Sept. 27, 2013 , Athens , Greece

Preview:

DESCRIPTION

ECO-BOND GRAPHS An Energy-Based Modeling and Simulation Framework for Complex Dynamic Systems with a focus on Sustainability and Embodied Energy Flows. Dr. Rodrigo Castro ETH Zürich, Switzerland. University of Buenos Aires & CIFASIS-CONICET, Argentina. Sept. 27, 2013 , Athens , Greece. - PowerPoint PPT Presentation

Citation preview

Sept. 27, 2013, Athens, Greece

ECO-BOND GRAPHSAn Energy-Based Modeling and Simulation Framework

for Complex Dynamic Systems with a focus on Sustainability and Embodied Energy Flows

Dr. Rodrigo Castro ETH Zürich, Switzerland.

University of Buenos Aires & CIFASIS-CONICET, Argentina.

The 10th International Multidisciplinary Modelling & Simulation Multiconference

The 1st Int’l. Workshop on Simulation for Energy, Sustainable

Development & Environment

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 2

• Problem formulation– Emergy tracking & Complex Dynamics Systems

• Possible approaches• Our approach– Networked Complex Processes– 3-faceted representation of energy flows

• The Bond Graph formalism• The new Eco Bond Graphs– Definition– Examples– Simulation results

• Conclusions

Agenda

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 3

System Theoretic Approach

• Complex Dynamics Systems– Global scale socio-natural processes• We live in a nonlinear world, mostly away from equilibrium

Problem formulation

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 4

System Theoretic Approach

• Complex Dynamics Systems– Global scale socio-natural processes• We live in a nonlinear world, mostly away from equilibrium

Problem formulation

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 5

System Theoretic Approach

• Complex Dynamics Systems– Global scale socio-natural processes• We live in a nonlinear world, mostly away from equilibrium

Problem formulation

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 6

System Theoretic Approach

• Complex Dynamics Systems– Global scale socio-natural processes• We live in a nonlinear world, mostly away from equilibrium

Problem formulation

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 7

Storages and Processes Problem formulation

• Flows of Mass and Energy– Each process can abstract several internal sub processes

   

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 8

Storages and Processes Problem formulation

• Flows of Mass and Energy– Each process can abstract several internal sub processes

   

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 9

Storages and Processes Problem formulation

• Flows of Mass and Energy– Each process can abstract several internal sub processes

   

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 10

Storages and Processes Problem formulation

• Flows of Mass and Energy– Each process can abstract several internal sub processes

   

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 11

Storages and Processes Problem formulation

“Grey Energy”

• Flows of Mass and Energy– Each process can abstract several internal sub processes

   

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 12

Storages and Processes Problem formulation

“Grey Energy”

• Flows of Mass and Energy– Each process can abstract several internal sub processes

– We want to model systematically this type of systems– Structural approach Sustainability properties

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 13

• Sankey Diagrams– Static (snapshot-like) World Energy Flow.

Considering energy losses Possible approaches

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 14

• Sankey Diagrams– Static (snapshot-like) World Energy Flow.

Considering energy losses Possible approaches

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 15

Considering energy losses

• Energy System Language (H.T. Odum)– Account for dynamicsDifferential Eqns.

Possible approaches

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 16

Considering energy losses

• Energy System Language (H.T. Odum)– Account for dynamicsDifferential Eqns.

Possible approaches

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 17

Considering energy losses

• Energy System Language (H.T. Odum)– Account for dynamicsDifferential Eqns.

Possible approaches

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 18

Considering energy losses

• Energy System Language (H.T. Odum)– Account for dynamicsDifferential Eqns.

Possible approaches

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 19

Networked processes

• Multi Input/Multi Output Processes– Including recycling paths

Our approach

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 20

Networked processes

• Multi Input/Multi Output Processes– Including recycling paths

Our approach

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 21

Networked processes

• Multi Input/Multi Output Processes– Including recycling paths

Our approach

P3

P5

P1

P2

P4P6

RB

RC

RA

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 22

Focus on mass flows

• 3-Faceted representation

Our approach

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 23

Focus on mass flows

• 3-Faceted representation

Our approach

Balance: Mass and Energy

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 24

Focus on mass flows

• 3-Faceted representation

Our approach

Balance: Mass and Energy

321 EEEME

1E

2E

3E Tracking: Emergy

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 25

Focus on mass flows

• 3-Faceted representation

Our approach

Balance: Mass and Energy

321 EEEME

1E

2E

3E Tracking: Emergy

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 26

• Minimum required formulation – To achieve the modeling

goal systematically

• How do we formalize and generalize this structure ?

Basic formulation Our approach

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 27

• Bondgraph is a graphical modeling technique – Rooted in the tracking of power [Joules/sec=Watt]– Represented by effort variables (e) and flow variables (f)

     

     

Bondgraphic approach The Bond Graph Formalism

ef Power = e · f

e: Effortf: Flow

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 28

• Bondgraph is a graphical modeling technique – Rooted in the tracking of power [Joules/sec=Watt]– Represented by effort variables (e) and flow variables (f)

• Goal:– Sound physical modeling of generalized flows of energy– Self checking capabilities for thermodynamic feasibility

• Strategy:– Bondgraphic modeling of phenomenological processes – Including emergy tracking capabilities

Bondgraphic approach The Bond Graph Formalism

ef Power = e · f

e: Effortf: Flow

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 29

Energy domains

• Bondgraph is multi-energy domain

The Bond Graph Formalism

ef

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 30

Energy Domaine

Effort variablef

Flow variableMechanical, translation Force Linear velocity

Mechanical, rotation Torque Angular velocity

Electrical Electromotive force Current

Magnetic Magnetomotive force Flux rate

Hydraulic Pressure Volumetric flow rate

Thermal temperature entropy flow rate

Energy domains

• Bondgraph is multi-energy domain

The Bond Graph Formalism

ef

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 31

• As every bond defines two separate variables– The effort e and the flow f– We need two equations to compute values for these two variables

• It is always possible to compute one of the two variables at each side of the bond.

 

Causal Bonds The Bond Graph Formalism

ef

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 32

• As every bond defines two separate variables– The effort e and the flow f– We need two equations to compute values for these two variables

• It is always possible to compute one of the two variables at each side of the bond.

• A vertical bar symbolizes the side where the flow is being computed.

Causal Bonds The Bond Graph Formalism

ef

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 33

• Local balances of energy

Junctions The Bond Graph Formalism

0e1

e2

e3f1

f2

f3

e2 = e1e3 = e1f1 = f2 + f3

1e1

e2

e3f1

f2

f3

f2 = f1f3 = f1e1 = e2+ e3

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 34

• Local balances of energy

Junctions The Bond Graph Formalism

0e1

e2

e3f1

f2

f3

e2 = e1e3 = e1f1 = f2 + f3

1e1

e2

e3f1

f2

f3

f2 = f1f3 = f1e1 = e2+ e3

Junctions of type 0 have only one flow equation, and therefore, they must have exactly one causality bar.

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 35

• Local balances of energy

Junctions The Bond Graph Formalism

0e1

e2

e3f1

f2

f3

e2 = e1e3 = e1f1 = f2 + f3

1e1

e2

e3f1

f2

f3

f2 = f1f3 = f1e1 = e2+ e3

Junctions of type 0 have only one flow equation, and therefore, they must have exactly one causality bar.

Junctions of type 1 have only one effort equation, and therefore, they must have exactly (n-1) causality bars.

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 36

• An electrical energy domain model

Example I The Bond Graph Formalism

Electrical Circuit

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 37

• An electrical energy domain model

Example I The Bond Graph Formalism

Electrical Circuit

VoltageSource

Capacitor

Resistor

Inductor

Resistor

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 38

• An electrical energy domain model

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Bondgraphic equivalent Electrical Circuit

VoltageSource

Capacitor

Resistor

Inductor

Resistor

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 39

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Bondgraphic model

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 40

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Bondgraphic model

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 41

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsBondgraphic model

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 42

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)

Bondgraphic model

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 43

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

Bondgraphic model

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 44

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1

Bondgraphic model

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 45

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .e

Bondgraphic model

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 46

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .eR1 .f = R1 .e / R1

Bondgraphic model

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 47

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .eR1 .f = R1 .e / R1C1 .f = R1 .f – R2 .f

Bondgraphic model

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 48

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .eR1 .f = R1 .e / R1C1 .f = R1 .f – R2 .f

d/dt C1.e = C1 .f / C1

Bondgraphic model

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 49

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .eR1 .f = R1 .e / R1C1 .f = R1 .f – R2 .f

d/dt C1.e = C1 .f / C1R2 .f = C1 .e / R2

Bondgraphic model

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 50

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .eR1 .f = R1 .e / R1C1 .f = R1 .f – R2 .f

d/dt C1.e = C1 .f / C1R2 .f = C1 .e / R2

Bondgraphic model

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 51

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .eR1 .f = R1 .e / R1C1 .f = R1 .f – R2 .f

d/dt C1.e = C1 .f / C1R2 .f = C1 .e / R2

Bondgraphic model

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 52

• A multi-energy domain model– Electricity– Mechanical rotational– Mechanical translational

Example II The Bond Graph Formalism

Special elements such as Gyrator and Transformerconvert energy flows across diff. physical domains

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 53

• A multi-energy domain model– Electricity– Mechanical rotational– Mechanical translational

Example II The Bond Graph Formalism

Special elements such as Gyrator and Transformerconvert energy flows across diff. physical domains

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 54

• A multi-energy domain model– Electricity– Mechanical rotational– Mechanical translational

Example II The Bond Graph Formalism

ua

ia

ia

ia

ia

uRa

uLa

ui τω1

ω1

ω1

ω1

τB3

τB1

τB1

τB1

τJ1

ω2

ω12

ω2

ω2

ω2

τk1

τG FG

v

v

vv

v

FB2

Fk2

Fm -m·gτJ2

Special elements such as Gyrator and Transformerconvert energy flows across diff. physical domains

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 55

Facets and Bonds

• Bond Graph variables for Complex Systems– Facets 1 and 2• Power variables:

– Specific Enthalpy [J/kg] (an effort variable) – Mass Flow [kg/sec] (a flow variable). [J/sec] = [J/kg] · [kg/sec] represents power

• Information variable

– Mass [Kg] (a state variable)

– Facet 3 (the emergy facet)• Information variable

– Specific Emergy [J/kg] (a structural variable)– [J/sec] = [J/kg] · [kg/sec] also denotes power

Eco Bond Graphs

EcoBG

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 56

Facets and Bonds

• Bond Graph variables for Complex Systems– Facets 1 and 2• Power variables:

– Specific Enthalpy [J/kg] (an effort variable) – Mass Flow [kg/sec] (a flow variable). [J/sec] = [J/kg] · [kg/sec] represents power

• Information variable

– Mass [Kg] (a state variable)

– Facet 3 (the emergy facet)• Information variable

– Specific Emergy [J/kg] (a structural variable)– [J/sec] = [J/kg] · [kg/sec] also denotes power

Eco Bond Graphs

EcoBG

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 57

Facets and Bonds

• Bond Graph variables for Complex Systems– Facets 1 and 2• Power variables:

– Specific Enthalpy [J/kg] (an effort variable) – Mass Flow [kg/sec] (a flow variable). [J/sec] = [J/kg] · [kg/sec] represents power

• Information variable

– Mass [Kg] (a state variable)

– Facet 3 (the emergy facet)• Information variable

– Specific Emergy [J/kg] (a structural variable)– [J/sec] = [J/kg] · [kg/sec] also denotes power

Eco Bond Graphs

EcoBG

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 58

Facets and Bonds

• Bond Graph variables for Complex Systems– Facets 1 and 2• Power variables:

– Specific Enthalpy [J/kg] (an effort variable) – Mass Flow [kg/sec] (a flow variable). [J/sec] = [J/kg] · [kg/sec] represents power

• Information variable

– Mass [Kg] (a state variable)

– Facet 3 (the emergy facet)• Information variable

– Specific Emergy [J/kg] (a structural variable)– [J/sec] = [J/kg] · [kg/sec] also denotes power

Eco Bond Graphs

EcoBG

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 59

Facets and Bonds

• Bond Graph variables for Complex Systems– Facets 1 and 2• Power variables:

– Specific Enthalpy [J/kg] (an effort variable) – Mass Flow [kg/sec] (a flow variable). [J/sec] = [J/kg] · [kg/sec] represents power

• Information variable

– Mass [Kg] (a state variable)

– Facet 3 (the emergy facet)• Information variable

– Specific Emergy [J/kg] (a structural variable)– [J/sec] = [J/kg] · [kg/sec] also denotes power

Eco Bond Graphs

EcoBG

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 60

Accumulators

• The EcoBG Storage element– A Capacitive Field (CF) accumulates more than one

quantity: Enthalpy, Mass and Emergy

Eco Bond Graphs

The specific enthalpy is a property of the accumulated mass

Known in advance -> A parameter

q

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 61

Junctions

• The EcoBG 0-Junction

Eco Bond Graphs

M1

M 2

M3

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 62

Reusable structures

• Basic unit based on EcoBG elements– An important “building block”

• Storage of mass and energy adhering to the proposed 3-Faceted approach:

Eco Bond Graphs

M1 M2

M3

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 63

Modeling processes

• EcoBG Process elements

Eco Bond Graphs

PR()

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 64

Modeling processes

• EcoBG Process elements

Eco Bond Graphs

PR()

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 65

Modeling processes

• EcoBG Process elements

Eco Bond Graphs

PR()

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 66

Example

• Extraction of renewable resources for consumption

Eco Bond Graphs

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 67

Example

• Extraction of renewable resources for consumption

Eco Bond Graphs

Natural RenewablePrimary

Reservoir Consumption

SecondaryReservoirSupply

Process

DemandProcess

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 68

Software tools

• EcoBG library implemented in the Dymola® tool.

Eco Bond Graphs

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 69

Software tools

• EcoBG library implemented in the Dymola® tool.

Eco Bond Graphs

Natural RenewablePrimary

Reservoir

Consumption

SecondaryReservoir

SupplyProcess

DemandProcess

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 70

The Mass Layer Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 71

The Mass Layer Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

dcirrscasc

casra

MMKMMKM

MMKMM

..

..

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 72

The Mass Layer Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

dcirrscasc

casra

MMKMMKM

MMKMM

..

..

ra MM

dcirrdc MMKM

cirrscasc

casa

MKMMKM

MMKM

..

..

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 73

The Mass Layer Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

dcirrscasc

casra

MMKMMKM

MMKMM

..

..

ra MM

dcirrdc MMKM

cirrscasc

casa

MKMMKM

MMKM

..

..

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 74

The Mass Layer Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

dcirrscasc

casra

MMKMMKM

MMKMM

..

..

sKgM r 2

KgM a 1500, KgM c 10,

1.0

001.0

irrs

s

K

K

sKgM d 05.0

0dirrK

ra MM

dcirrdc MMKM

cirrscasc

casa

MKMMKM

MMKM

..

..

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 75

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 76

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

).(.)...(.

)...(.).(.

dcccascac

casaarrra

MhTrMMKhTrME

MMKhTrMhTrME

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 77

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

).(.)...(.

)...(.).(.

dcccascac

casaarrra

MhTrMMKhTrME

MMKhTrMhTrME

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 78

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

).(.)...(.

)...(.).(.

dcccascac

casaarrra

MhTrMMKhTrME

MMKhTrMhTrME

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 79

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

).(.)...(.

)...(.).(.

dcccascac

casaarrra

MhTrMMKhTrME

MMKhTrMhTrME

).(. rrra MhTrME

).(. dccc MhTrME

)...(.

)...(.

cascac

casaaa

MMKhTrME

MMKhTrME

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 80

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

).(.)...(.

)...(.).(.

dcccascac

casaarrra

MhTrMMKhTrME

MMKhTrMhTrME

).(. rrra MhTrME

).(. dccc MhTrME

)...(.

)...(.

cascac

casaaa

MMKhTrME

MMKhTrME

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 81

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

1

1

1

r

rr

r

r

hemTr

kgJem

kgJh

kgJha 1

kgJhc 1

001.0sK

).(.)...(.

)...(.).(.

dcccascac

casaarrra

MhTrMMKhTrME

MMKhTrMhTrME

).(. rrra MhTrME

).(. dccc MhTrME

)...(.

)...(.

cascac

casaaa

MMKhTrME

MMKhTrME

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 82

• Accumulated quantities (Deposit and Reservoir)

Simulation results Eco Bond Graphs

eq.

Energy Emergy

Transformity

eq.

eq.

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 83

• Experiment: Rain flow reduced 4x. Results for Reservoir.

Simulation results Eco Bond Graphs

Mass

Energy Emergy

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 84

• Eco Bond Graphs– A new “Plumbing Technology” for modeling Complex Dynamics Systems– A low-level tool to equip other higher-level modeling formalisms

• with the ability to track emergy flows

• Hierarchical interconnection of EcoBG subsystems– Automatic and systematic evaluation of sustainability:

• global tracking of emergy and • local checking of energy balances

• M&S practice– The laws of thermodynamics are not an opinable subject

• Every sustainability-oriented effort should -at some point- consider emergy

• We should become able to inform both: • decision makers (experts, politicians, corporations) and• people who express their wishes (democratic societies)

– about which are the feasible physical boundaries • within which their -largely opinable- desires and/or plans can

be possibly implemented in a sustainable fashion.

Conclusions

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 85

Q&A

rodrigo.castro@usys.ethz.chrodrigo.castro@cifasis-conicet.gov.arrcastro@dc.uba.ar

Thanks for your attention !