10
MOVIMIENTO UNIFORMEMENTE ACELERADO. ACELERACIÓN Cuando la velocidad de un móvil no permanece constante, sino que varia, decimos que sufre una aceleración. Por definición, la aceleración es la variación de la velocidad de un móvil con respecto al tiempo. La ecuación para calcular la aceleración cuando el móvil parte del reposo es la siguiente: a = v/t Y cuando no parte del reposo es: a = vf – vi t donde: a = aceleración de un móvil en m/s 2 , cm/s 2 vf = velocidad final del móvil en m/s, cm/s vi = velocidad inicial del móvil en m/s, cm/s t= tiempo en que se produce el cambio de velocidad en seg. ACELERACIÓN MEDIA Supongamos que un auto pasa por un punto A en un tiempo t o ; este tendrá una velocidad v o , y al pasar por un punto B lo hará con una velocidad v en un tiempo t; el cambio de velocidad del auto será vf – vo , y el tiempo transcurrido será de t – to; por lo tanto: A = v f – vo tf – to los intervalos de la velocidad y del tiempo están dados por (delta) v = v – vo cambio de la velocidad (delta) t = t – to intervalo de tiempo la relación será para la aceleración a = (delta) v (delta) t se tiene entonces que La aceleración media de un cuerpo móvil es aquella en la cual el cuerpo cambia su velocidad en grandes intervalos de tiempo. ACELERACIÓN INSTANTÁNEA

Movimiento Uniformemente Acelerado Guias De Ejercicios Resueltos

Embed Size (px)

DESCRIPTION

Movimiento Uniformemente Acelerado Guias De Ejercicios Resueltos

Citation preview

Page 1: Movimiento Uniformemente Acelerado Guias De Ejercicios Resueltos

MOVIMIENTO UNIFORMEMENTE ACELERADO.

ACELERACIÓNCuando la velocidad de un

móvil no permanece constante, sino que varia, decimos que sufre una aceleración.

Por definición, la aceleración es la variación de la velocidad de un móvil con respecto al tiempo.

La ecuación para calcular la aceleración cuando el móvil parte del reposo es la siguiente:

a = v/t

Y cuando no parte del reposo es:

a = vf – vit

donde:a = aceleración de un móvil en m/s2

, cm/s2 vf = velocidad final del móvil en m/s, cm/svi = velocidad inicial del móvil en m/s, cm/st= tiempo en que se produce el cambio de velocidad en seg.

ACELERACIÓN MEDIASupongamos que un auto

pasa por un punto A en un tiempo to

; este tendrá una velocidad vo , y al pasar por un punto B lo hará con una velocidad v en un tiempo t; el cambio de velocidad del auto será vf – vo , y el tiempo transcurrido será de t – to; por lo tanto:

A = v f – vo tf – to

los intervalos de la velocidad y del tiempo están dados por

(delta) v = v – vocambio de la velocidad

(delta) t = t – to intervalo de tiempo

la relación será para la aceleración

a = (delta) v (delta) t

se tiene entonces que

La aceleración media de un cuerpo móvil es aquella en la cual el cuerpo cambia su velocidad en grandes intervalos de tiempo.

ACELERACIÓN INSTANTÁNEA

La aceleración instantánea es aquella en la cual el cuerpo móvil cambia su velocidad en intervalos muy pequeños de tiempo. Mientras mas reducido sea el intervalo de tiempo, la aceleración instantánea será mas exacta.

En general, se usara el termino aceleración para referirnos a la aceleración instantánea.

ECUACIONES DERIVADAS UTILIZADAS EN EL MRUV

Como hemos observado el movimiento rectilíneo uniforme variado, la velocidad cambia constantemente de valor; por ello, si deseamos conocer el desplazamiento en cualquier tiempo, lo podemos obtener si utilizamos el concepto de velocidad media ya que hemos estudiado.

Page 2: Movimiento Uniformemente Acelerado Guias De Ejercicios Resueltos

V = vf + vi 2

V= d/t -------:. d= V t si sustituimos la ecuación nos queda:

d= vf + vi (t)2

A partir de estas expresiones deduciremos las ecuaciones que se utilizan para calcular desplazamientos y velocidades finales cuando el movimiento tiene aceleración constante.

Cada una de las ecuaciones se despeja con respecto a t, y se igualan. Puesto que los dos primeros miembros son iguales entre si, se obtiene:

a = vf - vit

Despejando el valor de t en la ecuación de aceleración

t =vf – vi a

De la ecuación de velocidad media se tiene entonces

d = vf 2 –vi 2 2ª

por lo tanto

vf2 = vi2 +2ad

Otra ecuación útil se obtiene despejando vf de la ecuación de aceleración.

Vf = vi +a t

Entonces sustituimos velocidad final en la formula anterior, por lo tanto nos queda así

D= vi t + a t 2 2

INICIANDO EL MOVIMIENTO DESDE EL REPOSO

Cuando el cuerpo parte del reposo y adquiere una aceleración constante, la velocidad inicial vi = 0

A estas ecuaciones se les llama ecuaciones especiales.

Por la importancia de las ecuaciones deducidas es conveniente recordar las cuatro ecuaciones generales para el movimiento rectilíneo uniformemente acelerado. Las ecuaciones especiales se derivan de las ecuaciones generales, es también muy importante saber deducirlas para evitar su memorización. A continuación se puede observar las ecuaciones generales en la siguiente tabla

ECUACIONES GENERALES

vf = vi + a t

d= vf + vi (t) 2 vf2 = vi2 +2ad

d = vi t + a t 2 2

ECUACIONES ESPECIALESVI =0vf = a td = ½ vf tvf2 = 2 a dd = ½ a t

Page 3: Movimiento Uniformemente Acelerado Guias De Ejercicios Resueltos

Ejercicios de movimiento uniformemente acelerado.

1.- Un motociclista que parte del reposo y 5 segundos más tarde alcanza una velocidad de 25 m / s ¿qué aceleración obtuvo?

DATOS FORMULA

a =? a=v a= 25 m/s= 5 m/seg2.V = 25m/s t 5 s CUANDO EL MOVIL PARTE DELt =5 s REPOSO.

2.- ¿Un coche de carreras cambia su velocidad de 30 Km. / h a 200 Km/h. en 5 seg, cual es su aceleración?

DATOS FORMULA

Vo = 30km/h a= vf-voVf =200km t 200km/h-30km/h=170 km/ht = 5 s

Conversión de unidades.a = ? 170 km/h x 1000 m/1 km x 1 h/3600 seg= 47.22 m/seg. la velocidad en m/seg es de 47.22 m/seg.

a=47.22 m/seg = 9.44 m/seg2

5 seg

3.- Un automóvil se desplaza inicialmente a 50 km/h y acelera a razón de 4 m/seg2 durante 3 segundos ¿Cuál es su velocidad final?

Datos Fórmula Sustitución

vo = 50 km/h Vf = Vo + at Vf = 13.88 m/seg + 4m/seg2 x 3 seg

a = 4m/seg2

Vf = 25.88 m/seg.

t = 3 seg Conversión a de km/h a m/seg.vf = 50 km/h x 1000 m/1 km x 1h/ 3600 seg= 13.88 m/seg

4.- Un tren que viaja inicialmente a 16 m/seg se acelera constantemente a razón de 2 m/seg2. ¿Qué tan lejos viajará en 20 segundos?. ¿Cuál será su velocidad final?

Datos Fórmulas Sustitución

Vo = 16 m/segVf = Vo + atVf = 16 m/seg + 2 m/seg2 x 20seg

V f = 56 m/seg.a = 2 m/seg2

d= d= vf + vi (t) d= 56 m/seg + 16 m/seg x 20 seg 2

d= 720 metros.t = 20 segvf =

ContenidoEjercicios resueltos de Cinemática: Movimiento uniformemente variado. Acelerado y desacelerado.

Resolver los siguientes problemas:

Problema n° 1) Un automóvil que viaja a una velocidad constante de 120 km/h, demora 10 s en detenerse. Calcular:a) ¿Qué espacio necesitó para detenerse?.

Page 4: Movimiento Uniformemente Acelerado Guias De Ejercicios Resueltos

b) ¿Con qué velocidad chocaría a otro vehículo ubicado a 30 m del lugar donde aplicó los frenos?.

Problema n° 2) Un ciclista que va a 30 km/h, aplica los frenos y logra detener la bicicleta en 4 segundos. Calcular:a) ¿Qué desaceleración produjeron los frenos?.b) ¿Qué espacio necesito para frenar?.

Problema n° 3) Un avión, cuando toca pista, acciona todos los sistemas de frenado, que le generan una desaceleración de 20 m/s ², necesita 100 metros para detenerse. Calcular:a) ¿Con qué velocidad toca pista?.b) ¿Qué tiempo demoró en detener el avión?.

Problema n° 4) Un camión viene disminuyendo su velocidad en forma uniforme, de 100 km/h a 50 km/h. Si para esto tuvo que frenar durante 1.500 m. Calcular:a) ¿Qué desaceleración produjeron los frenos?.b) ¿Cuánto tiempo empleó para el frenado?.

Problema n° 5) La bala de un rifle, cuyo cañón mide 1,4 m, sale con una velocidad de 1.400 m/s. Calcular:a) ¿Qué aceleración experimenta la bala?.b) ¿Cuánto tarda en salir del rifle?.

Problema n° 6) Un móvil que se desplaza con velocidad constante, aplica los frenos durante 25 s, y recorre una distancia de 400 m hasta detenerse. Determinar:a) ¿Qué velocidad tenía el móvil antes de aplicar los frenos?.b) ¿Qué desaceleración produjeron los frenos?.

Problema n° 7) Un auto marcha a una velocidad de 90 km/h. El conductor aplica los frenos en el instante en que ve el pozo y reduce la velocidad hasta 1/5 de la inicial en los 4 s que tarda en llegar al pozo. Determinar a qué distancia del obstáculo el conductor aplico los frenos, suponiendo que la aceleración fue constante.

Problema n° 8) Un automóvil parte del reposo con una aceleración constante de 3 m/s ², determinar:

Page 5: Movimiento Uniformemente Acelerado Guias De Ejercicios Resueltos

a) ¿Qué velocidad tendrá a los 8 s de haber iniciado el movimiento?.b) ¿Qué distancia habrá recorrido en ese lapso?.

Soluciones

Solución del ejercicio n° 1 de Movimiento uniformemente variado. Acelerado y desacelerado:Problema n° 1) Un automóvil que viaja a una velocidad constante de 120 km/h, demora 10 s en detenerse. Calcular:a) ¿Qué espacio necesitó para detenerse?.b) ¿Con qué velocidad chocaría a otro vehículo ubicado a 30 m del lugar donde aplicó los frenos?.DesarrolloDatos:v0 = 120 km/h = (120 km/h).(1000 m/1 km)/(1 h/3600 s) = 33,33 m/svf = 0 km/h = 0 m/st = 10 sEcuaciones:(1) vf = v0 + a.t(2) x = v0.t + a.t ²/2a) De la ecuación (1):vf = v0 + a.t0 = v0 + a.ta = -v0/ta = (-33,33 m/s)/(10 s)a = -3,33 m/s ²Con éste dato aplicamos la ecuación (2):

x = (33,33 m/s).(10 s) + (-3,33 m/s ²).(10 s) ²/2 Þx = 166,83 m b) Para x2 = 30 m y con la aceleración anterior, conviene aplicar la ecuación opcional:vf ² - v0 ² = 2.a.xvf ² = v0 ² + 2.a.xvf ² = (33,33 m/s) ² + 2.(-3,33 m/s ²).(30 m)vf = 30,18 m/svf = 106,66 km/h

Solución del ejercicio n° 2 de Movimiento uniformemente variado. Acelerado y desacelerado:Problema n° 2) Un ciclista que va a 30 km/h, aplica los frenos y logra detener la bicicleta en 4 segundos. Calcular:a) ¿Qué desaceleración produjeron los frenos?.b) ¿Qué espacio necesito para frenar?.DesarrolloDatos:v0 = 30 km/h = (30 km/h).(1000 m/1 km).(1 h/3600 s) = 8,33 m/svf = 0 km/h = 0 m/st = 4 sEcuaciones:(1) vf = v0 + a.t(2) x = v0.t + a.t ²/2a) De la ecuación (1):vf = v0 + a.t0 = v0 + a.ta = -v0/ta = (-8,33 m/s)/(4 s)a = -2,08 m/s ² 

Page 6: Movimiento Uniformemente Acelerado Guias De Ejercicios Resueltos

b) Con el dato anterior aplicamos la ecuación (2):x = (8,33 m/s).(4 s) + (-2,08 m/s ²).(4 s) ²/2 Þx = 16,67 mu

Solución del ejercicio n° 3 de Movimiento uniformemente variado. Acelerado y desacelerado:Problema n° 3) Un avión, cuando toca pista, acciona todos los sistemas de frenado, que le generan una desaceleración de 20 m/s ², necesita 100 metros para detenerse. Calcular:a) ¿Con qué velocidad toca pista?.b) ¿Qué tiempo demoró en detener el avión?.DesarrolloDatos:a = - 20 m/s ²x = 100 mvf = 0 m/sa) Aplicando:vf ² - v0 ² = 2.a.x0 - v0 ² = 2.a.xv0 ² = - 2.(-20 m/s ²).(100 m)vf = 63,25 m/sb) Aplicando:vf = v0 + a.t0 = v0 + a.tÞ t = -v0/at = -(63,25 m/s)/(- 20 m/s ²)t = 3,16 s

solución del ejercicio n° 4 de Movimiento uniformemente variado. Acelerado y desacelerado:Problema n° 4) Un camión viene disminuyendo su velocidad en forma uniforme,

de 100 km/h a 50 km/h. Si para esto tuvo que frenar durante 1.500 m. Calcular:a) ¿Qué desaceleración produjeron los frenos?.b) ¿Cuánto tiempo empleó para el frenado?.DesarrolloDatos:v0 = 100 km/h = (100 km/h).(1000 m/1 km).(1 h/3600 s) = 27,78 m/svf = 50 km/h = (50 km/h).(1000 m/1 km).(1 h/3600 s) = 13,89 m/sx = 1.500 ma) Aplicando:

a = -0,193 m/s ²b) Aplicando:vf = v0 + a.tt = (vf - v0)/at = (27,78 m/s - 13,89 m/s)/(- 0,193 m/s ²)t = 72 s

Solución del ejercicio n° 5 de Movimiento uniformemente variado. Acelerado y desacelerado:Problema n° 5) La bala de un rifle, cuyo cañón mide 1,4 m, sale con una velocidad de 1.400 m/s. Calcular:a) ¿Qué aceleración experimenta la bala?.b) ¿Cuánto tarda en salir del rifle?.DesarrolloDatos:

Page 7: Movimiento Uniformemente Acelerado Guias De Ejercicios Resueltos

v0 = 0 m/svf = 1400 m/sx = 1,4 ma) Aplicando:

a = 700000 m/s ² b) Aplicando:vf = v0 + a.tt = vf/at = (1400 m/s)/(700000 m/s ²)t = 0,002 sSolución del ejercicio n° 6 de Movimiento uniformemente variado. Acelerado y desacelerado:Problema n° 6) Un móvil que se desplaza con velocidad constante, aplica los frenos durante 25 s, y recorre una distancia de 400 m hasta detenerse. Determinar:a) ¿Qué velocidad tenía el móvil antes de aplicar los frenos?.b) ¿Qué desaceleración produjeron los frenos?.DesarrolloDatos:t = 25 sx = 400 mvf = 0 m/sEcuaciones:(1) vf = v0 + a.t(2) x = v0.t + a.t ²/2a) De la ecuación (1):vf = v0 + a.t0 = v0 + a.ta = -v0/t (3)Reemplazando (3) en (2):

x = v0.t + a.t ²/2x = v0.t + (-v0/t).t ²/2x = v0.t - v0.t/2x = v0.t/2v0 = 2.x/tvf = 2.(400 m)/(25 s)vf = 32 m/s b) Con éste dato aplicamos nuevamente la ecuación (1):a = (-32 m/s)/(25 s)a = -1,28 m/s ²

Solución del ejercicio n° 7 de Movimiento uniformemente variado. Acelerado y desacelerado:Problema n° 7) Un auto marcha a una velocidad de 90 km/h. El conductor aplica los frenos en el instante en que ve el pozo y reduce la velocidad hasta 1/5 de la inicial en los 4 s que tarda en llegar al pozo. Determinar a qué distancia del obstáculo el conductor aplico los frenos, suponiendo que la aceleración fue constante.DesarrolloDatos:v0 = 90 km/h = (90 km/h).(1000 m/1 km).(1 h/3600 s) = 25 m/svf = 0,2.25 m/s = 5 m/st = 4 sEcuaciones:(1) vf = v0 + a.t(2) x = v0.t + a.t ²/2 De la ecuación (1):vf = v0 + a.ta = (vf - v0)/ta = (25 m/s - 5 m/s)/(4 s)a = 5 m/s ²

Page 8: Movimiento Uniformemente Acelerado Guias De Ejercicios Resueltos

Con la aceleración y la ecuación (2):x = (25 m/s).(4 s) + (5 m/s ²).(4 s) ²/2x = 60 m

Solución del ejercicio n° 8 de Movimiento uniformemente variado. Acelerado y desacelerado:Problema n° 8) Un automóvil parte del reposo con una aceleración constante de 3 m/s ², determinar:a) ¿Qué velocidad tendrá a los 8 s de haber iniciado el movimiento?.b) ¿Qué distancia habrá recorrido en ese lapso?.DesarrolloDatos:a = 3 m/s ²t = 8 sv0 = 0 m/sEcuaciones:(1) vf = v0 + a.t(2) x = v0.t + a.t ²/2 a) De la ecuación (1):vf = (3 m/s ²).(8 s)vf = 24 m/s b) De la ecuación (2):x = (3 m/s ²).(8 s) ²/2x = 96 m