1. Systems Requirement Review Presentation Joe Appel Todd Beeby Julie Douglas Konrad Habina Katie...

Preview:

Citation preview

1

2

Systems Requirement Review PresentationJoe Appel

Todd BeebyJulie Douglas

Konrad HabinaKatie Irgens

Jon Linsenmann

David LynchDustin Truesdell

3

Overview

• Mission Statement• Market, Customers, & Competitors• Design Mission• Design Requirements• New Technologies• Sizing Code• Summary & Next Steps

4

Mission Statement

• Design an Environmentally Responsible Aircraft (ERA) that lowers noise, minimizes emissions, and reduces fuel burn

• Utilize new technology to develop a competitive medium-size aircraft that meets the demands of transportation for continental market

• Deliver a business plan focusing on capitalizing on growing markets

• Submit final design to NASA ERA College Student Challenge

5

NASA ERA College Student Challenge

1 NASA ERA Goals

Large twin aisle reference configuration = Boeing 777-200LR

6

Market• Growth in twin aisle market– Fastest growing market segment (4.4% annually)– Airplane seat count upgauging

2 Boeing Market Outlook

7

Market• Geographic Regions:– Asia Pacific– US Domestic– Europe

2 Boeing Market Outlook3 Airbus Market Forecast

8

Market• Geographic Regions:– Asia Pacific– US Domestic

3 Airbus Market Forecast

9

Customers

• Low cost carriers– Point to point model– Shorter distance, larger

passenger capacity

Examples– SpiceJet, Spring Airlines,

JetBlue, EasyJet

4 Point to Point: Asia Pacific

10

Competitors• Designing an airplane with similar

capabilities as the Boeing 757-200• Competitors

– Other aircraft (A321-200, A320NEO, 757, 737)

– High speed rail for short distances

3 Airbus Market Forecast6 757-200 5 High Speed Rail

11

City Pairs

Tokyo to Mumbai is 3700 nmi7 Geographical Map of Asia

12

Runway LengthsAirport Runway Length (ft)

Beijing Capital International Airport 12,468Haneda 9,843

Hong Kong International Airport 12,467Suvarnabhumi Airport 13,123

Singapore Changi 13,123Guangzhou Baiyun International Aiport 12,467

Narita International Aiport 13,123Soekarno-Hatta International Airport 12,007

Incheon International Airport 13,123Shanghai Pudong International Airport 13,123

Kuala Lumpur International Airport 13,530Mumbai International Airport 11,302

Delhi International Airport 14,534Shanghai Hongqiao International Airport 11,154

Ninoy Aquina International Airport 12,261Taipeo Taoyuan International Airport 12,008

Shenzhen Bao’an International Airport 11,155Chengdu Shuangliu 11,811Kunming Wujiaba 11,155

Kansai International 13,123Gimpo International 11,811Hangzhou Xiaoshan 11,811Jeju International 9843

Ho Chi Minh International 12,468

Shortest Runway: 9843 feet

13

Design Mission

• Tokyo - Mumbai

01

2

4 5

76

4’ 5’

8 9Taxi & takeoff

Clim

bCruise Climb

No rangedescent

Loiter (30 min)

Land

Clim

b

No rangedescent

Land

Attempt to Land

Loiter (30 min)

6800 ft Range: 3700 nmi 4950 ft Fuel Reserves

W1/W0 0.970W2/W1 0.979W3/W2 0.773W4/W3 0.995W5/W4 0.995

W5’/W4’ 0.970W6/W5’ 0.979W7/W6 0.986W8/W7 0.988W9/W8 0.995

3

W9/W0 0.673Wf/W0 0.330

32000 ft

14

Design Requirements

• Market Driven Requirements– Similar two class configuration seating capacity to • Boeing 757-200 [200 pax.]• Boeing 737-900ER [177 pax.]• Airbus A321NEO [185 pax.]

8 Boeing 737-900ER3 Airbus Market Forecast

15

Design Requirements

• Improved Specifications (compared to Boeing 757-200)

• Extended Range to 4000 nmi• Improved Cruise Efficiency• Increased Payload, Takeoff Weight, and Landing Weight

6 Boeing 757-200

16

Design Requirements

• ERA driven requirements (compared to Boeing 777-200LR)– 75 % cut in emissions– 42 dB reduction in noise– 50% reduction in fuel burn– 50% reduction in field length

• Summarized in Compliance Matrix

17

Design Requirements

Compliance Matrix

18

New Technologies

• Noise reduction:– Chevron Nozzles, Variable Nozzles, Scarf Inlet Active Noise Control, Forward

Swept Fans, Swept/Leaned Stators, Soft Vanes, Over-the-Rotor Metal Foam

• Geared turbofan (GTF):– Ultra high bypass ratio engines to reduce fuel consumption, reduce engine

maintenance, and reduce noise by up to 10 dB

10 Scarf Inlet 9 Chevron Nozzles 11 Geared Turbofan

19

Example Fuel Savings

12 New Technology Fuel Savings

20

Sizing Code Chart

noyes

Geometry(eg S, b, etc.)

Empty Weight Prediction (We)

Set Wφ = (Wφ)calc

Description of Aircraft

Fuel Weight Prediction (Wfuel)

Calculated Gross Weight (Wφ)calc

Performance, Costs, Enviro Impacts

Inputs: , ,

Wφ = (Wφ)calc

21

Sizing Code

Approach:• Empty Weight Fraction – Raymer Table 6.1

]

• Fuel Weight Fraction• Cruise: Breguet Range Equation and Endurance Equation

• All others: Historical Fractions (Raymer Table 3.2)

𝑊 𝑖

𝑊 𝑖− 1

=exp[ −𝐸𝐶𝐿 /𝐷 ]𝑊 𝑖

𝑊 𝑖− 1

=exp¿¿

22

Sizing Code

Calibration:

Boeing 757-200Passengers: 200Range: 2655 nmiCruise Mach Number: 0.8Max Take-off Weight (MTOW): 255000 lbOperating Weight Empty (OWE): 136940 lbFuel Weight: 74510 lb

13 Boeing 757-200

23

Sizing Code

Calibration:• Original Drag Prediction

• Nicolai Fig 5.3 for Subsonic a/c:

• Adjusted to make

• Results: Parameter Value Units Error

W0 (MTOW) 256370.48 lb 0.54%

We (MEW) 132324.24 lb -3.37%

Wf 80046.24 lb 7.43%

24

Sizing Code

Early Aircraft Predictions:• Used 757-200 sizing code (similar aircraft)

• Adjusted range, MTOW, thrust, Mach #, passengers

• Based on “threshold” values from compliance matrix

Parameter Value Units Change

W0 (MTOW) 258692.93 lb +0.91%

We (MEW) 132004.16 lb -0.24%

Wf 81288.77 lb +1.55%

25

Sizing Code

Next:• Convert entirely to MATLAB

• Same output as with Excel

• Implement the next level of complexity• Component weights• Aerodynamics (drag breakdown)• Propulsion (thrust, fuel consumption)• Future technology factors

26

Summary & Next Steps

• Summary– Mission statement– Market & Customers– Design Mission– Design Requirements– New Technologies– Sizing Code

• Next Steps– In depth analysis of technologies (cost and benefits)– Increase complexity and accuracy of sizing code– Formulate customer, regulatory and design requirements and begin

preliminary aircraft performance analysis.

27

28

References1. http://aero.larc.nasa.gov/era_univ/competitions_univ_era.htm2. “Current Market Outlook 2010-2029,” Boeing Commercial Airplanes

Market Analysis, Seattle, WA, Nov. 2010.3. Leahy, John. “Airbus Global Market Forecast 2010-2029,” Airbus.

Toulouse, Dec. 2010.4. www.guidetothailand.com5. http://en.wikipedia.org/wiki/File:China_high

speed_rail_network.png6. http://bits.blogs.nytimes.com/2007/10/10/google-founders-pick-up-

another-big-plane/7. “Geographical Map of Asia,” Sep. 2010.

[http://www.voyagesphotosmanu.com/geographical_map_asia.html. Accessed 1/22/11.]

29

References8. Tinseth, Randy, “Sharks and Jets,” Boeing Commercial Airlines, Seattle

WA, August 2010.[http://boeingblogs.com/randy/archives/2010/08/sharks_and_jets.html. Accessed 1/22/11.]

9.http://memagazine.asme.org/articles/2006/november/Put_Nozzle.cfm 10. http://www.grc.nasa.gov/WWW/RT/2004/RT/RTL-abbott.html11. http://www.airliners.net/aviation-forums/general_aviation/print.main?

id=406523512. Nickol, C. L. (2007). Hybrid Wing Body Configuration System Studies. 13. www.boeing.com/companyoffices/gallery

Recommended