A finite element solver for ice sheet dynamics to be ......A finite element solver for ice sheet...

Preview:

Citation preview

  • A finite element solver for iceA finite element solver for icesheet dynamics to be integrated sheet dynamics to be integrated 

    with MPASwith MPAS  

    February 16, CESM LIWG Meeting, Boulder (CO), 2012February 16, CESM LIWG Meeting, Boulder (CO), 2012

    Mauro PeregoMauro Perego

    in collaboration with FSU, ORNL, LANL,  Sandiain collaboration with FSU, ORNL, LANL,  Sandia

  • Outline

    ● Introduction of finite element icesheets component 

    ● Integration of finite element icesheet component with MPAS

    ● Results on ISMIPHOM and Greenland/Antarctica geometries

    ● Non linear solvers: features and issues

  • Ice Sheet Modeling

    Ice flow equations (momentum and mass balance)

    Model for the evolution of the boundaries (thickness evolution equation)

    Temperature equation

    Main components of an ice model:

    M.Perego, mperego@fsu.edu

    ¡r ¢ ¾ = ½g and r ¢ u = 0;

    @H

    @t= Hflux ¡r ¢

    Z

    z

    u dz

    ½c@T

    @t=@

    @z

    µk@T

    @z

    ¶¡ ½cu ¢ rT + 2 _"¾

    with ¾ = ¿ ¡ pI = 2¹( _") _"¡ pI,where ¹ viscosity, _" shear rate

  • Ice Sheet Modeling

    ±

    FO, BlatterPattyn first order model2 (3D PDE, in horizontal velocities)

    Zeroth order, depth integrated models:SIA, Shallow Ice Approximation (slow sliding regimes) ,SSA Shallow Shelf Approximation (2D PDE) (fast sliding regimes)

    High order, depth integrated (2D) models: L1L23, (L1L1)...

    Approximations based on their accuracy with respect to the icesheet aspect ratio

    “Reference” model: FULL STOKES1

    2Dukowicz, Price and  Lipscomb, 2010. J. Glaciol.

    1Gagliardini and Zwinger, 2008. The Cryosphere.

    3Schoof and Hindmarsh, 2010. Q. J. Mech.  Appl. Math.

    O(±2)

    O(±)

    ' O(±2)

    M.Perego, mperego@fsu.edu

  • icesheets FE dynamics componentLifeV: Parallel, object oriented, C++ Finite Element Library:● linear and quadratic finite elements● assembling of finite element matrices● handling of boundary conditions

    Implementation Overview

    M.Perego, mperego@fsu.edu

  • Trilinos:● Parallel Data Structures (EPETRA) ● Parallel Linear Solvers  (GMRES, CG...) ● Preconditioners (Multilevel, Multigrid, Incomplete LU)● Nonlinear Solvers  (NOX package: Newton, JFNK methods)

    MPAS (land ice component):● Voronoi unstructured grids ● Evolution equation solvers (temperature and thickness equation)

    ● ...

    Implementation Overview

    Work in Progress

    M.Perego, mperego@fsu.edu

    icesheets FE dynamics componentLifeV: Parallel, object oriented, C++ Finite Element Library:● linear and quadratic finite elements● assembling of finite element matrices● handling of boundary conditions

  • ice-

    shee

    ts c

    ompo

    nent

    Land

    ice

    com

    pone

    ntMPAS LIFEV

    2D CVT mesh(Stereographic projection)

    temperature/ice flow factorbedrock sliding coefficient

    velocityheat dissipation

    viscosity

    thickness/elevation/layers

    Solver options:model (FO, L1L2, SSA, SIA)nonlinear solver (Newton, Picard, JFNK)Boundary condition (free-slip, no-slip, robin, coulomb)

    Interface MPASLIFEV

    M.Perego, mperego@fsu.edu

  • Interface  Grids

    MPAS CVT Mesh(OK for Finite Volumes)

    M.Perego, mperego@fsu.edu

  • Interface  Grids

    Lifev Dual triangular Mesh(OK for Finite Elements)

    MPAS CVT Mesh(OK for Finite Volumes)

    Temperaturevelocity

    velocity

    M.Perego, mperego@fsu.edu

  • Interface  Grids

    Lifev Dual triangular Mesh(OK for Finite Elements)

    MPAS CVT Mesh(OK for Finite Volumes)

    Temperaturevelocity

    velocity

    M.Perego, mperego@fsu.edu

    Based on 2D grid and thickness and layers build vertically structured 3D grid.

    Build prisms with triangular base and split them in tetrahedra.

  • L = 5 km L = 10 km

    L = 40 km L = 80 kmL = 80 km L = 160 km

    L = 20 km

    ISMIPHOM: Test C

    Surface velocity

    M.Perego, mperego@fsu.edu

    Perego, Gunzburger, Burkardt, Journal of Glaciology, 2012.

  • Comparisons between different models

    SIA SSA L1L2 FO

    Towards realistic simulations: Greenland, 5km resolution,  sliding case

    M.Perego, mperego@fsu.edu

  • FOSIA

    Towards realistic simulations: Greenland, 2km resolution,  noslip

    M.Perego, mperego@fsu.edu

  • SIA FO

    M.Perego, mperego@fsu.edu

    Towards realistic simulations: Antarctica, 5km resolution,  noslip

  • Convergence of the nonlinear method (test C ISMIPHOM)

    CPU time: 21s

    CPU time: 93s CPU time: 4s

    CPU time: 0.98s

    The exact Jacobian matrix must be assembled at each nonlinear iteration.

    In order to increase robustness of Newton method, the Newton step is halved to achieve monotonic convergence.

    (NOX library)

    FO L1L2

    M.Perego, mperego@fsu.edu

    Solve F (u) = 0:Newton method: Jk (±u)k+1 = ¡F (uk):

  • Greenland, FO: convergence of the nonlinear method

    M.Perego, mperego@fsu.edu

  • First Order Equations

    _"e =q_"2xx + _"

    2yy + _"xx _"yy + _"

    2xy + _"

    2xz + _"

    2yz

    ¹ =1

    2A¡

    1n _"( 1n¡1)e

    8>><>>:

    ¡r ¢ (2¹ _"1) = ¡½g@s

    @x

    ¡r ¢ (2¹ _"2) = ¡½g@s

    @y;

    M.Perego, mperego@fsu.edu

    where s is the ice surface and,

    _"2 =

    2664

    _"yx

    _"xx + 2 _"yy

    _"yz

    3775_"1 =

    2664

    2 _"xx + _"yy

    _"xy

    _"xz

    3775 ;

    FO is a nonlinear system of elliptic equations in the horizontal velocities:

    _"i;j =1

    2(@jui + @iuj) ; i; j 2 fx; y; zg;

    Remark The nonlinear viscosity ¹ is singular when _"e = 0,however, ¹ _"1 is not singular and the PDE is well de¯ned.

    1Goldsby D. L. Kohlsted, JGR, 2001.

    Viscosity1 regularization: _"¡(1¡ 1n)e ¼

    ³p_"2e + ±

    2´¡(1¡ 1n )

  • Greenland, FO: convergence of the nonlinear method

    M.Perego, mperego@fsu.edu

    Picard convergence: limk!1

    xk+1 ¡ ®xk ¡ ® = 1¡

    1

    n

    µ=2

    3when n = 3

    Newton convergence: limk!1

    xk+1 ¡ ®(xk ¡ ®)2 =

    1

    µ1

    n¡ 1¶

    regularization: x jxj¡(1¡ 1n ) ¼ x³p

    x2 + ±2´¡(1¡ 1n)

    Simpli¯ed Problem (similar kind of nonlinearity):

    x jxj¡(1¡ 1n ) = C: solution: ® = CjCjn¡1

    Picard method: xk+1 = Cjxk j(1¡ 1n ):

    Newton method: xk+1 = (1¡ n)xk + nCjxk j(1¡ 1n):

  • Greenland, FO: convergence of the nonlinear method(comparison using different regularizations)

    M.Perego, mperego@fsu.edu

    Err: 0.34 m/a

    Err: 0.026 m/a Err: 7.2e4 m/a

    Viscosity regularization: _"¡(1¡ 1n)e ¼

    ³p_"2e + ±

    2´¡(1¡ 1n )

  • Greenland, FO: convergence of the nonlinear method(comparison using different regularizations)

    M.Perego, mperego@fsu.edu

    ± variable : At each newton iteration ± is decreased from 1e-4 to 1e-9

  • Greenland, FO: convergence of the nonlinear method(LOCA continuation method)

    M.Perego, mperego@fsu.edu

    ±=1e-4

    ±=1e-5±=1.3e-7

    ±=1e-9

    ±=1e-9

    The parameter ± is decreased by LOCA from 1e-4 to 1e-9

    ±=1e-9

  • Acknowledgment

    J. Burkardt, M. Gunzburger (FSU)

    B. Lipscomb, S. Price, X. AsayDavis, T. Ringler (LANL)

    K. Evans, J. Nichols (ORNL)

    A. Salinger (Sandia)

    Slide 1Slide 2Slide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12Slide 13Slide 14Slide 15Slide 16Slide 17Slide 18Slide 19Slide 20Slide 21Slide 22

Recommended