41
www.ecn.nl Where very small meets very large: nanotechnology for efficient solar energy conversion Wim Sinke ECN Solar Energy, University of Amsterdam & FOM Institute AMOLF

MicroNano 12 12 2013 Sinke

Embed Size (px)

DESCRIPTION

Nanotechnology for photovoltaics (PV)

Citation preview

Page 1: MicroNano 12 12 2013 Sinke

www.ecn.nl

Where very small meets very large:

nanotechnology for efficient solar energy

conversion Wim Sinke

ECN Solar Energy, University of Amsterdam & FOM Institute AMOLF

Page 2: MicroNano 12 12 2013 Sinke

Thank you: Albert Polman (AMOLF)

Bonna Newman (AMOLF)

Pierpaolo Spinelli (AMOLF)

Tom Gregorkiewicz (UvA)

Katerina Dohnalová (UvA)

Patrick de Jager (ASML)

Michel van de Moosdijk (ASML)

Frank Lenzmann (ECN)

Stefan Luxembourg (ECN)

Arthur Weeber (ECN)

for providing input and inspiration for this presentation!

Page 3: MicroNano 12 12 2013 Sinke

Content

• Photovoltaic solar energy (PV): the challenge quantified

• The building blocks: solar cells in fab and lab

• Where nanotechnology comes in: to and beyond current performance and cost limits

• Outlook: mature yet young

3

Page 4: MicroNano 12 12 2013 Sinke

Content

• Photovoltaic solar energy (PV): the challenge quantified

• The building blocks: solar cells in fab and lab

• Where nanotechnology comes in: to and beyond current performance and cost limits

• Outlook: mature yet young

4

Page 5: MicroNano 12 12 2013 Sinke

Solar energy contribution Solar Energy Perspectives – Testing the Limits (IEA, 2011)

5

(13% of final energy) = 40.000 km2 module area @ 30% efficiency = area The Netherlands

Page 6: MicroNano 12 12 2013 Sinke

Solar energy contribution Shell Lens Scenarios – Oceans (2013)

7

Page 7: MicroNano 12 12 2013 Sinke

Multi-terawatt use

Quantifying the challenge

• Competitive generation costs (from 0.10 €/kWh to 0.05 €/kWh – 0.5 1 €/Wp system price (dependent on region and market)

• High module efficiencies (from 10 20% to 20 40%+) – cost reduction lever at all levels

– facilitates large-scale use

• From renewable to fully sustainable (earth-abundant materials?) – Materials & processes

– Design for sustainability

• Total quality (at very low cost)

Page 8: MicroNano 12 12 2013 Sinke

Content

• Photovoltaic solar energy (PV): the challenge quantified

• The building blocks: solar cells in fab and lab

• Where nanotechnology comes in: to and beyond current performance and cost limits

• The third dimension: sustainability

• Outlook: mature yet young

10

Page 9: MicroNano 12 12 2013 Sinke

First Solar HyET Solar Würth Solar

Cell & module technologies:

commercial

11

Flat plate: wafer-based silicon (90%) - monocrystalline - multicrystalline (& quasi mono)

Module efficiencies 14 22%

Toyota City of the Sun (NL)

Concentrator (<1%) - multi-junction III-V semiconductors - silicon

Module efficiencies 25 30%

Abengoa/Concentrix FhG-ISE

Flat plate: thin films (10%) - silicon - copper-indium/gallium-diselenide/sulphide (CIGSS) - cadmium telluride (CdTe)

Module efficiencies 7 13% ECN’s Black Beauty

Page 10: MicroNano 12 12 2013 Sinke

First Solar Helianthos Würth Solar

Cell & module technologies:

commercial

12

Flat plate: wafer-based silicon (90%) - monocrystalline - multicrystalline (& quasi mono)

Module efficiencies 14 22%

Toyota City of the Sun (NL)

Trends: • new cell and module architectures • high(er) efficiencies – closing lab/fab gap

Trends: • increasing scale • differentiation according to application

Concentrator (<1%) - multi-junction III-V semiconductors - silicon

Module efficiencies 25 30%

Abengoa/Concentrix FhG-ISE

Trends: • commercial applications taking off • race to 50% lab cell efficiencies

Flat plate: thin films (10%) - silicon - copper-indium/gallium-diselenide/sulphide (CIGSS) - cadmium telluride (CdTe)

Module efficiencies 7 13%

Page 11: MicroNano 12 12 2013 Sinke

Concepts & technologies

Lab and pilot production

• super-high-efficiency concepts – full use of all light colors (optimize cell or optimize spectrum)

– advanced light management & concentration

• super-low-cost concepts (& technologies for new applications)

– very fast and non-vacuum processing

– low-cost materials & low material use

13

Example: spectrum conversion using

quantum dots (Univ. of Amsterdam)

Example: polymer solar cell (Solliance)

Page 12: MicroNano 12 12 2013 Sinke

Concepts & technologies

Lab and pilot production

• super-high-efficiency concepts – full use of all light colors (optimize cell or optimize spectrum)

– advanced light management & concentration

• super-low-cost concepts (& technologies for new applications)

– very fast and non-vacuum processing

– low-cost materials & low material use

14

Example: spectrum conversion using

quantum dots (Univ. of Amsterdam)

Example: polymer solar cell (Solliance)

Page 13: MicroNano 12 12 2013 Sinke

www.nrel.gov/ncpv/images/efficiency_chart.jpg www.nrel.gov/ncpv/images/efficiency_chart.jpg

Page 14: MicroNano 12 12 2013 Sinke

www.nrel.gov/ncpv/images/efficiency_chart.jpg www.nrel.gov/ncpv/images/efficiency_chart.jpg

nanotechnology as driver

Page 15: MicroNano 12 12 2013 Sinke

Ideal single-gap cells

Loss factor Selected remedies

recombination light management incl. concentration

and curve loss 30% 40%

spectral losses multi-gap & multi-band cells

hot carrier cells

multi-carrier generation

spectrum shaping

40% 70%+ `

30%

Routes to (very) high efficiency Potential & limits (rounded numbers)

Page 16: MicroNano 12 12 2013 Sinke

Ideal single-gap cells

Loss factor Selected remedies

recombination light management incl. concentration

and curve loss 30% 40%

spectral losses multi-gap & multi-band cells

hot carrier cells

multi-carrier generation

spectrum shaping

40% 70%+ `

30%

Routes to (very) high efficiency Potential & limits (rounded numbers)

qVoc < Egap

(JV)max < JmaxVmax

Eph > Eg

Eph < Eg

Page 17: MicroNano 12 12 2013 Sinke

Ideal single-gap cells

Loss factor Selected remedies

recombination light management incl. concentration

and curve loss 30% 40%

spectral losses multi-gap & multi-band cells

hot carrier cells

multi-carrier generation

spectrum shaping

40% 70%+ `

30%

Routes to (very) high efficiency Potential & limits (rounded numbers)

qVoc < Egap

(JV)max < JmaxVmax

Eph > Eg

Eph < Eg

Page 18: MicroNano 12 12 2013 Sinke

Ideal single-gap cells

Loss factor Selected remedies

recombination light management incl. concentration

(and curve loss) 30% 40%

spectral losses multi-gap & multi-band cells

hot carrier cells

multi-carrier generation

spectrum shaping

40% 70%+ `

Routes to (very) high efficiency Potential & limits (rounded numbers)

FhG-ISE

30%

Page 19: MicroNano 12 12 2013 Sinke

Ideal single-gap cells

Loss factor Selected remedies

recombination light management incl. concentration

(and curve loss) 30% 40%

spectral losses multi-gap & multi-band cells

hot carrier cells

multi-carrier generation

spectrum shaping

40% 70%+ `

Routes to (very) high efficiency Potential & limits (rounded numbers)

500 1000 1500 2000 25000

200

400

600

800

1000

1200

1400

1600

AM15

GaInP

GaInAs

Ge

30%

Page 20: MicroNano 12 12 2013 Sinke

Ideal single-gap cells

Loss factor Selected remedies

recombination light management incl. concentration

(and curve loss) 30% 40%

spectral losses multi-gap & multi-band cells

hot carrier cells

multi-carrier generation

spectrum shaping

40% 70%+ `

Routes to (very) high efficiency Potential & limits (rounded numbers)

30%

Page 21: MicroNano 12 12 2013 Sinke

Ideal single-gap cells

Loss factor Selected remedies

recombination light management incl. concentration

(and curve loss) 30% 40%

spectral losses multi-gap & multi-band cells

hot carrier cells

multi-carrier generation

spectrum shaping

40% 70%+ `

Routes to (very) high efficiency Potential & limits (rounded numbers)

30%

Page 22: MicroNano 12 12 2013 Sinke

Ideal single-gap cells

Loss factor Selected remedies

recombination light management incl. concentration

(and curve loss) 30% 40%

spectral losses multi-gap & multi-band cells

hot carrier cells

multi-carrier generation

spectrum shaping

40% 70%+ `

Routes to (very) high efficiency Potential & limits (rounded numbers)

30%

Page 23: MicroNano 12 12 2013 Sinke

Content

• Photovoltaic solar energy (PV): the challenge quantified

• The building blocks: solar cells in fab and lab

• Where nanotechnology comes in: to and beyond current performance and cost limits

• Outlook: mature yet young

25

Page 24: MicroNano 12 12 2013 Sinke
Page 25: MicroNano 12 12 2013 Sinke

Nanopatterning for high-efficiency PV:

finding the way in a jungle of options

27

Page 26: MicroNano 12 12 2013 Sinke

Challenge: combine the best of two

worlds for a record efficiency

28

Page 27: MicroNano 12 12 2013 Sinke

Example: advanced light management

to cross the 25% efficiency barrier for silicon

29

Page 28: MicroNano 12 12 2013 Sinke

Example: advanced light

management for ultra-thin solar cells (1)

30

Page 29: MicroNano 12 12 2013 Sinke

Example: advanced light

management for ultra-thin solar cells (2)

31

Page 30: MicroNano 12 12 2013 Sinke

Example: enhanced spectrum

utilisation using QDs

32 Courtesy: Tom Gregorkiewicz (UvA)

Page 31: MicroNano 12 12 2013 Sinke

Example: spectrum shaping to boost

efficiency (“add-on” to solar cells)

33 Courtesy: Tom Gregorkiewicz (UvA)

Page 32: MicroNano 12 12 2013 Sinke

Example: spectrum shaping by Space-

Separated Quantum Cutting using QDs (1)

34 Courtesy: Tom Gregorkiewicz (UvA)

Eexc ≥ 2Egap

Page 33: MicroNano 12 12 2013 Sinke

Example: spectrum shaping by Space-

Separated Quantum Cutting using QDs (2)

35 Courtesy: Tom Gregorkiewicz (UvA)

Page 34: MicroNano 12 12 2013 Sinke

The Holy Grail?

All-silicon tandem solar cell

36 http://iopscience.iop.org/0957-4484/labtalk-article/34339

Page 35: MicroNano 12 12 2013 Sinke

Content

• Photovoltaic solar energy (PV): the challenge quantified

• The building blocks: solar cells in fab and lab

• Where nanotechnology comes in: to and beyond current performance and cost limits

• Outlook: mature yet young

37

Page 36: MicroNano 12 12 2013 Sinke

Commercial module efficiencies History & projections (simplified estimates)

Page 37: MicroNano 12 12 2013 Sinke

Commercial module efficiencies History & projections (simplified estimates)

Page 38: MicroNano 12 12 2013 Sinke

The future at a glance

40

Current 2020

Long-term

potential

Commercial module efficiency flat

plate/concentrator (%) 722 / 2530 1025 / 3035 2050

Turn-key system price (flat plate)

(€/Wp)

13

0.82 (with sustainable

margins)

0.51

Cost of electricity

(LCoE, €/kWh) 0.050.30 0.040.20 0.030.10

Energy pay-back time (yrs) 0.52 0.251 0.250.5

Installed capacity (TWp) 0.1 0.51 10-50

Page 39: MicroNano 12 12 2013 Sinke

The future at a glance

Current 2020

Long-term

potential

Commercial module efficiency flat

plate/concentrator (%) 722 / 2530 1025 / 3035 2050

Turn-key system price (flat plate)

(€/Wp)

13

0.82 (with sustainable

margins)

0.51

Cost of electricity

(LCoE, €/kWh) 0.050.30 0.040.20 0.030.10

Energy pay-back time (yrs) 0.52 0.251 0.250.5

Installed capacity (TWp) 0.1 0.51 10-50

x 23

x ½⅓

x 100+

Page 40: MicroNano 12 12 2013 Sinke

A view on the future

42

City of the Sun, Municipality of Heerhugowaard. Photo: KuiperCompagnons

Page 41: MicroNano 12 12 2013 Sinke

Thank you for your attention!