Pulse March2011

Preview:

Citation preview

H I G H - P O W E R E D R E S E A R C

H F

OR

TH

E R

EA

L W

OR

LD

March2011Issue…

1 VacuumCircuitBreaker ModelinPSCAD®/EMTDC™

4 SinglePhaseAuto-reclosingand SecondaryArcConsiderations

7 KineticTurbinePowerConverter

10 2010PSCAD®UserGroupMeeting

11 NewandImprovedPSCAD®Forum

12 PSCAD®2011TrainingSessionsMarch 2011

ThisapplicationnotepresentsaVacuumCircuitBreaker(VCB)modelanditsimplementationinPSCAD®/EMTDC™.Thismodelinvestigatestheabilityofthebreakeroncurrentchoppingbeforecurrentzero,itsdielectricwithstandforTRV(TransientRecoveryVoltage)andhighfrequencycurrentquenchingforre-ignitionacrossthebreakercontacts.

TheVCBismodelledbytheuseofthestandardPSCAD®singlephasebreakermodelwithitsabilitytochangeelectricalswitchingstatusbycontrollingthebreakerparameterBRK.

Tosimulatecurrentchoppingandre-ignition,asimplesinglephasetestcircuitisestablished.ThecircuitisrepresentingasinglephasetransformerwhichisswitchedoffbytheVCB.

Acircuitbreaker’sbreakingsequenceisactivatedbyopeningthebreakermechanically.Thisisaccomplishedbyanimpulsetrainthatfreezesattheinstantofthemechanicalopeningofthebreaker.Thisisthestartingpointforseparationofthecontacts.AgenerallyacceptedapproximationforcontactseparationinVCBsisconstantspeedduringthefirstmillimetreofseparation.

Anarcisdevelopedbetweenthecontactsandthecurrentcontinuestoflowuntilthepre-setchoppinglevelisreached.Thispre-setlevelishighlydependentofthecontactmaterialintheVCB.Whenthechop-pingtakesplace,BRKchangesstatusfromclosedtoopenandthecurrentisforcedtozero.Theenergypreloadedintheinductancesurroundingthebreakeristransferredtocapacitanceinthecircuit.

TheresponsefromthecircuitisaTRVthatincreasesbetweenthecontacts.Ifthemechanicalopeningtimetopenisclosetotchop,thecontactseparationwillbeonlyslightatthechoppinginstant.Hence,thevoltagewithstandwhichhasbeenbuiltupbetweenthecontactsisnothighenoughtoensurecurrentinterruption.WhentheTRVreachesthevoltagewithstandcharacteristics,are-ignitionoccursbetweentheVCBcontacts.

Whenthehighfrequencycurrentisclosetozero,theVCBhastheabilitytobreakthecurrent.Theslopeatcurrentzeroismeasuredandcomparedtothecurrentquenchingcapabilitythathasbeendevelopedbetweenthecontacts.Ifthecurrentslopeislessthantheseparticularcharacteristics,thecurrentisquenched.TheresultingTRVisveryfastrisingandreachestheelectricalwithstandcharacteristicsquickly.Asaresult,anewre-ignitiontakesplacebetweenthecontactsandahighfrequencycurrentstartstoflow.ThissequenceisrepeateduntiltheTRVdoesnotreachtheelectricalwithstandcharacteristics.

VacuumCircuitBreakerModelinPSCAD®/EMTDC™

Olof Karlén, Karlén Engineering

Figure1 ThetestcircuitfortheVCBinPSCAD®

2   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

DielectricandQuenchingCapabilityCalculationThewithstandvoltageisafunctionofthecontactdistance.Itcanbeconsideredtobelinearlydependentforthefirstmillimetreofthecontactseparation.Thatimpliesthatthiscapabilityisalsoafunctionofthespeedatcontactopening.Thedielectricwithstandcapabilityforonecircuitbreakermayvarywithanor-maldistributionandaparticularstandarddeviation.

Afterre-ignition,ahighfrequencycurrentflowsthroughthecircuitbreaker.Theresultingarccanbeextinguishedwhentheslopeofthecurrentislowerthanthesocalledcriticalcurrentslope,aparameterthatishardtodetermine.Inthismodel,thequenchingcapabilitydielectricstrengthasmeasuredbyGlinkowskietal[1]isused.

Thestatisticalmeanvaluesareusedinthiscircuitbreakermodel.Thetestedcircuitbreakerstestdataaregroupedintothreelevels:High,medium,andlowdielectricandquenchingability.

Basedontheconstants,themeanvaluesofthedielectriccharacteristicandquenchingcriticalslopecanbecalculatedby:

ThewithstandvoltageUbandthecriticalslopeofthearcquenchingcapabilitydi/dtarecalculatedinthissectionusing:Aa=1.7e7,Bb=3.4e3,Cc=-3.4e11,andDd=255e6.Ifthecircuitbreakerstatisticaldistributionistobestudied,detailsonthismatterareexplainedin[2].

TheVacuumBreakerProbabilityofReignitingTheVCBhasaprobabilityofreignitingwhencertainoperatingandcircuitparametersaremet[3].Theparametersare:Theinterruptedcurrentislessthan500to600A,thebreakercontactsmustpart0.5msto1msbeforecurrentzerowithaspeedof1m/s,andtheTRVmustrisefasterthanthebreakdownstrengthofthevacuumgap.

ConditionsforOpeningoftheSwitchandthePSCAD®Implementation Theconditionsforopen-ingtheswitchaccordingtoGlinkowskietal[1]are:•Theinstantofopeningshouldbegreaterthan apre-setvalueoftopen.•Theswitchisclosed.•Theactualcurrentislessthanthechoppingcurrent.•Thederivativeofthehighfrequencycurrent atcurrentzeroisnothigherthanthecalculated quenchingcapability.

Forcreatingtheseconditions,anumberofdifferentparametershadtobecalculatedinPSCAD®.ThemodelsintheCSMFpartoftheMasterLibrarycanbeusedforsuchcalculations.Somerepresentativecalculationblocksareshowninthefiguresbelow.

Figure2 Thetopenparameteristheinstantwhenthecircuitbreakermechanicalopeningtakesplace.Thepulsetrainisfrozenatt= topen.MechanicalopeningisinitiatedbytheMechanicalstatusswitch.

Ub / di / dt Aa[V/s] Bb[V] Cc [A/s2] Dd[A/s]

High 1.7E7 3.40E3 -3.40E11 255.0E6

Medium 1.30E7 0.69E3 0.32E12 155.0E6

Low 0.47E6 0.69E3 1.00E12 190.0E6

M A R C H 2 0 1 1 3

TypicalSimulationResultsThenumberofrepeatedreignitionsdependsonmanyfactors;themostimportantisarcingtime(i.e.thevoltagewithstandwhichhasbuiltupbetweenthecontactswhentheUtrvstartstooscillate).Italsodependsonthechoppinglevel(i.e.theenergythatistransferredfromtheinductancetothecapacitiveelementsandthebreakercharacteristics).

Formoredetailsaswellasforamorecompletereport,contacttheManitobaHVDCResearchCentreortheauthordirectlyatolof@karlenengineering.se

References

[1]MietekT.Glinkowski,MoisesR.Guiterrez,DieterBraun,

“VoltageEscalationandReignitionBehaviourofVacuum

GeneratorCircuitBreakerDuringLoadShedding.”

[2]PopovMarjan,PhD“ThesisSwitchingThree-PhaseDistribution

TransformerswithaVacuumCircuitBreaker”ISBN90-9016124-4.

[3]SladeG.P.“VacuumInterrupters:TheNewTechnologyfor

SwitchingandProtectingDistributionCircuits”

IEEETrans.OnPowerDelivery,Vol8,No4.

Figure3 Thetchopistheinstantofcurrentchopping.Thepulsetrainisfrozenatt= tchop.

Figure6 Typicalsimulationresults.Figure4 Thecurrentslopeibdiscomparedwiththecurrentquenchingcapabilitydi/dt.Whenthecurrentslopeislessthanthequenchingcapability,parameterctrl_ibd_slope=1else0.

Figure5 TheconditionsforopeningandclosingofthebreakerarerunthroughMonostableMultivibratorsandastandardSetandResetlatchingcircuit.TheBRKstatusparameterisnowreflectingtheelectricalstatusofthevacuumbreaker.

The Vacuum Circuit Breaker is an important circuit component in the medium voltage system due to its low maintenance cost and low environmental impact.

4   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

SinglePhasetoGround(SLG)isthemostcommonfaultinpowertransmissionsystems.Singlephaseautoreclosingisusedtoimprovesystemstability,powertransfer,reliability,andavailabilityofatransmissionlineduringasinglephasetogroundfault[1].

Soonafterthefault,thetwolineendbreakerswillopen(faultedphaseonlyinthiscase)toisolatethefault.However,theotherline(un-faultedphases)arestillenergized.Thereisinductiveandcapacitivecouplingbetweenthefaultedlineandthehealthyphases,aswellasbetweenotherconductorsofparallelcircuits(i.e.doublecircuitlines).Thiscouplinghastwoeffects[1]:1. Itfeedsandmaintainsthefaultarc.2.Asthearccurrentbecomeszero,thecoupling causesarecoveryvoltageacrossthearcpath. Iftherateofriseofrecoveryvoltageistoogreat, itwillreignitethearc.

Thearconthefaultedphaseafterthetwolineendbreakersopenisthesecondaryarc.Recoveryvoltageisthevoltageacrossthefaultpathaftertheextinctionofthesecondaryfaultarcandbeforere-closureofthecircuitbreakers.

Autore-closingwillbesuccessfulonlyifthesecondaryarchasbeenfullyextinguishedbythetimethebreakersarere-closed.Thedurationofthesecondaryarcdependsonmanyfactors.Themainfactorsare:arccurrent,recoveryvoltage,arclength,aswellasexternalfactors,suchaswind.Whentransmissionlinesarecompensatedwithlineendreactors,thesecondaryarcextinctioncanbeimprovedbyplacingasuitablysizedneutralgroundingreactor(NGR)ontheneutralofthelinereactors[1]-[3].

DAREngineeringhasdesignedanumberofNGR’sforEHVtransmissionlinesintheGulfregion.OncetheNGRparametersaredetermined,detailedelec-tromagnetictransientsimulationsarecarriedoutonPSCAD®/EMTDC™toverifytheinsulationrequirementsoftheNGRandtoestimatethesecondaryarcextinctiontimesunderdifferentsystemoperatingconditions.Suchinformationisessentialtoproperlydesignthesinglephaseautore-closerelaysettings.

TheLineEndandNeutralGroundingReactors(NGR)inEHVTransmissionLines TheNGRisusedtocancelthecapacitivecomponentofthesecond-aryarccurrent[1].Inordertocancelthecapacitivecurrent,theinductiveandcapacitivebranchesmustresonate.Installationofthisreactoriseffectivewhenlinesaretransposed.

Estimation of NGR based on the ‘Shunt Compensation Degree’ TheNGRvaluecanbeestimatedbasedonthefollowingdesignequations(see[2]fordetails):

Where:B1:positivesequencelinesusceptance(Siemens);B0:zerosequencelinesusceptance(Siemens);

:shuntcompensationdegree.

Xr:equivalentreactanceofthelinereactor.Xn:equivalentreactanceoftheNGRNote1:B1andB0areknownfromtransmissionlinecharacteristicsandareoutputsfromthePSCADlineconstantsprogram.

Estimation of NGR based on the Basic Insulation Level (BIL) requirements BILisalsoaconsiderationwhenselectingtheNGR.BecausethehigherneutralBILlevelrequiresspecialdesignandmoreinsulationforthelinereactor,thecostofthelinereactorandneutralreactorincreases.IfthisistheNGRdesigncriteria,theminimumacceptableBILfortheneutralpointcanbecalculatedby[4]:

Where:BIL_N:BasicImpulseInsulationLevelfortheNGR.BIL_Ph:BasicImpulseInsulationLevelofthephase.Fora400kVsystem,theBILoftheneutralpointofthelinereactortypicallyislessthan350kV.

SinglePhaseAuto-reclosingandSecondaryArcConsiderationsJohnson Thomai, Yogesh Khanna, Shahbaz Tufail (DAR Engineering Company)Shan Jiang, Dharshana Muthumuni (Manitoba HVDC Research Centre)

N O V E M B E R 2 0 0 9 5M A R C H 2 0 1 1 5

OncethevalueoftheNGRisdecided(basedoneitherofthetwomethodsabove),detailedsimulations(PSCAD®/EMTDC™)canbecarriedouttodeterminethesecondaryarccharacteristics.

TheSimulationModel Thesecondaryarcextinctiontimeandtherecoveryvoltagesareinfluencedbythefollowingfactors:•Faultlocationsonline•Numberofreactors(andNGR)inservice•‘Initial’arclength•Transmissionlinecharacteristicsandtransposing

Arc Model ThearcmodelusedinthisPSCAD®/EMTDC™studyisbasedonthemodelproposedin[5].Thefollowingparametersthatinfluencethearcextinctiontimeareinputstothismathematicalmodel.•Initialarclength(Larc)•Magnitudeoftheprimaryarc(Ip)•Magnitudeofthesecondaryarc(Is)

Initial Arc Length (Larc) Theinitialarclengthinfluencesthesecondaryarcextinctiontime.Astimeprogresses,thearcelongatesfromthisinitiallengthuntilitisfinallyextinguished.Sincetheexactvalueoftheinitialarclengthisnotapreciselyknownquantity,simulationsmayhavetobecarriedoutfordifferentpracticalvalues(i.e.2m,4mand6m)beforereachingconclusionsonrelaysettings.

Magnitude of the Primary Arc (Ip) Thisisthemagnitudeofthefundamentalcomponentofthesinglelinetogroundfaultcurrentataspecificfaultlocation.ThisvaluecanbecalculatedfromfaultstudiesorthroughaPSCAD®simulationitself.TocalculatethisvaluefromthePSCAD®circuit,thefaultisassumedtobesolidwithzeroarcresistance.

Magnitude of the Secondary Arc (Is) Thisisthemagnitudeofthefundamentalcomponentofthesinglelinetogroundfaultcurrentataspecificfaultlocationafteropeningthetwolineendbreakers.ThisvaluecanbecalculatedfromfaultstudiesorthroughaPSCAD®simulationitself.TocalculatethisvaluefromthePSCAD®circuit,thefaultisassumedtobesolidwithzeroarcresistance.Oncethetwobreakersareopen,thephasecouplingsustainsthefaultcurrent.

Figure1 PSCAD®arcmodel

Figure2 PSCAD®circuitofatransposedlinewiththearcmodelconnectedtooneofthephases.

J U N E 2 0 0 8 66   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

SimulationResults Theextinctiontimeandtherecoveryvoltageundervarioussystemoperatingconditionsforfaultsona400kV/350km(approxi-mately)doublecircuitlinearepresentedinthissectiontoillustratetypicalresultsthatcanbeexpected.

References

[1]E.W.Kimbark,“SuppressionofGround-FaultArcsonSingle-Pole

SwitchedEHVLinesbyShuntReactors,”IEEETransactionsonPower

ApparatusandSystems,volPAS-83,pp.285-290,March/April1964.

[2]E.W.Kimbark,“Selective-PoleSwitchingofLongDouble-Circuit

EHVLines,”IEEETransactionsonPowerApparatusandSystems,

volPAS-95,pp.1,January/February,1976.

[3]IEEECommitteereport,“SinglePhaseTrippingandAuto-Reclosing

onTransmissionLines,”IEEETransactionsonPowerDelivery,vol7,

pp182-192,Jan,1992.

[4]M.R.D.Zadeh,MajidSanaye-Pasand,AliKadivar,“Investigation

ofNeutralReactorPerformanceinReducingSecondaryArcCurrent,k”

IEEETransactionsonPowerDelivery,vol.23,no.4,Oct2008.

[5]“ImprovedTechniquesforModellingFaultArcsonFaultedEHV

TransmissionSystems,”A.T.Johnset.el.IEEProceedings,Generation,

Transmissionand,Distribution,Vol.141,No.2,March1994.

Figure4 Typicalrecoveryvoltage(top)andsecondaryarccurrent(bottom)withthelinereactorandtheNGRinservice.

Figure5 Typicalrecoveryvoltage(top)andsecondaryarccurrent(bottom)withoutthelinereactorandNGR

Table1 Arcextinctiontimeandrecoveryvoltageatdifferentfaultlocationsunderdifferentassumedinitialarclengthvalues.

Figure3 Systemoperatingwithallreactorsatthelineendsubstations.

Faultoccurs Breakersopen Arcextinguishes

RecoveryVoltage

Firstpeakoftherecoveryvoltage

Faultoccurs Breakersopen Arcextinguishes

RecoveryVoltage

Firstpeakoftherecoveryvoltage

FaultLocation BusA Mid-point

Magnitudeoftheprimaryarc(lp)(kA) 15.2 5.2

Magnitudeofthesecondaryarc(ls)(A) 45 37

Extinctiontime(s)

Larc=2.0m 0.17 0.14

Larc=4.0m 0.14 0.12

Larc=6.0m 0.12 0.12

Recoveryvoltage(kV)

Larc=2.0m 46 36

Larc=4.0m 45 30

Larc=6.0m 63 33

M A R C H 2 0 1 1 7

KineticHydropowerisoneoftheemergingtechnologiesinthealternate-energypowergenerationsector. KineticHydropowerplantsemploysubmergedturbine-generatorsetstoconverttheenergyofflowingwaterintoelectricity.Theproducedpoweristhenusedtosupplyislandedloadsorisinjectedintothegridwhereautilitynetworkisnearby.

KineticTurbinescanbedeployedintidalflowsorinhigh-velocityrivers.Inriverapplications,aKineticTurbineissubmergedandanchoredatsuitablelocationsalongriverswherenaturallandtopographyrestrictstheflow,resultinginhighlocalvelocities.TheinitialinstallationcostanddeploymenttimeofaKineticTurbineisrelativelysmall,sinceitdoesnotrequiresignificantinfrastructure,suchasadamorapowerhouse.Therefore,suchsetupscanberelativelyinexpensiveandareexpectedtohaveminimalenvironmentalfootprint.

Harnessingoftheenergyinwatercurrentsissimilartoconvertingthewindenergyintoelectricity.Incontrasttowind,however,waterflowvariationsaresteadierandmorepredictable.Moreover,thedensityofwaterisover800timeslargerthanthatofair.Thiseffectsavastdifferencebetweenpowerdensitiesofflowingwaterandwind.Forinstance,thepowerdensityofwaterflowingat4m/s,anupperrangeforrapidwatercurrents,correspondstothatofahurricane.

Inordertostudythefeasibilityandcost-effectivenessoftheKineticHydrotechnologyinCanadianrivers,aKineticTurbineresearchplatformhasbeendesignedandconstructedwithamaximumratedpowerof60kW.ThisprojectissponsoredbyManitobaHydroandinvolvesresearchersfromNSERCResearchChairsinAlternateEnergyandPowerSystemsSimulationattheUniversityofManitoba.ManitobaHVDCResearchCentrehasbeenakeypartnerinthisinitiative.

KineticTurbinePowerConverterFarid Mosallat, Manitoba HVDC Research Centre

Theturbine-generatorismountedonapontoonboattoprovideaccessibilityoverthecourseofthestudy(Figure1).Inthefinaldesign,thefloatingplatformisnotrequired.Theturbine-generatorcanbesubmergedandanchoredwithvirtuallynovisualfootprint.

CompactandlightweightgeneratorsaredesirableinriverKineticTurbinestoavoidcomplicationsinthesupportingstructuredesignandinstallation.Significantsizeandweightsavingscanbeachievedusingageneratorwithhighernominalfrequencysuchas250Hz–600Hz.A3-phasehigh-frequencypermanent-magnetsynchronousgenerator(PMSG)wasselectedforthisplatform.Atnormalwatervelocitiesof2m/s–3m/s,thePMSGproducesvoltagesintherangeof230V–560V,250Hz–600Hz.

Thegeneratoroutputistransmittedtotheshoreoveracablelink.InaKineticTurbineapplication,thegeneratoroutputfluctuatesduetouncontrollablevariationsoftheflow.Powerelectronicconvertersarecommonlyusedtointerfacethegeneratorandtheloadsystemandsupplytheloadwithregulatedvoltageandfrequency.TheelectronicpowerinterfaceforthisprojectwasdesignedandconstructedatthepowerelectronicslaboratoryoftheManitobaHVDCResearchCentre.Itconsistsoftwoback-to-backvoltage-sourcedconverters(VSCs)andtheassociatedfilters,switchgear,protectionandcontrolsystem(Figure2).

Figure1 SchematicdiagramoftheKineticTurbineplatform

8   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L8   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

Thegenerator-sideconverterrectifiesthegeneratoroutputandprovidesaregulateddcvoltage.Theload-sideconverterthentransformsthedcvoltageintoacandsuppliestheloadsystemwithacontrolledvoltageat600Vand60Hz.PSCAD®/EMTDC™wasusedinthedesignstagetovalidatethecomponentratingsandthecontrolstrategyperformance(Figure3).

Thepowerconvertersarebasedonthepowerelectronicsbuildingblocks(PEBB)concept.Thistechnologyallowsfortherapidimplementationofdifferenttopologiesandcontrolschemes.TheVSCconvertersarePM1000PowerModule®seriesfromAmericanSuperconductor™.Theyareratedat175kVA,660Vac,1200Vdc.

Figures4(a)and(b)showaschematicdiagramofthecontrolsystemstructureandtheHMIscreen,respectively.Thehuman-machineinterface(HMI)andthedigitalcontrolsystemwereimplementedusingLabVIEW™andLabVIEW™Real-TimefromNationalInstruments™.

Figure2 TheKineticTurbinepowerconverterconstructedattheManitobaHVDCResearchCentre.

Figure4(a) Schematicdiagramofthecontrolsystem

Figure3 ThePSCAD®modelimplementedfordesigningtheKineticTurbinePowerConverter.

M A R C H 2 0 1 1 9

Theunitiscapableofsupplyingstandaloneloadswithfixedvoltageandfrequency,orinjectingthepowertotheutilitysystem.Inthedesignoftheunit,appropriatecontrolandprotectionmeasuresweretakenandManitobaHydro’sregulationsfordistrib-utedgenerationinterconnectionwereobserved.

TheKineticTurbineresearchplatformhasbeeninstalledontheWinnipegRiveratPointeduBoisinManitoba,Canada.Thecommissioningandperform-ancetestswillbecompletedinthefallof2011.

KineticTurbinesseempromisingformanyremotecommunitiesinthevicinityofhigh-velocityrivers,whichdonothaveaccesstothegridandarecurrentlypoweredbyfossil-fuel-drivengenerators.ThisaspectoftheKineticHydropowerapplicationsisthemainfocusofthisongoingresearchinitiative.TheresultsobtainedfromfieldoperationandexperimentswillhelpevaluatetheuseofKineticTurbinesinrivers,withaviewtothecommercializationofthistechnol-ogyasagreensourceforelectricpowergenerationforremotecommunitiesinCanadaandworldwide.

Kinetic Turbines seem promising for many remote communities in the vicinity of high-velocity rivers, which do not have access to the grid and are currently powered by fossil-fuel-driven generators.

Figure4(b) Userinterfacescreen

1 0   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

TheManitobaHVDCResearchCentre,incollabo-rationwithCedratS.AofFrance,andINDIELECofSpain,wouldliketothankparticipantswhoattendedthePSCAD®EuropeanUsersGroupMeetingheldinCastelldefels,SpainonJune15&16,2010attheGranHotelReyDonJaime.

NewandexistingusersofPSCAD®participatedintwo(2)daysofmeetingsandtutorialscomprisedofpresentationsbyguestspeakersandavarietyofPSCAD®users’presentationsonawiderangeofpracticalapplicationsofPSCAD®frombothacommercialandacademicperspective.TheagendaalsoincludedpresentationsanddiscussionswiththePSCAD®developmentandsupportteam.

Wewereprivilegedtohavedistinguishedguestspeakers,Dr.HermannDommel,oftheUniversityofBritishColumbia,andGarthIrwinofElectranixCorporation,providinginsightintotransientsandtheiruse,historyandcurrentapplications.IfyouareinterestedinmoreinformationaboutthepresentationsanddiscussionattheEUGM,visitwww.pscad.com/newsorcontactusatinfo@pscad.com

Duetotheoverwhelminglypositivefeedbackandsupportfromattendees…wearedoingitagain.Lookformoreinformationaboutthe2011UserGroupMeetingtobeheldinBarcelona,Spain,November2011.Moreinformationtocome!Ifyouareinterestedinparticipatingasapresenter,pleaseemailusatinfo@pscad.com WelookforwardtoseeingyouthisfallinSpain!

Manitoba HVDC Research Centre

2010PSCAD®UserGroupMeeting 15&16June2010,Spain(inset photo from UBC files: Dr. Hermann Dommel)

2010PSCAD®UserGroupMeeting

PUBLICATIONAGREEMENT#41197007RETURNUNDELIVERABLECANADIANADDRESSESTO

MANITOBAHVDCRESEARCHCENTRE211COMMERCEDRIVE

WINNIPEGMBR3P1A3CANADA

T+12049891240F+12049891277info@pscad.com

M A R C H 2 0 1 1 1 1

Kristen Benjamin, Manitoba HVDC Research Centre

NewandImprovedPSCAD®Forum

NewandImprovedPSCAD®Forum

Joinengineersandprofessionalsworldwide,andconnectwithusonournewPSCAD®Forum.

WearepleasedthatyoucantakeadvantageofourlongstandingPSCAD®forumwhichhasbeenenhancedandnowprovidesavarietyofexcitingfeatures.We’vereorganizedthecontentontheforumandbrokeneverythingdownintosevenmaincategories:Main,PSCAD®,ApplicationsofPSCAD®,PSCAD®ExampleDownloads,EMTDC™,LiveWireandEtran.Membersfromourpreviousdiscussionforumcanlogintoreactivatetheiraccount.AllofyourprofileinformationandpostshavebeensuccessfullytransferredtoournewPSCAD®forum.Pleasecontactinfo@pscad.comforadditionalinformation.

Pleasevisitournewcommunitytodayat:http://forum.pscad.com

Puls

eis

dis

trib

ute

df

ree

of

char

ge

and

isp

ost

ede

lect

ron

ical

lya

tww

w.h

vdc.

caI

fyo

uw

ou

ldli

ket

or

ecei

vea

co

py

ofP

uls

e,p

leas

ese

nd

us

ane

mai

lto

info

@h

vdc.

caA

rtic

les

and

su

bm

issi

on

sad

dre

ssin

gt

he

use

of

PSC

AD

®in

th

ere

alw

orl

da

rea

lway

sw

elco

me.

©20

11M

anit

ob

aH

VD

CR

esea

rch

Cen

tre,

ad

ivis

ion

of

Man

ito

ba

Hyd

roIn

tern

atio

nal

Ltd

.Pr

inte

din

Can

ada

ExpandingKnowledgeThefollowingcoursesareavailable,aswellascustom training courses–pleasecontacttraining@pscad.comformoreinformation.

FundamentalsofPSCAD®andApplicationsIncludesdiscussionofACtransients,faultandprotection,transformersaturation,windenergy,FACTS,distributedgeneration,andpowerqualitywithpracticalexamples. Duration: 3 Days

AdvancedTopicsinPSCAD®SimulationTrainingIncludescustomcomponentdesign,analysisofspecificsimulationmodels,HVDC/FACTS,distributedgeneration,machines,powerquality,etc. Duration: 2–4 Days

HVDCTheory&ControlsFundamentalsofHVDCTechnologyandapplicationsincludingcontrols,modelingandadvancedtopics. Duration: 4–5 Days

ACSwitchingStudyApplicationsinPSCAD®Fundamentalsofswitchingtransients,modelingissuesofpowersystemequipment,straycapacitances/inductances,surgearresterenergyrequirements,batchmodeprocessingandrelevantstandards,directconversionofPSS/EfilestoPSCAD®. Duration: 2–3 Days

DistributedGeneration&PowerQualityIncludeswindenergysystemmodeling,integrationtothegrid,powerqualityissues,andotherDGmethodssuchassolarPV,smalldieselplants,fuelcells. Duration: 3 Days

LightningCoordination&FastFrontStudiesSubstationmodelingforafastfrontstudy,representingstationequipment,straycapacitances,relevantstandards,transmissiontowermodelforflash-overstudies,surgearresterrepresentationanddata. Duration: 2 Days

MachineModelingincludingSRRInvestigationandApplicationsTopicsincludemachineequations,exciters,governors,etc.,initializationofthemachineanditscontrolstoaspecificloadflow.AlsodiscussedaretypicalapplicationsandSSRstudieswithseriescompensatedlinesasthebasecase. Duration: 2 Days

ModelingandApplicationofFACTSDevicesFundamentalsofsolid-stateFACTSsystems.Systemmodeling,controlsystemmodeling,convertermodeling,andsystemimpactstudies. Duration: 2–3 Days

TransmissionLines&ApplicationsinPSCAD®

Modelingoftransmissionlinesintypicalpowersystemstudies.Historyandfundamentalsoftransmissionlinemodeling,discussiononmodels,suchasPhase,Modal,BergeronandPIintermsofaccuracy,typicalapplications,limitations,etc.,examplecasesanddiscussionontranspo-sition,standardconductors,treatmentsofgroundwire,cross-bondingofcables,etc. Duration: 3 Days

WindPowerModelingandSimulationusingPSCAD®

Includeswindmodels,aero-dynamicmodels,machines,softstartinganddoublyfedconnections,crowbarprotection,lowvoltageridethroughcapability. Duration: 3 Days

ConnectwithUs!May5–7,2011ChinaEPowerwww.epower-china.cnShanghaiNewInternationalExpoCenter,ChinaBooth #5E01

May22–26,2011WindPower2011Conference&Exhibitionwww.windpowerexpo.orgAnaheimConventionCenter,California,USABooth #555

June14–17,2011IPSThttp://ipst2011.tudelft.nlDelftUniversity,TheNetherlands

Moreeventsareplanned!Pleaseseewww.pscad.comformoreinformation.

PSCAD® Training Sessions

Hereareafewofthetrainingcoursescurrentlyscheduled.Additionalopportunitieswillbeaddedperiodically,sopleaseseewww.pscad.comformoreinformationaboutcourseavailability.

March1–3,2011FundamentalsofPSCAD®andApplications

May3–5,2011HVDCTheoryandControls

September20–22,2011FundamentalsofPSCAD®andApplications

September27–29,2011WindPowerModelingusingPSCAD®

November22–24,2011HVDCTheoryandControls

AlltrainingcoursesmentionedaboveareheldattheManitobaHVDCResearchCentreInc.Winnipeg,Manitoba,Canadatraining@pscad.com www.pscad.com

PleasevisitNayakCorporation'swebsitewww.nayakcorp.comforcoursesintheUSA.

For more information on dates, contact training@pscad.com today!

IfyouhaveinterestingexperiencesandwouldliketosharewiththePSCAD®communityinfutureissuesofthePulse,pleasesendinyourarticletoinfo@pscad.com