35
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Prof. Dr. Claus Feldmann, Institut für Anorganische Chemie, Karlsruhe, Germany www.kit.edu Advanced Nanomaterials for a Sustainable Future Karlsruhe Castle 150-Years-BASF Symposium on Smart Energy 08.03.–10.03.2015

Prof. Dr. Claus Feldmann at BASF Science Symposium 2015

  • Upload
    basf

  • View
    293

  • Download
    0

Embed Size (px)

Citation preview

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Prof. Dr. Claus Feldmann, Institut für Anorganische Chemie, Karlsruhe, Germany

www.kit.edu

Advanced Nanomaterials for a Sustainable Future

Karlsruhe Castle

150-Years-BASFSymposium on Smart Energy

08.03.–10.03.2015

2

Advanced Nanomaterials for a Sustainable Future

I. Synthesis: Simple to Advanced

II. Materials: Controlling Composition, Size, Shape, Structure

III. Specific examples:

- Sensing

- Photocatalysis

- Less-noble Metals

C. Feldmann, KIT

3

Polyol synthesisOxide nanoparticles

Aqueous precipitationInorganic-organic hybrids

Microemulsions / Liquid AmmoniaHollow Nanospheres, Less-noble Metals

Our Synthesis Strategies

CoAl2O4 ZnO:Co Fe2O3 CoO Cu2OTiO2 Ta2O5 Nb2O5 ZnO

Our reviews: Adv. Funct. Mater. 2003, 13, 101. Adv. Funct. Mater. 2003, 13, 511. Materials 2010, 3, 4355.Angew. Chem. Int. Ed. 2011, 50, 11050. Angew. Chem. Int. Ed. 2013, 52, 7610.

Ionic liquidsHalogen Compounds, Clusters

4

Advanced Nanomaterials for a Sustainable Future

I. Synthesis: Simple to Advanced

II. Materials: Controlling Composition, Size, Shape, Structure

III. Specific examples:

- Sensing

- Photocatalysis

- Less-noble Metals

C. Feldmann, KIT

5Small 2007, 3, 1347. Nano Lett. 2007, 7, 3489. Adv. Mater. 2009, 21, 1586. Chem. Mater. 2010, 22, 4821. Nanoscale 2010, 2, 2223. Small 2010, 6, 1886. Nanoscale 2011, 3, 2544. Chem. Commun. 2012, 48, 844. Chem. Mater. 2013, 25, 4173.

Hollow Nanospheres

▪ Various materials▪ Outer diameter: 20 - 50 nm; Inner cavity size: 5 - 20 nm

6P. Leidinger, R. Popescu, D. Gerthsen, C. Feldmann, Chem. Mater. 2013, 25, 4173.

Hollow Nanosphere Superstructures: Ag2S

7

In-Ag Janushead-likenanoparticles

Nanoscale Ag0

hollow spheresAg3In@In core-shell

nanoparticles

C. Kind, R. Popescu, E. Müller, R. Schneider, D. Gerthsen, C. Feldmann, RSC Adv. 2012, 2, 9473.

Nanoparticle Heterostructures: In-Ag Systema) b) c)

a) a) b) c) c)

8

Controlled Shape: β-SnWO4

J. Ungelenk, C. Feldmann, Appl. Catal. B 2011, 102, 515.J. Ungelenk, C. Feldmann, Chem. Commun. 2012, 48, 7838.J. Ungelenk, C. Seidl, E. Zittel, S. Roming, U. Schepers, C. Feldmann, Chem. Commun. 2014, 50, 6600.Y.-C. Chen, J. Ungelenk, Y.-K. Hsu, Y.-G. Lin, C. Feldmann, in preparation.

▪ Nanoparticles(10 nm)

▪ Cubes(1 µm)

▪ Spike-Cubes(3 µm)

9

Nanoparticle Composition: MWO4

J. Ungelenk, M. Speldrich, R. Dronskowski, C. Feldmann, Solid State Sci. 2014, 31, 62.

▪ Liquid phase synthesis of readily crystalline nanoparticles

10

Structure: [BMIm]2[{Fe(CO)3}4{SnI}6I4]▪ Cluster compounds for thermal decomposition to nanoparticles

S. Wolf, F. Winter, R. Pöttgen, N. Middendorf, W. Klopper, C. Feldmann, Dalton Trans. 2012, 41, 10605.S. Wolf, F. Winter, R. Pöttgen, N. Middendorf, W. Klopper, C. Feldmann, Chem. Europ. J. 2012, 18, 13600.

11

Advanced Nanomaterials for a Sustainable Future

I. Synthesis: Simple to Advanced

II. Materials: Controlling Composition, Size, Shape, Structure

III. Specific examples:

- Sensing

- Photocatalysis

- Less-noble Metals

C. Feldmann, KIT

12H. Goesmann, C. Feldmann, Angew. Chem. Int. Ed. 2010, 49, 1362 (Review).H. Gröger, C. Kind, P. Leidinger, M. Roming, C. Feldmann, Materials 2010, 3, 4355 (Review).

Water-in-oil microemulsion(w/o-ME)

Synthesis of Hollow Nanospheres

Advantages▪ Thermodynamically stable▪ Confined volume (nanoreactor)▪ Discrete reaction areas▪ Excellent colloidal stabilization▪ Standard technique

H2O

Dodecane

CTABhexanol

B

A

13D. H. M. Buchold, C. Feldmann, Nano Lett. 2007, 7, 3489.

Synthesis of Hollow NanospheresWater-in-oil microemulsion

(w/o-ME)

H2O

Dodecane

CTABhexanol

B

Al(Osec-Bu)3

14

Hollow Nanospheres: γ-AlO(OH)

D. H. M. Buchold, C. Feldmann, Nano Lett. 2007, 7, 3489.

(120): 3.17 Å

15

Pd@SnO2 core@shell structureSnO2@Pd core@shell structure

▪ 1-2 wt-% Pd for both samples▪ Different color of samples

Pd@SnO2 / SnO2@Pd for Sensing

Pd@SnO2 SnO2@PdF. Gyger, A. Sackmann, M. Hübner, P. Bockstaller, D. Gerthsen, H. Lichtenberg, J.-D. Grunwaldt, N. Barsan,U. Weimar, C. Feldmann, Part. Part. Syst. Charact. 2014, 31, 591.

16

▪ Uniform fine distribution of Pd in SnO2

▪ Less uncovered Pd for Pd@SnO2

▪ Improved band-bending for Pd@SnO2

▪ Shielding against water for Pd@SnO2

Sensing: Pd@SnO2 / SnO2@Pd

F. Gyger, A. Sackmann, M. Hübner, P. Bockstaller, D. Gerthsen, H. Lichtenberg, J.-D. Grunwaldt, N. Barsan,U. Weimar, C. Feldmann, Part. Part. Syst. Charact. 2014, 31, 591.

17

▪ Very good sensor performance with H2, CO▪ Best results for Pd@SnO2 at low temperature under humid conditions

Pd@SnO2 / SnO2@Pd for Sensing

F. Gyger, A. Sackmann, M. Hübner, P. Bockstaller, D. Gerthsen, H. Lichtenberg, J.-D. Grunwaldt, N. Barsan,U. Weimar, C. Feldmann, Part. Part. Syst. Charact. 2014, 31, 591.

18

Advanced Nanomaterials for a Sustainable Future

I. Synthesis: Simple to Advanced

II. Materials: Controlling Composition, Size, Shape, Structure

III. Specific examples:

- Sensing

- Photocatalysis

- Less-noble Metals

C. Feldmann, KIT

19W. Jeitschko, A.W. Sleight, Acta Cryst. B 1972, 28, 3174. A. Walsh, Y. Yan, M. N. Huda, M. M. Al-Jassim, S. H. Wei, Chem. Mater. 2009, 21, 547.

β-SnWO4: A Promising Photocatalyst▪ β-SnWO4 claimed as promising photocatalyst▪ β-SnWO4 is a metastable high-temperature phase (>670 °C)

(Eg: 2.5-2.7 eV, yellow color)

α-SnWO4Red

1.6 eV

β-SnWO4Yellow2.5 eV

800 °CSnO + WO3

< 670 °C

▪ Quenching of β-SnWO4

→ defective, blackish, bulk material

20

▪ Direct band gap (2.6 eV)▪ Mean particle diameter: 20 nm▪ Specific surface area: 71±1 m2 g−1

β-SnWO4: Nanoparticles

J. Ungelenk, C. Feldmann, Appl. Catal. B 2011, 102, 515.J. Ungelenk, C. Feldmann, Patent application, DE 102011012930.8, WO 2012031645.

β-SnWO4

21

▪ Benchmarking of β-SnWO4 to other photocatalysts (TiO2, BiVO4)

J. Ungelenk, C. Feldmann, Chem. Commun. 2012, 48, 7838.J. Ungelenk, C. Seidl, E. Zittel, S. Roming, U. Schepers, C. Feldmann, Chem. Commun. 2014, 50, 6600.

β-SnWO4: Photocatalytic Evaluation▪ Degradation of methylene blue under simulated daylight

Methylene blue(most widely applied reference

for dye degradation)

22J. Ungelenk, C. Seidl, E. Zittel, S. Roming, U. Schepers, C. Feldmann, Chem. Commun. 2014, 50, 6600.

β-SnWO4: in-vitro Fluorescence▪ Transfection of β-SnWO4 in HepG2 cells (human liver carcinoma)

▪ Intrinsic fluorescence (optional detection)

23J. Ungelenk, C. Feldmann, Patent application, DE 102011012930.8, WO 2012031645.J. Ungelenk, C. Seidl, E. Zittel, S. Roming, U. Schepers, C. Feldmann, Chem. Commun. 2014, 50, 6600.

▪ Transfection of β-SnWO4 in HepG2 cells (human liver carcinoma)

▪ Acute phototoxicity at low dark and long-term toxicity

β-SnWO4: in-vitro Phototoxicity

24

β-SnWO4: in-vivo Phototoxicity▪ HepG2 cells (human liver carcinoma) transfected with β-SnWO4

J. Ungelenk, C. Seidl, E. Zittel, S. Roming, U. Schepers, C. Feldmann, Chem. Commun. 2014, 50, 6600.C. Seidl, J. Ungelenk, E. Zittel, U. Schepers, C. Feldmann, 2015, submitted.

▪ Reduced size of primary tumor▪ Reduced metastasis

25

Advanced Nanomaterials for a Sustainable Future

I. Synthesis: Simple to Advanced

II. Materials: Controlling Composition, Size, Shape, Structure

III. Specific examples:

- Sensing

- Photocatalysis

- Less-noble Metals

C. Feldmann, KIT

26

Advantages▪ Standard technique▪ Thermodynamically stable▪ Confined volume (nanoreactor)▪ Excellent colloidal stabilization

Disadvantages▪ Phase stability (< 50°C)▪ Low yield▪ Water as polar phase

(MeOH, EtOH, EG, CH3CN)

N. M. Correa, J. J. Silber, R. E. Ritter, N. E. Levinger, Chem. Rev. 2012, 112, 4569 (Review).A. K. Ganguli, A. Ganguly, S. Vaidya, Chem. Soc. Rev. 2010, 39, 474 (Review).

Microemulsion Synthesis

Reactants

Alkane(oil-phase)

Surfactants

H2O

27F. Gyger, P. Bockstaller, D. Gerthsen, C. Feldmann, Angew. Chem. Int. Ed. 2013, 52, 12443.F. Gyger, P. Bockstaller, H. Gröger, D. Gerthsen, C. Feldmann, Chem. Commun. 2014, 50, 2939.

Advantages▪ Standard technique▪ Thermodynamically stable▪ Confined volume (nanoreactor)▪ Excellent colloidal stabilization

Disadvantages▪ Phase stability (< 50°C)▪ Low yield▪ Liquid ammonia as polar phase

… unknown in literature

Reactants

Alkane(oil-phase)

Surfactants

liquidNH3

Liquid-Ammonia-in-Oil Microemulsions

28F. Gyger, P. Bockstaller, D. Gerthsen, C. Feldmann, Angew. Chem. Int. Ed. 2013, 52, 12443.F. Gyger, P. Bockstaller, H. Gröger, D. Gerthsen, C. Feldmann, Chem. Commun. 2014, 50, 2939.

Synthesis of Less-Noble Metal Nanoparticles

▪ But: limited amount of nanoparticles from liquid-ammonia microemulsion

29

Synthesis in Liquid Ammonia

C. Schöttle, P. Bockstaller, D. Gerthsen, C. Feldmann, 2014, 50, 4547.

▪ Easy to handle (except for -40 °C)

30C. Schöttle, P. Bockstaller, R. Popescu, D. Gerthsen, C. Feldmann, 2015, submitted.

Synthesis of Less-Noble Metal Nanoparticles

31

Synthesis of Nanoscaled Nitrides: GaN

F. Gyger, P. Bockstaller, D. Gerthsen, C. Feldmann, Angew. Chem. Int. Ed. 2013, 52, 12443.F. Gyger, P. Bockstaller, H. Gröger, D. Gerthsen, C. Feldmann, Chem. Commun. 2014, 50, 2939.

d: 2.6 Å(β-GaN111: 2.60 Å)

32

Summary

Hollow Nanospheres

Less-Noble Metal NanoparticlesNitride Nanoparticlesß-SnWO4 with different Shapes

C. Feldmann, KIT

33

RG Feldmann – The Team

Metal-NPDr. Fabian GygerDr. Hailong DongLennart BrütschChristian SchöttleAlexander Egeberg

Solid State/Ionic LiquidsDr. Silke WolfDr. Dominic FreudenmannDavid HausmannNicola HerzbergFabian Altermann

Hollow Spheres/HybridsDr. Sara SimonatoJan Jung-KönigMarieke PoßDr. Witali BeichelViktor ReinLilly Neumeier

Luminescence/TCO/CatalysisJoachim HeckAna KuzmanoskiYing-Chu ChenDr. Qian LiuDorothee GößlMartin Röhr

C. Feldmann, KIT

34

Cooperation / FundingAnalytical characterizationProf. Dagmar Gerthsen Laboratory for Electron Microscopy/KIT (TEM)Prof. Jörn Schmedt auf der Günne University of Siegen (NMR)Prof. Rainer Pöttgen University of Münster (Mößbauer)

Sensors / catalysis / solar cells:Dr. Nicolae Barsan, Prof. Udo Weimar University of TübingenProf. Jan-Dierk Grunwaldt Institute of Technical Chemistry and Polymer Sciences/KITDr. K. Schierle-Arndt, Dr. W. Hermes BASF LudwigshafenDr. Erik Ahlswede Center for Solar Energy and Hydrogen Research Stuttgart

Drug delivery:Prof. Frauke Alves MPI for Experimental Medicine GöttingenProf. Holger Reichardt University Hospital Göttingen, Institute of ImmunologyPD Ute Schepers Institute of Toxicology and Genetics/ KITDr. Kurt Dittmar, Dr. Heinrich Lünsdorf Helmholtz Center for Infection Research Braunschweig

Gas sorption/separation:Prof. Klaus Müller-Buschbaum University of WürzburgProf. Reiner Staudt University of Leipzig/University of OffenburgProf. Michael Türk Institute for Technical Thermodynamics and Refrigeration/KIT

C. Feldmann, KIT

35

Summary … and Thanks to BASF

Hollow Nanospheres

Less-Noble Metal NanoparticlesNitride Nanoparticlesß-SnWO4 with different Shapes

C. Feldmann, KIT