14.3 고계편도함수 -...

Preview:

Citation preview

14.3 고계 편도함수

각각의 편도함수는 와 의 2변수함수이다.

Schwarz 의 정리

2변수 함수 = (, ) 와 그의 1계편도함수 , , (, ) 및

2계편도함수 , , (, ) 가 모두 연속일 때 , = (, )

의 2계편도함수를 구하라.

같은 방법으로 2계, 3계, 등 고계편도함수를 구할 수 있다.

= = = =

일 때, 을구하라.

가 라플라스방정식을 만족함을 보여라

14.4 전미분 (Total Differential)

1변수함수 = () 의 전미분

= 근방에서의 = () 의 1차 근사식

2변수함수 = (, ) 의 전미분

, 근방에서의 = (, ) 의 1차 근사식

근방에서의 1차 근사식

2, 근방에서의 , = tan 의 1차 근사식

= (, , ⋯ , ) 의 전미분

= + + ⋯ +

= (, ) 의 2계전미분

14.5 편도함수에 대한 연쇄법칙(Chain Rule)

1변수함수의 연쇄법칙

= , = () = ℎ() = +

= , = (, ) = ℎ(, ) = + = +

= + = +

= , , ⋯ , = (, , ⋯ , ) = + + ⋯ +

라 하면

Example: = ( − , − ) 일 때, + = 0 임을 보여라.

따라서

Example: = ( , ) 일 때, + = 임을 보여라.

= (, ) = = = + = = + = = + = + + =

Example: z = , = cos , = sin = + = cos + sin = + = − sin + cos

+ 1 = +

14.6 음함수의 미분법

방정식 , = 0 에서 는 의 음함수라 하자.

= (, ) 라 하면 = 0 이므로

= 0 = + = + 따라서 = −

Example: sin + cos = 0 일 때, 를 구하여라.

Example: + + + 3 = 0 일 때, , 를 각각 구하여라.

가 , 의 음함수로 정의 된다. 방정식의 양변을 로 미분하면

방정식 + + + 3 = 0 에 의하여

3 + 3 + 3 + 3 = 03 + 3 = −(3 + 3 )

= − 3 + 33 + 3