20
The contribution of bystander effects to the The contribution of bystander effects to the risks posed by low radiation doses risks posed by low radiation doses Benjamin J. Blyth & Pamela J Sykes Haematology & Genetic Pathology School of Medicine Flinders University and Medical Centre

The contribution of bystander effects to the risks posed by low radiation doses blyth

Embed Size (px)

Citation preview

Page 1: The contribution of bystander effects to the risks posed by low radiation doses  blyth

The contribution of bystander effects to the The contribution of bystander effects to the  risks posed by low radiation dosesrisks posed by low radiation doses

Benjamin J. Blyth & Pamela J Sykes

Haematology & Genetic Pathology School of Medicine

Flinders University and Medical Centre

Page 2: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Atomic Bomb Survivors - LSSPreston 2007, Radiation Research

( 0 – 100 mSv )

Natural background, inc. radonRadiographyOccupational exposuresAirline travel, inc. security screening

Page 3: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Atomic Bomb Survivor Data

Radiation Dose (mGy)

0 – 5 mGy Control Group

X and γ‐rays

3.7 MeV α‐particles

Page 4: The contribution of bystander effects to the risks posed by low radiation doses  blyth

100 mGy, 100 kVp X‐raysor

5 Gy, 3.5 MeV α‐particles

0.1 mGy, 100 kVp X‐raysor

50 mGy, 3.5 MeV α‐particles

Page 5: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Security Backscatter X‐Ray Screening

Effective dose 0.05 μSv / scanHealth Physics Society (2009)

50 – 125 kVp photons, dose concentrated near the 

skin’s surface

1 μGy to skin surface / scan0.1 – 1% cells traversed by an electron track 

All exposed cells receive their dose within a 10 second period.

Page 6: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Domestic Radon Exposure

222Rn: 100 Bq m‐3

346 lung basal cell nuclei traversed by 

a single alpha particle per day

(out of 1.5 × 109

cells) 

Harley et al.

2008

1 cell in the lung hit on average, every 4 minutes

Basal bronchial cells are not hit more than once  during their ‘lifetime’

Page 7: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Long‐Haul Airline Flights

Effective dose rate = 5 μSv h‐1

2.75 μSv h‐1 low‐LET + 2.25 μSv h‐1 high‐LET 

Bottollier‐Depois

et al.

2000

0.5 – 2% of cells receiving energy deposition for a 10 h flight

LET range from 0.1 – 1000 keV μm‐1

Cellular dose per hit <1 mGy

to >100 mGy

Page 8: The contribution of bystander effects to the risks posed by low radiation doses  blyth
Page 9: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Biophysical argument for linear extrapolation

Even the smallest radiation energy deposition to a cell will  carry a small, but non‐zero risk of causing a carcinogenic 

mutation. The net risk will therefore decrease in proportion  with the number of cells receiving energy deposition.

10 x lower dose = 10 x fewer hit cells = 10 x lower risk

Page 10: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Radiation‐Induced Bystander EffectsRadiation‐induced effects in unirradiated cells remaining 

within an irradiated tissue.

Cell death

DNA damage

Mutation

Proliferation

Genomic instability

Page 11: The contribution of bystander effects to the risks posed by low radiation doses  blyth

In Vitro

Bystander Effect Methods

Proof‐of‐Principle: Unirradiated cells can, under the right  conditions, respond to signals from irradiated cells.

Page 12: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Hypothetical Bystander Impact on Dose‐Risk Curve

What if all cells were at  increased cancer risk even if 

only a small fraction actually  received energy deposition?

Page 13: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Bystander Effects*

Many experimental systems have used  cellular doses and/or irradiated cell numbers 

far above the relevant range

Bystander effects are not universally observed  nor are they always reproducible

Contradictory bystander responses

Bystander effects remain to be demonstrated  under relevant conditions in vivo

Page 14: The contribution of bystander effects to the risks posed by low radiation doses  blyth

A better understanding of Bystander mechanisms

and the extent to which they are active in vivo

‘are 

needed 

before

they 

can 

be 

confirmed 

as 

factors 

to 

be 

included 

in 

the  estimation of potential risk’

International Commission for Radiological Protection 2006 Report

Page 15: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Our Aim

To create an in vivo

experimental system that  could be used to re‐create realistic bystander  scenarios.

In vivo: 

MouseTissue of interest: 

Spleen

Relevant radiation exposure: 

low‐LETSingle energy depositions: 

3H, 1 d h‐1, 2.61 mGy hit‐1

Rare, known irradiated cells: 

< 1 in 1000

Page 16: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Adoptive Transfer Model

StimulateCells to Divide

Incorporate 3H‐Thymidineor Non‐Radiolabelled 

Thymidine

Label with Fluorescent Dye

Recipient MouseDonor Mouse

Isolate SpleenIsolate LymphocytesCulture cells

Inject Radiolabelled

or 

Non‐Radiolabelled  Cells 

via Tail Vein

Collect, Freeze  and Analyse 

Recipient Mouse  Spleen

Page 17: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Apoptosis: TUNELProliferation: Ki-6750 μm

3H +-

Page 18: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Bystander Effects In Vivo?

No induction of apoptosis or  proliferation in unirradiated bystander 

cells

After 22 h or 72 h

1 ×

3H disintegration h‐1

100 ×

3H disintegrations h‐1

0.1 or 1 Gy X‐rays

Irradiated cells lodged @ 2 – 20 × 10‐4

Blyth et al.

2010, Radiation Research

Local area around 

donor cells Whole spleen

P

= 0.69   

P

= 0.58

More tissues, endpoints, times, genetic background, doses etc.

Lodged Cells

Radioactive

Lodged Cells Non-

Radioactive

Lodged Cells

Radioactive

Lodged Cells Non-

Radioactive

Page 19: The contribution of bystander effects to the risks posed by low radiation doses  blyth

Bystander effects are a concern because they could theoretically

increase the  carcinogenic risk of very low dose exposures.

However, bystander effects are yet to be demonstrated in vivo

under the  relevant exposure conditions.

Bystander effects have been characterised mostly in terms of ‘negative’ endpoints, however, it is unclear whether the net effect of these biological 

changes would be pro‐

or anti‐carcinogenic.

Bystander effects, if relevant in vivo, will likely be a dynamic and complex  response to radiation exposure, dependent on dose, dose‐rate, radiation‐ quality, stress, cell/tissue type, endogenous signalling and health of the  individual.

The adoptive transfer model can now be used to explore many of these  parameters in an in vivo

experimental system.

Page 20: The contribution of bystander effects to the risks posed by low radiation doses  blyth

US Department of Energy

Low Dose Radiation Research Program, Grant # DE‐FG02‐05ER64104 

Rebecca Ormsby

(Flinders University)

Alex Staudacher

(Flinders University)

Edouard I Azzam

(UMDNJ)

Roger W Howell

(UMDNJ)

Flinders University and Medical Centre