuperbroadening of femtosecond Cr:forsterite laser pulses, J Opt Soc Am BOpt Physics 23, p.1471-1477 (2006)

[7.352] {Sect. 7.7.5.3} A.K. Dharmadhikari, F.A. Rajgara, N.C.S. Reddy, A.S.Sandhu, D. Mathur: Highly efficient white light generation from bariumfluoride, Opt Express 12, p.695-700 (2004)

[7.353] {Sect. 7.7.5.3} M. Ziolek, R. Naskrecki, J. Karolczak: Some temporal andspectral properties of femtosecond supercontinuum important in pump-probe spectroscopy, Opt Commun 241, p.221-229 (2004)

[7.354] {Sect. 7.7.5.3} H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, VVRKKumar, A.K. George, J.C. Knight, P.S. Russell: Supercontinuum generationwith 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm, Opt Express11, p.3196-3201 (2003)

[7.355] {Sect. 7.7.5.3} D. Schumacher: Controlling continuum generation, OpticsLetters 27, p.451-453 (2002)

[7.356] {Sect. 7.7.5.3} C. Nagura, A. Suda, H. Kawano, M. Obara, K. Midorikawa:Generation and characterization of ultrafast white-light continuum in con-densed media, Appl Opt 41, p.3735-3742 (2002)

[7.357] {Sect. 7.7.5.3} N. Karasawa, R. Morita, H. Shigekawa, M. Yamashita: Gen-eration of intense ultrabroadband optical pulses by induced phase modu-lation in an argon-filled single-mode hollow waveguide, Optics Letters 25,p.183-185 (2000)

[7.358] {Sect. 7.7.5.3} A. Brodeur, S.L. Chin: Ultrafast white-light continuum gen-eration and self-focusing in transparent condensed media, J Opt Soc Am BOpt Physics 16, p.637-650 (1999)

[7.359] {Sect. 7.7.5.3} A.A. Zozulya, S.A. Diddams, A.G. VanEngen, T.S. Clement:Propagation dynamics of intense femtosecond pulses: Multiple splittings, co-alescence, and continuum generation, Phys Rev Lett 82, p.1430-1433 (1999)

[7.360] {Sect. 7.7.5.3} J.U. Kang, R. Posey: Demonstration of supercontinuumgeneration in a long-cavity fiber ring laser, Optics Letters 23, p.1375-1377(1998)

[7.361] {Sect. 7.7.5.3} J.P. Likforman, A. Alexandrou, M. Joffre: Intracavity white-light continuum generation in a femtosecond Ti: sapphire oscillator, ApplPhys Lett 73, p.2257-2259 (1998)

[7.362] {Sect. 7.7.5.3} E.T.J. Nibbering, O. Duhr, G. Korn: Generation of intensetunable 20-fs pulses near 400 nm by use of a gas-filled hollow waveguide,Optics Letters 22, p.1335-1337 (1997)

[7.363] {Sect. 7.7.5.3} A. Brodeur, F.A. Ilkov, S.L. Chin: Beam filamentation andthe white light continuum divergence, Opt Commun 129, p.193-198 (1996)

[7.364] {Sect. 7.7.5.3} M. Wittmann, A. Penzkofer: Spectral superbroadening offemtosecond laser pulses, Opt Commun 126, p.308-317 (1996)

[7.365] {Sect. 7.7.5.3} H. Nishioka, W. Odajima, K. Ueda, H. Takuma: Ultrabroad-band flat continuum generation in multichannel propagation of terrawattTi:sapphire laser pulses, Optics Letters 20, p.2505-2507 (1995)

[7.366] {Sect. 7.7.5.4} J.C. Travers, S.V. Popov, J.R. Taylor: Extended blue super-continuum generation in cascaded holey fibers, Optics Letters 30, p.3132-3134 (2005)

978 7. Nonlinear Optical Spectroscopy

[7.367] {Sect. 7.7.5.4} F. Vanholsbeeck, S. MartinLopez, M. GonzalezHerraez, S.Coen: The role of pump incoherence in continuous-wave supercontinuumgeneration, Opt Express 13, p.6615-6625 (2005)

[7.368] {Sect. 7.7.5.4} G.I. Petrov, V.V. Yakovlev: Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinearRaman microscopy, Opt Express 13, p.1299-1306 (2005)

[7.369] {Sect. 7.7.5.4} G.I. Petrov, V.V. Yakovlev, N.I. Minkovski: Broadband non-linear optical conversion of a high-energy diode-pumped picosecond laser,Opt Commun 229, p.441-445 (2004)

[7.370] {Sect. 7.7.5.4} M. Seefeldt, A. Heuer, R. Menzel: Compact white-lightsource with an average output power of 2.4 W and 900 nm spectral band-width, Opt Commun 216, p.199-202 (2003)

[7.371] {Sect. 7.7.5.4} S. Coen, H.L. Chau A, R. Leonhardt, J.D. Harvey: White-light supercontinuum generation with 60-ps pump pulses in a photonic crys-tal fiber, Optics Letters 26, p.1356-1358 (2001)

[7.372] {Sect. 7.7.5.4} C.A. Xia, M. Kumar, O.R. Kulkarni, M.N. Islam, F.L. Terry,M.J. Freeman: Mid-infrared supercontinuum generation to 4.5 mu m inZBLAN fluoride fibers by nanosecond diode pumping, Optics Letters 31,p.2553-2555 (2006)

[7.373] {Sect. 7.7.5.4} A. Mussot, T. Sylvestre, L. Provino, H. Maillotte: Generationof a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser, Optics Letters 28,p.1820-1822 (2003)

[7.374] {Sect. 7.7.5.4} I.A. Bufetov, M.V. Grekov, K.M. Golant, E.M. Dianov, R.R.Khrapko: Ultraviolet-light generation in nitrogen-doped silica fiber, OpticsLetters 22, p.1394-1396 (1997)

[7.375] {Sect. 7.7.5.4} I. Ilev, H. Kumagai, K. Toyoda, I. Koprinkov: Highly efficientwideband continuum generation in a single- mode optical fiber by powerfulbroadband laser pumping, Appl Opt 35, p.2548-2553 (1996)

[7.376] {Sect. 7.7.5.4} R.R. Alfano, Q.X. Li, T. Jimbo, J.T. Manassah, P.P. Ho:Induced spectral broadening of a weak picosecond pulse in glass producedby an intense picosecond pulse, Opt. Lett. 11, p.626-628 (1986)

[7.377] {Sect. 7.7.5.4} R. Menzel, C.W. Hoganson, M.W. Windsor: PicosecondBleaching Behavior of the Ground-State Absorption and Excited-State Ab-sorptions of Crystal Violet between 455 and 720 nm, Chem. Phys. Lett.120, p.29-34 (1985)

[7.378] {Sect. 7.7.5.4} A. Borghese, S.S. Merola: Time-resolved spectral and spa-tial description of laser-induced breakdown in air as a pulsed, bright, andbroadband ultraviolet-visible light source, Appl Opt 37, p.3977-3983 (1998)

[7.379] {Sect. 7.7.5.4} S.V. Chernikov, Y. Zhu, J.R. Taylor, V.P. Gapontsev: Super-continuum self-Q-switched ytterbium fiber laser, Optics Letters 22, p.298-300 (1997)

[7.380] {Sect. 7.7.5.5} R. Menzel, W. Rapp: Excited Singlet- and Triplet-Absorptions of Pentaphene, Chem. Phys. 89, p.445-455 (1984)

[7.381] {Sect. 7.7.5.6} S. Kubodera, M. Kitahara, J. Kawanaka, W. Sasaki, K.Kurosawa: A vacuum ultraviolet flash lamp with extremely broadened emis-sion spectra, Appl Phys Lett 69, p.452-454 (1996)

[7.382] {Sect. 7.7.5.8} T. Udem, J. Reichert, R. Holzwarth, T.W. Hansch: Absoluteoptical frequency measurement of the cesium D-1 line with a mode-lockedlaser, Phys Rev Lett 82, p.3568-3571 (1999)

[7.383] {Sect. 7.7.5.8} B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist: Visiblelasers with subhertz linewidths, Phys Rev Lett 82, p.3799-3802 (1999)

[7.384] {Sect. 7.7.5.8} B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben,D. Touahri, L. Hilico, O. Acef, A. Clairon, J.J. Zondy: Absolute frequency

7.7.5 Probe Light Sources and Detection 979

measurement of the 2S-8S/D transitions in hydrogen and deuterium: Newdetermination of the Rydberg constant, Phys Rev Lett 78, p.440-443 (1997)

[7.385] {Sect. 7.7.7} P.A. Blanche, P.C. Lemaire, M. Dumont, M. Fischer: Photoin-duced orientation of azo dye in various polymer matrices, Optics Letters 24,p.1349-1351 (1999)

[7.386] {Sect. 7.7.7} E.L. Quitevis, K.G. Casey, T.W. Sinor: Picosecond rotationalreorientation of cresyl violet in polymer solution, Chem. Phys. Lett. 132,p.77-82 (1986)

[7.387] {Sect. 7.7.7} G.J. Blanchard, M.J. Wirth: A critical comparision of molecu-lar reorientation in the ground and excited states: Cresyl violet in methanol,J. Chem. Phys. 82, p.39-44 (1985)

[7.388] {Sect. 7.7.7} L.A. Philips, S.P. Webb, J.H. Clark: High-pressure studies ofrotational reorientation dynamics: The role of dielectric friction, J. Chem.Phys. 83, p.5810-5821 (1985)

[7.389] {Sect. 7.7.7} D. Reiser, A. Laubereau: Effect of electronic excitation onultrafast rotational motion of dye molecules, Chem. Phys. Lett. 92, p.297-301 (1982)

[7.390] {Sect. 7.7.7} A. v. Jena, H.E. Lessing: Rotational Diffusion of Dyes in Sol-vents of Low Viscosity from Transient-Dichroism Experiments, Chem. Phys.Lett. 78, p.187-193 (1981)

[7.391] {Sect. 7.7.7} A. Penzkofer, J. Wiedmann: Orientation of transition dipolemoments of Rhodamine 6G determined by excited state absorption, Opt.Comm. 35, p.81-86 (1980)

[7.392] {Sect. 7.7.7} A. Penzkofer, W. Falkenstein: Photoinduced dichroism andvibronic relaxation of rhodamine dyes, Chem. Phys. Lett. 44, p.547-552(1976)

[7.393] {Sect. 7.7.7} H.E. Lessing, A. von Jena, M. Reichert: Orientational aspectof transient absorption in solutions, Chem. Phys. Lett. 36, p.517-522 (1975)

[7.394] {Sect. 7.7.8} D. Markovitsi, F. Talbot, T. Gustavsson, D. Onidas, E. Laz-zarotto, S. Marguet: Molecular spectroscopy: Complexity of excited-statedynamics in DNA, Nature 441, p.E7 (2006)

[7.395] {Sect. 7.7.8} C. Tedeschi, L.D. Li, H. Mohwald, C. Spitz, D. vonSeggern,R. Menzel, S. Kirstein: Engineering of layer-by-layer coated capsules withthe prospect of materials for efficient and directed electron transfer, J AmChem Soc 126, p.3218-3227 (2004)

[7.396] {Sect. 7.7.8} D. v. Seggern, C. Modrakowski, C. Spitz, A.D. Schlter, R.Menzel: Charge transfer initiated by optical excitation in diester substitutedbiphenylpyrene as a function of the solvent characterized by excited stateabsorption spectroscopy, Chem. Phys. 302, p.193-202 (2004)

[7.397] {Sect. 7.7.8} J.J. Romero, A. Brenier, L.E. Bausa, G. Boulon, J.G. Sole,A.A. Kaminskii: Excited state absorption around 1060 nm of Nd3+ ions inBa2NaNb5O15 crystal, Opt Commun 191, p.371-375 (2001)

[7.398] {Sect. 7.7.8} M. Kovacev, S.V. Fomichev, E. Priori, Y. Mairesse, H.Merdji, P. Monchicourt, P. Breger, J. Norin, A. Persson, A. LHuillier, C.G.Wahlstrom, B. Carre, P. Salieres: Extreme ultraviolet fourier-transformspectroscopy with high order harmonics – art. no. 223903, Phys Rev Lett9522, p.3903 (2005)

[7.399] {Sect. 7.7.8} X.S. Xu, H. Ming, Q.J. Zhang: Properties of polarized laser-induced birefringent gratings in azobenzene-doped poly(Methyl methecry-late) optical fibers, Opt Commun 204, p.137-143 (2002)

[7.400] {Sect. 7.7.8} D. Magde, S.T. Gaffney, B.F. Campbell: Excited Singlet Ab-sorption in Blue Laser Dyes: Measurement by Picosecond Falsh Photolysis,IEEE J. QE-17, p.489-495 (1981)

980 7. Nonlinear Optical Spectroscopy

[7.401] {Sect. 7.7.8} J.F. Shepanski, R.W. Anderson, Jr.: Chlorophyll-a excitedsinglet state absorption measured in the picosecond time regime, Chem.Phys. Lett. 78, p.165-173 (1981)

[7.402] {Sect. 7.7.8} F.E. Doany, B.I. Greene, R.M. Hochstrasser: Excitation energyeffects in the photophysics of trans-stilbene in solution, Chem. Phys. Lett.75, p.206-208 (1980)

[7.403] {Sect. 7.7.8} H.E. Lessing, A. von Jena: Separation of rotational diffusionand level kinetics in transient absorption spectroscopy, Chem. Phys. Lett.42, p.213-217 (1976)

[7.404] {Sect. 7.7.8} N. Nakashima, N. Mataga: Picosecond flash photolysis andtransient spectral measurements over the entire visible, near ultraviolet andnear infrared regions, Chem. Phys. Lett. 35, p.487-492 (1975)

[7.405] {Sect. 7.7.8} D. Magde, M.W. Windsor: Picosecond flash photolysis andspectroscopy: 3,3’-diethyloxadicarbocyanine iodide (DODCI), Chem. Phys.Lett. 27, p.31-36 (1974)

[7.406] {Sect. 7.7.8} H. Tashiro, T. Yajima: Picosecond absorption spectroscopy ofexcited states of dye molecules, Chem. Phys. Lett. 25, p.582-586 (1974)

[7.407] {Sect. 7.7.8} E. Sahar, I. Wieder: Excited singlet state absorption spectrumwith tunable dye lasers, Chem. Phys. Lett. 23, p.518-521 (1973)

[7.408] {Sect. 7.7.8} H. Masuhara, N. Mataga: Fluorescence spectra and excitedsinglet-singlet absorption spectra of s-tetracyanobenzene EDA complexesby laser excitation, Chem. Phys. Lett. 6, p.608-610 (1970)

[7.409] {Sect. 7.7.8} D.S. Kliger, A.C. Albrecht: Nanosecond Excited-State Polar-ized Absorption Spectroscopy of Anthracene in the Visible Region, J. Chem.Phys. 50, p.4109-4111 (1969)

[7.410] {Sect. 7.7.8} G. Porter, M.R. Topp: Nanosecond Flash Photolysis andthe Absorption Spectra of Excited Singlet States, Nature 220, p.1228-1229(1968)

[7.411] {Sect. 7.7.8} R.S. Taylor, S. Mihailov: Excited Singlet-State Absorption inLaser Dyes at the XeCl Wavelength, Appl. Phys. B 38, p.131-137 (1985)

[7.412] {Sect. 7.7.8} R. Menzel, W. Rapp: Excited Singlet- and Triplet-Absorptionsof Pentaphene, Chem. Phys. 89, p.445-455 (1984)

[7.413] {Sect. 7.7.8} A. Penzkofer, W. Blau: Theoretical analysis of S1-state lifetimemeasurements of dyes with picosecond laser pulses, Opt. Quantum Electr.15, p.325-347 (1983)

[7.414] {Sect. 7.7.8} Yu.I. Kiryukhin, Z.A. Sinitsyna, Kh. S. Bagdasaryan: Spectraand extinction coefficients for the Sn-S1 absorption of naphthalene andpyrene in the UV region, Opt. Spectrosc. (USSR) 46, p.517-519 (1979)

[7.415] {Sect. 7.7.8} A.V. Aristov, Yu.S. Maslyukov: Effect of the solvent on thecross section and absorption spectra of the excited states of organic luminormolecules, Opt. Spectrosc. 41, p.240-243 (1976)

[7.416] {Sect. 7.7.8} J.-P. Fouassier, D.-J. Lougnot, J. Faure: Transient absorptionsin a polymethine laser dye, Chem. Phys. Lett. 35, p.189-193 (1975)

[7.417] {Sect. 7.7.8} R.M. Hochstrasser, H. Lutz, G.W. Scott: The dynamics ofpopulating the lowest triplet state of benzophenone following singlet exci-tation, Chem. Phys. Lett. 24, p.162-167 (1974)

[7.418] {Sect. 7.7.8} J. Shah, R.F. Leheny: Excited-state absorption spectrum ofcresyl violet perchlorate, Appl. Phys. Lett. 24, p.562-564 (1974)

[7.419] {Sect. 7.7.8} D. Lavalette, C.J. Werkhoven, D. Bebelaar, J. Langelaar,J.D.W. van Voorst: Excited singlet state polarization and absorption spec-tra of 1,2-benzcoronene, 1,12-benzperylene and 1,2:3,4-dibenzanthracene,Chem. Phys. Lett. 9, p.230-233 (1971)

[7.420] {Sect. 7.7.8} J.M. Larkin, W.R. Donaldson, T.H. Foster, R.S. Knox: Re-verse intersystem crossing from a triplet state of rose bengal populated by

7.7.8 Excited State Absorption (ESA) Measurements 981

sequential 532-+1064-nm laser excitation, Chem Phys 244, p.319-330 (1999)[7.421] {Sect. 7.7.8} S. Reindl, A. Penzkofer: Higher excited-state triplet-singlet

intersystem crossing of some organic dyes, Chem Phys 211, p.431-439 (1996)[7.422] {Sect. 7.7.8} N. Kanamaru, J. Tanaka: Nanosecond Laser Photolysis of N-

Methylindole in Acetonitrile, Bull. Chem. Soc. Jpn. 59, p.569-573 (1986)[7.423] {Sect. 7.7.8} S.-ya Koshihara, T. Kobayashi: Sn-S1 and Tn-T1 absorption

spectra of highly purified chrysene in solution, Chem. Phys. Lett. 124, p.331-335 (1986)

[7.424] {Sect. 7.7.8} M.R. Wasielewski: Direct measurement of the lowest excitedsinglet state lifetime of all-trans-beta-carotene and related carotenoids,Chem. Phys. Lett. 128, p.238-243 (1986)

[7.425] {Sect. 7.7.8} S. Mory, H.-J. Weigmann, A. Rosenfeld, M. Siegmund, R.Mitzner, J. Bendig: The S1 and T1 transient absorptions of 10-substitutedacridin-9-ones measured by nanosecond laser spectroscopy, Chem. Phys.Lett. 115, p.201-204 (1985)

[7.426] {Sect. 7.7.8} R.S. Taylor, S. Mihailov: Excited Singlet-State Absorption inLaser Dyes at the XeCl Wavelength, Appl. Phys. B 38, p.131-137 (1985)

[7.427] {Sect. 7.7.8} D. Leupold, J. Ehlert, S. Oberlander, B. Wiesner: S1 absorp-tion of chlorophyll-a in the red region, Chem. Phys. Lett. 100, p.345-350(1983)

[7.428] {Sect. 7.7.8} J.S. Horwitz, R.A. Goldbeck, D.S. Kliger: Excited-state ab-sorption spectroscopy and state ordering in polyenes. 1,3,5,7-octatetraene,Chem. Phys. Lett. 80, p.229-234 (1981)

[7.429] {Sect. 7.7.8} G.W. Scott, L.D. Talley: Excited state absorption spectraand intersystem crossing kinetics in diazanaphthalenes, J. Chem. Phys. 72,p.5002-5013 (1980)

[7.430] {Sect. 7.7.8} E.L. Russell, A.J. Twarowski, D.S. Kliger, E. Switkes: Theexcited singlet state absorption spectrum of 1,4-diphenylnaphthalene, J.Chem. Phys. 22p.167-173 (1977)

[7.431] {Sect. 7.7.8} N. Mataga, T. Okada, H. Masuhara, N. Nakashima, Y. Sakata,S. Misumi: Electonic structure and dynamical behvior of some intramolec-ular exciplexes, J. Luminesc. 12/13, p.159-168 (1976)

[7.432] {Sect. 7.7.8} A. Mueller, J. Schulz-Hennig, H. Tashiro: Ultrafast absorptionspectroscopy of laser dyes using a streak camera, Opt. Comm. 18, p.152-153(1976)

[7.433] {Sect. 7.7.8} M.A. Slifkin, A.O. Al-Chalabi: S1-Sn transitions of somepolycyclic aromatic hydrocarbons observed by modulation excitation spec-trophotometry, Chem. Phys. Lett. 29, p.405-409 (1974)

[7.434] {Sect. 7.7.8} Ch.R. Goldschmidt, M. Ottolenghi: Excited singlet-singletspectra of anthracene, N,N-diethylaniline and their CT complex, Chem.Phys. Lett. 4, p.570-572 (1970)

[7.435] {Sect. 7.7.8} J.R. Novak, M.W. Windsor: Laser Photolysis and Spec-troscopy in the Nanosecond Time Range: Excited Singlet State Absorptionin Coronene, J. Chem. Phys. 47, p.3075-3076 (1967)

[7.436] {Sect. 7.7.8} N. Tamai, T. Asahi, H. Masuhara: Intersystem crossing ofbenzophenone by femtosecond transient grating spectroscopy, Chem. Phys.Lett. 198, p.413-418 (1992)

[7.437] {Sect. 7.7.8} C. Kryschi, H. Kupka, H.-H. Perkampus: Triplet-triplet ab-sorption spectra of phenanthrene and azaanalogues, Chem. Phys. 116, p.53-60 (1987)

[7.438] {Sect. 7.7.8} I. Carmichael, G.L. Hug: Triplet-Triplet Absorption Spectraof Organic Molecules in Condensed Phases, J. Phys. Chem. Ref. Data 15,p.1-250 (1986)

982 7. Nonlinear Optical Spectroscopy

[7.439] {Sect. 7.7.8} K. Kikuchi, H. Fukumura, H. Kokubun: The Sm-T1 absorp-tion spectrum of 9,10-dibromoanthracene, Chem. Phys. Lett. 123, p.226-228(1986)

[7.440] {Sect. 7.7.8} J. Saltiel, G.R. Marchand, R. Dabestani, J.M. Pecha: Thequenching of anthracene triplets by ground-state anthracene, Chem. Phys.Lett. 100, p.219-222 (1983)

[7.441] {Sect. 7.7.8} L.M. Bolotko, V.V. Gruzinskii, V.I. Danilova, T.N. Kopylova:Triplet-triplet absorption of organic compounds lasing efficiency in the ul-traviolet, Opt. Spectrosc. (USSR) 52, p.379-381 (1982)

[7.442] {Sect. 7.7.8} A.P. Darmanyan: Laser photolysis study of the mechanism ofrubrene quenching by molecular oxygen, Chem. Phys. Lett. 86, p.405-410(1982)

[7.443] {Sect. 7.7.8} H. Fukumura, K, Kikuchi, H. Kokubun: Temperature effect oninverse (Tn-S1) intersystem crossing, Chem. Phys. Lett. 92, p.29-32 (1982)

[7.444] {Sect. 7.7.8} H. Gorner: Triplet States of Phenylethylenes in Solution. En-ergies, Lifetimes, and Absorption Spectra of 1,1-Diphenyl-, Triphenyl-, andTetraphenylethylene Triplets, J. Phys. Chem. 86, p.2028-2035 (1982)

[7.445] {Sect. 7.7.8} H. Hirano, T. Azumi: A new method to determine the quantumyield of intersystem crossing, Chem. Phys. Lett. 86, p.109-112 (1982)

[7.446] {Sect. 7.7.8} H.E. Lessing, D. Richardt, A. von Jena: Quantitative TripletPhotophysics by Picosecond Photometry, J. Mol. Struct. 84, p.281-292(1982)

[7.447] {Sect. 7.7.8} L. J.A. Martins, T.J. Kemp: Triplet State of 2-Nitrothiophen,J. Chem. Soc, Faraday Trans. I 78, p.519-531 (1982)

[7.448] {Sect. 7.7.8} G.J. Smith: Enhanced Intersystem Crossing in the OxygenQuenching of Aromatic Hydrocarbon Triplet States with High Energies, J.Chem. Soc, Faraday Trans. 2 78, p.769-773 (1982)

[7.449] {Sect. 7.7.8} M.A. El-Sayed: Double Resonance and the Properties of theLowest Excited Triplet State of Organic Molecules, Annu. Rev. Phys. Chem.26, p.235-258 (1975)

[7.450] {Sect. 7.7.8} R.W. Anderson, R.M. Hochstrasser, H. Lutz, G.W. Scott:Measurements of intersystem crossing kinetics using 3545 A picosecondpulses: nitronaphthalenes and benzophenone, Chem. Phys. Lett. 28, p.153-157 (1974)

[7.451] {Sect. 7.7.8} J.L. Laporte, Y. Rousset, P. Peretti, P. Ranson: Triplet-singletradiationless energy transfer between benzophenone and perylene in vitre-ous solution, Chem. Phys. Lett. 29, p.444-446 (1974)

[7.452] {Sect. 7.7.8} A.R. Horrocks, F. Wilkinson: Triplet state formation efficien-cies of aromatic hydrocarbons in solution, Proc. Roy. Soc. Lond. A. 306,p.257-273 (1968)

[7.453] {Sect. 7.7.8} B. Dick: Accessibility of the lowest quintet state of organicmolecules through triplet-triplet annihilation; an indo CI study, Chem.Phys. 78, p.1-16 (1983)

[7.454] {Sect. 7.7.9} T. Freudenberg, V. Stert, W. Radloff, J. Ringling, J. Gudde,G. Korn, I.V. Hertel: Ultrafast dynamics of ammonia clusters excited byfemtosecond VUV laser pulses, Chem Phys Lett 269, p.523-529 (1997)

[7.455] {Sect. 7.7.9} A. Grofcsik, M. Kubinyi, W.J. Jones: Intermolecular photoin-duced proton transfer in nile blue and oxazine 720, Chem Phys Lett 250,p.261-265 (1996)

[7.456] {Sect. 7.7.9} J. Dobler, W. Zinth, W. Kaiser, D. Oesterhelt: Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spec-troscopy, Chem. Phys. Lett. 144, p.215-220 (1988)

7.7.9 Decay Time Measurements 983

[7.457] {Sect. 7.7.9} T. Elsaesser, W. Kaiser: Visible and infrared spectroscopy ofintramolecular proton transfer using picosecond laser pulses, Chem. Phys.Lett. 128, p.231-237 (1986)

[7.458] {Sect. 7.7.9} R.W. Yip, D.K. Sharma, R. Giasson, D. Gravel: Picosec-ond Excited-State Absorption of Alkyl Nitrobenzenes in Solution, J. Phys.Chem. 88, p.5770-5772 (1984)

[7.459] {Sect. 7.7.9} T. Doust: Picosecond flourescence decay kinetics of crystalviolet in low-viscosity solvents, Chem. Phys. Lett. 96, p.522-515 (1983)

[7.460] {Sect. 7.7.9} R. Trebino, A.E. Siegman: Subpicosecond relaxation study ofmalachite green using a three-laser frequency-domain technique, J. Chem.Phys. 79, p.3621-3626 (1983)

[7.461] {Sect. 7.7.9} T. Kobayashi: Picosecond time-resolved Sn-S1 absorptionspectrum on the tetracyanobenzene-toluene complex, Chem. Phys. Lett.85, p.170-174 (1982)

[7.462] {Sect. 7.7.9} B. Kopainsky, W. Kaiser: Ultrafast transient processes ofmonomers, dimers, and aggregates of pseudoisocyanine chloride (PIC),Chem. Phys. Lett. 88, p.337-361 (1982)

[7.463] {Sect. 7.7.9} S.K. Rentsch, D. Fassler, P. Hampe, R.V. Danielius, R.A.Gadonas: Picosecond time-resolved spectroscopic studies of a monomer-dimer system of 3.3’-diethyl thiacarcocyanine iodide in aqueous solution,Chem. Phys. Lett. 89, p.249-253 (1982)

[7.464] {Sect. 7.7.9} V. Sundstrom, T. Gillbro, H. Bergstrom: Picosecond kineticsof radiationless relaxations of triphenyl methane dyes. Evidence for a rapidexcited-state equilibrium between states of differing geometry, Chem. Phys.73, p.439-458 (1982)

[7.465] {Sect. 7.7.9} Y. Wang, E.V. Sitzmann, F. Novak, C. Dupuy, K.B. Eisen-thal: Reactions of Excited Triplet Diphenylcarbene Studied with PicosecondLasers, J. Am. Chem. Soc. 104, p.3238-3239 (1982)

[7.466] {Sect. 7.7.9} D. Huppert, S.D. Rand, P.M. Rentzepis, P.F. Bar-bara, W.S. Struve, Z.R. Grabowski: Picosecond kinetics of p-dimethylaminobenzonitrile, J. Chem. Phys. 75, p.5714-5719 (1981)

[7.467] {Sect. 7.7.9} S.K. Rentsch, R.V. Danielius, R.A. Gadonas, A. Piskarskas:Picosecond kinetics of transient spectra of pseudoisocyanine monomers andJ-aggregates in aqueous solution, Chem. Phys. Lett. 84, p.446-449 (1981)

[7.468] {Sect. 7.7.9} M.C. Adams, D.J. Bradley, W. Sibbett, J.R. Taylor: Applica-tion of the synchroscan streak camera to real time picosecond measurementsof molecular energy transfer, J. Mol. Struct. 61, p.5-10 (1980)

[7.469] {Sect. 7.7.9} T. Kobayashi, E.O. Degenkolb, R. Bersohn, P.M. Rentzepis, R.MacColl, D.S. Berns: Energy Transfer among the Chromophores in Phyco-cyanins Measured by Picosecond Kinetics, Biochem. 18, p.5073-5078 (1979)

[7.470] {Sect. 7.8.1} R. Menzel, C.W. Hoganson, M.W. Windsor: PicosecondBleaching Behavior of the Ground-State Absorption and Excited-State Ab-sorptions of Crystal Violet between 455 and 720 nm, Chem. Phys. Lett.120, p.29-34 (1985)

[7.471] {Sect. 7.8.2.2} B.S. Ham, S.M. Shahriar, P.R. Hemmer: Electromagnet-ically induced transparency over spectral hole-burning temperature in arare-earth-doped solid, J Opt Soc Am B Opt Physics 16, p.801-804 (1999)

[7.472] {Sect. 7.8.2.2} S.T. Li, G.K. Liu, W. Zhao: Converting Eu3+ between defectsites in BaFCl for persistent spectral hole burning, Optics Letters 24, p.838-840 (1999)

[7.473] {Sect. 7.8.2.2} J. Pieper, K.D. Irrgang, M. Ratsep, T. Schrotter, J. Voigt,G.J. Small, G. Renger: Effects of aggregation on trimeric light-harvestingcomplex II of green plants: A hole-burning study, J Phys Chem A 103,p.2422-2428 (1999)

984 7. Nonlinear Optical Spectroscopy

[7.474] {Sect. 7.8.2.2} Z. Hasan, L. Biyikli, P.I. Macfarlane: Power-gated spectralholeburning in MgS:Eu2+, Eu3+: A case for high- density persistent spec-tral holeburning, Appl Phys Lett 72, p.3399-3401 (1998)

[7.475] {Sect. 7.8.2.2} Z. Hasan, M. Solonenko, P.I. Macfarlane, L. Biyikli, V.K.Mathur, F.A. Karwacki: Persistent high density spectral holeburning inCaS:Eu and CaS: Eu,Sm phosphors, Appl Phys Lett 72, p.2373-2375 (1998)

[7.476] {Sect. 7.8.2.2} A. Muller, W. Richter, L. Kador: Persistent spectral holeburning in the few-molecule limit: terrylene in p-terphenyl, Chem PhysLett 285, p.92-98 (1998)

[7.477] {Sect. 7.8.2.2} H. Sasaki, K. Karaki: Optical parallel pattern recognitionof multiple stored images in a persistent spectral holeburning memory, OptCommun 153, p.9-13 (1998)

[7.478] {Sect. 7.8.2.2} Z. Hasan, L. Biyikli, P.I. Macfarlane: Power-gated spectralholeburning in MgS:Eu2+, Eu3+: A case for high-density persistent hole-burning, Appl. Phys. Lett. 72, p.3399-3401 (1998)

[7.479] {Sect. 7.8.2.2} Z. Hasan, M. Solonenko, P.I. Macfarlane, L. Biyikli: Per-sistent high density spectral holeburning in CaS:Eu and CaS:Eu,Sm phos-phors, Appl. Phys. Lett. 72, p.2373-2375 (1998)

[7.480] {Sect. 7.8.2.2} M. Nogami, Y. Abe: High-temperature persistent spectralhole burning of Eu3+- doped SiO2 glass prepared by the sol-gel process,Appl Phys Lett 71, p.3465-3467 (1997)

[7.481] {Sect. 7.8.2.2} M. Tian, F. Grelet, D. Pavolini, J.P. Galaup, J.L. LeGouet:Four-wave hole burning spectroscopy with a broadband laser source, ChemPhys Lett 274, p.518-524 (1997)

[7.482] {Sect. 7.8.2.2} J. Valenta, J. Moniatte, P. Gilliot, R. Levy, B. Honerlage,A.I. Ekimov: Hole-filling of persistent spectral holes in the excitonic absorp-tion band of CuBr quantum dots, Appl Phys Lett 70, p.680-682 (1997)

[7.483] {Sect. 7.8.2.2} M. Nogami, Y. Abe: High-temperature persistent spectralhole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process,Appl. Phys. Lett. 71, p.3465-3467 (1997)

[7.484] {Sect. 7.8.2.2} Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, W.H. Grod-kiewicz: Persistent spectral hole burning at liquid nitrogen temperature inEu (3+)-doped aluminosilicate glass, Appl Phys Lett 68, p.3677-3679 (1996)

[7.485] {Sect. 7.8.2.2} M. Nogami, Y. Abe, K. Hirao, D.H. Cho: Room temperaturepersistent spectra hole burning in Sm2+-doped silicate glasses prepared bythe sol-gel process, Appl. Phys. Lett. 66, p.2952-2954 (1995)

[7.486] {Sect. 7.8.2.2} Y.-I. Pan, Y.-Y. Zhao, Y.Yin, L.-b. Chen, R.-s. Wang, F.-m.Li: The observation of photoproducts and multiple photon-gated spectralhole burning in a donor-acceptor and a donor1+donor2-acceptor system,Opt. Comm. 119, p.538-544 (1995)

[7.487] {Sect. 7.8.2.2} R.B. Altmann, I. Renge, L. Kador, D. Haarer: Dipole mo-ment differences of nonpolar dyes in polymeric matrices: Stark effect andphotochemical hole burning. I, J. Chem. Phys. 97, p.5316-5322 (1992)

[7.488] {Sect. 7.8.2.2} W.P. Ambrose, A.J. Sievers: Persistent infrared spectral holeburning of the fundamental stretching mode of SH- in alkali halides, J. Opt.Soc. Am. B 9, p.753-762 (1992)

[7.489] {Sect. 7.8.2.2} S. Arnold, J. Comunale: Room-temperature microparticle-based persistent hole-burning spectroscopy, J. Opt. Soc. Am. B 9, p.819-824(1992)

[7.490] {Sect. 7.8.2.2} Th. Basche, W.P. Ambrose, W.E. Moerner: Optical spec-tra and kinetics of single impurity molecules in a polymer: spectral diffu-sion and persistent spectral hole burning, J. Opt. Soc. Am. B 9, p.829-836(1992)

7.8.2 Hole Burning (HB) Measurements 985

[7.491] {Sect. 7.8.2.2} R.L. Cone, P.C. Hansen, M.J.M. Leask: Eu3+ optically de-tected nuclear quadrupole resonance in stoichiometric europium vanadate,J. Opt. Soc. Am. B 9, p.779-783 (1992)

[7.492] {Sect. 7.8.2.2} R. Hirschmann, J. Friedrich: Hole burning of long-chainmolecular aggregates: homogeneous line broadening, spectral-diffusionbroadening, and pressure broadening, J. Opt. Soc. Am. B 9, p.811-815(1992)

[7.493] {Sect. 7.8.2.2} H. Inoue, T. Iwamoto, A. Makishima, M. Ikemoto, K. Horie:Preperation and properties of sol-gel thin films with porphins, J. Opt. Soc.Am. B 9, p.816-818 (1992)

[7.494] {Sect. 7.8.2.2} L. Kummerl, H. Wolfrum, D. Haarer: Hole Burning withChelate Complexes of Quinizarin in Alcohol Glasses, J. Phys. Chem. 96,p.10688-10693 (1992)

[7.495] {Sect. 7.8.2.2} S.P. Love, C.E. Mungan, A.J. Sievers: Persistant infraredspectral hole burning of Tb3+ in the glasslike mixed crystal Ba1-x-yLaxTbyF2+x+y, J. Opt. Soc. Am. B 9, p.794-799 (1992)

[7.496] {Sect. 7.8.2.2} C.E. Mungan, A.J. Sievers: Persistent infrared spectral holeburning of the fundamental stretching mode of SH- in alkali halides, J. Opt.Soc. Am. B 9, p.746-752 (1992)

[7.497] {Sect. 7.8.2.2} D. Redman, S. Brown, S.C. Rand: Origin of persistent holeburning of N-V centers in diamond, J. Opt. Soc. Am. B 9, p.768-774 (1992)

[7.498] {Sect. 7.8.2.2} R.J. Reeves, R.M. Macfarlane: Persistent spectral hole burn-ing induced by ion motion in DaF2:Pr3+:D- and SrF2:Pr3+:D- crystals, J.Opt. Soc. Am. B 9, p.763-767 (1992)

[7.499] {Sect. 7.8.2.2} I. Renge: Relationship between electron-phonon couplingand intermolecular interaction parameters in dye-doped organic glasses, J.Opt. Soc. Am. B 9, p.719-723 (1992)

[7.500] {Sect. 7.8.2.2} W. Richter, M. Lieberth, D. Haarer: Frequency dependenceof spectral diffusion in hole-burning systems: resonant effects of infraredradiation, J. Opt. Soc. Am. B 9, p.715-718 (1992)

[7.501] {Sect. 7.8.2.2} N.E. Rigby, N.B. Manson: Spectral hole burning in emerald,J. Opt. Soc. Am. B 9, p.775-778 (1992)

[7.502] {Sect. 7.8.2.2} B. Sauter, Th. Basche, C. Brauchle: Temperature-dependentspectral hole-burning study of dye-surface and mixed matrix-dye-surfacesystems, J. Opt. Soc. Am. B 9, p.804-810 (1992)

[7.503] {Sect. 7.8.2.2} L. Shu, G.J. Small: Mechanism of nonphotochemical holeburning: Cresyl Violet in polyvinyl alcohol films, J. Opt. Soc. Am. B 9,p.724-732 (1992)

[7.504] {Sect. 7.8.2.2} L. Shu, G.J. Small: Dispersive kinetics of nonphotochemicalhole burning and spontaneous hole filling: Cresyl Violet in polyvinyl films,J. Opt. Soc. Am. B 9, p.733-737 (1992)

[7.505] {Sect. 7.8.2.2} L. Shu, G.J. Small: Laser-induced hole filling: Cresyl Violetin polyvinyl alcohol films, J. Opt. Soc. Am. B 9, p.738-745 (1992)

[7.506] {Sect. 7.8.2.2} H. Talon, L. Fleury, J. Bernard, M. Orrit: Fluorescence ex-citation of single molecules, J. Opt. Soc. Am. B 9, p.825-827 (1992)

[7.507] {Sect. 7.8.2.2} L.L. Wald, E.L. Hahn, M. Lukac: Variation of the Pr3+nuclear quadrupole resonance spectrum across the inhomogeneous opticalline in Pr3+:LaF3, J. Opt. Soc. Am. B 9, p.789-793 (1992)

[7.508] {Sect. 7.8.2.2} D. Wang, L. Hu, H. He, J. Rong, J. Xie, J. Zhang: Systemsof organic photon-gated photochemical hole burning, J. Opt. Soc. Am. B9, p.800-803 (1992)

[7.509] {Sect. 7.8.2.2} K.-P. Muller, D. Haarer: Spectral Diffusion of Optical Transi-tions in Doped Polymer Glasses below 1 K, Phys. Rev. Lett. 66, p.2344-2347(1991)

986 7. Nonlinear Optical Spectroscopy

[7.510] {Sect. 7.8.2.2} L. Kador, S. Jahn, D. Haarer: Contributions of the electro-static and the dispersion interaction to the solvent shift in a dye-polymersystem, as investigated by hole-burning spectroscopy, Phys. Rev. B 41,p.12215-12226 (1990)

[7.511] {Sect. 7.8.2.2} R.F. Mahrt, H. Bassler: Vibronic hole burning in acene-doped MTHF glasses, Chem. Phys. Lett. 165, p.125-130 (1990)

[7.512] {Sect. 7.8.2.2} U.P. Wild, A. Renn: Spectral hole burning and holographicimage storage, Mol. Cryst. Liq. Cryst. 183, p.119-129 (1990)

[7.513] {Sect. 7.8.2.2} J.K. Gillie, G.J. Small, J.H. Golbeck: NonphotochemicalHole Burning of the Native Antenna Complex of Photosystem I (PSI-200),J. Phys. Chem. 93, p.1620-1627 (1989)

[7.514] {Sect. 7.8.2.2} R. Jankowiak, D. Tang, G.J. Small: Transient and PersistantHole Burning of the Reaction Center of Photosystem II, J. Phys. Chem. 93,p.1649-1654 (1989)

[7.515] {Sect. 7.8.2.2} A.J. Meixner, A. Renn, U.P. Wild: Spectral hole-burning andholography. I. Transmission and holographic detection of spectral holes, J.Chem. Phys. 91, p.6728-6736 (1989)

[7.516] {Sect. 7.8.2.2} A. Renn, S.E. Bucher, A.J. Meixner, E.C. Meister, U.P.Wild: Spectral hole burning: electric field effect on resorufin, oxazine-4 andcresylviolet in polyvinylbutyral, J. Luminesc. 39, p.181-187 (1988)

[7.517] {Sect. 7.8.2.2} A. Elschner, H. Bassler: Site-selective fluorescence and hole-burning spectroscopy of MTHF glasses doped with tetracene or pentacene,Chem. Phys. 112, p.285-291 (1987)

[7.518] {Sect. 7.8.2.2} J.K. Gillie, B.L. Fearey, J.M. Hayes, G.J. Small: Persistenthole burning of the primary donor state of photosystem I: Strong linearelectron-phonon coupling, Chem. Phys. Lett. 134, p.316-322 (1987)

[7.519] {Sect. 7.8.2.2} J.K. Gillie, J.M. Hayes, G.J. Small, J.H. Golbeck: Hole Burn-ing Spectroscopy of a Core Antenna Complex, J. Phys. Chem. 91, p.5524-5527 (1987)

[7.520] {Sect. 7.8.2.2} R. Jankowiak, G.J. Small: Hole-Burning Spectroscopy andRelaxation Dynamics of Amorphous Solids at Low Temperatures, Science237, p.618-625 (1987)

[7.521] {Sect. 7.8.2.2} R.F. Loring, Y.J. Yan, S. Mukamel: Hole-Burning Spec-troscopy of Polar Molecules in Polar Solvents: Solvation Dynamics and Vi-brational Relaxation, J. Phys. Chem. 91, p.1302-1305 (1987)

[7.522] {Sect. 7.8.2.2} R.M. Macfarlane, R.M. Shelby: Homogeneous line broaden-ing of optical transitions of ions and molecules in glasses, J. Luminesc. 36,p.179-207 (1987)

[7.523] {Sect. 7.8.2.2} K.K. Rebane, A.A. Gorokhovskii: Hole-Burning Study ofZero-Phonon Linewidths in Organic Glasses, J. Luminesc. 36, p.237-250(1987)

[7.524] {Sect. 7.8.2.2} S. Volker: Optical linewidth and dephasing of organic amor-phous and semi-crystalline solids studied by hole burning, J. Luminesc. 36,p.251-262 (1987)

[7.525] {Sect. 7.8.2.2} A. Gorokhovskii, V. Korrovits, V. Palm, M. Trummal:Temperature broadening of a photochemical hole in the spectrum of H2-octaethylporphin in polystyrene between 0.05 and 1.5 K, Chem. Phys. Lett.125, p.355-359 (1986)

[7.526] {Sect. 7.8.2.2} H.W.H. Lee, A.L. Huston, M. Gehrtz, W.E. Moerner: Pho-tochemical hole-burning in a protonated phthalocynine with GaAlAs diodelasers, Chem. Phys. Lett. 114, p.491-496 (1985)

[7.527] {Sect. 7.8.2.2} M. Romagnoli, W.E. Moerner, F.M. Schellenberg, M.D. Lev-enson, G.C. Bjorklund: Beyond the bottleneck: submicrosecond hole burn-ing in phthalocyanine, J. Opt. Soc. Am. B 1, p.343-348 (1984)

7.8.2 Hole Burning (HB) Measurements 987

[7.528] {Sect. 7.8.2.2} J. Friedrich, D. Haarer: Reversible and irreversible broad-ening of photochemical holes in amorphous solids, Chem. Phys. Lett. 95,p.119-123 (1983)

[7.529] {Sect. 7.8.2.2} H.P.H. Thijssen, R. van den Berg, S. Volker: Thermal broad-ening of optical homogeneous linewidths in organic glasses adn polymersstudied via photochemical hole-burning, Chem. Phys. 97, p.295-302 (1983)

[7.530] {Sect. 7.8.2.2} R.M. Shelby, D.P. Burum, R.M. Macfarlane: Nonphotochem-ical hole burning and antihole production in the mixed molecular crystalpentacene in benzoic acid, J. Chem. Phys. 77, p.2283-2289 (1982)

[7.531] {Sect. 7.8.2.2} J.M.J. Vankan, W.S. Veeman: Inhomogeneous triplet absorp-tion in 1,4-dibromonaphthalene, Chem. Phys. Lett. 91, p.358-361 (1982)

[7.532] {Sect. 7.8.2.2} A.I.M. Dicker, M. Noort, H.P.H. Thijssen, S. Volker, J.H.Van der Waals: Zeeman effect of the S1-S0 transition of the two tautomericforms of chlorin: A study by photochemical hole burning in an n-hexanehost at 4.2 K, Chem. Phys. Lett. 78, p.212-218 (1981)

[7.533] {Sect. 7.8.2.2} R.M. Macfarlane, R.M. Shelby: Sub-Kilohertz Optical Line-width of the 7F0-5D0 Transition in Y2O3:Eu3+, Opt. Comm. 39, p.169-171(1981)

[7.534] {Sect. 7.8.2.2} S. Volker, R.M. Macfarlane, A.Z. Genack, H.P. Trommsdorf:,J. Chem. Phys. 67, p.1759-1765 (1977)

[7.535] {Sect. 7.8.2.3} H.W. Song, T. Hayakawa, M. Nogami: Room temperaturespectral hole burning and electron transfer in Sm- doped aluminosilicateglasses, J Appl Phys 86, p.5619-5623 (1999)

[7.536] {Sect. 7.8.2.3} K. Fujita, K. Tanaka, K. Hirao, N. Soga: Room-temperaturepersistent spectral hole burning of EU3+ in sodium aluminosilicate glasses,Optics Letters 23, p.543-545 (1998)

[7.537] {Sect. 7.8.2.3} M. Benhmida, V. Netiksis, M. Robino, J.B. Grun, M. Pe-trauskas, B. Honerlage: Picosecond spectral hole burning in ZnCdTe layers,J Appl Phys 80, p.4632-4636 (1996)

[7.538] {Sect. 7.8.2.3} K. Hirao, S. Todoroki, N. Soga: Room temperature persistentspectral hole burning of Sm2+ in fluorohafnate glasses, J. Luminesc. 55,p.217-219 (1993)

[7.539] {Sect. 7.8.2.3} C.H. Brito Cruz, R.L. Fork, W.H. Knox, C.V. Shank: Spec-tral hole burning in large molecules probed with 10 fs optical pulses, Chem.Phys. Lett. 132, p.341-344 (1986)

[7.540] {Sect. 7.8.2.3} G. Mourou: Spectral Hole Burning in Dye Solutions, IEEEJ. QE-11, p.1-8 (1975)

[7.541] {Sect. 7.8.2.3} D. Leupold, R. Konig, B. Voigt, R. Menzel: Modell des sattig-baren Absorbers Crytocyanin/Methanol, Opt. Commun. 11, p.78-82 (1974)

[7.542] {Sect. 7.8.2.3} G. Mourou, B. Drouin, M.M. Denariez-Roberge: Observationdu ”Hole-burning” dans une solution de cryptocyanine dans le methanol,Opt. Comm. 8, p.56-59 (1973)

[7.543] {Sect. 7.8.2.3} B.H. Soffer, B.B. McFarland: Frequency locking and dyespectral hole burning in Q-spoiled lasers, Appl. Phys. Lett. 8, p.166-169(1966)

[7.544] {Sect. 7.8.4} M. Krikunova, H. Lokstein, D. Leupold, R.G. Hiller, B. Voigt:Pigment-pigment interactions in PCP of amphidinium carterae investigatedby nonlinear polarization spectroscopy in the frequency domain, Biophys.J. 90, p.261-271 (2006)

[7.545] {Sect. 7.8.4} A. Schubert, J.D. Beenken W, H. Stiel, B. Voigt, D. Leupold,H. Lokstein Excitonic coupling of chlorophylls in the plant light-harvestingcomplex LHC-II, Biophysical Journal 82, p.1030-1039 (2002)

[7.546] {Sect. 7.8.4} M. Krikunova, B. Voigt, H. Lokstein: Direct evidence for ex-citonically coupled chlorophylls a and b in LHC II of higher plants by

988 7. Nonlinear Optical Spectroscopy

nonlinear polarization spectroscopy in the frequency domain, Biochimicaet Biophysica Acta 1556, p.1-5 (2002)

[7.547] {Sect. 7.8.4} B. Voigt, F.R. Nowak, W. Beenken: A new set-up for nonlinearpolarization spectroscopy in the frequency domain: experimental examplesand theoretical background, Meas. Sci. Technol. 10, p.N7-N11 (1999)

[7.548] {Sect. 7.8.4} W. Beenken, J. Ehlert: Subband analysis of molecular elec-tronic transitions by nonlinear polarization spectroscopy in the frequencydomain, J. Chem. Phys. 109, p.10126-10137 (1998)

[7.549] {Sect. 7.8.4} W. Beenken, V. May: Strong-field theory of nonlinear polar-ization spectroscopy. Fundamentals and the two-level system, J. Opt. Soc.Am B 14, p.2804-2810 (1997)

[7.550] {Sect. 7.8.4} B. Voigt, F. Nowak, J. Ehlert, W. Beenken, D. Leupold, W.Sandner: Substructures and different energy relaxation time within the firstelectronic transition of pinacyanol, Chem. Phys. Lett. 278, p.380-390 (1997)

[7.551] {Sect. 7.10.1} D.T. Reid, M. Padgett, C. Mcgowan, W.E. Sleat, W. Sibbett:Light-emitting diodes as measurement devices for femtosecond laser pulses,Optics Letters 22, p.233-235 (1997)

[7.552] {Sect. 7.11.1} P.R. Spyak: Beam expander, pinhole, and crosshair alignmentto laser beams, Appl Opt 36, p.9111-9112 (1997)

[7.553] {Sect. 7.11.2} T. Baumert, G. Gerber: Femtosecond spectroscopy ofmolecules and clusters, Adv. Atom, Mol. and Opt. Phys. 35, p.163-208(1995)

[7.554] {Sect. 7.11.2} M. Dantus, M. Rosker, A.H. Zewail: Real-time-femtosecondprobing of ”transition states” in chemical reactions, J. Chem. Phys. 87,p.2395-2397 (1987)

[7.555] {Sect. 7.11.2} C.V. Shank, B.I. Greene: Femtosecond Spectroscopy andChemistry:, J. Phys. Chem. 87, p.732-734 (1983)

[7.556] {Sect. 7.11.2} C.V. Shank: Measurement of Ultrafast Phenomena in theFemtosecond Time Domain, Science 219, p.1027-1031 (1983)

[7.557] {Sect. 7.11.2} A. Bartels, T. Dekorsy, H. Kurz: Femtosecond Ti : sapphirering laser with a 2-GHz repetition rate and its application in time-resolvedspectroscopy, Optics Letters 24, p.996-998 (1999)

[7.558] {Sect. 7.12.1} Y.L.S. Zhang, J. Cheng: Theoretical study of transient ther-mal conduction and temperature distribution generated by pulsed laser,Appl. Phys. B 70p. 85-90 (2000)

[7.559] {Sect. 7.12.1} C. Tietz, O. Chekhlov, A. Drabenstedt, J. Schuster, J.Wrachtrup: Spectroscopy on single light-harvesting complexes at low tem-perature, J Phys Chem B 103, p.6328-6333 (1999)

[7.560] {Sect. 7.12.1} S.C. Chen, C.P. Grigoropoulos: Noncontact nanosecond-time-resolution temperature measurement in excimer laser heating of Ni-P disksubstrates, Appl Phys Lett 71, p.3191-3193 (1997)

[7.561] {Sect. 7.12.1} K. Teuchner, M. Schulzevers, D. Leupold, D. Strehlow, W.Rudiger: The complex excited state dynamics of the early photocycle ofphytochrome, Chem Phys Lett 268, p.157-162 (1997)

[7.562] {Sect. 7.12.1} M. Pirotta, A. Renn, M.H.V. Werts, U.P. Wild: Singlemolecule spectroscopy, perylene in the Shpol’skii matrix n-nonane, ChemPhys Lett 250, p.576-582 (1996)

[7.563] {Sect. 7.12.1} W. Ketterle, N.J. van Druten: Evaporative cooling of trappedatoms, Adv. Atom, Mol. and Opt. Phys. 37, p.181-236 (1996)

[7.564] {Sect. 7.12.1} H. Lueck, R. Menzel, R. Sander: Inherent sample heating andtemperature calibration in excited state absorption (ESA) measurementsbetween room temperature and 77 kelvin, Opt. Commun. 108, p.258-264(1994)

7.12.1 Low Temperatures 989

[7.565] {Sect. 7.12.1} M. Pirotta, F. Guttler, H. Gygax, A. Renn, J. Sepiol, U.P.Wild: Single molecule spectroscopy. Fluorescence-lifetime measurements ofpentacene in p-terphenyl, Chem. Phys. Lett. 208, p.379-384 (1993)

[7.566] {Sect. 7.12.1} U.P. Wild, F. Guttler, M. Pirotta, A. Renn: Single moleculespectroscopy: Stark effect of pentacene in p-terphenyl, Chem. Phys. Lett.193, p.451-455 (1992)

[7.567] {Sect. 7.12.1} D. Ben-Amotz, C.B. Harris: Torsional dynamics of moleculeson barrierless potentials in liquids. I. Temperature and wavelength depen-dent picosecond studies of triophenyl-methane dyes, J. Chem. Phys. 86,p.4856-4870 (1987)

[7.568] {Sect. 7.12.1} D. Ben-Amotz, C.B. Harris: Torsional dynamics of moleculeson barrierless potentials in liquids. II. Test of theoretical models, J. Chem.Phys. 86, p.5433-5440 (1987)

[7.569] {Sect. 7.12.1} D. Ben-Amotz, R. Jeanloz, C.B. Harris: Torsional dynamicsof molecules on barrierless potentials in liquids. III. Pressure dependentpicosecond studies of triphenyl-methane dye solutions in a diamond anvilcell, J. Chem. Phys. 86, p.6119-6127 (1987)

[7.570] {Sect. 7.12.1} H. -H. Perkampus: UV-VIS Atlas of Organic Compounds(VCH, Weinheim, 1992)

[7.571] {Sect. 7.12.1} B.C. Edwards, J.E. Anderson, R.I. Epstein, G.L. Mills, A.J.Mord: Demonstration of a solid-state optical cooler: An approach to cryo-genic refrigeration, J Appl Phys 86, p.6489-6493 (1999)

[7.572] {Sect. 7.12.1} T.R. Gosnell: Laser cooling of a solid by 65 K starting fromroom temperature, Optics Letters 24, p.1041-1043 (1999)

[7.573] {Sect. 7.12.1} H. Wadi, E. Pollak: Theory of laser cooling of polyatomicmolecules in an electronically excited state, J Chem Phys 110, p.11890-11905 (1999)

[7.574] {Sect. 7.12.1} C.E. Wieman, D.E. Pritchard, D.J. Wineland: Atom cooling,trapping, and quantum manipulation, Rev. Mod. Phys. 71, p.253-262 (1999)

[7.575] {Sect. 7.12.1} G. Lamouche, P. Lavallard, R. Suris, R. Grousson: Low tem-perature laser cooling with a rare-earth doped glass, J Appl Phys 84, p.509-516 (1998)

[7.576] {Sect. 7.12.1} G. Lei, J.E. Anderson, M.I. Buchwald, B.C. Edwards, R.I. Ep-stein, M.T. Murtagh, G.H. Sigel: Spectroscopic evaluation of Yb3+-dopedglasses for optical refrigeration, IEEE J QE-34, p.1839-1845 (1998)

[7.577] {Sect. 7.12.1} X. Luo, M.D. Eisaman, T.R. Gosnell: Laser cooling of asolid by 21 K starting from room temperature, Optics Letters 23, p.639-641(1998)

[7.578] {Sect. 7.12.1} T. Esslinger, I. Bloch, T.W. Hansch: Bose-Einstein conden-sation in a quadrupole-Ioffe-configuration trap, Phys. Rev. A 58, p.R2664-R2667 (1998)

[7.579] {Sect. 7.12.1} C.E. Mungan, M.I. Buchwald, B.C. Edwards, R.I. Epstein,T.R. Gosnell: Laser cooling of a solid by 16 K starting from room temper-ature, Phys Rev Lett 78, p.1030-1033 (1997)

[7.580] {Sect. 7.12.1} C.E. Mungan, M.I. Buchwald, B.C. Edwards, R.I. Epstein,T.R. Gosnell: Internal laser cooling of Yb3+-doped glass measured between100 and 300 K, Appl Phys Lett 71, p.1458-1460 (1997)

[7.581] {Sect. 7.12.1} L.A. Rivlin, A.A. Zadernovsky: Laser cooling of semiconduc-tors, Opt Commun 139, p.219-222 (1997)

[7.582] {Sect. 7.12.1} G. Morigi, J.I.Cirac, M. Lewenstein, P. Zoller: Ground-statelaser cooling beyond the Lamb-Dicke limit, Europhys. Lett. 39, p.13-18(1997)

[7.583] {Sect. 7.12.1} E.G. Bessonov, K.J. Kim: Radiative cooling of ion beams instorage rings by broad- band lasers, Phys Rev Lett 76, p.431-434 (1996)

990 7. Nonlinear Optical Spectroscopy

[7.584] {Sect. 7.12.1} J.L. Clark, G. Rumbles: Laser cooling in the condensed phaseby frequency up- conversion, Phys Rev Lett 76, p.2037-2040 (1996)

[7.585] {Sect. 7.12.1} H.J. Lee, C.S. Adams, M. Kasevich, S. Chu: Raman coolingof atoms in an optical dipole trap, Phys Rev Lett 76, p.2658-2661 (1996)

[7.586] {Sect. 7.12.1} M.O. Mewes, M.R. Andrews, N.J. van Druten, D.M. Kurn,D.S. Durfee, W.Ketterle: Bose-Einstein Condensation in a Tightly Confin-ing dc Magnetic Trap, Phys. Rev. Lett. 77, p.416-419 (1996)

[7.587] {Sect. 7.12.1} J. Lawall, S. Kulin, B. Saubamea, N. Bigelow, M. Leduc,C. Cohentannoudji: Three-dimensional laser cooling of helium beyond thesingle-photon recoil limit, Phys Rev Lett 75, p.4194-4197 (1995)

[7.588] {Sect. 7.12.1} M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wie-man, E.A. Cornell: Observation of Bose-Einstein Condensation in a DiluteAtomic Vapor, Science 269, p.198-201 (1995)

[7.589] {Sect. 7.12.1} J. Reichel, F. Bardou, M.B. Dasan, E. Peik, S. Rand, C.Salomon, C. Cohen-Tannoudji: Raman Cooling of Cesium below 3 nK: NewApproach Inspired by L’evy Flight Statistics, Phys. Rev. Lett. 75, p.4575-4578 (1995)

[7.590] {Sect. 7.12.1} C.N. Cohen-Tannoudji, W.D. Phillips: New mechanisms forlaser cooling, Phys. Today 43, p.33-40 (1990)

[7.591] {Sect. 7.12.1} A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C.Cohen-Tannoudji: Laser cooling below the one-photon recoil energy byvelocity-selctive coherent population trapping: theoretical analysis, J. Opt.Soc. Am B 6, p.2112-2124 (1989)

[7.592] {Sect. 7.12.1} S. Chu, C. Wieman (guest ed.): Laser Cooling and Trapping,J. Opt. Soc. Am. B 6, p.2020 (1989)

[7.593] {Sect. 7.12.1} J. Dalibard, C. Cohen-Tannoudji: Laser cooling below theDoppler limit by polarization gradients: simple theoretical models, J. Opt.Soc. Am B 6, p.2023-2045 (1989)

[7.594] {Sect. 7.12.1} S. Stenholm: The semiclassical theory of laser cooling, Rev.Mod. Phys. 58, p.699-739 (1986)

[7.595] {Sect. 7.12.1} S. Chu. L. Holberg. J.E. Bjorkholm, A. Cable, A. Ashkin:Three-Dimensional Viscous Confinement and Cooling of Atoms by Reso-nance Radiation Pressure, Phys. Rev. Lett. 55, p.48-51 (1985)

[7.596] {Sect. 7.12.1} J.E. Bjorkholm, R.R. Freeman, A. Ashkin, D.B. Pearson:Experimental observation of the influence of the quantum fluctuations ofresonance-radiation pressure, Opt. Lett. 5, p.111-113 (1980)

[7.597] {Sect. 7.12.1} A. Ashkin, J.P. Gordon: Cooling and trapping of atoms byresonance radiation pressure, Opt. Lett. 4, p.161-163 (1979)

[7.598] {Sect. 7.12.1} W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt:Optical-Sideband Cooling of Visible Atom Cloud Confined in ParabolicWell, Phys. Rev. Lett. 41, p.233-236 (1978)

[7.599] {Sect. 7.12.1} W. Neuhauser, M. Hohenstatt, P. Toschek: Visiual Obser-vation and Optical Cooling of Electrodynamically Contained Ions, Appl.Phys. 17, p.123 (1978)

[7.600] {Sect. 7.12.1} D.J. Wineland, R.E. Drullinger, F.L. Walls: Radiation-Pressure Cooling of Baound Resonant Absorbers, Phys. Rev. Lett. 40,p.1639-1642 (1978)

[7.601] {Sect. 7.12.1} B.E. Blue, S.V. Weber, S.G. Glendinning, N.E. Lanier, D.T.Woods, M.J. Bono, S.N. Dixit, C.A. Haynam, J.P. Holder, D.H. Kalantar,B.J. MacGowan, A.J. Nikitin, V.V. Rekow, B.M. VanWonterghem, E.I.Moses, P.E. Stry, B.H. Wilde, W.W. Hsing, H.F. Robey: Experimental in-vestigation of high-mach-number 3D hydrodynamic jets at the NationalIgnition Facility – art. no. 095005, Phys Rev Lett 9409, p.5005 (2005)

7.12.1 Low Temperatures 991

[7.602] {Sect. 7.12.1} M. Lorono, H.A. Cruse, P.B. Davies: Infrared laser absorptionspectroscopy of the nu (7) band of jet-cooled iron pentacarbonyl, J MolStruct 519, p.199-204 (2000)

[7.603] {Sect. 7.12.1} M.M. Ahern, M.A. Smith: Low temperature relaxation of OHin the X-2 Pi and A (2)Sigma states in an argon free-jet, J Chem Phys 110,p.8555-8563 (1999)

[7.604] {Sect. 7.12.1} M.A. Duncan, A.M. Knight, Y. Negishi, S. Nagao, Y. Naka-mura, A. Kato, A. Nakajima, K. Kaya: Production of jet-cooled coroneneand coronene cluster anions and their study with photoelectron spec-troscopy, Chem Phys Lett 309, p.49-54 (1999)

[7.605] {Sect. 7.12.1} D.R. Farley, K.G. Estabrook, S.G. Glendinning, S.H. Glenzer,B.A. Remington, K. Shigemori, J.M. Stone, R.J. Wallace, G.B. Zimmerman,J.A. Harte: Radiative jet experiments of astrophysical interest using intenselasers, Phys Rev Lett 83, p.1982-1985 (1999)

[7.606] {Sect. 7.12.1} P. Farmanara, H.H. Ritze, V. Stert, W. Radloff: Vibrationalwavepacket motion in I-2 excited with femtosecond laser pulses in the 200nm wavelength region, Chem Phys Lett 307, p.1-7 (1999)

[7.607] {Sect. 7.12.1} A.L. McIntosh, Z. Wang, R.R. Lucchese, J.W. Bevan, A.C.Legon: Identification of the OC-IH isomer based on near-infrared diode laserspectroscopy, Chem Phys Lett 305, p.57-62 (1999)

[7.608] {Sect. 7.12.1} M. Decker, A. Schik, U.E. Meier, W. Stricker: QuantitativeRaman imaging investigations of mixing phenomena in high- pressure cryo-genic jets, Appl Opt 37, p.5620-5627 (1998)

[7.609] {Sect. 7.12.1} T. Ditmire, R.A. Smith: Short-pulse laser interferometricmeasurement of absolute gas densities from a cooled gas jet, Optics Letters23, p.618-620 (1998)

[7.610] {Sect. 7.12.1} S. Ishiuchi, H. Shitomi, K. Takazawa, M. Fujii: Nonresonantionization detected IR spectrum of jet-cooled phenol. Ionization mechanismand its application to overtone spectroscopy, Chem Phys Lett 283, p.243-250 (1998)

[7.611] {Sect. 7.12.1} G.R. Kennedy, C.L. Ning, J. Pfab: The 355 nm photodisso-ciation of jet-cooled CH3SNO: alignment of the NO photofragment, ChemPhys Lett 292, p.161-166 (1998)

[7.612] {Sect. 7.12.1} A. Kumar, C.C. Hsiao, Y.Y. Lee, Y.P. Lee: Observationof saturation dip in degenerate four-wave mixing and two- color resonantfour-wave mixing spectra of jet-cooled CH, Chem Phys Lett 297, p.300-306(1998)

[7.613] {Sect. 7.12.1} A.M. Little, G.K. Corlett, A.M. Ellis: UV absorption of LiOin a supersonic jet, Chem Phys Lett 286, p.439-445 (1998)

[7.614] {Sect. 7.12.1} Z.A. Liu, R.J. Livingstone, P.B. Davies: Pulse pyrolysis in-frared laser jet spectroscopy of free radicals, Chem Phys Lett 291, p.480-486(1998)

[7.615] {Sect. 7.12.1} G.N. Patwari, S. Doraiswamy, S. Wategaonkar: Hole-burningspectroscopy of jet-cooled hydroquinone, Chem Phys Lett 289, p.8-12 (1998)

[7.616] {Sect. 7.12.1} A. Vdovin, J. Sepiol, J. Jasny, J.M. Kauffman, A. Mordzinski:Excited state proton transfer in jet-cooled 2,5-di- (2-benzoxazolyl)phenol,Chem Phys Lett 296, p.557-565 (1998)

[7.617] {Sect. 7.12.1} X. Yang, I. Gerasimov, P.J. Dagdigian: Electronic spec-troscopy and excited state dynamics of the Al-N-2 complex, Chem Phys239, p.207-221 (1998)

[7.618] {Sect. 7.12.1} A. Zehnacker, F. Lahmani, J.P. Desvergne, H. BouasLaurent:Conformation-dependent intramolecular exciplex formation in jet-cooledbichromophores, Chem Phys Lett 293, p.357-365 (1998)

992 7. Nonlinear Optical Spectroscopy

[7.619] {Sect. 7.12.1} H.G. Kramer, M. Keil, J. Wang, R.A. Bernheim, W.Demtroder: Intercombination transitions b (3)Pi (u)<-Chi (1)Sigma (+)(g) in Na-2, Chem Phys Lett 272, p.391-398 (1997)

[7.620] {Sect. 7.12.1} H.Z. Li, P. Dupre, W. Kong: Degenerate four wave mixingand laser induced fluorescence of pyrazine and pyridazine, Chem Phys Lett273, p.272-278 (1997)

[7.621] {Sect. 7.12.1} K. Tanaka, Y. Tachikawa, T. Tanaka: Time-resolved infrareddiode laser spectroscopy of jet-cooled FeCO and Fe (CO) (2) radicals pro-duced by the UV photolysis of Fe (CO) (5), Chem Phys Lett 281, p.285-291(1997)

[7.622] {Sect. 7.12.1} T. Troxler, B.A. Pryor, M.R. Topp: Spectroscopy and dy-namics of jet-cooled 2- methoxynaphthalene, Chem Phys Lett 274, p.71-78(1997)

[7.623] {Sect. 7.12.1} D.T. Anderson, S. Davis, T.S. Zwier, D.J. Nesbitt: An intenseslit discharge source of jet-cooled molecular ions and radicals (T-rot<30K),Chem Phys Lett 258, p.207-212 (1996)

[7.624] {Sect. 7.12.1} M. Fukushima, K. Obi: Laser-induced fluorescence spectra ofjet cooled p- chlorobenzyl radical, Chem Phys Lett 248, p.269-276 (1996)

[7.625] {Sect. 7.12.1} Y. Nibu, D. Sakamoto, T. Satho, H. Shimada: Dispersedphosphorescence spectra in a supersonic free jet by electric discharge exci-tation, Chem Phys Lett 262, p.615-620 (1996)

[7.626] {Sect. 7.12.1} H.K. Sinha, V.J. Mackenzie, R.P. Steer: Laser-induced flu-orescence excitation spectroscopy of jet-cooled tropolone carbon monoxidevan der Waals complexes, Chem Phys 213, p.397-411 (1996)

[7.627] {Sect. 7.12.1} Y. Tang, S.A. Reid: Infrared degenerate four wave mixingspectroscopy of jet- cooled C2H2, Chem Phys Lett 248, p.476-481 (1996)

[7.628] {Sect. 7.12.1} A. Zehnacker, F. Lahmani, E. Breheret, J.P. Desvergne, H.BouasLaurent, A. Germain, V. Brenner, P. Millie: Laser induced fluores-cence of jet-cooled non-conjugated bichromophores: Bis-phenoxymethaneand bis-2,6-dimethylphenoxymethane, Chem Phys 208, p.243-257 (1996)

[7.629] {Sect. 7.12.1} E. Zingher, S. Kendler, Y. Haas: The photophysics of a pho-toreactive system in a supersonic jet. Styrene-trimethylamine, Chem PhysLett 254, p.213-222 (1996)

[7.630] {Sect. 7.12.1} S.A. Wittmeyer, M.R. Topp: Spectral hole burning in freeperylene and in small clusters with methane and alcyl halides, Chem. Phys.Lett. 163, p.261-268 (1989)

[7.631] {Sect. 7.12.1} P. Erman, O. Gustafsson, P. Lindblom: A Simple SupersonicJet Discharge Source for Sub-Doppler Spectroscopy, Phys. Scripta 38, p.789-792 (1988)

[7.632] {Sect. 7.12.1} A.G. Taylor, W.G. Bouwman, A.C. Jones, C. Guo, D.Phillips: Laser-induced fluorescence of jet-cooled 7-diethylamino-4-trifluoro-methyl coumarin, Chem. Phys. Lett. 145, p.71-74 (1988)

[7.633] {Sect. 7.12.1} S. Hirayama: A comparative study of the fluorescence life-times of 9-cyanoanthracene in a bulb and supersonic free jet, J. Chem. Phys.85, p.6867-6873 (1986)

[7.634] {Sect. 7.12.1} J.A. Warren, E.R. Bernstein: The S2-S0 laser photoexcitationspectrum and excited state dynamics of jet-cooled acetophenone, J. Chem.Phys. 85, p.2365-2367 (1986)

[7.635] {Sect. 7.12.1} N.P. Ernsting; The visible spectrum of jet-cooled CCIF2NO,J. Chem. Phys. 80, p.3042-3049 (1984)

[7.636] {Sect. 7.12.1} P.M. Felker, A.H. Zewail: Jet spectroscopy of isoquinoline,Chem. Phys. Lett. 94.p.448-453 (1983)

7.12.1 Low Temperatures 993

[7.637] {Sect. 7.12.1} P.M. Felker, A.H. Zewail: Stepwise solvation of molecules asstudies by picosecond-jet spectroscopy: Dynamics and spectra, Chem. Phys.Lett. 94, p.454-460 (1983)

[7.638] {Sect. 7.12.1} H.T. Jonkman, D.A. Wiersma: Spectroscopy and dynamicsof jet-cooled 1,1’-binaphthyl, Chem. Phys. Lett. 97, p.261-264 (1983)

[7.639] {Sect. 7.12.1} H.Abe, N. Mikami, M. Ito: Fluorescence Excitation Spectraof Hydrogen-Bonded Phenols in a Supersonic Free Jet, J. Chem. Phys. 86,p.1768-1771 (1982)

[7.640] {Sect. 7.12.1} P.M. Felker, S. R. Lambert, A.H. Zewail: Picosecond excita-tion of jet-cooled pyrazine: Magnetic field effects on the fluorescence decayand quantum beats, Chem. Phys. Lett. 89, p.309-314 (1982)

[7.641] {Sect. 7.12.1} R.E. Smalley: Vibrational Randomization Measurementswith Supersonic Beams, J. Phys. Chem. 86, p.3504-3512 (1982)

[7.642] {Sect. 7.12.1} M.D. Duncan, P. Osterlin, R.L. Byer: Pulsed supersonicmolecular-beam coherent anti-Stokes Raman spectroscopy of C2H2, Opt.Lett. 6, p.90-92 (1981)

[7.643] {Sect. 7.12.1} I. Raitt, A.M. Griffiths, P.A. Freedman: Resonance fluores-cence from nitrogen dioxide cooled in a supersonic jet, Chem. Phys. Lett.77, p.433-436 (1981)

[7.644] {Sect. 7.12.1} A. Amirav, U. Even, J. Jortner: Butterfly motion of theisolated pentacene molecule in its first-excited singlet state, Chem. Phys.Lett. 72, p.21-24 (1980)

[7.645] {Sect. 7.12.1} D. Coe, R. Robben, L. Talbot: Interferometric measurementsof linewidths and spin doubling in the N2+ first negative band system infree-jet expansions, J. Opt. Soc. Am. 70, p.1238-1144 (1980)

[7.646] {Sect. 7.12.1} N.Mikami, A. Hiraya, I. Fujiwara, M. Ito: The fluorescencespectrum of aniline in a supersonic free jet: Double minimum potential forthe inversion vibration in the excited state, Chem. Phys. Lett. 74, p.531-535(1980)

[7.647] {Sect. 7.12.1} J.J. Valentini, P. Esherick, A. Owoyoung: Use of a free-expansion jet in ultra-high-resolution inverse Raman spectroscopy, Chem.Phys. Lett. 75, p.590-592 (1980)

[7.648] {Sect. 7.12.1} P. Huber-Walchli, D.M. Guthals, J.W. Nibler: CARS spectraof supersonic molecular beams, Chem. Phys. Lett. 67, p.233-236 (1979)

[7.649] {Sect. 7.12.1} D.H. Levy, L. Wharton, R.E. Smalley: Laser spectroscopy insupersonic jets, in Chemical and Biochemical Applications of Laser, Vol. II,ed. by C.B. Moore (Academic, New York 1977)

[7.650] {Sect. 7.12.2} N. Ito, O. Kajimoto, K. Hara: Picosecond time-resolved fluo-rescence depolarization of p-terphenyl at high pressures, Chem. Phys. Lett.318, p.118-124 (2000)

[7.651] {Sect. 7.12.2} Ch. Spitz, S. Dahne: Architecture of J-Aggregates Studiedby Pressure-Dependent Absorption and Fluorescence Measurements, Ber.Bunsenges. Phys. Chem. 102, p.738-744 (1998)

[7.652] {Sect. 7.12.2} T.P. Russell, T.M. Allen, Y.M. Gupta: Time resolved opti-cal spectroscopy to examine chemical decomposition of energetic materialsunder static high pressure and pulsed heating conditions, Chem Phys Lett267, p.351-358 (1997)

[7.653] {Sect. 7.12.2} A. Anderson, W. Smith, J.F. Wheeldon: Infrared study ofsulphur at high pressures, Chem Phys Lett 263, p.133-137 (1996)

[7.654] {Sect. 7.12.2} J. Liu, Y.K. Vohra: Fluorescence emission from high puritysynthetic diamond anvil to 370 GPa, Appl Phys Lett 68, p.2049-2051 (1996)

994 7. Nonlinear Optical Spectroscopy

[7.655] {Sect. 7.12.2} M. Croci, H.-J. Muschenborn, F. Guttler, A. Renn, U.P. Wild:Single molecule spectroscopy: pressure effect on pentacene in p-terphenyl,Chem. Phys. Lett. 212, p.71-77 (1993)

[7.656] {Sect. 7.12.2} R. Menzel, M.W. Windsor: Picosecond Kinetics of the Ex-cited State Absorption of 4- (9-Anthryl)-N,N-dimethylaniline in a Pressur-ized Solution, Chem. Phys. Lett. 184, p.6-10 (1991)

[7.657] {Sect. 7.12.2} N. Redline, M. Windsor, R. Menzel: The Effect of Pressureon the Secondary Charge Transfer Step in Bacterial Reaction Centers ofRhodobacter Spheroides R-26, Chem. Phys. Lett. 186, p.204-209 (1991)

[7.658] {Sect. 7.12.2} H. Lueck, M.W. Windsor: Pressure Dependence of the Ki-netics of Photoinduced Intramolecular Charge Separation in 9,9’-BianthrylMonitored by Picosecond Transient Absorption: Comparision with ElectronTransfer in Photosynthesis, J. Phys. Chem. 94, p.4550-4559 (1990)

[7.659] {Sect. 7.12.2} M.W. Windsor, R. Menzel: Effect of Pressure on the 12ns Charge Recombination Step in Reduced Bacterial Reaction Centers ofRhodobacter Sphaeroides R-26, Chem. Phys. Lett. 164, p.143-150 (1989)

[7.660] {Sect. 7.12.2} R. Menzel, H. Lueck, K. Jordan, M.W. Windsor: PressureDependence of the Conformational Relaxation Process in the Excited Stateof Tetra-Methyl-Paraterphenyl in Solution, Chem. Phys. Lett. 145, p.61-66(1988)

[7.661] {Sect. 7.12.2} K. M. Sando, Shih-I Chu: Pressure broadening and laser-induced spectral line shapes, Adv. At. Mol. Phys. 25, p.133-161 (1988)

[7.662] {Sect. 7.12.2} Th. Sesselmann, W. Richter, D. Haarer: Hole-Burning Ex-periments in Doped Polymers Under Uniaxial and Hydrostatic Pressure, J.Luminesc. 36, p.263-271 (1987)

[7.663] {Sect. 7.12.2} F.T. Clark, H.G. Drickamer: High-Pressure Study of Triph-enylmethane Dyes in Polymeric and Aqueous Media, J. Phys. Chem. 90,p.589-592 (1986)

[7.664] {Sect. 7.12.2} H.G. Drickamer: Pressure Tuning Spectroscopy, Accounts ofChem. Research 19, p.329-344 (1986)

[7.665] {Sect. 7.12.2} F.T. Clark, H.G. Drickamer: High-pressure studies of rota-tional isomerism of triphenylmethane dye molecules, Chem. Phys. Lett. 115,p.173-175 (1985)

[7.666] {Sect. 7.12.2} F.T. Clark, H.G. Drickamer: The effect of pressure on theadsorption of crystal violet on oriented ZnO crystals, J. Chem. Phys. 81,p.1024-1029 (1984)

[7.667] {Sect. 7.12.2} D. Kirin, S.L. Chaplot, G.A. Mackenzie, G.S. Pawley: Thepressure dependence of the low-frequency Raman spectra of crystallinebiphenyl and p-terphenyl, Chem. Phys. Lett. 102, p.105-108 (1983)

[7.668] {Sect. 7.12.2} R. S. Bradley, ed.: High Pressure Physics and Chemistry(Academic Press, New York, 1963)

[7.669] {Sect. 7.13} M. Quack, W. Kutzelnigg: Molecular Spectroscopy and Molec-ular Dynamics: Theory and Experiment, Ber. Bunsenges. Phys. Chem. 99,p.231-245 (1995)

[7.670] {Sect. 7.13} D.C. Harris, M.D. Bertolucci: Symmetry and Spectroscopy. AnIntroduction to Vibrational and Electronic Spectroscopy (Oxford UniversityPress, New York 1987)

[7.671] {Sect. 7.13} A. Longarte, J.A. Fernandez, I. Unamuno, F. Castano: Groundand first electronic excited state vibrational modes of the methyl-p-amino-benzoate molecule, Chem Phys Lett 308, p.516-522 (1999)

[7.672] {Sect. 7.13} B.A. Zon: Born-Oppenheimer approximation for molecules ina strong light field, Chem Phys Lett 262, p.744-746 (1996)

7.13 Quantum Chemical Calculations 995

[7.673] {Sect. 7.13} G. Hohlneicher, J. Wolf: Interference between Franck-Condonand Herzberg-Teller Contributions in Naphthalene and Phenanthrene, Ber.Bunsenges. Phys. Chem. 99, p.366-370 (1995)

[7.674] {Sect. 7.13} L. Kador, S. Jahn, D. Haarer: Contributions of the electrostaticand the dispersion interaction to the solvent shift in a dye-polymer system,as investigated by hole-burning spectroscopy, Phys. Rev. B 41, p.12215-12226 (1990)

[7.675] {Sect. 7.13} M. Maroncelli, G. R. Fleming: Picosecond solvation dynamicsof coumarin 153: The importance of molecular aspects of solvation, J. Chem.Phys. 86, p.6221-6239 (1987)

[7.676] {Sect. 7.13} A.C. Borin, F.R. Ornellas: The lowest triplet and singlet elec-tronic states of the molecule SO, Chem Phys 247, p.351-364 (1999)

[7.677] {Sect. 7.13} R. Menzel, K.-H. Naumann: Towards a Theoretical Descriptionof UV-Vis Absorption Bands of Organic Molecules, Ber. Bunsenges. Phys.Chem. 95, p.834-837 (1991)

[7.678] {Sect. 7.13} A. Smolyar, C.F. Wong: Theoretical studies of the spectro-scopic properties of tryptamine, tryptophan and tyrosine, J. Mol. Struct.488, p.51-67 (1999)

[7.679] {Sect. 7.13} M. Aoyagi, Y. Osamura, S. Iwata: An MCSCF study of thelow-lying states of trans-butadiene, J. Chem. Phys. 83, p.1140-1148 (1985)

[7.680] {Sect. 7.13} R.A. Goldbeck, E. Switkes: Localized Excitation Analysis of theSinglet Excited States of Polyenes and Diphenylpolyenes, J. Phys. Chem.89, p.2585-2591 (1985)

[7.681] {Sect. 7.13} R.J. Hemley, U. Dinur, V. Vaida, M. Karplus: TheoreticalStudy of the Ground and Excited Singlet States of Styrene, J. Am. Chem.Soc. 107, p.836-844 (1985)

[7.682] {Sect. 7.13} R.L. Ellis, G. Kuehnlenz, H.H. Jaffe: The Use of the CNDOMethod in Spectroscopy, Theoret. chim. Acta (Berl.) 26, p.131-140 (1972)

[7.683] {Sect. 7.13} J. Lavalette, C. Tetreau, J. Langelaar: SCF MO Calcula-tions on Excited Singlet-Singlet and Triplet-Triplet Transitions of 1,2:3,4-Dibenzanthracene, 1,12-Benzperylene and 3,4-Benzcoronene, Chem. Phys.Lett. 9, p.319-322 (1971)

[7.684] {Sect. 7.13} M. Mestechkin, L. Gutyrya, V. Poltavets: Excited states ofalternant hydrocarbons in the LCAO MO approximation. II. Singlet andTriplet Absorption Spectra of Condensed Aromatic Systems, p.244-247(1969)

[7.685] {Sect. 7.13} J.J. Bene, H.H. Jaffe: Use of the CNDO Method in Spec-troscopy. I. Benzene, Pyridine, and the Diazines, J. Chem. Phys. 48, p.1807-1810 (1968)

[7.686] {Sect. 7.13} G.W. Robinson: Intensity Enhancement of Forbidden Elec-tronic Transitions by Weak Intermolecular Interactions, J. Chem. Phys. 46,p.572-585 (1967)

[7.687] {Sect. 7.13} A. Schweig: Calculation of static electric polarizabilities ofclosed shell organic Pi-electron systems using a variation method, Chem.Phys. Lett. 1, p.163-166 (1967)

[7.688] {Sect. 7.13} J.A. Pople, G.A. Segal: Approximate Self-Consistent Molecu-lar Orbital Theory. II. Calculations with Complete Neglect of DifferentialOverlap, J. Chem. Phys. 43, p.136-138 (1965)

[7.689] {Sect. 7.13} K.H.J. Buschow, J. Dieleman, G.J. Hoijtink: Corrrelations be-tween the electronic spectra of alternant hydrocarbon molecules and theirmono- and di-valent ions. III. Linear polyphenyls, p.1-9 (1962)

[7.690] {Sect. 7.13} R. Pariser: Theory of the Electronic Spectra and Structure ofthe Polyacenes and of Alternant Hydrocarbons, J. Chem Phys. 24p.250-268(1956)

996 713 Quantum Chemical Calculations

[7.691] {Sect. 7.13} F. Zerbetto, M.Z. Zgierski: Theoretical Study of the CCStretching Vibrations in Linked Polyene Chains: Nystatin, Chem. Phys.Lett. 144, p.437-443 (1988)

[7.692] {Sect. 7.13} G.A. Voth, R.A. Marcus: Semiclassical Theory of Fermi Reso-nance Between Stretching and Bending Modes in Polyatomic Molecules, JChem Phys 82, p.4064-4072 (1985)

[7.693] {Sect. 7.13} S.M. Lederman, R.A. Marcus: Densities of Vibrational Statesof Given Symmetry Species Linear Molecules and Rovibrational States ofNonlinear Molecules, J Chem Phys 81, p.5601-5607 (1984)

[7.694] {Sect. 7.13} G.A. Voth, A.H. Zewail, R.A. Marcus: The Highly Excited C HStretching States of Chd3, Cht3, and Ch3D, J Chem Phys 81, p.5494-5507(1984)

[7.695] {Sect. 7.13} A. Warshel, A. Lappicirella: Calculations of Ground- andExcited-State Potential Surfaces for Conjugated Heteroatomic Molecules,J. Am. Chem. Soc. 103, p.4664-4673 (1981)

[7.696] {Sect. 7.13} A. Warshel: The QCFF/PI+MCA Program Package Efficiencyand Versatility in Molecular Mechanics, Computers & Chemistry 1, p.195-202 (1977)

[7.697] {Sect. 7.13} S. Lifson, A. Warshel: Consistent Force Field for Calculations ofConformations, Vibrational Spectra, and Enthalpies of Cycloallkane andnn-Alkane Molecules, J. Chem. Phys. 49, p.5116-5129 (1968)

[7.698] {Sect. 7.13} C.L. Tang: A Simple Molecular-Orbital Theory of the NonlinearOptical Properties of Group III-V and II-VI Compounds, IEEE J. QE-9,p.755-762 (1973)

List of Tables

1.1 Roughly estimated costs of some lasers and their operational cost duringtheir lifetime in relation to the photon energy and average output power 9

2.1 Characteristic values of a photon of different color . . . . . . . . . . . . . . . . . . . 142.2 Energy of photons in different measuring units for comparison . . . . . . . . . 152.3 Spectral uncertainty as a function of the time window ∆t and the mid-

wavelength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.4 Beam radius w(z), wave front curvature radius R(z) and local divergence

θloc(z) of a Gaussian beam for different distances z from waist at z = 0measured in Rayleigh lengths zR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Rayleigh length zR, divergence θ, beam diameter w (z = 0.1m) and wavefront curvature radius R (z = 0.1m) for Gaussian beams with differentwavelength λ and waist radius w0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Matrices of frequently used optical elements . . . . . . . . . . . . . . . . . . . . . . . . . 372.7 Jones vectors for some common light beam polarizations . . . . . . . . . . . . . . 462.8 Jones matrices for some common optical elements . . . . . . . . . . . . . . . . . . . . 482.9 Stokes vectors for some typical light polarizations . . . . . . . . . . . . . . . . . . . . 512.10 Mueller matrices for some common optical elements . . . . . . . . . . . . . . . . . . 522.11 Relations of power P (t0 − ∆tpulse/2), power PFT during ∆tpulse and en-

ergy E(∆tpulse) during ∆tpulse relative to the peak power Pmax and thetotal energy Epulse,tot for Gaussian pulses. The NLP-exponent describesthe nonlinear process which is correctly described by Paverage . . . . . . . . . . 56

2.12 Relations of the intensity IFT of a flat-top beam with the same energyas a Gaussian beam as a function of the radius of this beam wFT incomparison of the intensity I(wFT) and the energy E inside wFT for theGaussian beam relative to the peak intensity Imax and the total energyEtot of the Gaussian beam. The NLP-exponent describes the nonlinearprocess which is correctly described by IFT . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.13 Coherence length and time, bandwidth ∆ν and ν0/∆ν of light sourcesgiven for a wavelength of 500 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1 Refractive indices of some gases liquids and solids . . . . . . . . . . . . . . . . . . . . 983.2 Selection rules for light induced transitions in matter . . . . . . . . . . . . . . . . . 1063.3 Refractive indices for optically uniaxial crystals for the ordinary beam

o and for the extraordinary beam e perpendicular to the optical axis ofthe crystal for light wavelength of 589 nm . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.4 Optical activity κoa of some materials at 589 nm . . . . . . . . . . . . . . . . . . . . . 1293.5 Values of C for the calculation of the diffraction angles for which the

first-order Bessel function has minima and maxima . . . . . . . . . . . . . . . . . . 1383.6 Maximum diffraction efficiencies with different gratings . . . . . . . . . . . . . . . 1563.7 Light scattering processes with relative change of photon energy ∆E/E . 1603.8 Raman active vibrations of some gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

998 List of Tables

4.1 Types of nonlinear optical interactions of light with matter . . . . . . . . . . . 1754.2 SHG crystals with symmetry group, nonlinear dij coefficients for an in-

cident wavelength λinc of 1000 nm, transparency wavelength range ∆λand damage threshold Idam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.3 Sellmeier coefficients for some commonly used crystals . . . . . . . . . . . . . . . . 1874.4 Refractive indices for the ordinary and extrordinary beams for some

typical crystals for the wavelengths of Nd lasers and their harmonics . . . 1874.5 Tuning ranges for the signal and idler wavelengths λ as a function of the

pump wavelength for different useful OPA and OPO crystals . . . . . . . . . . 1954.6 Coefficients for electro-optical applications of some widely applied non-

linear crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2024.7 Parameters of some useful third-order nonlinear materials. The γ-values

are valid for light wavelengths of 1 µm and linear polarization . . . . . . . . . 2114.8 SBS material parameters of some useful SBS gases for several pump

wavelengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2284.8 SBS material parameters of some useful SBS liquids and solids for several

pump wavelengths (∗)3M-trademark) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2284.9 Permittivity ∆nSRWS, gain factor gSRWS, frequency shift ∆νRW and re-

laxation time τRW of some liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2394.10 SRS parameters of several materials wave number of the vibration, spec-

tral width, scattering cross-section and Raman gain coefficient . . . . . . . . . 241

5.1 Properties of superradiance and stochastic emitted light with the inten-sity Iradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

5.2 Strength of the electric field Eav of a light beam as a function of theintensity I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

5.3 Rough estimates of damage thresholds for transparent optical compo-nents for light pulses of different pulse durations . . . . . . . . . . . . . . . . . . . . . 329

5.4 Material parameters relevant for material processing: density, specificheat cp, heat conductivity kh, melting temperature Tm, vaporizationtemperature Tv, melt heat Qm, vaporization heat Qv, absorption 1 − R(for 1 µm light) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

5.5 Diffraction of pump beam Ip towards the direction of Idetect as a functionof the relative phase ∆ϕ between the beams Ip and Is . . . . . . . . . . . . . . . . 334

6.1 Function and examples for the three components of lasers . . . . . . . . . . . . . 3616.2 Quantum defects of some lasers for their strongest laser transitions . . . . 3646.3 Temperature-dependent change of the refractive index (dn/dT ) for some

solid-state laser materials, their expansion coefficient αexpan and theirthermal conductivity Kcond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

6.4 Shock parameter for different host materials of solid-state lasers . . . . . . . 3886.5 Maxima of the transversal modes Fmax,circ under the condition of equal

power or energy content for all modes as a function of the mode numbersm and p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

6.6 Maxima of the transversal modes Fmax,rect under the condition of equalpower or energy content of all modes as a function of the mode numbersm and p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

6.7 Beam parameters for higher circular Gauss–Laguerre modes . . . . . . . . . . . 4106.8 Beam parameters for higher rectangular Gauss–Hermite modes . . . . . . . . 4116.9 Beam radii at the two resonator mirrors MOC and MHR at the stability

limits of the resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4206.10 Material constant Cmaterial defining the stability range and the TEM00potential

for different lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

List of Tables 999

6.11 Spectral properties of several laser materials as peak wavelength λpeak,wavelength bandwidth ∆λ, frequency bandwidth ∆ν and number of lon-gitudinal modes p within this bandwidth in a 10 cm long laser resonator 430

6.12 Emission cross-sections σlaser, and lifetimes of the upper laser level atroom temperature τupper for the most prominent laser wavelengths λlaser

of some materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4386.13 Wavelength, tunability range, pulse width range, average output power,

beam quality and wall-plug efficiency of some lasers . . . . . . . . . . . . . . . . . . 4896.14 Some typical properties of diode lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4956.15 Some typical properties of commercial diode lasers and diode laser bars . 4966.16 Some typical properties of vertical cavity surface-emitting lasers

(VCSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4976.17 Some typical properties of commercial Nd:YAG lasers . . . . . . . . . . . . . . . . 4996.18 Some typical properties of Nd YVO lasers . . . . . . . . . . . . . . . . . . . . . . . . . . 5006.19 Some typical properties of Nd glass lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 5016.20 Some typical properties of commercial Yb:YAG lasers . . . . . . . . . . . . . . . . 5026.21 Some typical properties of commercial Ti:sapphire lasers . . . . . . . . . . . . . . 5036.22 Some typical properties of Cr:LiCAF and Cr:LiSAF lasers . . . . . . . . . . . . 5046.23 Some typical properties of alexandrite lasers . . . . . . . . . . . . . . . . . . . . . . . . 5056.24 Some typical properties of erbium and holmium lasers . . . . . . . . . . . . . . . . 5066.25 Some typical properties of ruby lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5076.26 Some typical properties of Er fiber lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 5086.26.1Some typical properties of high power fiber lasers . . . . . . . . . . . . . . . . . . . . 5096.27 Some typical properties of commercial XeCl and KrF lasers . . . . . . . . . . . 5106.28 Some typical properties of nitrogen lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 5116.29 Some typical properties of He-Ne lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5136.30 Some typical properties of He-Cd lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5146.31 Some typical properties of commercial Ar and Kr ion lasers . . . . . . . . . . . 5156.32 Some typical properties of Cu-vapor lasers . . . . . . . . . . . . . . . . . . . . . . . . . . 5166.33 Some typical properties of CO2 lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5176.34 Life time of some laser dye solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5186.35 Some typical properties of cw dye lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5196.36 Some typical properties of pulsed dye lasers . . . . . . . . . . . . . . . . . . . . . . . . . 5206.37 Pulse energies of a commercial OPA in the fs range pumped by a 1 kHz

Ti:sapphire laser of 80 fs pulse duration and 750 µJ pulse energy . . . . . . . 5286.38 Pulse energies of a commercial OPA in the ps range pumped by a 1 kHz

Ti:sapphire laser of 1 ps pulse duration and 1mJ pulse energy . . . . . . . . . 5286.39 Maximum permissible exposure (MPE) power or pulse energy of the eye

as function of the pulse length and the wavelength of the laser radiation(without guaranty) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

7.1 Sequence of tasks in nonlinear optical spectroscopy to characterize thenonlinear behavior of matter with their relevant parameters . . . . . . . . . . . 536

7.2 Time delay from a delay line in air passed back and forth . . . . . . . . . . . . . 5457.3 Quantum yields Φyield, excitation and emission wavelengths λexc and

λfluorescence and the fluorescence lifetime τfluorescence of some materials . . 5617.4 Values of the factor Cεnl,stat as a function of εnl and T0 for a stationary

two-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5687.5 Values of the factor Cεnl,nonst as a function of εnl and T0 for an integrating

two-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5697.6 Wavelengths of some high-intensity atomic and Fraunhofer (named and

with color) absorption and emission lines for the calibration of detectionsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

1000 List of Tables

7.7 Population density factor Nεnl of the first excited state of a stationarytwo-level scheme as a function of the bleaching parameters averagedalong the excitation beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

7.8 Population density factor Nεnl of the first excited state of a non-stationary two-level scheme as a function of the bleaching parametersaveraged along the excitation beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

7.9 Rough classification of grating lifetimes for different decay mechanismsand the resulting spectral widths of the broadening for molecular systems610

7.10 Solvents for low-temperature measurements. Tglass is a temperature char-acterizing the transition from liquid to glass of the material . . . . . . . . . . . 627

7.11 Quantum chemically calculated excited state transitions for pentaphenein comparison with the experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . 633

Subject Index

ab initio, 633aberrations, higher-order, 384absorber– length, 465– nonlinear, 465, 483, 485absorption, 110– bands, 574– – homogeneously broadened, 266– coefficients, 96, 110, 307, 339– – nonlinear, 268– cycles, 329– emission lines, 594– emission of photons, 104– grades, 111– gratings, 294– losses, 616– measurements, 552– – conventional, 549 ff– nonlinear, 263, 264, 268, 566, 584– simultaneous, 321– spectrum, 365– stepwise, 321, 322– transient, 264– two-photon, 582absorption transition, single, 96acceptor atoms/groups, 260, 350acetone, 228acetylene, 346acoustic phonon, 224acousto-optic switches or modulators

(AOMs), 456, 470acridine yellow, 350, 351active material, 360, 361, 362 ff, 438active mode– locking AOM, 470 ff– locking by gain modulation, 471 ffADP, 183, 187, 195, 202, 260AD*P, 260aggregation, 353, 547, 569, 574Airy function, 86alcohol, 261alexandrite, 430, 438

– laser, 505aluminum, 124, 331, 374AMPAQ, 633amplification, 320 ff, 478amplifier, 492, 495– beam quality, 486 ff– double pass, 481– efficiencies, 479 ff– energy or power content, 479 ff– four-level, 477– gain, 476 ff– multi pass, 482– noise, 485 ff– quality problems, 485 ff– regenerative, 204, 483, 483 ff– saturation, 476 ff– schemes, 480 ff– single pass, 480– system– – four-level/three-level, 477– tapered, 480– three-level, 477– with phase conjugating mirror, 484amplitude– filter, 133– grating, 150, 334angular orbital momentum (AOM), 13anisotropic materials/particles, 125,

551anthracene, 348anti-Stokes– lines, 165– signals, 168– SRS, 240, 242antireflection coatings, 329AOM (angular orbital momentum), 13– driver frequency, 470, 470apertures, 36, 391– circular, 137– diameters, 414– quadratic, 135, 137apochromatic, 100

1002 Subject Index

approximations, 631– Born–Oppenheimer, 631– quantum chemical calculation, 631argon, 327– lasers, 366, 375, 377, 430, 438,

515 ffaromatic molecules, 348– flexible, 349– – twist angle, 349Arrhenius plots, 547atom– dressed, 325– laser, 4– optics, 4– vapors, 258atom lasers, single, 362attosecond pulses, 523autocorrelation, 544– function, 544– Gauss pulse, 544– sech pulse, 544avalanche transistor trigger, 522average– intensity, 57– photon energy, 54– power, 54axial mode spectrum, 436axial resonator modes, 389

Babinet’s theorem, 140 ffbackground radiation, 549, 564BANANA, 260Banana, 183band laser emission, broad, 446 ffband shape analysis, 553 ffbands, inhomogeneously broadened,

266bandwidth, 108– active material, 430– decreasing spectral, 431 ff– laser, 65– limit, 91, 447, 543– minimal, 17, 108, 445, 445 ff– product– – Gauss pulse, 462– – sech2 pulse, 462– Rayleigh wing scattering, 162– single longitudinal modes, 428 ff– spectral, 75, 431bandwidth-limited pulses, 461 ff, 462barium, 374β-barium borate (BBO), 183barium titanate (BaTiO3), 354BaTiO3, 356

BBO, 195, 260, 527beam– clean-up, 333, 356– combining, 496– – coherent coupling, 476– – incoherent, 476– coupling, 333– cross-section, 57– delivery, 331– diameter (FWHM), 57– diameter at HR, 393– diameter at OC, 393– divergence of higher transversal

modes, 411 ff– extraordinary, 125, 185– Gaussian beams, 34– ordinary, 125– parameter product, 32, 62– parameters, 34, 410, 411– propagation factor, 63– – M2, 61, 412– propagation factor M2, 63– propagation matrix, 418– quality, 32, 63, 250, 408, 492– – higher transversal modes, 412 ff– radius, 30, 57, 409– – higher transversal modes, 409 ff– reflected, 115– shaping, 496– size, 35– splitters, 44, 64, 69, 564– steering, 497BEFWM, 337behavior– nonlinear, 281– nonstationary, 600– stationary, 599Bell’s equations, 200Bell’s inequalities, 4beneficial stop, 143benzene, 211, 239, 241, 261, 346, 348Berthune cell, 365BIBO, 260biotechnologies, 8biphenyl, 349birefringence, 125 ff, 629– induced, 128, 211– measurement, 386– natural, 387– thermally induced, 385 ffbistability, 341bistable device, 343blackbody radiation, 68, 563blaze angle, 431

Subject Index 1003

bleaching, 264, 269 ff, 465, 564 ff– nonstationary, 568, 573– stationary, 568– stationary/nonstationary, 568bleaching curve, 285– minima/maxima, 571– plateaus/slope, 571Boltzmann constant, 168Boltzmann energy, 106Boltzmann equation, 363– population density, 168π bonds, 345σ bonds, 345Born–Oppenheimer approximation,

631Bose–Einstein– condensation, 3, 628– distribution, 68boson, 13BOX CARS, 56, 249, 249 ffbox model, 357bracket formalism, 303Bragg– conditions, 149, 296– reflection, 149 ffbreakdown mechanism, 328Brewster angle, 117, 121brightness, 65brilliance, 10, 65Brillouin enhanced four-wave mixing

(BEFWM), 337Brillouin gain– stationary, 227, 227Brillouin scattering, 163– spontaneous, 163– stimulated (SBS), 163, 178, 224 ff,

328– stimulated thermal (STBS), 163,

235 ffBrillouin shift, 435broad band laser emission, 446 ffbroadening– active material, spectral, 430 ff– heterogeneous, 612– homogeneous, 265 ff, 603, 612– inhomogeneous, 304, 559, 569, 574,

612, 613– spectral, 265, 430– spectral widths, 610bromobenzene, 239buffer gases, 375, 510built-up time, 459bulb, 10bulk damage, 329

C2F6, 228, 261calcite, 126calcium, 374calculations– quantum chemical, 630– semi-empirical, 633calibration, 622– spectral, 593, 593 ffcalibration of spectral sensitivity,

562 ffcarbon dioxide– CO2, 228– lasers, 517 ffcarbon disulfide CS2, 212, 228, 239,

241, 261, 596carbon monoxide CO, 261carbon tetrachloride CCl4, 166, 228,

261, 592CARS, 247– BOX, 249– resonant, 248Casimir force, 71cavity dumping, 454 ff, 455CCD cameras, 622CCl4, 166CDA/CD*A, 187, 260CdTe, 354, 357centrosymmetric matter, 180cerium, 378CH4, 166, 261chaotic behavior, 474charge transfer, twisted intramolecular

(TICT), 352chirp, 99, 218, 461– compensating mirrors, 467– compensation, 466– frequency, 220, 220chlorobenzene, 239chloroform, 592chlorophyll, 344chromium, 331circuit board material, 512circular– aperture, 138– birefringence, 129– eigenmodes, 400 ff– polarization, 82, 123circulation direction, 434cladding, 156classical electron radius, 169cleaning, 546CNDO-S/CI, 633CO2, 261, 375, 430, 438COANP, 260

1004 Subject Index

coating, 124– dielectric, 124, 467codoping, 498coefficients, nonlinear, 339coherence, 18, 63, 77, 408– conditions, 74– effects, 587– lasers, 77– lateral, 73, 77, 78– length, 73, 75, 86, 234, 545 ff– longitudinal, 74– radar, 431, 593– time, 73, 75coherent– Anti-Stokes Raman scattering

(CARS), 247 ff– coupling, 109, 492, 493– interaction, 264, 303– light fields, 294 ff– light-matter interaction, 265– processes, 313– resonant interaction, 299 ff– sample interaction, 587– scattering, 160– state, 72colliding pulse mode locking (CPM

laser), 464 ffcollinear/longitudinal excitation, 539Collins integral, 133 ffcollision cross-section, 375colloids, 163color center, 113, 329, 354– lasers, 521combining filter, 111communication technologies, 495compensation of phase distortions, 251,

254complex– beam parameter q(z), 33– electric field vector, 23– form of waves, 22– susceptibility χ, 95Compton– -backscattered photons, 14– scattering, 169– wavelength, 170computers, molecular, 8conditions, stationary, 279conductivity ΛT, thermal, 236conformations, 325– changes, 558conjugated molecules, 346conversion, internal, 617cooling, 369, 627

– efficiency, 378copper, 331– vapor laser, 375, 516 ffcore, 156corundum, 126coupling, incoherent, 109CPM lasers, 464, 483Cr, 498– lasers, 460Cr4+:YAG, 354, 457Cr:LiCAF, 384, 438, 504 ff– lasers, 384, 438, 504 ffcresylviolet, 345critical phase matching, 188critical power for self-focusing, 214cross-relaxation time, spectral, 267,

300, 574, 605cross-sections, 57, 543, 550, 559, 626,

631– σSRS, 244– σ, 112– anisotropic particles, 551 ff– band, 105– emission, 562– Rayleigh wing scattering, 162– spectrum, 596– stimulated emission, 363– Ti:sapphire, 449cryostats– He, 627cryptocyanine, 345, 457, 553crystal, 125– capacity, 204– inorganic, 259 ff– liquid, 74, 125, 261, 464– periodically poled, 526– uniaxial, 125, 127, 200crystal violet, 350, 351, 555CsF, 374curl, 19current density, 93curvature radius, 34curved mirror resonators, 396cut-off wavelength, 158cutting, 330cw laser, 444, 445, 519 ffcyclohexane, 228, 346cylinder lenses, 42

d-LAP, 228D2O, 591damage, 234, 328, 444– environmental, 531– eye/skin, 530

Subject Index 1005

damage fluence, 328damage intensity, 328damage stress, 388damage threshold, 86, 124– gases, 261– pulse width, 328– roughness, 329– spot size, 329damping assumption, strong, 227DAN, 260darkening, 286, 567 ffdaylight, 563deBroglie wavelength, 12Debye, 162decay– function, 315– mechanisms, 610– multi-exponential, 582– parallel, 110– rates km,l, 277– stretched exponential, 582, 582– time measurements, 602 ff– times, 107, 108, 162, 277, 559, 566,

602 ff, 613– – fluorescence, 560– – phosphorescence, 560deflection angle, 205defocusing, 548degeneracy factor, 311degenerate four-wave mixing (DFWM),

207, 335, 338degeneration, spectral, 79degree of polarization, 50, 50, 386delay, 543– generators, electronic, 623– lines, 541, 544– – optical, 623– – zero point, 623density, 331– grating, 235– matrix, 301, 303– – elements, 303– – formalism, 175, 301 ff– – nondiagonal elements, 303– – operator, 304, 309dephasing, 299– time, 299 ffdepolarization– compensation of, 387– effects, 44– thermally induced, 385detection– spectral calibration, 593detection system

– dynamic range, 585– linearity, 585– signal-to-noise ratio, 585DF, 379DFB lasers, 472, 473DFWM, 207diameters of these mode apertures,

414dicarbon tetrachloride C2F6, 2281,2-dichlorethene, 457, 463dielectric materials, 124difference– frequency, 89, 192– spectra, 602 ff– spectrum, 604differential cross-section Rayleigh

scattering, 161differential equations, 288diffracted intensity, 154diffraction, 130– absorption, 332 ff– at a chain of small objects, 146 ff– at a double-slit, 144 ff– at a one-dimensional slit, 133 ff,

145 ff– at a two-dimensional slit, 136 ff– at small objects, 140 ff– at three-dimensional gratings,

149 ff– at two-dimensional gratings, 147 ff– efficiency, 334– – maximum, 156– in first order systems, 133 ff– integral, 132– limit, 63– rings, number of, 217diffractive optics, 151diffusion processes, spectral, 276dimers, 353diode laser, 372, 514, 521– amplifier, 492– bars, 368, 493– – arrays and stacks, 496 ff– beam quality, 492– cooling, 493– coupling, 493– distributed feedback (DFB), 495– GaAs, 493– GaN, 493– lifetimes, 374– smile, 493– stacks, 369, 493– VCSEL, 4931,1-trans-diphenyl ethylene, 349

1006 Subject Index

dipole moment, 102, 104, 167, 300, 302,630

– operator, 306– transition, 631dipole–dipole interaction, 109– transfer rate, 110disc geometry, thin, 381dispersion, 97, 98– anomalous, 99– anomalous linear, 222– compensation, 467– group delay (GDD), 468– higher-order, 468– normal, 98– of crystals, 187 ff– of FP, 87– phenomenalogical description, 100dissociation limit, 615distortions– amplitude, 486– phase, 486distributed feedback (DFB), 79– dye lasers, 296– lasers, 432, 472 ffdivergence, 411– angle, 411– – of laser, 392– Gaussian beams, 32– local, 32DNA, 8– sequencing, 8DODCI, 345, 466donor atoms, 350donor groups, 260donut modes, 407 ffDoppler– effect, 164– shifts, 106, 430Doppler-free spectroscopy, 323double pass amplifier, 130, 481 ff– phase conjugating mirror, 484 ffdouble-chirped mirrors, 468double-slit, 144drilling, 330DTTC, 345dye, 457– in a polymer matrix, 366– jet stream, 466– jets, 366– lasers, 378, 460, 481, 518 ff, 559, 624– – pulsed, 365, 520 ffdynamic holography, 336dynamic range, 557

effective focal length, 39efficiency, 10, 363– electro-optical, 379– opto-optical, 364, 379– quantum defect, 379– slope, 379– total, 379, 381– wallplug, 379eigenstate, 13– of the polarization, 44eigenvalues of the spin, 13eikonal, 25Einstein’s coefficients, 105Einstein–Podolski–Rosen (EPR)

paradox, 4elastic scattering, 160electric– displacement, 93– field strength, 327– field vector, 20– permittivity εr, 20, 94– susceptibility χ, 94electrical– charge density, 93– conductivity, 94– discharge pumping, 375 ff– polarization, 94– pumping in diode lasers,

372 ffelectro-optical– beam deflection, 177, 204 ff– coefficients rmp, 202– devices, 454– effects, 259, 454– efficiency, 380– modulator, 203– second-order effects, 200– shutters, 524– switch, 203electron density, 347electron laser, free, 521electron-positron pair, 170electron radius– classical, 169π electron system, 345, 346, 351electron velocity distribution,

376electronic delay generators, 623electronic transitions, 106electrons– core, 633– energy distribution, 375electrostriction, 224, 224 ff, 237elementary beams, 67 ff

Subject Index 1007

emission– bands, homogeneously broadened,

266– cross-sections, 105, 438, 556– – determination, 562 ff– – Ti:sapphire, 449– gratings, 150– lifetimes, 556– nonlinear, 580– probability, 108– quantum yield, 556– spontaneous, 107, 560– stimulated, 107, 274 ff– two-photon, 322end pumping, 368, 369, 493energy– density, 23– excess, 109– levels, 302, 630– light pulse, 54– measurement devices, 622– molecular, 106– relaxation time T1, 318– stored, 479– total stored, 479– transfer laser pumping, 363– transmission, 565energy per volume, stored, 479environment– particle, 558, 632environmental interaction, 631Er, 498– laser, 506 ffEr:glass, 384Er:YAG, 364, 384, 438errors– measuring, 548etalons, 461ethane, 346ethanol, 228, 350ethylene, 346ethylene-glycol, 367, 466evanescent light waves, 123excess energy, 109excimer laser, 320, 366, 624exciplexes, 353excitation, 589– collinear/longitudinal, 539– geometry– – anticollinear, 585– – collinear, 585– – transversal, 585– intensity, 538, 567, 580 ff– – measurement, 580

– light, 588– – choice, 588 ff– light intensities, 621 ff– longitudinal/collinear, 539– multiple, 613 ff– parameters, 584– polarization, 540– pulse– – spectral width, 574– – variation spectral width, 574 ff– pulse width– – variation, 573, 573 ff– spectra, 556– spot, 589– stepwise, 615– transversal, 540– wavelength– – variation, 573excited state absorption (ESA), 271,

363, 552, 566, 571, 581– energetic position, 552– gratings, 295 ff– measurements, 596 ff– spectra, 291– spectroscopy, 271– triplet, 561exciton, 109– formation, 278expansion coefficient, thermal, 384expectation value, 13, 303experimental parameters, 621exposure, maximum permissible

(MPE), 530extinction coefficient ε, 112eye damage, 141, 530

F -number FN, 143Fabry–Perot– etalon, 84– – spectral, width, 86– filters, 82– interferometer, 74, 84, 342, 343, 428– roughness of optical surfaces, 88far-field, 60, 136– angle slit, 134– pattern, 132 ffFaraday– effect, 130– rotator, 49, 130, 252, 254, 326, 482femtochemistry, 8Fermat’s principle, 25Feynman diagrams, 338– degeneracy factor, 311– for nonlinear optics, 308 ff

1008 Subject Index

fiber, 156– core, 371– coupling, 369, 370– dispersion of, 159– double cladding, 371– graded index, 157– lasers, 508– microstructured (MSF), 159, 221,

358, 509– modes, 158– step index, 157fidelity F– phase conjugation, 256field emission, 327– strength, 327fifth harmonic, 258, 259filaments, 215films, thin, 123, 125, 353filter, 112– combining, 111– neutral density (NG), 113filtering– spatial, 133– spectral, 431finesse, 87, 429flash lamp, 10, 378, 593, 593 ff– pumping, 378flat-panel displays, 374flat-top intensity profile, 58flexible aromatic molecules, 349– twist angle, 349flow tubes, 378fluctuations, 454fluorescence– as probe light, 592 ff– bands, 274– blue, 583– decay, 618– decay time, 525, 560 ff– intensity scaling, 286, 619 ff– lifetime, 617, 618– spectrum, 557 ff– spontaneous, 320– two-photon excited, 583– two-photon induced (TPF), 324focal length f , 44– thermally induced, 384foci, moving, 215Foerster mechanism, 110force back driving, 176force on reflector, 66fosterite (Mg2SiO4), 498four energy level scheme, stationary,

283

four-level– amplifier system, 477– model, stationary, 283 ff– scheme, 363– system, 441four-wave mixing (FWM), 178, 207,

248, 252, 332, 335 ff, 354, 575, 609,611

– application of, 341Fourier optics, 132Fourier spectrum, 91Fourier transformation, 132fourth (FHG) harmonics, 525fractional bleaching (FB), 268, 272,

602 ffFraunhofer, 594– integral, 132free electron laser, 259Freon 113, 228, 230, 261frequency, 12– bandwidth, Gaussian pulse, 461– conversion, 245, 264– doubled Nd:YAG lasers, 366– mixing, 192 ff, 259– pulling, 445 ff, 446– shift, 221– spectrum of light pulses, 90 ff– spiking oscillations, 452– transformation, 525 fffrequency–time uncertainty, 16Fresnel– formulas, 114 ff– – reflectivity, 115– – transmission, 116– integral, 132– number, 24, 130– parallelepiped, 123– reflections, 548fringe visibility, 74FROG, 544FTIR switch, 455full width at half maximum power

(FWHM), 55, 544fundamental equation optics, nonlinear,

337fundamental resolution measure

(FREM), 142FWM, see fourwave mixing, 332

g parameter, 394 ff, 420GaAs, 354, 430, 438, 464, 494gain, 435 ff, 438– coefficient, 363, 436, 437– factor, 435, 476

Subject Index 1009

– inhomogeneously broadened activematerial, 447

– low signal, 477– switching, 448 ffGaN, 494gas-ion lasers, 460gases, higher-order nonlinear effects,

261 ffGauss– aperture, 37– beam, 28 ff, 29– – power content, 139– pulse, 55Gauss–Hermite modes, 401 ffGauss–Laguerre modes, 400 ffGaussian– band integral, 554– bands analysis, 554– bandwidth, 90– beam– – divergence, 32– – focusing, 42– – phase fronts, 31– – propagation, 35– – super-, 58– mirrors, 415– pulse, temporal, 55– transmission profiles, 130geometrical optics, 24germanium tetrachloride GeCl4, 228GFP, 142GGG (Gd3Ga5O12), 498glass (BK7), 211glycerol, 350, 546GM, 322Goeppert-Mayer, 322gold, 124, 331– vapor lasers, 375, 516 ffgraded index fiber, 157grating, 610– absorption, 609– amplitude, 150– constant, 336– grooves, 431– induced, 76, 264, 587, 609– induced phase or amplitude, 335– optically thick/thin, 152, 154– order, 431, 432– period, 431– phase, 150– phase modulation, thin, 153– reflection, 336– resolution, 431– thermal, 610

– thick/thin, 152– three-dimensional, 149– transient, 609– transmission, 337grating spectroscopy, induced, 298 ffgravitational wave detection, 8, 69grazing incidence, 432green fluorescing molecules, 142GRENOUILLE, 544ground state absorption (GSA),

552– recovery time, 567 ff, 569, 619group– velocity, 99, 100– velocity dispersion (GVD), 158GSGG (Gd3Sc2Al3O12), 498

H2, 166H2O, 591half width half maximum, 55half-wave plate, 49half-wave voltage, 202Hamilton operator, 101 ffharmonic– fifth, 258, 259– fourth (FHG), 525– generation, 259– higher, 258, 527– modulation (sine) grating, 153– seventh, 259harmonic, 221th, 259harmonic generation, high, 178Hartmann– dispersion, 100– equation, 100HBr/HCl, 379He-Cd laser, 514 ffheat– dissipation radius, 330– treatment, 330heat conductivity, 331helical lamps, 377helium cryostats, 627helium-neon (He-Ne) laser, 375, 430,

438, 513 ff, 594hemispherical resonators, 397Hermite polynomials, 401heterodyne technique, 88 ffhexene, 261HF/HF∗, 166, 378high harmonics, 258high-power systems, 368high-resolution microscopy, 325Ho:Cr:Tm:YAG, 438

1010 Subject Index

hole burning, 264, 276, 607– chemical, 276– coherent interaction, spectral, 308– incoherent interaction, spectral, 307– low temperature, 608– measurements, 605 ff– permanent, 607– photochemical, 607– photophysical, 276, 607– rate equations, spectral, 291– room temperature, 609– spatial, 295, 297 ff, 433, 434– spectral, 268, 275 ffhole injection barrier, 374holmium (Ho) laser, 506 ffholographic gratings, 31, 79holography– dynamic, 336– real-time, 336– real-time/dynamic, 336HOMO, 630host material, 384, 498human eye, 141, 529hybrid modes, 407 ffhybridization, sp2, 347hyper-sound– wave frequency, 90, 163, 164, 224

ice, refractive index, 126idler beam, 193illumination, 27– devices, 374image/imaging, 27– construction, 28– position, 28– size, 28– with two lenses, 43impedance, 21impurities, 327index modulation, 355index profile, quadratic, 37indium seals, 627indium-tin-oxide (ITO), 374inelastic scattering, 160inhomogeneous transition, extreme, 613injection nozzle, 628ink jet printing, 375InP, 354intensities, 23, 57, 184– average, 57, 622– excitation light, 621– fluctuations, 451– internal, 444– modulation, 451

– nonlinear, 268, 269, 538– pattern, 74– probe light, 539– ranges, 329– SHG, 184– soliton, 222intensity Inl, nonlinear, 437interaction– intra-/inter-particle, 632– lengths, 73, 74, 188, 232– resonant (absorbing matter),

nonlinear, 264– stationary, 279– times, 588interface– planar, 37– spherical, 37– tilted spherical, 39interference– experiments, 74– gratings, 587– pattern, 73, 79– two-beam, 78interferometer, 74– Michelson, 74internal– conversion, 617– intensity, 444– laser intensity, 439– vibrational relaxation (IVR) time,

267, 301intracavity frequency doubling, 190inverse Raman spectroscopy (IRS),

246 ffinversion, 360, 362– gratings, induced, 296 ff– population density, 363, 440ionization, 327– energy, 327IR spectral range, 113iron, 331IRS, 246isomers, 347, 351isotopes, 325isotropic distribution, 552ITO, 374

Jablonski diagram, 301Jamin interferometer, 74jet cooling, 628jitter, 543, 545Jones matrices, 45, 48Jones vectors, 45, 45 ff

Subject Index 1011

K2SO4, 126Kasha’s rule, 559 ffKDP, 183, 186–189, 195, 202, 204, 260– KD*P, 183, 187, 204, 260, 527Kerr– cell, 455– constant, 210, 211– effect, 209, 209 ff, 466– – induced birefringence, 178– lense mode locking, 466 ff– medium, 212– shutter– – electro optical, 211– – opto-optical, 211KGW (KGD (WO4)), 498Kirchhoff integral, 399knife edge method, 59Kodak dyes– #14015, 345– #9740, 345, 463– #9860, 345, 463Kramers–Kronig relation, 97KrF, 430, 438krypton, 327– lasers, 366, 375, 515 ffKTP, 183, 189, 260

labeling, 330Laguerre polynomials, 400Lambert–Beer law, 110, 281lamp pumping, 377 fflamplight, 563lamps– helical, 377– spectral, 435LASER, 359laser atoms/ions/molecules, concentra-

tion, 437laser diode bars, stack, 369laser diodes, superluminescence, 593laser emission, linewidth, 444 fflaser intensity, internal, 439laser level, upper/lower, 362laser materials, solid state, 384laser pulses, synchronization, 523laser transitions– homogeneously broadened, 445– inhomogeneously broadened, 446lasers, 77, 79, 360– ablation, 331– action, 274– amplifier, 476 ff, 479– atoms, 498– average output power, 489

– bandwidth, 427– beam quality, 489– chaotic behavior, 474 ff– chemical, 378, 521– chemistry, 8, 325– class A, 475– class B, 475– class C, 476– classification, 487 ff– cleaning, 8– color center, 521– condition, 438– cooling, 627– CPM, 464, 483– cw, 444, 445, 519– data checklist, 488 ff– DFB, 472, 473– diode, 372, 514, 521– – superluminescence, 593– disk, 370– display, 8– distributed feedback (DFB), 295, 472– dyes, 283– emission– – broad band, 446– excimer, 320, 366, 624– far-infrared, 521– fiber, 508– first, 507– free electron, 521– fs, 482– fusion, 9– gas, 510 ff– gold vapor, 375, 516 ff– He-Cd, 514 ff– helium-neon (He-Ne), 375, 430, 438,

513, 594– HF∗, 378– holmium (Ho), 506 ff– ignited fusion, 9– installation, 490– intensity– – internal, 443– intensity and power, 440, 440 ff– interferometers, 8– krypton, 366, 375, 515 ff– level– – lower, 362– – upper, 362– light, 9– light statistics, 68– material processing, 330 ff– materials, 363, 438– – parameters, 363

1012 Subject Index

– – spectral properties, 430– medicine, 8, 324– method– – analytic, 533– micro-, 400– molecules, 379– Nd:YAG, Q switch, 459– nitrogen, 366, 376, 511, 624– operation requirements, 488– parameters, 492 ff– phase conjugating mirror, 416 ff– pointers, 495– position of emission, 444– pulse shortening, 328– pulse width range, 489– pumping, 365 ff– red–green–blue, 8– resonators, 388 ff– ruby, 327, 460, 507– safety, 529 ff– semiconductor, 492 ff– solid state, 283, 498, 521– spark ignitions, 328– spectroscopy, 8– threshold, 430, 438 ff– threshold condition, 439– transition– – homogeneously broadened, 445– tunability range, 489– tunable, 488– upconversion, 363, 372– VCSELs, 374– wall-plug efficiency, 489– wavelengths, 438, 488 ff– with very high powers, 9– without inversion, 321– writing, 331lasing axial modes, number of, 427lateral coherence, 73, 77, 78LBO, 260LCD, 261lead (Pb), 331– vapor laser, 516 fflength, effective focal, 39lenses– aspheric, 41– biconcave, 41– biconvex, 41, 44– ducts, 370– focusing, 41 ff– meniscus, 41– plano-convex, 44– resonator, 416 ff– sequence, 40

– thermal, 424– thin, 37– thin spherical, 44– tilt, 39– tilted spherical, 39lensing, thermal, 381 fflevitation force, 66LiCaF (LiCaAlF6), 498LiF, 374lifetime, 610– diode lasers, 374– excited state, 274– fluorescence, 560, 618– natural, 108, 560, 560 ff– phosphorescence, 560, 618– Rayleigh scattering τRL, 237– related phonon, 165– resonator, 429– sound wave, 164– triplet, 618– upper laser level, 438– vibration τvib, 243light– beam, 53– – coherence, 74– beats, 88 ff– characteristics, 53– ducts, 493– emitting polymer, 374– incoherent, 27– matter interaction, 94– modulation, 203– nonpolarized, 118, 120– partially polarized, 50– polarization, 44– power, 54– rays, 26– scattering, 160– sources, 328– squeezed, 71 ff– statistics, thermal, 68– thermal, 69– waves, evanescent, 123LiIO3, 195limits for these fluctuations, fundamen-

tal, 454limits, fundamental, 53LiNbO3, 195, 202, 241, 260line shape function, 612linear– interactions, 94– interactions of light with matter, 93– optics, 96, 110– polarization of matter, 178

Subject Index 1013

linewidth– homogeneous, 308– narrow, 555– position of laser emission, spectral,

444 ff– spectral, 444– SRS, 242– vibration ∆νvib, 243Liouville equation, 304, 305liquid– crystals, 74, 125, 261, 261 ff, 464– nitrogen, 627– nitrogen cryostats, 627– oxygen, 241LiSAF (LiSrAlF6), 498lithium niobate (LiNbO3), 183, 354lithium triborate (LBO), 183lithography, 9Littrow mounting, 431load, thermal, 381local divergence, 32longitudinal, 222, 425– coherence, 74– modes, 425 ff– resonator modes, 389Lorentz force, 95Lorentzian– band integral, 554– line shape, profile, 108– shape gain profile, 445Loschmidt’s number, 112luminescence spectra, 557LUMO, 631

Mach–Zehnder interferometer, 74magic angle, 540, 541 ff, 596– configuration, 542magnetic– field vector, 20, 23– induction, 93– permeability, 20, 94– polarization, 94– susceptibility, 94maintenance, 491malachite green, 350, 351, 555manganese, 331Manley–Rowe conditions, 196MAP, 260master oscillator power amplifier

(MOPA), 480materials– concentration, 111– dielectric, 124– dispersion, 158

– for applications, 112– for nonresonant nonlinear interac-

tions, 259 ff, 576– in resonant nonlinear optics, 343 ff– isotropic, 208– nonlinear susceptibility, 575– parameters, 111, 330– pressure, 111– processing, 8, 408– temperature, 111– viscosity, 226matrices, optical elements, 37– round trip, 392Maxwell’s equations, 93MBANP, 260measuring errors, 585melt– energy, 331– heat, 331melt grown, 260melting, 330– process, 331– temperature, 331meniscus lenses, 41menthol, 129meridonal, 158metal– mirror, 124– reflection, 123– reflectivity, 123methane CH4, 228methanol, 228Michelson interferometer, 74microchannel plates, 563microparticles, 328microscopes, scanning, 583microscopy– high-resolution, 325Mie scattering, 163MINDO-S, 633mirror– adaptive, 381, 486– chirp compensating, 467– coatings, 548– dielectric, 329– double-chirped, 468– plot absorption, 557– plot emission, 557– resonators, planar, 395– spherical, 37– symmetry fluorescence, 557misalignment– sensitivity, 419 ff, 421– vector, 421

1014 Subject Index

MISER, 433MNA, 260mode– aperture design, fundamental, 415,

416– apertures, 413, 413 ff– axial, 425– Bessel, 400– circular, 400– combining, 408– donut, 400, 407– fundamental, 391 ff– fundamental operation, 413– Gauss–Hermite, 400, 401, 411– Gauss–Laguerre, 400, 410– higher-order transversal, 400– hopping, 298, 433– hybrid, 407– laser, single, 432 ff– locking, 460 ff– – active with AOM, 470– – additive pulse, 468– – by gain modulation, 471– – Kerr lense, 466– – passive, 463– – soliton laser, 469– – theoretical description, 461– locking, passive, 463 ff– longitudinal, 425– number pmode, 426– operation, fundamental, 413 ff– rectangular, 401, 401 ff– screw, 158– selector, 434– spacing, 426, 426– superposition, 404– volumes, 416– volumes, large, 416 ff– Whispering gallery, 400modeling, 566 ffmodulation, 143– transfer function (MTF), 143 ff– wavelength, 79modulators– acousto-optic switches (AOMs),

456molecule imaging, single, 325molecules, 345– aromatic, 348– – flexible, 349– conjugated, 346– damage, single, 329– detection, single, 8– single, 67

momentum– conservation, 164– first, 57– method, 19– operator, 103monochromatic wave, 20MOPA (Master Oscillator Power

Amplifier), 360moving foci, 215Mueller matrices, 45, 52multi pass amplifier, 482 ffmulti-exponential decay, 582multiphoton– absorption, 321, 321 ff– excitations, 325, 327– pair generation, 199

NaBrO3, 129nanocrystals, 464nanostructures, 356 ffnanotubes, 358naphthalene, 348National Ignition Facility (NIF), 480Navier–Stokes equation, 226Nd, 498– glass, 384, 430, 438, 464– – lasers, 460, 464, 501 ffNd:Cr:GSGG, 384Nd:GdVO4, 384, 438, 500Nd:KGW (Nd:KGd(WO4)), 384, 438,

500Nd:YAG, 59, 364, 365, 383–385, 424,

430, 438, 464, 479, 499– laser, 251, 471, 482Nd:YALO laser, 384, 424, 425, 438, 499Nd:YAP, 499Nd:YLF, 384, 438Nd:YVO lasers, 384, 438, 500 ff, 528Ne, 258near-field, optics, 136, 141neon, 327neural networks, 356neutral density (NG) filters, 113nickel, 331nitrobenzene, 211, 239, 241, 242nitrogen, 166, 261– cryostats, liquid, 627– laser, 366, 376, 511 ff, 624– liquid, 241, 627NLO, third order– crystals of cubic symmetry, 208– isotropic, 208NLP (nonlinear polarization), 56, 59,

611

Subject Index 1015

noble gases, 261noise– physical, 70– technical, 70– thermal, 163noise power, 454– total, 454nonharmonic vibrational potentials,

167nonlinear– absorber, 465, 483, 485– absorption, 263, 264, 268, 566 ff– absorption coefficient, 268– behavior, 281– coefficients, 339– emission, 580– intensities, 268, 269, 538– interaction– – nonresonant (transparent matter),

264– – resonant (absorbing matter), 263,

264– nonresonant light-matter interaction,

263– optical spectroscopy, 533 ff– optics, 533, 624– – fundamental equation, 337– polarization, 175, 179, 192, 304– – third-order, 307– polarization (NLP) spectroscopy,

611 ff– polarization of matter, 179– polarization spectroscopy, 268– refractive index, 576– Schroedinger equation, 265– spectroscopy, 65, 545, 631– – measuring errors, 548 ff– – probe light intensity, 539– – pump/probe light overlap, 539 ff– – sample lengths, 540– – steps of analysis, 535 ff– – temporal overlap, 541 ff– – transversal excitation, 540– susceptibilities, 179– transmission, 272 ff, 281, 343, 570– – maxima/minima, 571 ff– – models with two absorption, 285– – plateaus/slope, 571 ff– – two level scheme, 281– transmission measurements (bleach-

ing curves), 564 ff– wave equation, 180nonlinear optical spectroscopy, tasks,

536

nonlinear polarization spectroscopy(NLP), 611

nonlinearity– exponent, 54, 177– start, 567, 567 ff– third-order, 575, 577, 611nonlinearity absorption, maximum, 287nonlinearly changed refractive index,

180nonplanar wave, 22nonpolarized light, 118, 120nonresonant– interaction, 173– nonlinear interaction, 176, 616nonresonant light-matter interaction,

nonlinear, 263normal dispersion, 98ns pulses, 454ns regime, 624 ffnumerical aperture, 142, 157

OBD (optical breakdown), 327observation times, 73, 74, 76OCT (optical coherence tomography),

8, 431, 593OLED, 344OPA crystals, 195OPO (optical parametric oscillators),

195, 527optical– -biaxial, 127– activity, 129– axis, 125– bistability, 341 ff– bleaching, 269– breakdown (OBD), 234, 326– coherence tomography (OCT), 8, 593– damage, 328 ff– delay line, 626– density OD, 111– diode, 433– fibers, 8, 156, 468– filter, 548– – KG4, 114– – NG11/NG12, 114– – NG4/UG11, 114– – UG1, 114– free induction decay, 313– gates, 523 ff– gating with up-conversion, 524 ff– isolation, 326, 481– isolators, 130– Kerr effect, 209– limiting, 274

1016 Subject Index

– materials, 170 ff– – CaF2, 113– – Duran, 112– – Herasil, 112– – MgF2, 113– – NaCl, 113– – optical glass, 112– – sapphire, 113– – Suprasil, 112– – ZNS, 113– measurement techniques, 8– multichannel analyzer, 624– nutation, 313 ff– parametric– – amplifier (OPA), 177, 193, 194, 527– – amplifier (OPA, OPO), 194– – oscillator (OPO), 194, 527– path length, 25– phase conjugation (PC), 178, 250 ff,

260, 326, 340, 356, 457– rectification, 177, 205 ff– resolution distance, 142– sequencing, 8– shutter, 211– spectroscopy, nonlinear, 533– storage, 8– switches, fast, 211– switching, 8, 203, 356– tomography, 431– trap, 67– tweezer, 67optics, nonlinear, 533, 624opto-optical efficiency, 380opto-optical switching, 261orbital momentum (AOM), 408orbitals, 630 ff– electronic, 630organic– light emitting diodes (OLEDs), 353,

374– liquids/solutions, 260– materials, 260 ff– molecules, 125, 344 fforientation relaxation, 162, 596– times, 162, 240, 559, 596oscillator– strength, 105oscillator, seeded, 483oscilloscopes, 56output coupler, 389– optimal reflectivity, 444output power, 443overlap– spatial, 584

– spatial/temporal, 548– temporal, 541oxygen, 559– liquid, 241

p-n junction, 372pair generation, 170PAN, 260parameter– active material, 435– experimental, 621parametric down conversion (SPDC)– emission cones, 199– spontaneous, 72, 196 ffparticle– acceleration, 9– compared, 306– density, 620– momentum, 12pass amplifier, single, 480 ffpassive– mode locking, 463 ff– Q switching, 456 ffPbS, 464PCM, 251, 416peak power, 55, 459peak transmission, 565peltier elements, 493pentaphene, 6334’-n-pentyl-4-cyanoterphenyl, 289perpendicular– incidence, 117– linear polarization, 80perylene, 349phase, 13, 133– coherence time, 264– conjugate, 250– conjugating mirror, 37, 250, 416, 418,

419, 428, 476– conjugation, 264, 328, 337– – quality of, 256– – vector, 253– difference, 85– distortions compensation, 251, 418– fluctuations, 76– grating, 150 ff, 264, 334– – induced, 332 ff, 545– jump magnetic field, 119– jumps, 114, 117– light velocity, 97– matching, 125, 183, 184, 193, 248– – noncritical, 188, 189– – second harmonic generation, 183 ff– – type I/II, 190

Subject Index 1017

– matching angle, 186– modulation, 339– plates, 408, 415– relaxation time, 277– shifts, 122phonon– acoustic, 224– depletion, 165– generation, 165– lifetime, 225phosphorescence, 557– decay time, 561 ff– spectrum, 558 ffphoto ionization, 327photodetectors, 622photodynamic therapy, 8, 324photography, macro, 143photoionization optical breakdown

(OBD), 326 ffphoton, 1, 2, 4, 9– absorption operator, 103– cost, 9– cross section, 14– echo– – condition, 317– – fanning out time, 317– – intensities, 318– – wave vector condition, 318– echoes, 264, 316, 316 ff– emission operators, 103– energy, 12– entangled, 72, 196– flux intensity, 18– momentum, 12– number of, 54– scattering, 14– spin, 13– statistics, 67– transport equation, 278, 440, 477photon absorption, two, 322, 582photon counting, single, 67, 589photon emission, two, 322photon energy– average, 54photon techniques, single, 5photonics, 2– applications, 8– band gap materials, 358– crystal fibers (PCF), 159, 358, 509,

592– crystals, 358photorefractive effect– buildup time, 355photorefractive materials, 354 ff

phthalocyanine, 345, 457piezo-driven devices, 435piezo-element, 455planarity, 88plane waves, 19plano-convex lense, 44plasmas, laser-induced, 259, 328plastoquinone, 344, 345platinum, 331p-n transition, 373Pockel’s– cell, 522– effect, 177, 200, 454– – quarter-wave voltage, 202Poisson distribution, 68, 69polar solvents, 351, 558polarization, 13, 50, 50, 115, 386, 541– conditions, 596– effects, 114– grating, 74– magic angle, 541 ff– nonlinear, 175, 179, 192, 304– – third-order, 307– perpendicular, 80– rotation, 49– second-order nonlinear, 181– spectroscopy, 611– – nonlinear (NLP), 611– third-order nonlinear, 207polarizer, 48pollution measurements, 8polyaniline, 374polymer matrix, 366polymers, 113, 353, 556polymethine dyes, 346polythiophene (PEDOT), 374population density, 278, 570, 584, 597,

599 ff, 616, 619– factor, 599, 600– model calculations, 616– nonlinear, 621population estimate, 600position–momentum uncertainty limit,

28potassium bromide, 113potential– beam quality, 63– curve, 177power, 23– applications, high, 117– average, 54– bucket method, 65– content, 409 ff– – quadratic aperture, 137

1018 Subject Index

– distribution P (x, y), spatial, 57– flat-top profile pulse, 56– reflectivity, 118– transmission, 118Poynting vector, 188PPLN, 526Pr, 498pressure, 547, 628– high, 596, 628 ffprism chirp compensation, 468probe light, 589 ff– in the ns range, 592– intensities, 539– pulse energy, 589, 589 ff– sources, 588 ff– spots, 589propagating higher transversal modes,

412 ffpropagation time, frequency–

dependent, 467propagation, Gaussian beam, 35propagator, 311ps regime, 625 ffpulses, 543– attosecond, 523– bandwidth-limited, 461 ff, 462– center, 55– center, temporal, 55– compression of fs/ns pulses, 523 ff– durations, 543, 597– energy, 55, 459, 622– generation, short, 447, 451 ff, 472– length, 325– measurement methods, 543– mode locking– – additive, 468 ff– ns, 454– Π, 224, 318– 2Π, 318– ps/fs, 460, 460 ff– sech2, 462– selection, single, 204, 522 ff– shape, 543– shape regeneration, 483– short, 17– shortening by nonlinear effects, 524 ff– shortening with gates, 524 ff– single selection, 522– trains, 522– pulses– – Π, velocity, 319– very short, 43– width, 54, 56, 452, 459, 543– – spikes, 452

– width ∆tsol, temporal, 222pulses– Π, 264pump– and freeze procedure, 261, 546, 619– and probe techniques, 584 ff, 602, 618– chamber, 377– intensity, 441– mechanism, 360, 363 ff– power, 422– rate, 268, 477– rate at threshold, 442pumping– chemical, 378 ff– synchronous, 471purification, 327purity– chemically specified, 261– solvents, 546pyrene, 349

Q switch pulse– stored energy, 459– width, 459Q switching, 203, 435, 455– active, 454, 454 ff– generation of ns pulses, 454 ff– material, 456– mechanical elements, 455– passive, 456, 456 ff– prelasing, 455– theoretical description, 457qpm period, 191quantum– beat spectroscopy, 314 ff– beats, 314– box model, 357– chemical calculations, 630 ff– chemical methods, semi-empirical,

631– computing, 4– converters, 378– cryptography, 4, 197, 200– defect efficiency, 380– defect energy, 364, 558– defects, 363 ff, 364– dot, 357– effects, 3, 5, 264– efficiency, 108, 364, 380, 561– mechanical box model, 347– non-destructive measurements, 4– number, rotational, 106– states– – coherently coupled, 321

Subject Index 1019

– wells, 357, 358– wire, 357– yield, 559, 560 ffquantum-well structures, 464quarter-wave plate, 48, 482quartz, 126, 129, 468– fused, 211quasi-continuous radiation (qcw), 17,

56quasi-phase matching, 190 ff

Rabi oscillations, 307, 313, 313, 316– damped, 313 ffradiation– momentum, 66– power of accelerated electron, 168– pressure, 66, 66– quasi-continuous (qcw), 17, 56radiationless transitions, 109 ffRaman– active vibrations, 166– anti-Stokes, 167, 249– frequency, 166– lasers, 245, 529– scattering, 165– – anti-Stokes, 242– shifter, 528 ff– shifting, 260– spectra, 166– Stokes scattering, 167Raman gain spectroscopy (SRGS),

stimulated, 246 ffRaman intensity– spontaneously scattered, 241Raman scattering (SRS), stimulated,

221, 240 ffRaman spectroscopy– inverse (IRS), 246 ff– surface-enhanced (SERS), 245rate equations, 175, 265, 277 ff, 288, 462– numerical solution, 288 ffray– characteristics, 26– matrices, 26, 29, 35, 35 ff, 133– – total, 40– 4×4 matrices, 26– paraxial, 26– propagation, 27, 36– tracing, 27– vectors, 26, 26Rayleigh– cross-section, 162– length, 30, 189, 230, 331– optical resolution criterion, 142

– scattering, 161– – broadening, 162– – stimulated, 237– stimulated (SRLS), 237 ff– thermal (STRS), 237 ff– wing scattering, 162, 238– – stimulated (SRWS), 238 ffRDA, 260RDP, 260real refractive index, 96real-time holography, 336recovery– absorption, 274– time, 350rectangular modes, 401 ffreference beam method, 550 ffreflection, 122– displacement, total, 123– high, 124– metals, 123reflector, force on, 66reflexes, 548refraction, 97, 98– achromatic, 100– law, 99refractive index, 20, 95, 121, 199– conventional, 98– curves, 186– ellipsoid, 125– grating, 354– nonlinear, 576, 577– nonlinearly changed, 180– optically uniaxial crystals, 126– power, 382, 382– profile– – quadratically, 381– real, 96– surfaces, 186– temperature-dependent change,

383refractive indices, main, 127refractive power, thermally induced,

424, 424 ffregime, ns, 624relativistic correction, 13relaxation– operator, 304– time, 239– – orientation, 238– – spectral, 574– – thermal, 382, 383relay imaging telescope, 387reorientation, 556repulsion forces, 176

1020 Subject Index

resolution, 140– human eye, 141– optical devices, 130– optical images, 140– spatial, 586– spectral, 17, 87, 91resonance, 95– condition, 104– enhancement SBS, 435– enhancement, very weakly absorbing

materials, 263– Raman scattering, 245resonant interactions, 173resonant nonlinear interactions, 263resonator, 280, 361– concave–convex, 399– concentric, 398– confocal, 396, 428– curved mirror, 396– dynamically stable, 422, 422 ff– empty, 392, 392 ff– finesse, 429– hemispherical, 397– higher transversal modes, 399– intensities, 444– lenses, 416 ff– lifetime, 429, 429, 475– micro-, 400– modes, 389 ff– modes, longitudinal, 389– optical length, 426– photon lifetime, 452– planar mirror, 395– ring, 298, 434– roundtrip time, 459– SBS mirror, 435– semiconfocal, 397– short, 473, 473 ff– spherical, 398– stable, 389, 389 ff– unstable, 298, 390, 390 ffrhodamine 6G, 350, 351, 364, 367, 430,

438, 466, 596rigid molecules, 348ring resonator, 298, 434rotator, 49roughness, 88, 329– finesse, 88roundtrip– matrix, 391– time, 459roundtrip eigenmodes, multiple, 416ruby, 384, 430, 438– laser, 327, 460, 507

Runge–Kutta method, 288Rydberg states, 325

safety classes (1, 2, 3A, 3B, 4), 531sample parameters, 546 ffsapphire (Al2O3), 498saturation intensity, 437SBS– focusing, 231– gain, stationary, 232– gases, 228– linewidth, 225– liquids, 228– material parameters, 228, 457– mirrors, 418, 464– solids, 228– sound wavelength, 225– spatial and temporal distribution,

231– SRS, 264– threshold, 231, 233– – stationary, 232SBS-PCM– taper concept, 256scanning microscopes, 583scattering– Brillouin, 160– coherent, 160– cross-section, 160– elastic, 160– incoherent, 160– inelastic, 160– Mie, 160– Raman, 160– Rayleigh, 160Schroedinger equation, 304, 631– nonlinear, 265, 469– stationary, 101, 301– time-dependent, 101, 302, 302, 631sech2 pulse, 462second harmonic generation (SHG),

177, 182, 184, 325, 353, 525second intensity moment, 409second-order effects, 177 ffsecond-order nonlinear polarization,

181seeding OPA, 194selection rules, 323, 553, 631self-defocussing, 212self-diffraction, 178, 212, 217 ffself-focusing, 178, 212, 212 ff, 264, 330– critical power, 214– focus length, 214– thermal, 215

Subject Index 1021

– weakly absorbing samples, 218 ffself-phase modulation, 178, 218 ff, 264,

468, 523– CS2, 221self-trapping, 214Sellmeier, 158– coefficients, 187 ff– dispersion/equation, 100semi-empirical calculations, 631, 633 ffsemiconductors, 356, 356 ff, 464– lasers, 492 ffSESAMs, 464seventh harmonic, 259SF6, 261Shack-Hartmann wavefront sensors, 32SHG see second harmonic generation– acceptance angle, 189– crystals, 183– optimal focusing, 189– periodic poling, 191– temperature influence, 189SHG see second harmonic generation– optimal crystal length, 189shock parameter Rshock, 388shot noise, 70, 72shutters, electro-optic, 524side effects, 533side pumping, 368, 493signal beam, 193signal gain, 436, 477– spectral, 445signal-to-noise ratio, 69, 585silicon, 331silver, 124, 331single-diode lasers, 495 ffsinglet and triplet spectra– differentiation of, 600SiO2, 228six-wave mixing, 341skin damage, 530slab, 368, 369, 381– zig-zag, 369slit gratings, 145slope efficiency, 380slow axis, 373smile, 493Snellius law, 99solar energy converters, 8soldering, 330solid state– laser materials, 384– lasers, 498 ff, 521solitons, 178, 222, 264– cross-section of spatial, 216

– fundamental, 223– laser, 469 ff– peak intensity, 216– period, 223, 223– pulses, 222 ff– spatial, 215 ff– spatial intensity, 216– temporal, 222 ff– velocity, spatial, 216solution grown, 260solvents, 546– low-temperature measurements, 627– parameters, 556– polar, 351, 558– purity, 546sound– velocity, 225– wave amplitude/frequency, 225, 227spark gap, 512SPDC (spontaneous parametric down

conversion), 196specific heat cp, 331spectra, transient, 586 ffspectral hole burning, 272– rate equations, 291 ffspectral range, free, 87spectral sensitivity– calibration, 562 ffspectroscopic setups, 624 ffspectroscopy– measuring errors, nonlinear, 548– nonlinear, 65, 545, 631– probe light intensity, nonlinear, 539– pump/probe light overlap, nonlinear,

539– sample lengths, nonlinear, 540– steps of analysis, nonlinear, 535– susceptibilities, nonlinear, 179– temporal overlap, nonlinear, 541– transmission two level scheme,

nonlinear, 281– transmission, nonlinear, 272, 281,

343, 570– transversal excitation, nonlinear,

540– wave equation, nonlinear, 180speed, 11– photon, 11SPIDER, 544spiking, 451 ff, 473– damping time, 453– frequency, 452– Nd:YAG laser, 453spin, 44

1022 Subject Index

spincoating, 375spot size, 140squeezing, 5SRGS, 246 ffSRS– anti-Stokes, 240– anti-Stokes angle, 242– equations, 244– excited state, 245– gain coefficients, 241, 244– non-saturated, 243– parameters, 241– scattering cross-section, 241– small signal, stationary, 245– spectral width, 241– Stokes, 240SRWS, 238– gain factors, 239stability– condition, 394, 394, 420– limits, 424– range of the resonator, 420– ranges, 394, 419 ffstabilization– active, 454standing wave, 21STBS– temperature modulation, 235steady state conditions, 606steady state measurement, 595 ffsteel, hardening, 330step index fiber, 156, 157stiff, 288Stokes– -anti, 240– lines, 165– shift, 347, 558– SRS, 240– vectors, 50, 51Stokes vectors, four-element, 45storage, 8streak cameras, 56stress fracture limit, thermal, 387 ffsubband transitions, two, 613sugar solution, 129sulfur hexafluoride SF6, 228sum frequency, 192– generation, 525sunlight, 23– power density, 530super-Gaussian beam, 58, 58superfluorescence, 320, 320 ffsuperluminescence, laser diodes,

593

superposition, 78– modes, 404– of light, 73superradiance, 274 ff, 320, 320 ffsuperradiation, 481, 593surface damage, 329surface oxidation, 330surface-enhanced Raman spectroscopy

(SERS), 245susceptibilities– nonlinear, 179– third-order nonlinear, 207susceptibility– third-order nonlinear, 576SVA approximation, 179, 227synchronization, 590– laser pulses, 523

T15, 289T2, 264T3, 267technical noise, 70telescope, 43, 416TEM modes, 400temperature, 547– distribution, 246– grating, 235– lower, 559tensor, third-order, 181m-terphenyl, 349p-terphenyl, 349, 566tetracene, 348tetrahydrofuran, 351thermal noise, 163THG, 209– third, 178, 208 ffthird harmonic generation (THG), 526– optimal total efficiency, 209third-order effects, 178 ffThomson scattering, 169three-level– scheme, 362– system, 441threshold– gain coefficient, 439– intensity, 327– – OBD, 327– inversion, 439– laser, 438– pump rate, 440– pump rate Wpump,threshold, 439thulium (Tm) laser, 506 ffTi (titanium), 498Ti:Al2O3, 384

Subject Index 1023

Ti:sapphire, 364, 430, 438– amplifier, 484– lasers, 367, 449, 460, 466, 503 ff, 528TiCl4, 261TICT, 352time delay, 623time scale– characteristic, 268tin, 331titanium, Ti, 331toluene, 239, 241tourmaline, 126TPA (two photon absorption), 321TPF (two-photon induced fluorescence)– pulse width, 325transfer matrix MT, 420transient absorption, 264– excited state absorption (ESA), 271 fftransient gratings, 609transient spectra, 586, 586 fftransition– allowed, 105– extreme inhomogeneous, 613– forbidden, 105– homogeneously broadened, 613– inhomogeneous, 605– p-n, 373– probability, 102, 104– radiationless, 561– rotational, 106transmission, 111, 270, 565– T0

– – low signal, 567– energy, 565– etalon, 87– graph maxima/minima, nonlinear,

571– graph plateaus/slope, nonlinear, 571– gratings, 294– induced, 295 ff– maxima/minima, nonlinear, 571 ff– models with two absorption,

nonlinear, 285– peak, 565– plateaus/slope, nonlinear, 571 fftransmittance, 111transmitted field, 85transparency, self-induced, 224, 318 fftransparent materials, 112transversal– fundamental mode, 36– geometries, 585– interaction range, 73– modes, 391 ff

– – higher, 399 ff– – higher-order, 400– – propagating, 412– modes frequency, 427– resonator modes, 389triggering, electronic, 545trimming, 3301,3,5-triphenyl benzene, 349triplet– lifetime, 618– population, 598, 601– quenching, 558 fftriplet level, lowest, 559tumor markers, 324tunability range, 488tungsten, 331– band lamps, 563twisted intramolecular charge transfer

(TICT), 352TWM (two-wave mixing), 333two-beam interference, 78 fftwo-level– model, 280– – stationary, 280 ff– scheme, 304, 620– scheme with broadening, 304 ff– system– – stationary, 567two-photon– absorption, 321 ff, 322, 322, 323, 582,

582 ff– – detection, 615 ff– emission, 322– excitation, 339two-photon absorption– selection rules, 323two-wave mixing (TWM), 333

uncertainty– energy time, 16 ff– frequency–time, 16– photon number phase, 67 ff– position momentum, 15 ff– spectral, 17unit wave vector, 23uranine, 350, 351urea, 260UV, 112, 328– light source, 511– XUV light sources, 328

V-number, 158vacuum– deposition, 375

1024 Subject Index

– field, 198– fluctuations, 197– impedance, 21– permeability, 20– permittivity, 20– polarization, 71vanadium, 331vaporization, 330– heat, 331– temperature, 331VCSEL, 374, 494vector– phase conjugation, 252– potential, 103velocity vsound, 225Verdet’s constant, 49, 130vertical cavity surface-emitting lasers

VCSELs, 374, 497 ffvibration quantum number, 106vibrational– potential– – anharmonicity, 240– – nonharmonic, 167– states, 555vibrational relaxation (IVR) time,

internal, 267, 301vibronic transitions, 106viscosity, 546– bulk, 226– shear, 226visibility conditions, 163Voigt profile analysis, 554volume– holograms, 356– stored energy per, 479

waist diameter, 393waist position, 393walk-off angle, 188 ffwallplug efficiency, 380water, 211– window, 8, 259wave– approximation, planar, 20– excitation, traveling, 474 ff, 540– front, 22– – curvature, 31– – distortions, 43– – inversion, 251– – planar, 31– – radius, 31– function, 101– – superposition of the, 102

– – symmetry, 106– guide, 156, 165– guiding, 214– monochromatic, 20– monochromatic planar, 20– nonplanar, 22– number, 12– standing, 21– vector, 12– – unit, 23waveguide, 156, 165wavelength, 12– cut-off, 158– temperature dependent, 373wavelength division multiplexing

(WDM), 8, 497welding, 330white light, 326– generation, 215, 260, 626– – fs duration, 590 ff– – ps duration, 591 ff– interferometry, 593width– definitions, 18– spectral, 296window, water, 8, 259windows, 629

X-ray microscopy, 9XeCl, 430, 438– excimer lasers, 481, 510 ffxenon Xe, 228, 261, 327XUV, 328– -light, 520– generation, 259

YAG (Y3Al5O12), 498YALO or YAP (YAlO3), 498Yb, 498Yb:YAG laser, 364, 384, 502 ffYLF (LiYF4), 498YVO (YVO4), 498

z-scan, 575 ff– theoretical description, 578 ff– with absorbing samples, 580 ffzero– delay, 623– dispersion, 159– point energy, 71zig-zag slab, 369, 381zinc, 331ZINDO/S, 633