87
Introduction Distributional changes Acclimation Adaptation Overall conclusions Seaweed in the light of global climate change Alexander Jueterbock [email protected] Marine Ecology Research Group Faculty of Biosciences and Aquaculture University of Nordland Norway 53 rd NEAS Symposium Algae as Model Systems 27.04.2014 1 / 60

Seaweed meadows in the light of global climate change

Embed Size (px)

Citation preview

Page 1: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Seaweed in the light of global climate change

Alexander [email protected]

Marine Ecology Research GroupFaculty of Biosciences and Aquaculture

University of NordlandNorway

53rd NEAS SymposiumAlgae as Model Systems

27.04.2014

1 / 60

Page 2: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Contributors

Galice Hoarau

Irina Smolina

Jorge Fernandes

James A. Coyer

Spyros Kollias

Jeanine L. Olsen

Heroen Verbruggen Lennert TybergheinHavkyst projects: 196505, 203839, 216484

2 / 60

Page 3: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

CO2 increase since the industrial revolution

3 / 60

Page 4: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Recent land and ocean warming

Christiansen, J.; Scientific American (2013)

4 / 60

Page 5: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Climate change responses

..

Temperaturerise

.

Heat waves

.

Seasonalityshi

.

Oceanacidifica on

.

Migra on

.

Acclima on

.

Adapta on

.Species

5 / 60

Page 6: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

High sensitivity of intertidal species

6 / 60

Page 7: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Seaweeds as model systemsto investigate climate change

Seaweeds provide an excellent system to investigate climate changeimpact

Intertidal key species

Distribution directly limited by temperature tolerance

7 / 60

Page 8: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Seaweeds are key species in temperateNorth Atlantic regions

© Hoarau, G., 20108 / 60

Page 9: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Seaweeds are key species in temperateNorth Atlantic regions

8 / 60

Page 10: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Seaweeds as model systemsto investigate climate change

Seaweeds provide an excellent system to investigate climate changeimpact

Intertidal key species

Distribution directly limited by temperature tolerance

9 / 60

Page 11: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Temperate seaweed distribution limited by the10℃ summer and the 20℃ winter isotherm

10 / 60

Page 12: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Seaweeds as model systemsto investigate climate change

Seaweeds provide an excellent system to investigate climate changeimpact

Intertidal key species

Distribution directly limited by temperature tolerance

Range shifts of seaweeds in response to SST-shifts cantrigger major ecological changes

11 / 60

Page 13: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Recent warming in the North Atlantic

Shift of the 15°C isotherm330 km north

1985 2000

[McMahon & Hays, 2006; Global Change Biol.]

12 / 60

Page 14: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Predicted northward shift of SST isotherms

Poleward migration of SST isotherms underIPCC scenario A2 until 2100:

30-90 km/decade along North Atlantic shores

[Hansen et al., 2006; PNAS]

13 / 60

Page 15: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Predicting seaweed range shifts under climate change

..

Migra on

.

Acclima on

.

Adapta on

.Inter dalseaweed

Predominant seaweeds in the North-Atlantic

Fucus serratus Fucusvesiculosus

Ascophyllumnodosum

Shores with biggest ecological change?

Assemblage shift?

14 / 60

Page 16: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Ecological Niche ModelingPresent-day conditions

Bio-ORACLE database[Tyberghein et al., 2011; Global Ecol. Biogeogr.].

Georeferenced Occurrences

DA (m−1)SST (℃)

SAT (℃)

Ecological Niche Model (Maxent [Phillips et al., 2006; Ecol. Model.])

2000 2100 ? 2200 ?15 / 60

Page 17: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Ecological Niche ModelingPresent-day conditions

Bio-ORACLE database[Tyberghein et al., 2011; Global Ecol. Biogeogr.].

Georeferenced Occurrences

DA (m−1)SST (℃)

SAT (℃)

Ecological Niche Model (Maxent [Phillips et al., 2006; Ecol. Model.])

2000 2100 ? 2200 ?CO2 emission scenario changes

SST (℃)SAT (℃)

SST (℃)SAT (℃)

15 / 60

Page 18: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Predicted Niche ShiftsBased on the intermediate IPCC scenario A1B

[Jueterbock et al., 2013; Ecol. Evol.]

16 / 60

Page 19: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Predicted Niche ShiftsBased on the intermediate IPCC scenario A1B

Habitat gain in the Arctic

[Jueterbock et al., 2013; Ecol. Evol.]

16 / 60

Page 20: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Predicted Niche ShiftsBased on the intermediate IPCC scenario A1B

Habitat loss in warm temperate areas

[Jueterbock et al., 2013; Ecol. Evol.]

16 / 60

Page 21: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Predominant seaweeds shift northward as anassemblage

West-Atlantic East-Atlantic

F. serratus F. vesiculosus A. nodosum[Jueterbock et al., 2013; Ecol. Evol.]

17 / 60

Page 22: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Conclusions from prediced niche shifts

..

Migra on

.

Acclima on

.

Adapta on

.Inter dalseaweed

Biggest ecological change inwarm temperate and Arctic areas

Assemblage shift

18 / 60

Page 23: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Conclusions from prediced niche shifts

..

Migra on

.

Acclima on

.

Adapta on

.Inter dalseaweed

Biggest ecological change inwarm temperate and Arctic areas

Assemblage shift

18 / 60

Page 24: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Colonization of Arctic shores

The poleward shift of temperate intertidal seaweeds depends onthree key factors

Dispersal and invasive potentialDark periodCompetitive interactions

19 / 60

Page 25: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Colonization of Arctic shores

The poleward shift of temperate intertidal seaweeds depends onthree key factors

Dispersal and invasive potentialDark periodCompetitive interactions

19 / 60

Page 26: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Dispersal and invasive potentialLow dispersal of juvenile stages in fucoid algae

[Braune, 2008; Meeresalgen]

♂ ♀ dioecious

zygote dispersal: <10m

20 / 60

Page 27: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Dispersal and invasive potential

Flotation vesiclesFucus vesiculosus

Ascophyllum nodosumlow invasive potential

Shipping transport

Fucus serratus

21 / 60

Page 28: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Dispersal and invasive potentialShipping transport introduced F. serratus to Canada

22 / 60

Page 29: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Colonization of Arctic shores

The poleward shift of temperate intertidal seaweeds depends onthree key factors

Dispersal and invasive potentialDark periodCompetitive interactions

23 / 60

Page 30: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Dark period

Poleward shift of Laminaria hyperborea in progress

[Müller et al., 2009; Bot. Mar.]

Recent records

Hiscock, K.

24 / 60

Page 31: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Colonization of Arctic shores

The poleward shift of temperate intertidal seaweeds depends onthree key factors

Dispersal and invasive potentialDark periodCompetitive interactions

25 / 60

Page 32: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Competitive interactions

Fucus distichus predominates the Arctic intertidal

Habitat suitability ofF. distichus

based on ENM [Smolina, I., 2012]

26 / 60

Page 33: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Competitive interactions

[Smolina, I., 2012]

Increase of sympatryzones/hybridization

Competition

26 / 60

Page 34: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Conclusions from prediced niche shifts

..

Migra on

.

Acclima on

.

Adapta on

.Inter dalseaweed

Biggest ecological change inwarm temperate and Arctic areas

Assemblage shift

27 / 60

Page 35: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Climate change impact also on subtidal kelp

[Raybaud et al., 2013; PLOS ONE]

Percentage of models forecasting adisappearance of Laminaria digitata

28 / 60

Page 36: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Ecological Niche Models neglect biotic interactions

Ecological Niche Models do not takebiotic interactions into account

29 / 60

Page 37: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Biotic interactionsIncreasing mussel recruitment due to rising sea temperatures

replaces rockweed (A. nodosum) beds in Canada

[Ugarte, 2009; J. Appl. Phycol.]

30 / 60

Page 38: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Biotic interactionsGrazing pressure

[Harley et al., 2012; J. Phycol]31 / 60

Page 39: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Biotic interactionsGrazing pressure

[Harley et al., 2012; J. Phycol]31 / 60

Page 40: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Ecological Niche Models neglect species responses

Ecological Niche Models do not takethe plastic or adaptive potential

of species into account

..

Migra on

.

Acclima on

.

Adapta on

.Inter dalseaweed

32 / 60

Page 41: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Acclimation potential of Fucus serratus

..

Migra on

.

Acclima on

.

Adapta on

.Fucusserratus

Local thermal adaptation?

Areas under highest extinction risk?

33 / 60

Page 42: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Common-garden heat stress experiments

Norway

Denmark

BrittanySpain

34 / 60

Page 43: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Common-garden heat stress experiments

Norway

Denmark

BrittanySpain

Bodø

34 / 60

Page 44: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Common-garden heat stress experiments

Norway

Denmark

BrittanySpain

Bodø

Acclimation at 9℃

34 / 60

Page 45: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Common garden heat stress experiments

Heat stress, > 6 ind./pop

MeasurementsPhotosynthetic performancehsp gene expression (hsp70, hsp90, shsp)

1h Stress 24h Recovery

9℃

20℃24℃28℃32℃36℃

T (°C)

Time

35 / 60

Page 46: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Photosynthetic performance

0 4 8 12 16 20 24 28 32 36 ℃

NorwayDenmarkBrittanySpain

Thermal range in year 2200

Measured response

1

1. Performancein 2200

2

2. Resilience

[Jueterbock et al., 2014; Mar. Genomics]36 / 60

Page 47: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Photosynthetic performance

0 4 8 12 16 20 24 28 32 36 ℃

NorwayDenmarkBrittanySpain

Thermal range in year 2200

Measured response

1

1. Performancein 2200

2

2. Resilience

[Jueterbock et al., 2014; Mar. Genomics]36 / 60

Page 48: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Photosynthetic performance

0 4 8 12 16 20 24 28 32 36 ℃

NorwayDenmarkBrittanySpain

Thermal range in year 2200

Measured response

1

1. Performancein 2200

2

2. Resilience

[Jueterbock et al., 2014; Mar. Genomics]36 / 60

Page 49: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Photosynthetic performance

0 4 8 12 16 20 24 28 32 36 ℃

NorwayDenmarkBrittanySpain

Thermal range in year 2200

Measured response

1

1. Performancein 2200

2

2. Resilience

[Jueterbock et al., 2014; Mar. Genomics]36 / 60

Page 50: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Photosynthetic performance

0 4 8 12 16 20 24 28 32 36 ℃

NorwayDenmarkBrittanySpain

Thermal range in year 2200

Measured response

1

1. Performancein 2200

2

2. Resilience

[Jueterbock et al., 2014; Mar. Genomics]36 / 60

Page 51: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Heat shock responseConstitutive shsp gene expression before heat shock

23 weeks acclimation

7 weeks acclimation

Normalize

dexpressio

n

High constitutivestress

Norway

DenmarkBrittanySpain

Heat shock response of shsp gene expression after 24h recovery

Fold

change

Reducedresponsiveness

Norway

DenmarkBrittanySpain

[Jueterbock et al., 2014; Mar. Genomics] 37 / 60

Page 52: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Heat shock responseConstitutive shsp gene expression before heat shock

23 weeks acclimation

7 weeks acclimation

Normalize

dexpressio

n

High constitutivestress

Norway

DenmarkBrittanySpain

Heat shock response of shsp gene expression after 24h recovery

Fold

change

Reducedresponsiveness

Norway

DenmarkBrittanySpain

[Jueterbock et al., 2014; Mar. Genomics] 37 / 60

Page 53: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

ConclusionsAcclimation

..

Migra on

.

Acclima on

.

Adapta on

.Fucusserratus

Local thermal adaptation

Areas under highest extinction risk?

Brittany and Spain

Confirms predicted habitat loss

[Jueterbock et al., 2013; Ecol. Evol.]

38 / 60

Page 54: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Ribadeo, Spain © Coyer, J.A., 1999[Jueterbock et al., 2013; Ecol. Evol., Fig. S6]

1999: extensive F. serratus meadows

39 / 60

Page 55: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Ribadeo, Spain © Jueterbock, A., 2010[Jueterbock et al., 2013; Ecol. Evol., Fig. S6]

90% abundance decline in 11 years

[Viejo et al., 2011; Ecography]

Dwarf forms withreduced reproductivecapacity in Spain

39 / 60

Page 56: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Threatened refugial populations

Ice cover during the Last Glacial Maximum (18-20 kya)

40 / 60

Page 57: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Genetically diverse refugia under threatFucus serratus

Glacial refugia identified by mtDNA haplotype diversity[Hoarau et al., 2007; Mol. Ecol.]

41 / 60

Page 58: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Genetically diverse refugia under threatFucus serratus

[Hoarau et al., 2007; Mol. Ecol.]42 / 60

Page 59: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Genetically diverse refugia under threatChondrus crispus

Based on mitochondrial SNPs

[Provan & Maggs, 2012; Proc. R. Soc. London, Ser. B]

180 km retreat since 1971from a Portuguese refugium

Interglacial distribution

Glacial distribution

Stable refugiumunder threat

43 / 60

Page 60: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Remaining key question

Can ancient refugial populationsadapt to climate change

orwill temperate seaweeds

lose their centers of genetic diversity?

44 / 60

Page 61: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Adaptation

..

Migra on

.

Acclima on

.

Adapta on

.Fucusserratus

Effective population size Ne? Genetic changes (past 10 yrs)?

45 / 60

Page 62: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Sampling scheme (50–75 ind./pop)

∼ 2000 ∼ 2010

Spatial

(enviro

nmental)eff

ects

Temporal changes

1 decadeof selection

46 / 60

Page 63: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Methods and analysis

∼ 2000 ∼ 2010

Spatial

(enviro

nmental)eff

ects

Temporal changes

1 decadeof selection

Genotyping31 microsatellite markers (20 EST-linked)

AnalysisEffective population size (Ne)Allelic richness (α)Temporal outlier loci

47 / 60

Page 64: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Methods and analysis

∼ 2000 ∼ 2010

Spatial

(enviro

nmental)eff

ects

Temporal changes

1 decadeof selection

Genotyping31 microsatellite markers (20 EST-linked)

AnalysisEffective population size (Ne)Allelic richness (α)Temporal outlier loci

48 / 60

Page 65: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Effective population size NeReflecting adaptive capacity

∼ 2000 ∼ 2010

18

6320723

Norway

DenmarkBrittanySpain

32

6121026

Estimates excluding outlier loci

[Jueterbock, 2013; PhD Thesis]

49 / 60

Page 66: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Methods

∼ 2000 ∼ 2010

Spatial

(enviro

nmental)eff

ects

Temporal changes

1 decadeof selection

Genotyping31 microsatellite markers (20 EST-linked)

AnalysisEffective population size (Ne)Allelic richness (α)Temporal outlier loci

50 / 60

Page 67: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Changes in allelic richness

∼ 2000 ∼ 2010

3.1

4.68.04.0

Norway

DenmarkBrittanySpain

3.3

4.87.94.6

Significantdecline

[Jueterbock, 2013; PhD Thesis]

51 / 60

Page 68: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Methods

∼ 2000 ∼ 2010

Spatial

(enviro

nmental)eff

ects

Temporal changes

1 decadeof selection

Genotyping31 microsatellite markers (20 EST-linked)

AnalysisEffective population size (Ne)Allelic richness (α)Genetic differentiation (Dest)Temporal outlier loci

52 / 60

Page 69: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Temporal outlier loci indicate selective sweeps

Before Selection After Selection

Selective Sweep

based on [Vitti et al., 2012; Trends in Genetics]

53 / 60

Page 70: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Outlier loci

Temporal outlier loci

0%

6%23%13%

Norway

DenmarkBrittanySpain

Strongest selection pressure in the SouthAdaptive to climate change?

[Jueterbock, 2013; PhD Thesis]

54 / 60

Page 71: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

ConclusionsAdaptation

..

Migra on

.

Acclima on

.

Adapta on

.Fucusserratus

Adaptive responsivenesshighest in Brittany

and likely insufficient in Spain

55 / 60

Page 72: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Fucus in the tree of lifedistantly related to other taxa

The genome of Ectocarpus siliculosus is sequenced but Fucalesand Ectocarpales diverged in the Cretaceous (ca. 125 Ma)

[Cock et al., 2010; Nature]

De novo Fucus vesiculosus genome until 2017, part of IMAGOMarine Genome project (University of Gothenburg, Sweden)

56 / 60

Page 73: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Summary

..

Migra on

.

Acclima on

.

Adapta on

.Fucusserratus

Highest responsivenessin Brittany

Adaptive value re-mains unknown

Seaweed meadows:Loss in warm-

temperate regionsArctic invasion?

Ancient refugiaunder threat:

stress in BrittanyExtinction risk in Spain

57 / 60

Page 74: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Integrative niche modeling

Futuredistribution

Niche modeling

Phenotypicplasticity

Adaptation

DispersalBiotic

interactions

Eco- evolutionary responding potential

Present-day occurrence

Heat shock response Outlier loci

Occurrence records Environmental conditions

Stable realized niche

Niche shift/evolutionMitigation of habitat-lossIncreased invasive potential

58 / 60

Page 75: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

Overall conclusionSeaweeds as model systems to investigate climate change

Seaweeds provide an excellent system to investigate climate changeimpact on North Atlantic rocky shores

Intertidal key speciesDistribution directly limited by temperature toleranceAnnotated genome of Fucus sp. needed (IMAGO)

Remaining key question: Adaptation or extinction in geneticallydiverse ancient glacial refugia?

59 / 60

Page 76: Seaweed meadows in the light of global climate change

Introduction Distributional changes Acclimation Adaptation Overall conclusions

60 / 60

Page 77: Seaweed meadows in the light of global climate change

References I

Balanya, J.; Oller, J.M.; Huey, R.B.; Gilchrist, G.W.; Serra, L. (2006)Global genetic change tracks global climate warming in Drosophila subobscura.Science 313(5794):1173–1175.

Berteaux, D.; Reale, D.; McAdam, A.G.; Boutin, S. (2004)Keeping pace with fast climate change: can arctic life count on evolution?Integrative and Comparative Biology 44(2):140–151.

Bierne, N. (2010)The distinctive footprints of local hitchhiking in a varied environment and global hitchhiking in a subdividedpopulationEvolution 64(11):3254–3272.

Bierne, N.; Welch, J.; Loire E.; Bonhomme, F.; David, P. (2011)The coupling hypothesis: why genome scans may fail to map local adaptation genesMolecular Ecology 20(10):2044–2072.

Bierne, N.; Roze, D.; Welch, J. (2013)Pervasive selection or is itâĂę? why are FST outliers sometimes so frequent?Molecular Ecology 22(8):2061–2064.

Bradshaw, W. E. and Holzapfel, C. M. (2006)Climate change - Evolutionary response to rapid climate changeScience 312(5779):1477–1478.

1 / 11

Page 78: Seaweed meadows in the light of global climate change

References II

Braune, W. (2008)MeeresalgenKoeltz Scientific Books Königstein, Germany.

Bussotti, F.; Desotgiu, R; Pollastrini, M.; Cascio, C. (2010)The JIP test: a tool to screen the capacity of plant adaptation to climate changeScandinavian Journal of Forest Research 25(Suppl 8): 43–50.

Charlesworth, B.; Nordborg, M.; Charlesworth, D. (1997)The effects of local selection, balanced polymorphism and background selection on equilibrium patterns ofgenetic diversity in subdivided populationsGenetic Research 70:155–174.

Cock, J.M.; Sterck, L.; Rouzé, P. et al. (2010)The Ectocarpus genome and the independent evolution of multicellularity in brown algaeNature 465(3):617–621.

Coyer, J. A.; Peters, A.F.; Stam, W.T.; Olsen, J.L. (2003)Post-ice age recolonization and differentiation of Fucus serratus L. (Phaeophyceae; Fucaceae) populationsin Northern EuropeMolecular Ecology 12:1817–1829.

Coyer, J. A.; Hoarau, G.; Oudot-Le Secq, M.-P.; Stam, W.T. (2006)A mtDNA-based phylogeny of the brown algal genus Fucus (Heterokontophyta; Phaeophyta)Molecular Phylogenetics and Evolution 39:209–222.

2 / 11

Page 79: Seaweed meadows in the light of global climate change

References III

Cock, J.M.; Sterck, L.; Rouzé, P. et al. (2010)The Ectocarpus genome and the independent evolution of multicellularity in brown algaeNature 465(3):617–621.

Duarte L.; Viejo R.M.; Martínez B.; deCastro M.; Gómez-Gesteira M.; Gallardo T.(2013)Recent and historical range shifts of two canopy-forming seaweeds in North Spain and the link with trendsin sea surface temperatureActa Oecologica 51:1–10.

Ehlers, A.; Worm, B. & Reusch, T. B. H. (2008): Importance of genetic diversity in eelgrass Zostera marinafor its resilience to global warming.Mar. Ecol. Prog. Ser. 355:1–7.

Excoffier, L.; Foll, M.; Petit, R.J. (2009)Genetic Consequences of Range ExpansionsAnnual Review of Ecology, Evolution, and Systematics 40:481–501.

Excoffier, L.; Lischer, H.E.L. (2010)Arlequin suite ver 3. 5: a new series of programs to perform population genetics analyses under Linux andWindowsMolecular Ecology Resources 10(3):564–567.

Fredriksen, S.; Christie, H.; Saethre, B.A. (2005)Species richness in macroalgae and macrofauna assemblages on Fucus serratus L. (Phaeophyceae) andZostera marina L. (Angiospermae) in Skagerrak, Norway.Marine Biology Research 1(1):2–19.

3 / 11

Page 80: Seaweed meadows in the light of global climate change

References IV

Fourcade, Y.; Chaput-Bardy, A.; Secondi, J.; Fleurant, C.; Lemaire, C. (2013)Is local selection so widespread in river organisms? Fractal geometry of river networks leads to high bias inoutlier detectionMolecular Ecology 22(8):2065–2073.

Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey,K.S.; Ebert, C.; Fox, H.E. and others (2010)A global map of human impact on marine ecosystemsScience 319(5856):948–952.

Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D.W.; Medina-Elizade, M. (2006)Global temperature changeProceedings of the National Academy of Sciences 103(39):14288–14293.

Harley, C.D.G.; Anderson, K.M; Demes, K.W; Jorve, J.P.; Kordas, R.L.; Coyle, T.A.; Graham, M.H. (2012)Effects of Climate Change on Global Seaweed CommunitiesJournal of Phycology 48:1064–1078.

Hoarau, G.; Coyer, J.A.; Veldsink, J.H.; Stam, W.T.; Olsen, J.L. (2007)Glacial refugia and recolonization pathways in the brown seaweed Fucus serratusMolecular Ecology 16(17):3606–3616.

Hofer, T.; Ray, N.; Wegmann, D.; Excoffier, L. (2009)Large Allele Frequency Differences between Human Continental Groups are more Likely to have Occurred byDrift During range Expansions than by SelectionAnnals of Human Genetics 73(1):95–108.

4 / 11

Page 81: Seaweed meadows in the light of global climate change

References V

Jimenez-Valverde, Alberto (2012)Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure inspecies distribution modellingGlobal Ecology and Biogeography 21:498–507.

Jueterbock, A.; Tyberghein, L.; Verbruggen, H.; Coyer, J.A.; Olsen, J.L.; Hoarau, G. (2013)Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidalEcology and Evolution 3(5):1356–1373.

Jueterbock, A. (2013)Climate change impact on the seaweed Fucus serratus a key foundational species on North Atlantic rockyshores (2013)PhD Thesis in Aquatic Biosciences no.10 Faculty of Biosciences and Aquaculture, University of Nordland,Bodø, Norway

Jueterbock, A.; Kollias, S.; Smolina, I.; Fernandes, J.O.; Coyer, J.A.; Olsen, J.L.; Hoarau G. (2014)Thermal stress resistance of the brown alga Fucus serratus along the North Atlantic coast: acclimatizationpotential to climate changeMarine Genomics 13:27-36.

Knight, M.; Parke, M. (1950)A biological study of Fucus vesiculosus L. and F. serratus L.Journal of the Marine Biological Association of the UK 29:439–514.

Køie, M.; Kristiansen, A.; Weitemeyer, S. (2001)Der große Kosmos Strandführer.Kosmos.

5 / 11

Page 82: Seaweed meadows in the light of global climate change

References VI

Luikart, G.; England, P. R.; Tallmon, D.; Jordan, S.; Taberlet, P. (2003)The power and promise of population genomics: from genotyping to genome typingNature Reviews Genetics 4(12):981–994.

Maggs, C. A.; Castilho, R.; Foltz, D.; Henzler, C.; Jolly, M. T.; Kelly, J.; Olsen, J.; Perez, K. E.; Stam, W.;Väinölä, R. et al. (2008): Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa.Ecology 89:108–122.

McMahon, C.R. & Hays, G.C. (2006)Thermal niche, large-scale movements and implications of climate change for a critically endangered marinevertebrate.Global Change Biology 12(7):1330–1338.

Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.T.; Gregory, JM.; Kitoh, A.; Knutti,R.; Murphy, J.M.; Noda, A.; Raper, S.C.B.; Watterson, I.G and Weaver, A.J.; Zhao, Z.-C. (2007)Global Climate Projections.Climate Change 2007: the physical science basis: contribution of Working Group I to the FourthAssessment Report of the Intergovernmental Panel on Climate Change Eds: Solomon S. et al.

Müller, R.; Laepple, T.; Bartsch, I.; Wiencke, C. (2009)Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters.Botanica Marina 52:617–638.

Neiva, J; Pearson, G.,A.; Valero, M.; Serrão, E. A. (2010): Surfing the wave on a borrowed board: rangeexpansion and spread of introgressed organellar genomes in the seaweed Fucus ceranoides L.Molecular Ecology 19(21):4812–4822.

6 / 11

Page 83: Seaweed meadows in the light of global climate change

References VII

Nicastro, K.R.; Zardi, G.I.; Teixeira, S.; Neiva, J.; Serrao, E.A.; Pearson, G.A. (2013)Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct geneticlineage in the marine macroalga Fucus vesiculosus.BMC Biology 11(6).

Nolan, T.; Hands, R.E.; Bustin, S.A. (2006)Quantification of mRNA using realtime RT-PCRNature Protocols 1(3)1559–1582.

Pannell, J. R.; Charlesworth, B. (2000)Effects of metapopulation processes on measures of genetic diversityPhilosophical Transactions of the Royal Society of London B 355(1404):1851-1864.

Pearson, G.A.; Lago-Leston, A.; Mota, C. (2009)Frayed at the edges: selective pressure and adaptive response to abiotic stressors are mismatched in lowdiversity edge populations.Journal of Ecology 97(3):450–462.

Pereyra, R. T.; Bergström, L.; Kautsky, L. & Johannesson, K. (????): Rapid speciation in a newly openedpostglacial marine environment, the Baltic Sea.BMC Evol. Biol. 9(1):70.

Pespeni, M.H.; Sanford, E.; Gaylord, B.; Hill, T.M; Hosfelt, J.D. et al. (2013)Evolutionary change during experimental ocean acidificationProceedings of the National Academy of Sciences 110(17):6937–6924.

7 / 11

Page 84: Seaweed meadows in the light of global climate change

References VIII

Smolina S. (2012)Climate change in the Arctic intertidal: Response of the seaweed Fucus distichus to rising temperatureMaster Thesis Faculty of Biosciences and Aquaculture, University of Nordland, Norway

Smolina I., Coyer J.A., Jueterbock A., Hoarau, G.The fate of arctic Fucus distichus under climate change: an ecological niche modeling approach.

Smolina I., Coyer J.A., Kollias S., Jueterbock A., Hoarau, G.Variation in heat stress response in two populations of the seaweed, Fucus distichus, from the arctic andsubarctic intertidal: implication for climate change.

Phillips, S.J.; Anderson, R.P.; Schapire, R.E. (2006)Maximum entropy modeling of species geographic distributions.Ecological Modelling 190(3-4):231–259.

Pounds, J. A.; Bustamante, M.R.; Coloma, L.A.; Consuegra, J.A.; Fogden, M.P.L.; Foster, P.N.; La Marca,E.; Masters, K.L.; Merino-Viteri, A.; Puschendorf, R.; Ron, S.R.; Sanchez-Azofeifa, G.A.; Still, C.J.; Young,B.E. (2006)Widespread amphibian extinctions from epidemic disease driven by global warmingNature 7073:161–167.

Provan, J. & Maggs, C. A. (2012): Unique genetic variation at a species’ rear edge is under threat fromglobal climate change.Proc. R. Soc. London, Ser. B 279(1726):39–47.

Provan, J.; Beatty, G. E.; Keating, S. L.; Maggs, C. A.; Savidge, G. (2009): High dispersal potential hasmaintained long-term population stability in the North Atlantic copepod Calanus finmarchicusProc. R. Soc. London, Ser. B 276(1655):301–307.

8 / 11

Page 85: Seaweed meadows in the light of global climate change

References IX

Raybaud, V.; Beaugrand, G.; Goberville, E.; Delebecq, G.; Destombe, C.; Valero, M.; Davoult, D.; Morin,P.; Gevaert, F. (2013)Decline in Kelp in West Europe and ClimatePLOS ONE 8:e66044.

Reusch, T.; Ehlers, A.; Hammerli, A. & Worm, B. (2005): Ecosystem recovery after climatic extremesenhanced by genotypic diversity.Proc. Natl. Acad. Sci. U.S.A. 102(8):2826–2831.

Sturm, M.; Schimel, J.; Michaelson, G.; Welker, J.M.; Oberbauer, S.F.; Liston, G.E.; Fahnestock, J.;Romanovsky, V. (2005)Winter biological processes could help convert Arctic tundra to shrubland.Bioscience55(1):17–26.

Tyberghein, L.; Verbruggen, H.; Pauly, K.; Troupin, C.; Mineur, F.; De Clerck, O. (2011)Bio-ORACLE: a global environmental dataset for marine species distribution modelling.Global Ecology and Biogeography.

Ugarte, R.A.; Critchley, A.; Serdynska, A.R.; Deveau, J.P (2009)Changes in composition of rockweed (Ascophyllum nodosum) beds due to possible recent increase in seatemperature in Eastern Canada.Journal of Applied Phycology 21:591âĂŞ598.

van Asch, M.; Salis, L.; Holleman, L.J.M.; van Lith, B.; Visser, M.E. (2013)Evolutionary response of the egg hatching date of a herbivorous insect under climate change.Ecography 3:244–248.

9 / 11

Page 86: Seaweed meadows in the light of global climate change

References X

Verbruggen, H. (2012)Occurrence Thinner version 1.04.http://www.phycoweb.net/software.

Verbruggen, H. (2012)Maxent Model Surveyor v1.01.http://www.phycoweb.net/software.

Viejo, R.M.; Martínez, B.; Arrontes, J.; Astudillo, C.; Hernández, L. (2011)Reproductive patterns in central and marginal populations of a large brown seaweed: drastic changes at thesouthern range limit.Ecography 34(1):75–84.

Vitti, J.J.; Cho, M.K.; Tishkoff, S.A.; Sabeti, P.C. (2012)Human evolutionary genomics: ethical and interpretive issuesTrends in Genetics 28(3):137–145.

Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.;Hoegh-Guldberg, O.; Bairlein, F. (2002)Ecological responses to recent climate change.Nature 416(6879):389–395.

Warren, D. L.; Seifert, S. N. (2011)Ecological niche modeling in Maxent: the importance of model complexity and the performance of modelselection criteriaEcological Applications 21(2):335–342.

10 / 11

Page 87: Seaweed meadows in the light of global climate change

References XI

Wernberg, T.; Russell, B.D.; Thomsen, M.S.; Gurgel, F.D.; Bradshaw, C.J.A.; Poloczanska, E.S., Connell,S.D. (2011)Seaweed Communities in Retreat from Ocean Warming.Current Biology 21(21):1828–1832.

11 / 11