24
Dan Wehnes, Loren Schwappach, Tom Thede EE600: Modern Solid State Devices Colorado Technical University 15 September 2011 1

Ee600 lab3 hal9000_grp

Embed Size (px)

Citation preview

Page 1: Ee600 lab3 hal9000_grp

Dan Wehnes, Loren Schwappach, Tom Thede

EE600: Modern Solid State Devices

Colorado Technical University

15 September 2011

1

Page 2: Ee600 lab3 hal9000_grp

Presentation Overview HAL 9000

System Description

Input / Output Requirements

Performance Requirements

Test Procedures / System Responses

Analysis of HAL 9000 Inverters

Critical Characteristics

Schematic

DC Analysis

Frequency Analysis

Propagation & Time Delays

Comparison

Conclusion

2

Page 3: Ee600 lab3 hal9000_grp

System Description

3

HAL 9000 Computer

Page 4: Ee600 lab3 hal9000_grp

System Description

4

HAL – (H)euristically Programmed

(AL)gorithmic Computer (Robot Hall of Fame, 2003)

Brain of the Space Ship Discovery in 2001: A

Space Odyssey (Robot Hall of Fame, 2003)

Robot that Controls/Uses Mechanical,

Sensing, and Information Systems of the

Spaceship (Robot Hall of Fame, 2003)

Capabilities (Robot Hall of Fame, 2003):

Controls/Communicates with All Systems onboard

Spaceship Discovery

Speech Output and Speech Recognition

Natural Language Understanding

Lip reading

Thinking Faster and Better than Humans

Page 5: Ee600 lab3 hal9000_grp

Primary Input / Output

Requirements

5

Inputs Outputs

Auditory EM Waves

(Allows Speech Recognition)

Capable of Life-Like Human Speech

Visual EM Waves

(Allows Visual Recognition and Lip

Reading)

Visual Identification / Recognition

of Crew / Discovery’s Systems and

Exterior Objects.

Uses: Red Camera Eye

Discovery’s Interior (Environmental)

Conditions

Controls all of Discovery’s

Environmental and Life Support

Systems

Discovery’s Exterior (Space-Time)

Conditions

Can Control all Mechanical

Systems/Vehicles that are part of

Discovery

Discovery’s System Outputs Controls All of Spaceship

Discovery’s Functions to Include

Electronics and Navigation

Page 6: Ee600 lab3 hal9000_grp

Performance Requirements

6

Ensure Mission’s Success At Any Cost

Perform Advanced Artificial Intelligence (AI)

Functions (Such as Decision Making and

Emotional Awareness)

Operate in a Variety of Environments

Process Information at High Speeds

Control all Interior/Exterior Spaceship Functions

Page 7: Ee600 lab3 hal9000_grp

Test Procedures / System Responses

7

Set Up

Scenario-Based Testing at System Level – Mission

Success Defined

Component Level

○ Power and Grounding Requirements, Electro-Static

Discharge (ESD) Protection

○ Lab Environment with Extreme Temperatures (space)

○ Durability – Shake, Rattle and Roll (Launch Simulation)

Action

System Level – Reaction to Anomalous Situations

(asteroid belt)

Component Level - Switch Control Signals and Evaluate

Page 8: Ee600 lab3 hal9000_grp

Test Procedures / System Responses

8

Reaction

System Level - Response to All Inputs from Spacecraft & Humans

Component Level - Correct Outputs Based on Inputs

Pass/Fail Criteria

System – Supportive of Humans and Their Directions

Clock Speed Measurements – Response Times to Inputs

Operating Region Evaluation – Controlled/Non-Controlled

Environment

Environmental Testing – Entire Range of Launch and Space

Environment

Failure Modes and Effects – Triple Redundancy for Human Space

Flight

Power Usage Evaluation – Total vs. Allocated per Component

Use of Allocated Space and Weight on Discovery Spacecraft

Page 9: Ee600 lab3 hal9000_grp

9

Page 10: Ee600 lab3 hal9000_grp

Inverter Selection – Critical

Characteristics

10

Critical Factors (Importance From Greatest to Least):

Performance: Clock Speed –Fast Switching Speeds (GHz / THz)

Noise Immunity-NM

Minimum Power Usage

Reliability: Resistance to Electrostatic Discharge (Ionization effects)

Minimal Repair Capability and Human Space Flight Rated – NASA and AFIT Certified

Robustness: Maximum Durability

Page 11: Ee600 lab3 hal9000_grp

Schematic

11

R2

1.6k

Q5Q2N3904

R4

130

D1

D1N4002

Vdd2

5Vdc

0

R3

1k

Q6Q2N3904

C3

90p

NMOSMbreaknNMOS

L = 1uW = 24u

PMOSMbreakpPMOSW = 14uL = 1u

C1

90p

Vdd1

5Vdc

0

Vdd3

5Vdc

0

TTL_Out

CMOS Circuit BiCMOS Circuit

CMOS_Out

TTL Circuit

Shared

Input

Source

Vin

0Vdc

PMOS2MbreakpPMOSW = 14uL = 1u

NMOS2MbreaknNMOS

L = 1uW = 24u

Q1Q2N3904

Q2Q2N3904

0

C2

90p

BiCMOS_Out

Q3

Q2N3904

Q4Q2N3904

R1

4k

Page 12: Ee600 lab3 hal9000_grp

DC Analysis – Output Slope

12

Vin(low) = 606 mV

Vin(high) = 1.437 V

TTL

Vin(low) = 1.922 V

Vin(high) = 2.494 V

BiCMOS

Vin(low) = 1.364 V

Vin(high) = 2.078 V

CMOS

Using Slope =-1

Points

Page 13: Ee600 lab3 hal9000_grp

DC Analysis – Threshold Voltage

13

Using Slope =1 (line)

TTL

BiCMOS

VThreshold = 1.854 V

CMOS

VThreshold = 2.316 V

VThreshold = 1.393 V

Page 14: Ee600 lab3 hal9000_grp

DC Analysis – Noise Margins

14

Noise MarginsResults

TTL

BiCMOS

NMH = 2.759 V

CMOS

NML = 1.018 V

NMH = 1.734 V

NML = 990 mV

NMH = 3.305 V

NML = 583 mV

Page 15: Ee600 lab3 hal9000_grp

DC Analysis – Power Used

15

Power UsedResults

TTL

BiCMOS

At Vin=0V: 25 pW

CMOS

At Vin=5V: 25 pW

At Vin=1.88V: 216 uW

At Vin=0V: 453 pW

At Vin=5V: 453 pW

At Vin=2.34V: 17.5 mW

At Vin=0V: 5.38 mW

At Vin=5V: 16.8 mW

At Vin=1.43V: 165 mW

Page 16: Ee600 lab3 hal9000_grp

Frequency Analysis

16

Corner FrequencyResults (f3dB)

TTL

BiCMOS

6.09 kHz

CMOS

68.55 kHz

5.86 MHz

Page 17: Ee600 lab3 hal9000_grp

Propagation & Time Delays

17

Propagation Delays

tPLH = t3-t1 = 1.232 us

CMOS

tPHL = t7-t5 = 230 ns

tP = tPLH + tPHL = 1.462 us

Rise & Fall Times

tR = t4-t2 = 2.869 us

tF = t8-t6 = 565 ns

Max Frequency

Fmax = 1/(TR+TF) = 291.2 kHz

Page 18: Ee600 lab3 hal9000_grp

Propagation & Time Delays

18

Propagation Delays

tPLH = t3-t1 = 74 ns

BiCMOS

tPHL = t7-t5 = 23 ns

tP = tPLH + tPHL = 97 ns

Rise & Fall Times

tR = t4-t2 = 212 ns

tF = t8-t6 = 46 ns

Max Frequency

Fmax = 1/(TR+TF) = 3.876 MHz

Page 19: Ee600 lab3 hal9000_grp

Propagation & Time Delays

19

Propagation Delays

tPLH = t3-t1 = 268 ns

TTL

tPHL = t7-t5 = 3 ns

tP = tPLH + tPHL = 271

Rise & Fall Times

tR = t4-t2 = 35 ns

tF = t8-t6 = 5 ns

Max Frequency

Fmax = 1/(TR+TF) = 25 MHz

Page 20: Ee600 lab3 hal9000_grp

Comparison of CMOS, BiCMOS, TTL

20

Evaluation Procedure

ParameterIdeal

InverterCMOS

InverterBiCMOS Inverter

Lab 2d TTL

Transfer Characteristic

VThreshold 2.5 V 1.854 V 2.316 V 1.393 V

Noise MarginsNMH 2.5 V 2.759 V 1.734 V 3.305 V

NML 2.5 V 1.018 V 990 mV 582 mV

Power Used

P @ Vin = 0 V 0W 25 pW 453 pW 5.38 mW

P @ Vin = 5 V 0W 25 pW 453 pW 16.8 mW

PMax 0W 216 uW 17.5 mW 165 mW

Propagation Delays

tPDHL 0 s 230 ns 23 ns 3 ns

tPDLH 0 s 1.232 us 74 ns 268 ns

tP 0 s 1.462 us 97 ns 271 ns

Rise Time tR 0 s 2.869 us 212 ns 35 ns

Fall Time tF 0 s 565 ns 46 ns 5 ns

3dB Corner Frequency

f3dB inf. 6.09 kHz 68.6 kHz 5.86 MHz

Max Frequency fMax inf. 291 kHz 3.88 MHz 25 MHz

Page 21: Ee600 lab3 hal9000_grp

Conclusions

21

Analysis Results:

Performance:

Clock Speed –Fast Switching Speeds (GHz / THz)

○ WINNER: TTL

Noise Immunity

○ WINNER: CMOS

Minimum Power Usage

○ WINNER: CMOS

Reliability:

Resistance to Electrostatic Discharge (Ionization effects)

○ WINNER: TTL

Robustness:

Maximum Durability

○ WINNER: TTL

Our Conclusion: Although TTL Won the Majority of Critical

Requirements We Will Need to Analyze Additional Technologies

Before Making a Final Decision

Page 22: Ee600 lab3 hal9000_grp

Questions

22

Page 23: Ee600 lab3 hal9000_grp

References

Neamen, D. (2007). Microelectronics: Circuit Analysis and Design (3rd ed.). New York, NY: McGraw-Hill.

Robot Hall of Fame. (2003). 2003 Inductees: HAL 9000. Retrieved September 15, 2011 from: http://www.robothalloffame.org/hal.html

2001 Space Sounds. (2003). 2001 A Space Odyssey Internet Resource Archive.Retrieved September 15, 2011 from: http://www.palantir.net/2001/sounds.html

Movie Sounds. (2003). 2001: A Space Odyssey. Retrieved September 15, 2011 from: http://www.moviesounds.com/2001.html

[Illustration of a HAL 9000]. (n.d.). Retrieved September 15, 2011, from: http://bugtraq.ru/library/underground/.keep/compscifi.hal9000.jpg

[Picture of Dave, 2001 A Space Odyssey]. (n.d.). Retrieved September 15, 2011, from: http://www.google.com/imgres?q=2001+a+space+odyssey&hl=en&biw=1020&bih=891&tbs=isz:l&tbm=isch&tbnid=aV_lO0M1jkRAFM:&imgrefurl=http://proverbsofhell.tumblr.com/post/1982878211/inspcollection-2001-a-space-odyssey-dave&docid=Rh2O6pBSIEt57M&w=1920&h=1080&ei=CVtyTvenD7KmsQLrtITfCQ&zoom=1 23

Page 24: Ee600 lab3 hal9000_grp

References

[Illustration of a Pilot at Console of Discovery Spaceship]. (n.d.). Retrieved September 15, 2011, from:

http://4.bp.blogspot.com/_7J_WGI7Jygw/S45l1Tq6wPI/AAAAAAAAEtk/gddgrGLNXKw/s1600/2001%2BA%2BSpace%2BOdyssey%2BPic%2B046.jpg

[Illustration of a Man in Discovery Spaceship’s HAL Memory Array]. (n.d.). Retrieved September 15, 2011, from: http://wodumedia.com/wp-content/uploads/HAL-9000-is-about-to-get-his-hard-drive-fried-by-a-seriously-pissed-off-Dave.jpg

24