12
H I G H - P O W E R E D R E S E A R C H F O R T H E R E A L W O R L D March 2011 Issue… 1 Vacuum Circuit Breaker Model in PSCAD ® /EMTDC 4 Single Phase Auto-reclosing and Secondary Arc Considerations 7 Kinetic Turbine Power Converter 10 2010 PSCAD ® User Group Meeting 11 New and Improved PSCAD ® Forum 12 PSCAD ® 2011 Training Sessions March 2011 This application note presents a Vacuum Circuit Breaker (VCB) model and its implementation in PSCAD ® /EMTDC . This model investigates the ability of the breaker on current chopping before current zero, its dielectric withstand for TRV (Transient Recovery Voltage) and high frequency current quenching for re-ignition across the breaker contacts. The VCB is modelled by the use of the standard PSCAD ® single phase breaker model with its ability to change electrical switching status by controlling the breaker parameter BRK. To simulate current chopping and re-ignition, a simple single phase test circuit is established. The circuit is representing a single phase transformer which is switched off by the VCB. A circuit breaker’s breaking sequence is activated by opening the breaker mechanically. This is accomplished by an impulse train that freezes at the instant of the mechanical opening of the breaker. This is the starting point for separation of the contacts. A generally accepted approximation for contact separation in VCBs is constant speed during the first millimetre of separation. An arc is developed between the contacts and the current continues to flow until the pre-set chopping level is reached. This pre-set level is highly dependent of the contact material in the VCB. When the chop- ping takes place, BRK changes status from closed to open and the current is forced to zero. The energy preloaded in the inductance surrounding the breaker is transferred to capacitance in the circuit. The response from the circuit is a TRV that increases between the contacts. If the mechanical opening time t open is close to tchop, the contact separation will be only slight at the chopping instant. Hence, the voltage withstand which has been built up between the contacts is not high enough to ensure current interruption. When the TRV reaches the voltage withstand characteristics, a re-ignition occurs between the VCB contacts. When the high frequency current is close to zero, the VCB has the ability to break the current. The slope at current zero is measured and compared to the current quenching capability that has been developed between the contacts. If the current slope is less than these particular characteristics, the current is quenched. The resulting TRV is very fast rising and reaches the electrical withstand characteristics quickly. As a result, a new re-ignition takes place between the contacts and a high frequency current starts to flow. This sequence is repeated until the TRV does not reach the electrical withstand characteristics. Vacuum Circuit Breaker Model in PSCAD ® /EMTDC Olof Karlén, Karlén Engineering Figure 1 The test circuit for the VCB in PSCAD ®

Pulse March2011

  • Upload
    kotwal

  • View
    39

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Pulse March2011

H I G H - P O W E R E D R E S E A R C

H F

OR

TH

E R

EA

L W

OR

LD

March2011Issue…

1 VacuumCircuitBreaker ModelinPSCAD®/EMTDC™

4 SinglePhaseAuto-reclosingand SecondaryArcConsiderations

7 KineticTurbinePowerConverter

10 2010PSCAD®UserGroupMeeting

11 NewandImprovedPSCAD®Forum

12 PSCAD®2011TrainingSessionsMarch 2011

ThisapplicationnotepresentsaVacuumCircuitBreaker(VCB)modelanditsimplementationinPSCAD®/EMTDC™.Thismodelinvestigatestheabilityofthebreakeroncurrentchoppingbeforecurrentzero,itsdielectricwithstandforTRV(TransientRecoveryVoltage)andhighfrequencycurrentquenchingforre-ignitionacrossthebreakercontacts.

TheVCBismodelledbytheuseofthestandardPSCAD®singlephasebreakermodelwithitsabilitytochangeelectricalswitchingstatusbycontrollingthebreakerparameterBRK.

Tosimulatecurrentchoppingandre-ignition,asimplesinglephasetestcircuitisestablished.ThecircuitisrepresentingasinglephasetransformerwhichisswitchedoffbytheVCB.

Acircuitbreaker’sbreakingsequenceisactivatedbyopeningthebreakermechanically.Thisisaccomplishedbyanimpulsetrainthatfreezesattheinstantofthemechanicalopeningofthebreaker.Thisisthestartingpointforseparationofthecontacts.AgenerallyacceptedapproximationforcontactseparationinVCBsisconstantspeedduringthefirstmillimetreofseparation.

Anarcisdevelopedbetweenthecontactsandthecurrentcontinuestoflowuntilthepre-setchoppinglevelisreached.Thispre-setlevelishighlydependentofthecontactmaterialintheVCB.Whenthechop-pingtakesplace,BRKchangesstatusfromclosedtoopenandthecurrentisforcedtozero.Theenergypreloadedintheinductancesurroundingthebreakeristransferredtocapacitanceinthecircuit.

TheresponsefromthecircuitisaTRVthatincreasesbetweenthecontacts.Ifthemechanicalopeningtimetopenisclosetotchop,thecontactseparationwillbeonlyslightatthechoppinginstant.Hence,thevoltagewithstandwhichhasbeenbuiltupbetweenthecontactsisnothighenoughtoensurecurrentinterruption.WhentheTRVreachesthevoltagewithstandcharacteristics,are-ignitionoccursbetweentheVCBcontacts.

Whenthehighfrequencycurrentisclosetozero,theVCBhastheabilitytobreakthecurrent.Theslopeatcurrentzeroismeasuredandcomparedtothecurrentquenchingcapabilitythathasbeendevelopedbetweenthecontacts.Ifthecurrentslopeislessthantheseparticularcharacteristics,thecurrentisquenched.TheresultingTRVisveryfastrisingandreachestheelectricalwithstandcharacteristicsquickly.Asaresult,anewre-ignitiontakesplacebetweenthecontactsandahighfrequencycurrentstartstoflow.ThissequenceisrepeateduntiltheTRVdoesnotreachtheelectricalwithstandcharacteristics.

VacuumCircuitBreakerModelinPSCAD®/EMTDC™

Olof Karlén, Karlén Engineering

Figure1 ThetestcircuitfortheVCBinPSCAD®

Page 2: Pulse March2011

2   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

DielectricandQuenchingCapabilityCalculationThewithstandvoltageisafunctionofthecontactdistance.Itcanbeconsideredtobelinearlydependentforthefirstmillimetreofthecontactseparation.Thatimpliesthatthiscapabilityisalsoafunctionofthespeedatcontactopening.Thedielectricwithstandcapabilityforonecircuitbreakermayvarywithanor-maldistributionandaparticularstandarddeviation.

Afterre-ignition,ahighfrequencycurrentflowsthroughthecircuitbreaker.Theresultingarccanbeextinguishedwhentheslopeofthecurrentislowerthanthesocalledcriticalcurrentslope,aparameterthatishardtodetermine.Inthismodel,thequenchingcapabilitydielectricstrengthasmeasuredbyGlinkowskietal[1]isused.

Thestatisticalmeanvaluesareusedinthiscircuitbreakermodel.Thetestedcircuitbreakerstestdataaregroupedintothreelevels:High,medium,andlowdielectricandquenchingability.

Basedontheconstants,themeanvaluesofthedielectriccharacteristicandquenchingcriticalslopecanbecalculatedby:

ThewithstandvoltageUbandthecriticalslopeofthearcquenchingcapabilitydi/dtarecalculatedinthissectionusing:Aa=1.7e7,Bb=3.4e3,Cc=-3.4e11,andDd=255e6.Ifthecircuitbreakerstatisticaldistributionistobestudied,detailsonthismatterareexplainedin[2].

TheVacuumBreakerProbabilityofReignitingTheVCBhasaprobabilityofreignitingwhencertainoperatingandcircuitparametersaremet[3].Theparametersare:Theinterruptedcurrentislessthan500to600A,thebreakercontactsmustpart0.5msto1msbeforecurrentzerowithaspeedof1m/s,andtheTRVmustrisefasterthanthebreakdownstrengthofthevacuumgap.

ConditionsforOpeningoftheSwitchandthePSCAD®Implementation Theconditionsforopen-ingtheswitchaccordingtoGlinkowskietal[1]are:•Theinstantofopeningshouldbegreaterthan apre-setvalueoftopen.•Theswitchisclosed.•Theactualcurrentislessthanthechoppingcurrent.•Thederivativeofthehighfrequencycurrent atcurrentzeroisnothigherthanthecalculated quenchingcapability.

Forcreatingtheseconditions,anumberofdifferentparametershadtobecalculatedinPSCAD®.ThemodelsintheCSMFpartoftheMasterLibrarycanbeusedforsuchcalculations.Somerepresentativecalculationblocksareshowninthefiguresbelow.

Figure2 Thetopenparameteristheinstantwhenthecircuitbreakermechanicalopeningtakesplace.Thepulsetrainisfrozenatt= topen.MechanicalopeningisinitiatedbytheMechanicalstatusswitch.

Ub / di / dt Aa[V/s] Bb[V] Cc [A/s2] Dd[A/s]

High 1.7E7 3.40E3 -3.40E11 255.0E6

Medium 1.30E7 0.69E3 0.32E12 155.0E6

Low 0.47E6 0.69E3 1.00E12 190.0E6

Page 3: Pulse March2011

M A R C H 2 0 1 1 3

TypicalSimulationResultsThenumberofrepeatedreignitionsdependsonmanyfactors;themostimportantisarcingtime(i.e.thevoltagewithstandwhichhasbuiltupbetweenthecontactswhentheUtrvstartstooscillate).Italsodependsonthechoppinglevel(i.e.theenergythatistransferredfromtheinductancetothecapacitiveelementsandthebreakercharacteristics).

Formoredetailsaswellasforamorecompletereport,contacttheManitobaHVDCResearchCentreortheauthordirectlyatolof@karlenengineering.se

References

[1]MietekT.Glinkowski,MoisesR.Guiterrez,DieterBraun,

“VoltageEscalationandReignitionBehaviourofVacuum

GeneratorCircuitBreakerDuringLoadShedding.”

[2]PopovMarjan,PhD“ThesisSwitchingThree-PhaseDistribution

TransformerswithaVacuumCircuitBreaker”ISBN90-9016124-4.

[3]SladeG.P.“VacuumInterrupters:TheNewTechnologyfor

SwitchingandProtectingDistributionCircuits”

IEEETrans.OnPowerDelivery,Vol8,No4.

Figure3 Thetchopistheinstantofcurrentchopping.Thepulsetrainisfrozenatt= tchop.

Figure6 Typicalsimulationresults.Figure4 Thecurrentslopeibdiscomparedwiththecurrentquenchingcapabilitydi/dt.Whenthecurrentslopeislessthanthequenchingcapability,parameterctrl_ibd_slope=1else0.

Figure5 TheconditionsforopeningandclosingofthebreakerarerunthroughMonostableMultivibratorsandastandardSetandResetlatchingcircuit.TheBRKstatusparameterisnowreflectingtheelectricalstatusofthevacuumbreaker.

The Vacuum Circuit Breaker is an important circuit component in the medium voltage system due to its low maintenance cost and low environmental impact.

Page 4: Pulse March2011

4   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

SinglePhasetoGround(SLG)isthemostcommonfaultinpowertransmissionsystems.Singlephaseautoreclosingisusedtoimprovesystemstability,powertransfer,reliability,andavailabilityofatransmissionlineduringasinglephasetogroundfault[1].

Soonafterthefault,thetwolineendbreakerswillopen(faultedphaseonlyinthiscase)toisolatethefault.However,theotherline(un-faultedphases)arestillenergized.Thereisinductiveandcapacitivecouplingbetweenthefaultedlineandthehealthyphases,aswellasbetweenotherconductorsofparallelcircuits(i.e.doublecircuitlines).Thiscouplinghastwoeffects[1]:1. Itfeedsandmaintainsthefaultarc.2.Asthearccurrentbecomeszero,thecoupling causesarecoveryvoltageacrossthearcpath. Iftherateofriseofrecoveryvoltageistoogreat, itwillreignitethearc.

Thearconthefaultedphaseafterthetwolineendbreakersopenisthesecondaryarc.Recoveryvoltageisthevoltageacrossthefaultpathaftertheextinctionofthesecondaryfaultarcandbeforere-closureofthecircuitbreakers.

Autore-closingwillbesuccessfulonlyifthesecondaryarchasbeenfullyextinguishedbythetimethebreakersarere-closed.Thedurationofthesecondaryarcdependsonmanyfactors.Themainfactorsare:arccurrent,recoveryvoltage,arclength,aswellasexternalfactors,suchaswind.Whentransmissionlinesarecompensatedwithlineendreactors,thesecondaryarcextinctioncanbeimprovedbyplacingasuitablysizedneutralgroundingreactor(NGR)ontheneutralofthelinereactors[1]-[3].

DAREngineeringhasdesignedanumberofNGR’sforEHVtransmissionlinesintheGulfregion.OncetheNGRparametersaredetermined,detailedelec-tromagnetictransientsimulationsarecarriedoutonPSCAD®/EMTDC™toverifytheinsulationrequirementsoftheNGRandtoestimatethesecondaryarcextinctiontimesunderdifferentsystemoperatingconditions.Suchinformationisessentialtoproperlydesignthesinglephaseautore-closerelaysettings.

TheLineEndandNeutralGroundingReactors(NGR)inEHVTransmissionLines TheNGRisusedtocancelthecapacitivecomponentofthesecond-aryarccurrent[1].Inordertocancelthecapacitivecurrent,theinductiveandcapacitivebranchesmustresonate.Installationofthisreactoriseffectivewhenlinesaretransposed.

Estimation of NGR based on the ‘Shunt Compensation Degree’ TheNGRvaluecanbeestimatedbasedonthefollowingdesignequations(see[2]fordetails):

Where:B1:positivesequencelinesusceptance(Siemens);B0:zerosequencelinesusceptance(Siemens);

:shuntcompensationdegree.

Xr:equivalentreactanceofthelinereactor.Xn:equivalentreactanceoftheNGRNote1:B1andB0areknownfromtransmissionlinecharacteristicsandareoutputsfromthePSCADlineconstantsprogram.

Estimation of NGR based on the Basic Insulation Level (BIL) requirements BILisalsoaconsiderationwhenselectingtheNGR.BecausethehigherneutralBILlevelrequiresspecialdesignandmoreinsulationforthelinereactor,thecostofthelinereactorandneutralreactorincreases.IfthisistheNGRdesigncriteria,theminimumacceptableBILfortheneutralpointcanbecalculatedby[4]:

Where:BIL_N:BasicImpulseInsulationLevelfortheNGR.BIL_Ph:BasicImpulseInsulationLevelofthephase.Fora400kVsystem,theBILoftheneutralpointofthelinereactortypicallyislessthan350kV.

SinglePhaseAuto-reclosingandSecondaryArcConsiderationsJohnson Thomai, Yogesh Khanna, Shahbaz Tufail (DAR Engineering Company)Shan Jiang, Dharshana Muthumuni (Manitoba HVDC Research Centre)

Page 5: Pulse March2011

N O V E M B E R 2 0 0 9 5M A R C H 2 0 1 1 5

OncethevalueoftheNGRisdecided(basedoneitherofthetwomethodsabove),detailedsimulations(PSCAD®/EMTDC™)canbecarriedouttodeterminethesecondaryarccharacteristics.

TheSimulationModel Thesecondaryarcextinctiontimeandtherecoveryvoltagesareinfluencedbythefollowingfactors:•Faultlocationsonline•Numberofreactors(andNGR)inservice•‘Initial’arclength•Transmissionlinecharacteristicsandtransposing

Arc Model ThearcmodelusedinthisPSCAD®/EMTDC™studyisbasedonthemodelproposedin[5].Thefollowingparametersthatinfluencethearcextinctiontimeareinputstothismathematicalmodel.•Initialarclength(Larc)•Magnitudeoftheprimaryarc(Ip)•Magnitudeofthesecondaryarc(Is)

Initial Arc Length (Larc) Theinitialarclengthinfluencesthesecondaryarcextinctiontime.Astimeprogresses,thearcelongatesfromthisinitiallengthuntilitisfinallyextinguished.Sincetheexactvalueoftheinitialarclengthisnotapreciselyknownquantity,simulationsmayhavetobecarriedoutfordifferentpracticalvalues(i.e.2m,4mand6m)beforereachingconclusionsonrelaysettings.

Magnitude of the Primary Arc (Ip) Thisisthemagnitudeofthefundamentalcomponentofthesinglelinetogroundfaultcurrentataspecificfaultlocation.ThisvaluecanbecalculatedfromfaultstudiesorthroughaPSCAD®simulationitself.TocalculatethisvaluefromthePSCAD®circuit,thefaultisassumedtobesolidwithzeroarcresistance.

Magnitude of the Secondary Arc (Is) Thisisthemagnitudeofthefundamentalcomponentofthesinglelinetogroundfaultcurrentataspecificfaultlocationafteropeningthetwolineendbreakers.ThisvaluecanbecalculatedfromfaultstudiesorthroughaPSCAD®simulationitself.TocalculatethisvaluefromthePSCAD®circuit,thefaultisassumedtobesolidwithzeroarcresistance.Oncethetwobreakersareopen,thephasecouplingsustainsthefaultcurrent.

Figure1 PSCAD®arcmodel

Figure2 PSCAD®circuitofatransposedlinewiththearcmodelconnectedtooneofthephases.

Page 6: Pulse March2011

J U N E 2 0 0 8 66   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

SimulationResults Theextinctiontimeandtherecoveryvoltageundervarioussystemoperatingconditionsforfaultsona400kV/350km(approxi-mately)doublecircuitlinearepresentedinthissectiontoillustratetypicalresultsthatcanbeexpected.

References

[1]E.W.Kimbark,“SuppressionofGround-FaultArcsonSingle-Pole

SwitchedEHVLinesbyShuntReactors,”IEEETransactionsonPower

ApparatusandSystems,volPAS-83,pp.285-290,March/April1964.

[2]E.W.Kimbark,“Selective-PoleSwitchingofLongDouble-Circuit

EHVLines,”IEEETransactionsonPowerApparatusandSystems,

volPAS-95,pp.1,January/February,1976.

[3]IEEECommitteereport,“SinglePhaseTrippingandAuto-Reclosing

onTransmissionLines,”IEEETransactionsonPowerDelivery,vol7,

pp182-192,Jan,1992.

[4]M.R.D.Zadeh,MajidSanaye-Pasand,AliKadivar,“Investigation

ofNeutralReactorPerformanceinReducingSecondaryArcCurrent,k”

IEEETransactionsonPowerDelivery,vol.23,no.4,Oct2008.

[5]“ImprovedTechniquesforModellingFaultArcsonFaultedEHV

TransmissionSystems,”A.T.Johnset.el.IEEProceedings,Generation,

Transmissionand,Distribution,Vol.141,No.2,March1994.

Figure4 Typicalrecoveryvoltage(top)andsecondaryarccurrent(bottom)withthelinereactorandtheNGRinservice.

Figure5 Typicalrecoveryvoltage(top)andsecondaryarccurrent(bottom)withoutthelinereactorandNGR

Table1 Arcextinctiontimeandrecoveryvoltageatdifferentfaultlocationsunderdifferentassumedinitialarclengthvalues.

Figure3 Systemoperatingwithallreactorsatthelineendsubstations.

Faultoccurs Breakersopen Arcextinguishes

RecoveryVoltage

Firstpeakoftherecoveryvoltage

Faultoccurs Breakersopen Arcextinguishes

RecoveryVoltage

Firstpeakoftherecoveryvoltage

FaultLocation BusA Mid-point

Magnitudeoftheprimaryarc(lp)(kA) 15.2 5.2

Magnitudeofthesecondaryarc(ls)(A) 45 37

Extinctiontime(s)

Larc=2.0m 0.17 0.14

Larc=4.0m 0.14 0.12

Larc=6.0m 0.12 0.12

Recoveryvoltage(kV)

Larc=2.0m 46 36

Larc=4.0m 45 30

Larc=6.0m 63 33

Page 7: Pulse March2011

M A R C H 2 0 1 1 7

KineticHydropowerisoneoftheemergingtechnologiesinthealternate-energypowergenerationsector. KineticHydropowerplantsemploysubmergedturbine-generatorsetstoconverttheenergyofflowingwaterintoelectricity.Theproducedpoweristhenusedtosupplyislandedloadsorisinjectedintothegridwhereautilitynetworkisnearby.

KineticTurbinescanbedeployedintidalflowsorinhigh-velocityrivers.Inriverapplications,aKineticTurbineissubmergedandanchoredatsuitablelocationsalongriverswherenaturallandtopographyrestrictstheflow,resultinginhighlocalvelocities.TheinitialinstallationcostanddeploymenttimeofaKineticTurbineisrelativelysmall,sinceitdoesnotrequiresignificantinfrastructure,suchasadamorapowerhouse.Therefore,suchsetupscanberelativelyinexpensiveandareexpectedtohaveminimalenvironmentalfootprint.

Harnessingoftheenergyinwatercurrentsissimilartoconvertingthewindenergyintoelectricity.Incontrasttowind,however,waterflowvariationsaresteadierandmorepredictable.Moreover,thedensityofwaterisover800timeslargerthanthatofair.Thiseffectsavastdifferencebetweenpowerdensitiesofflowingwaterandwind.Forinstance,thepowerdensityofwaterflowingat4m/s,anupperrangeforrapidwatercurrents,correspondstothatofahurricane.

Inordertostudythefeasibilityandcost-effectivenessoftheKineticHydrotechnologyinCanadianrivers,aKineticTurbineresearchplatformhasbeendesignedandconstructedwithamaximumratedpowerof60kW.ThisprojectissponsoredbyManitobaHydroandinvolvesresearchersfromNSERCResearchChairsinAlternateEnergyandPowerSystemsSimulationattheUniversityofManitoba.ManitobaHVDCResearchCentrehasbeenakeypartnerinthisinitiative.

KineticTurbinePowerConverterFarid Mosallat, Manitoba HVDC Research Centre

Theturbine-generatorismountedonapontoonboattoprovideaccessibilityoverthecourseofthestudy(Figure1).Inthefinaldesign,thefloatingplatformisnotrequired.Theturbine-generatorcanbesubmergedandanchoredwithvirtuallynovisualfootprint.

CompactandlightweightgeneratorsaredesirableinriverKineticTurbinestoavoidcomplicationsinthesupportingstructuredesignandinstallation.Significantsizeandweightsavingscanbeachievedusingageneratorwithhighernominalfrequencysuchas250Hz–600Hz.A3-phasehigh-frequencypermanent-magnetsynchronousgenerator(PMSG)wasselectedforthisplatform.Atnormalwatervelocitiesof2m/s–3m/s,thePMSGproducesvoltagesintherangeof230V–560V,250Hz–600Hz.

Thegeneratoroutputistransmittedtotheshoreoveracablelink.InaKineticTurbineapplication,thegeneratoroutputfluctuatesduetouncontrollablevariationsoftheflow.Powerelectronicconvertersarecommonlyusedtointerfacethegeneratorandtheloadsystemandsupplytheloadwithregulatedvoltageandfrequency.TheelectronicpowerinterfaceforthisprojectwasdesignedandconstructedatthepowerelectronicslaboratoryoftheManitobaHVDCResearchCentre.Itconsistsoftwoback-to-backvoltage-sourcedconverters(VSCs)andtheassociatedfilters,switchgear,protectionandcontrolsystem(Figure2).

Figure1 SchematicdiagramoftheKineticTurbineplatform

Page 8: Pulse March2011

8   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L8   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

Thegenerator-sideconverterrectifiesthegeneratoroutputandprovidesaregulateddcvoltage.Theload-sideconverterthentransformsthedcvoltageintoacandsuppliestheloadsystemwithacontrolledvoltageat600Vand60Hz.PSCAD®/EMTDC™wasusedinthedesignstagetovalidatethecomponentratingsandthecontrolstrategyperformance(Figure3).

Thepowerconvertersarebasedonthepowerelectronicsbuildingblocks(PEBB)concept.Thistechnologyallowsfortherapidimplementationofdifferenttopologiesandcontrolschemes.TheVSCconvertersarePM1000PowerModule®seriesfromAmericanSuperconductor™.Theyareratedat175kVA,660Vac,1200Vdc.

Figures4(a)and(b)showaschematicdiagramofthecontrolsystemstructureandtheHMIscreen,respectively.Thehuman-machineinterface(HMI)andthedigitalcontrolsystemwereimplementedusingLabVIEW™andLabVIEW™Real-TimefromNationalInstruments™.

Figure2 TheKineticTurbinepowerconverterconstructedattheManitobaHVDCResearchCentre.

Figure4(a) Schematicdiagramofthecontrolsystem

Figure3 ThePSCAD®modelimplementedfordesigningtheKineticTurbinePowerConverter.

Page 9: Pulse March2011

M A R C H 2 0 1 1 9

Theunitiscapableofsupplyingstandaloneloadswithfixedvoltageandfrequency,orinjectingthepowertotheutilitysystem.Inthedesignoftheunit,appropriatecontrolandprotectionmeasuresweretakenandManitobaHydro’sregulationsfordistrib-utedgenerationinterconnectionwereobserved.

TheKineticTurbineresearchplatformhasbeeninstalledontheWinnipegRiveratPointeduBoisinManitoba,Canada.Thecommissioningandperform-ancetestswillbecompletedinthefallof2011.

KineticTurbinesseempromisingformanyremotecommunitiesinthevicinityofhigh-velocityrivers,whichdonothaveaccesstothegridandarecurrentlypoweredbyfossil-fuel-drivengenerators.ThisaspectoftheKineticHydropowerapplicationsisthemainfocusofthisongoingresearchinitiative.TheresultsobtainedfromfieldoperationandexperimentswillhelpevaluatetheuseofKineticTurbinesinrivers,withaviewtothecommercializationofthistechnol-ogyasagreensourceforelectricpowergenerationforremotecommunitiesinCanadaandworldwide.

Kinetic Turbines seem promising for many remote communities in the vicinity of high-velocity rivers, which do not have access to the grid and are currently powered by fossil-fuel-driven generators.

Figure4(b) Userinterfacescreen

Page 10: Pulse March2011

1 0   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

TheManitobaHVDCResearchCentre,incollabo-rationwithCedratS.AofFrance,andINDIELECofSpain,wouldliketothankparticipantswhoattendedthePSCAD®EuropeanUsersGroupMeetingheldinCastelldefels,SpainonJune15&16,2010attheGranHotelReyDonJaime.

NewandexistingusersofPSCAD®participatedintwo(2)daysofmeetingsandtutorialscomprisedofpresentationsbyguestspeakersandavarietyofPSCAD®users’presentationsonawiderangeofpracticalapplicationsofPSCAD®frombothacommercialandacademicperspective.TheagendaalsoincludedpresentationsanddiscussionswiththePSCAD®developmentandsupportteam.

Wewereprivilegedtohavedistinguishedguestspeakers,Dr.HermannDommel,oftheUniversityofBritishColumbia,andGarthIrwinofElectranixCorporation,providinginsightintotransientsandtheiruse,historyandcurrentapplications.IfyouareinterestedinmoreinformationaboutthepresentationsanddiscussionattheEUGM,visitwww.pscad.com/[email protected]

Duetotheoverwhelminglypositivefeedbackandsupportfromattendees…wearedoingitagain.Lookformoreinformationaboutthe2011UserGroupMeetingtobeheldinBarcelona,Spain,November2011.Moreinformationtocome!Ifyouareinterestedinparticipatingasapresenter,[email protected] WelookforwardtoseeingyouthisfallinSpain!

Manitoba HVDC Research Centre

2010PSCAD®UserGroupMeeting 15&16June2010,Spain(inset photo from UBC files: Dr. Hermann Dommel)

2010PSCAD®UserGroupMeeting

Page 11: Pulse March2011

PUBLICATIONAGREEMENT#41197007RETURNUNDELIVERABLECANADIANADDRESSESTO

MANITOBAHVDCRESEARCHCENTRE211COMMERCEDRIVE

WINNIPEGMBR3P1A3CANADA

[email protected]

M A R C H 2 0 1 1 1 1

Kristen Benjamin, Manitoba HVDC Research Centre

NewandImprovedPSCAD®Forum

NewandImprovedPSCAD®Forum

Joinengineersandprofessionalsworldwide,andconnectwithusonournewPSCAD®Forum.

WearepleasedthatyoucantakeadvantageofourlongstandingPSCAD®forumwhichhasbeenenhancedandnowprovidesavarietyofexcitingfeatures.We’vereorganizedthecontentontheforumandbrokeneverythingdownintosevenmaincategories:Main,PSCAD®,ApplicationsofPSCAD®,PSCAD®ExampleDownloads,EMTDC™,LiveWireandEtran.Membersfromourpreviousdiscussionforumcanlogintoreactivatetheiraccount.AllofyourprofileinformationandpostshavebeensuccessfullytransferredtoournewPSCAD®[email protected].

Pleasevisitournewcommunitytodayat:http://forum.pscad.com

Page 12: Pulse March2011

Puls

eis

dis

trib

ute

df

ree

of

char

ge

and

isp

ost

ede

lect

ron

ical

lya

tww

w.h

vdc.

caI

fyo

uw

ou

ldli

ket

or

ecei

vea

co

py

ofP

uls

e,p

leas

ese

nd

us

ane

mai

lto

info

@h

vdc.

caA

rtic

les

and

su

bm

issi

on

sad

dre

ssin

gt

he

use

of

PSC

AD

®in

th

ere

alw

orl

da

rea

lway

sw

elco

me.

©20

11M

anit

ob

aH

VD

CR

esea

rch

Cen

tre,

ad

ivis

ion

of

Man

ito

ba

Hyd

roIn

tern

atio

nal

Ltd

.Pr

inte

din

Can

ada

ExpandingKnowledgeThefollowingcoursesareavailable,aswellascustom training courses–[email protected].

FundamentalsofPSCAD®andApplicationsIncludesdiscussionofACtransients,faultandprotection,transformersaturation,windenergy,FACTS,distributedgeneration,andpowerqualitywithpracticalexamples. Duration: 3 Days

AdvancedTopicsinPSCAD®SimulationTrainingIncludescustomcomponentdesign,analysisofspecificsimulationmodels,HVDC/FACTS,distributedgeneration,machines,powerquality,etc. Duration: 2–4 Days

HVDCTheory&ControlsFundamentalsofHVDCTechnologyandapplicationsincludingcontrols,modelingandadvancedtopics. Duration: 4–5 Days

ACSwitchingStudyApplicationsinPSCAD®Fundamentalsofswitchingtransients,modelingissuesofpowersystemequipment,straycapacitances/inductances,surgearresterenergyrequirements,batchmodeprocessingandrelevantstandards,directconversionofPSS/EfilestoPSCAD®. Duration: 2–3 Days

DistributedGeneration&PowerQualityIncludeswindenergysystemmodeling,integrationtothegrid,powerqualityissues,andotherDGmethodssuchassolarPV,smalldieselplants,fuelcells. Duration: 3 Days

LightningCoordination&FastFrontStudiesSubstationmodelingforafastfrontstudy,representingstationequipment,straycapacitances,relevantstandards,transmissiontowermodelforflash-overstudies,surgearresterrepresentationanddata. Duration: 2 Days

MachineModelingincludingSRRInvestigationandApplicationsTopicsincludemachineequations,exciters,governors,etc.,initializationofthemachineanditscontrolstoaspecificloadflow.AlsodiscussedaretypicalapplicationsandSSRstudieswithseriescompensatedlinesasthebasecase. Duration: 2 Days

ModelingandApplicationofFACTSDevicesFundamentalsofsolid-stateFACTSsystems.Systemmodeling,controlsystemmodeling,convertermodeling,andsystemimpactstudies. Duration: 2–3 Days

TransmissionLines&ApplicationsinPSCAD®

Modelingoftransmissionlinesintypicalpowersystemstudies.Historyandfundamentalsoftransmissionlinemodeling,discussiononmodels,suchasPhase,Modal,BergeronandPIintermsofaccuracy,typicalapplications,limitations,etc.,examplecasesanddiscussionontranspo-sition,standardconductors,treatmentsofgroundwire,cross-bondingofcables,etc. Duration: 3 Days

WindPowerModelingandSimulationusingPSCAD®

Includeswindmodels,aero-dynamicmodels,machines,softstartinganddoublyfedconnections,crowbarprotection,lowvoltageridethroughcapability. Duration: 3 Days

ConnectwithUs!May5–7,2011ChinaEPowerwww.epower-china.cnShanghaiNewInternationalExpoCenter,ChinaBooth #5E01

May22–26,2011WindPower2011Conference&Exhibitionwww.windpowerexpo.orgAnaheimConventionCenter,California,USABooth #555

June14–17,2011IPSThttp://ipst2011.tudelft.nlDelftUniversity,TheNetherlands

Moreeventsareplanned!Pleaseseewww.pscad.comformoreinformation.

PSCAD® Training Sessions

Hereareafewofthetrainingcoursescurrentlyscheduled.Additionalopportunitieswillbeaddedperiodically,sopleaseseewww.pscad.comformoreinformationaboutcourseavailability.

March1–3,2011FundamentalsofPSCAD®andApplications

May3–5,2011HVDCTheoryandControls

September20–22,2011FundamentalsofPSCAD®andApplications

September27–29,2011WindPowerModelingusingPSCAD®

November22–24,2011HVDCTheoryandControls

AlltrainingcoursesmentionedaboveareheldattheManitobaHVDCResearchCentreInc.Winnipeg,Manitoba,[email protected] www.pscad.com

PleasevisitNayakCorporation'swebsitewww.nayakcorp.comforcoursesintheUSA.

For more information on dates, contact [email protected] today!

IfyouhaveinterestingexperiencesandwouldliketosharewiththePSCAD®communityinfutureissuesofthePulse,[email protected]