62
HFA Congress 2015 Basic Mechanisms to improve systolic function Christoph Maack, MD Klinik für Innere Medizin III Universitätsklinikum des Saarlandes Homburg/Saar, Germany

Basic mechanisms to improve systolic function

Embed Size (px)

Citation preview

Page 1: Basic mechanisms to improve systolic function

HFA Congress 2015

Basic Mechanisms to improve systolic function

Christoph Maack, MD

Klinik für Innere Medizin IIIUniversitätsklinikum des Saarlandes

Homburg/Saar, Germany

Page 2: Basic mechanisms to improve systolic function

Conflicts of Interest

Speaker honoraria from:Bayer, Berlin-Chemie, Boehringer Ingelheim, Bristol-Myers Squibb, Novartis, Servier, Pfizer, Stealth Biotherapeutics.

Scientific advisor to:Stealth Biotherapeutics.

Page 3: Basic mechanisms to improve systolic function

Myocardialinfarction

Arrhythmia &loss of myocardium

Remodelling

LVdilation

ChronicHeart Failure

Death

Coronarythrombosis

Myocardialischemia

CAD

Atherosclerosis, LVH

Risk factors

Modified fromDzaru & Braunwald,1991

HypertensionCholesterolDiabetesNicotine

The cardiovascular continuum

Page 4: Basic mechanisms to improve systolic function

SystolicHeart Failure

(HFrEF)LVH

HypertensiveCardiopathy

DiastolicHeart Failure(HFpEF)

AcuteHeart Failure

Risk factorsHypertensionCholesterolDiabetesNicotine

Myocardialinfarction

Arrhythmia &loss of myocardium

Remodelling

LVdilation

Death

Coronarythrombosis

Myocardialischemia

CAD

Atherosclerosis

Modified fromDzaru & Braunwald,1991

The cardiovascular continuum

Page 5: Basic mechanisms to improve systolic function

Neuroendocrine activationReduced compliance (diuretics, fluid intake)Medication (NSAR etc.)

H2O

Pulmonary Congestion

Afterload Blood pressure Aortic stenosis

C.O.

Ischemia

Arrhythmia

Preload

MyocarditisTako-Tsubo

Diuretics

Inotropes

Vasodilators

Myocardial protection agents

Renal preservation agents

Page 6: Basic mechanisms to improve systolic function

C.O.

Inotropes

Nieminen et al., Eur Heart J 2006;27:2725-2736

CardiogenicShock (4%)

Gheorghiade et al., JAMA 2006;296:2217-2226

Page 7: Basic mechanisms to improve systolic function

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+Sarcoplasmic Reticulum (SR)

Mito

T-tu

bulu

s

Cytosol Myofilaments

RyR2

Oxidative Phosphorylation

Physiology: Excitation-contraction coupling and mitochondrial energetics

Page 8: Basic mechanisms to improve systolic function

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NKA

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

Mito

T-tu

bulu

s

Cytosol Myofilaments

RyR2

K+

Chronic Heart Failure:Defects in EC Coupling

ATP

Page 9: Basic mechanisms to improve systolic function

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NKA

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

Mito

T-tu

bulu

s

Cytosol Myofilaments

RyR2

K+

Chronic Heart Failure:Defects in EC Coupling

ATP

Page 10: Basic mechanisms to improve systolic function

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NKA

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

Mito

T-tu

bulu

s

Cytosol Myofilaments

RyR2

K+

Chronic Heart Failure:Defects in EC Coupling

ATP

Page 11: Basic mechanisms to improve systolic function

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NKA

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

Mito

T-tu

bulu

s

Cytosol Myofilaments

RyR2

K+

Chronic Heart Failure:Defects in EC Coupling

(Ca2+)

ATP

Page 12: Basic mechanisms to improve systolic function

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NKA

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

Mito

T-tu

bulu

s

Cytosol Myofilaments

RyR2

K+

Chronic Heart Failure:Defects in EC Coupling

(Ca2+)

Contraction/Relaxation

Page 13: Basic mechanisms to improve systolic function

Ca2+Ca2+

ATP

Ca2+

Ca2+

NCX

Na+

Ca2+

Na+

ICa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

T-tu

bule

ETC

1-AR

cAMP

INa

NKA

K+ K+

Ca2+

Leck

PKAPDEs +

O2 H2O

Actin-myosincross bridges

OMECAMTIV

SERCA2a GENE-THERAPY

DOBUTAMINE

HNO

RYCALS

ISTAROXIME

ISTAROXIME

BENDAVIA

RyR

+ +

+ENOXIMONEMILRINONE

DIGITALIS

+

+Troponin C

Ca2+

+

LEVOSIMENDAN

Strategies to improve systolic function

Page 14: Basic mechanisms to improve systolic function

Ca2+Ca2+

ATP

Ca2+

Ca2+

NCX

Na+

Ca2+

Na+

ICa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

T-tu

bule

ETC

1-AR

cAMP

INa

NKA

K+ K+

Ca2+

Leck

PKAPDEs +

O2 H2O

Actin-myosincross briges

OMECAMTIV

SERCA2a GENE-THERAPY

DOBUTAMINE

HNO

RYCALS

ISTAROXIME

ISTAROXIME

BENDAVIA

RyR

+ +

+ENOXIMONEMILRINONE

DIGITALIS

+

+Troponin C

Ca2+

+

LEVOSIMENDAN

Strategies to improve systolic function

Page 15: Basic mechanisms to improve systolic function

Ca2+Ca2+

ATP

Ca2+

Ca2+

NCX

Na+

Ca2+

Na+

ICa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

T-tu

bule

ETC

1-AR

cAMP

INa

NKA

K+ K+

Ca2+

Leck

PKAPDEs +

O2 H2O

Actin-myosincross bridges

RyR

DIGITALIS

Troponin C

Ca2+

Strategies to improve systolic function

Page 16: Basic mechanisms to improve systolic function

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NKA

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

Mito

T-tu

bulu

s

Cytosol Myofilaments

RyR2

K+

Digitalis increases Na+ and Ca2+ by inhibiting the Na+ /K+-ATPase

Digitalis

ATP

Page 17: Basic mechanisms to improve systolic function

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NKA

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

Mito

T-tu

bulu

s

Cytosol Myofilaments

RyR2

K+

Digitalis

ATP

Digitalis increases Na+ and Ca2+ by inhibiting the Na+ /K+-ATPase

Page 18: Basic mechanisms to improve systolic function

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NKA

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

Mito

T-tu

bulu

s

Cytosol Myofilaments

RyR2

K+

Digitalis

ATP

Digitalis increases Na+ and Ca2+ by inhibiting the Na+ /K+-ATPase

Page 19: Basic mechanisms to improve systolic function

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NKA

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

Mito

T-tu

bulu

s

Cytosol Myofilaments

RyR2

K+

Digitalis

ATP

Digitalis increases Na+ and Ca2+ by inhibiting the Na+ /K+-ATPase

Page 20: Basic mechanisms to improve systolic function

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NKA

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

Mito

T-tu

bulu

s

Cytosol Myofilaments

RyR2

K+

Digitalis

NCENa+

Ca2+ ATP

Elevating cytosolic Na+ triggers oxidative stress from mitochondria

Page 21: Basic mechanisms to improve systolic function

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NKA

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

Mito

T-tu

bulu

s

Cytosol Myofilaments

RyR2

K+

Digitalis

NCENa+

Ca2+ ATPKohlhaas,Circ 2010

CGP

Liu,JMCC 2010

Elevating cytosolic Na+ triggers oxidative stress from mitochondria

ROS

Page 22: Basic mechanisms to improve systolic function

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NKA

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

Mito

T-tu

bulu

s

Cytosol Myofilaments

RyR2

K+

Digitalis

NCENa+

Ca2+

Der Klassiker: Digitalis

DIG Trial, NEJM 1997

All-cause Mortality

Death or Hospitalization due to HF

Page 23: Basic mechanisms to improve systolic function

Ca2+Ca2+

ATP

Ca2+

Ca2+

NCX

Na+

Ca2+

Na+

ICa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

T-tu

bule

ETC

1-AR

cAMP

INa

NKA

K+ K+

Ca2+

Leck

PKAPDEs +

O2 H2O

Actin-myosincross bridges

RyR

DIGITALIS

Troponin C

Ca2+

Strategies to improve systolic function

DOBUTAMINE+

Page 24: Basic mechanisms to improve systolic function

cAMP

Ca2+

Ca2+Ca2+

Ca2+ATPCa2+ Ca2+

Ca2+

NKA

NCX

Na+

Ca2+

Na+

ICa

INa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

T-tu

bulu

s

Cytosol Myofilaments

RyR2

K+

-AR

AC

PKA

AMP

Agonist

PP P

P

PDE

PDE-Inhibitors

Page 25: Basic mechanisms to improve systolic function

Adrenergic receptor efficacy of catecholamines

Endogenous catecholamines• Adrenaline (adrenal gland)• Noradrenaline (cardiac sympathetic neurons)• Dopamine (CNS)

Synthetic catecholamines• Isoproterenol (1-/ 2-AR agonist)• Dobutamine (1-AR agonist)• Phenylephrine (-AR agonist)

Page 26: Basic mechanisms to improve systolic function

Eugene Braunwald

Page 27: Basic mechanisms to improve systolic function

Hemodynamic effects of dobutamine

Vatner et al., J Clin Invest 1974;53:1265-73

Concious instrumented dogs

Kindermann & Maack et al., Circulation 2004;109:3182-3190

Healthy volunteers

Page 28: Basic mechanisms to improve systolic function

Hemodynamic effects of dobutamine

„First in man“

Jewitt et al., Lancet 1974

Page 29: Basic mechanisms to improve systolic function

O`Connor et al., Am Heart J 1999

Adverse long-term effects of dobutamine

FIRST (Flolan International Randomized Survival Trial)471 patients with AHF, NYHA IIIb-IV(n=80 on dobutamine, n=391 controls)

Controls

Dobutamine

Page 30: Basic mechanisms to improve systolic function

Adverse long-term effects of dobutamine

Jewitt et al., Lancet 1974

FIRST (Flolan International Randomized Survival Trial)471 patients with AHF, NYHA IIIb-IV(n=80 on dobutamine, n=391 controls)

Page 31: Basic mechanisms to improve systolic function

AC

cAMP

1-AR

5'-AMPPKA

Ca2+ Handling

PDE4

NE, Dobutamine etc.

PDE3

5'-AMP

Phospho-diesterases

ContractilityCaMKII

Hypertrophy Apoptosis Arrhythmias

Nucleus Mitochondria

GRK2

P

PDE-Inhibitors,(Levosimendan)

Myofilaments

-arrestinEPAC

CaMKII

1-AR stimulation induces cardiomyocyte hypertrophy

and apoptosis

Page 32: Basic mechanisms to improve systolic function

Engelhardt et al., PNAS 1999; 96:7059-64

Chronic 1-AR stimulation causes LV hypertrophy and failure

LV Hypertrophy

WT 1-AR TG

Myocyte hypertrophy LV contractility LVEF

15-fold overexpressionof the human 1-AR

Page 33: Basic mechanisms to improve systolic function

Ca2+Ca2+

ATP

Ca2+

Ca2+

NCX

Na+

Ca2+

Na+

ICa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

T-tu

bule

ETC

1-AR

cAMP

INa

NKA

K+ K+

Ca2+

Leck

PKAPDEs +

O2 H2O

Actin-myosincross bridges

RyR

DIGITALIS

Troponin C

Ca2+

Strategies to improve systolic function

DOBUTAMINE+ENOXIMONEMILRINONE

LEVOSIMENDAN

Page 34: Basic mechanisms to improve systolic function

Acto-myosin interaction.

Hasenfuss & Teerlink, Eur Heart J 2011;32:1838-1845

Ca2+Ca2+ sensitizers +

Acto-myosin Interaction

Page 35: Basic mechanisms to improve systolic function

Brixius et al., Cardiovasc Drugs Ther 2006

The „pure“ Calcium-Sensitizer

Page 36: Basic mechanisms to improve systolic function

Hasenfuss et al., Circulation 1998;98:2141-2147

0.3 µmol/L

1 µmol/L

Human LV Myocardium – in vitro

Inotropic and lusitropic effects of levosimendan

Page 37: Basic mechanisms to improve systolic function

Mebazaa et al., JAMA 2007;297:1883-91

Levosimendan does not improve outcome despite favourable hemodynamic effects

NT-proBNP Survival

Page 38: Basic mechanisms to improve systolic function

Orstavik et al., Br J Pharmacol 2014;171:5169-81

Human failing LV Myocardium – in vitro

Positive inotropic effects of levosimendan are mediated by PDE-inhibition

Page 39: Basic mechanisms to improve systolic function

Human failing LV Myocardium – in vitro

Orstavik et al., Br J Pharmacol 2014;171:5169-81

Positive inotropic effects of levosimendan are mediated by PDE-inhibition

PLOS One, 2015

Page 40: Basic mechanisms to improve systolic function

Ca2+Ca2+

ATP

Ca2+

Ca2+

NCX

Na+

Ca2+

Na+

ICa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

T-tu

bule

ETC

1-AR

cAMP

INa

NKA

K+ K+

Ca2+

Leck

PKAPDEs +

O2 H2O

Actin-myosincross bridges

RyR

DIGITALIS

Troponin C

Ca2+

Strategies to improve systolic function

DOBUTAMINE+ENOXIMONEMILRINONE

LEVOSIMENDAN

OMECAMTIV +

LEVOSIMENDAN

Page 41: Basic mechanisms to improve systolic function

Mode of action of cardiac myosin activators.

Hasenfuss & Teerlink, Eur Heart J 2011;32:1838-1845

Myosin Activators: Mechanism

Page 42: Basic mechanisms to improve systolic function

n=8 n=5>

Omecamtiv Control/Placebo

„More hands pulling on a rope“

Actin filament

Myosin heads

Page 43: Basic mechanisms to improve systolic function

Omecamtiv Mecarbil prolongs contractionwithout increasing Ca2+

Malik et al., Science 2011;331:1439-1443

Rat cardiac myocytes

Page 44: Basic mechanisms to improve systolic function

Omecamtiv Mecarbil: Dose-dependent increase ofsystolic function in rats and dogs

Echocardiography in dogs and rats in vivo

Malik et al., Science 2011;331:1439-1443

Page 45: Basic mechanisms to improve systolic function

Hemodynamic profile of Omecamtiv Mecarbil in dogs with or without heart failure

Wache Hunde in vivo

Malik et al., Science 2011;331:1439-1443

Normal Hearts Heart Failure

WT – wall thickeningSET – Systolic ejection time

Page 46: Basic mechanisms to improve systolic function

Omecamtiv Mecarbil: positive inotropic effectswithout increasing O2 consumption

Concious instrumented Dogs in vivo

Shen et al., Circ Heart Fail 2010;3:522-7

Page 47: Basic mechanisms to improve systolic function

Ca2+Ca2+

ATP

Ca2+

Ca2+

NCX

Na+

Ca2+

Na+

ICa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

T-tu

bule

ETC

1-AR

cAMP

INa

NKA

K+ K+

Ca2+

Leck

PKAPDEs +

O2 H2O

Actin-myosincross bridges

RyR

DIGITALIS

Troponin C

Ca2+

Strategies to improve systolic function

DOBUTAMINE+ENOXIMONEMILRINONE

LEVOSIMENDAN

OMECAMTIV +

SERCA2a GENE-THERAPY+

Page 48: Basic mechanisms to improve systolic function

del Monte et al., Circulation 1999

1s

0

15

1.5

1.0

Non-Failing Myocyte+ Ad.GFP

Failing Myocyte + Ad.GFP

Failing Myocyte + Ad.SERCA2a

[Ca2+]i (mM)

% shortening

Gene transfer of SERCA2a restores contractility in human failing myocytes

Cardiac myocyte,Field stimulation

Page 49: Basic mechanisms to improve systolic function

Lyon et al., Circ Arrhythmia Electrophysiol 2011;4:362-372

Gene transfer of SERCA2a prevents arrhythmiasin rats with heart failure

Isoproterenol-induced ventricular tachycardia (VT) in rats in vivo

Page 50: Basic mechanisms to improve systolic function

HealthyControl

HeartFailure

HeartFailure

+ SERCA2aGene Therapy

T-tubule Density

C HF HF+S0

25

50

75

100

T-tu

bule

Den

sity

(Cor

rect

ed to

con

trol

(AU

)) ** *

Lyon et al., Circ Heart Fail 2012;5;357-365

C HF HF+S0.00

0.25

0.50

0.75

1.00

Z G

RO

OVE

IND

EX

*** ***

Z Groove Index

Gene transfer of SERCA2a restores surface- and t-tubular structure in rats with heart failure

Page 51: Basic mechanisms to improve systolic function

Jessup et al. Circulation 2011;124:304-313

CUPID: Phase II trial with SERCA gene therapy

Page 52: Basic mechanisms to improve systolic function

Jessup et al. Circulation 2011;124:304-313

CUPID: Phase II trial with SERCA gene therapy

Page 53: Basic mechanisms to improve systolic function

Jessup et al. Circulation 2011;124:304-313

CUPID: Phase II trial with SERCA gene therapy

Page 54: Basic mechanisms to improve systolic function

Jessup et al. Circulation 2011;124:304-313

CUPID: Phase II trial with SERCA gene therapy

Page 55: Basic mechanisms to improve systolic function

Ca2+Ca2+

ATP

Ca2+

Ca2+

NCX

Na+

Ca2+

Na+

ICa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

T-tu

bule

ETC

1-AR

cAMP

INa

NKA

K+ K+

Ca2+

Leck

PKAPDEs +

O2 H2O

Actin-myosincross bridges

RyR

DIGITALIS

Troponin C

Ca2+

Strategies to improve systolic function

DOBUTAMINE+ENOXIMONEMILRINONE

LEVOSIMENDAN

OMECAMTIV +

SERCA2a GENE-THERAPY+ HNO +

Page 56: Basic mechanisms to improve systolic function

SH

R

R

SH

HNO

Mild oxidation = “nitroXylation”

S

R

R

S+ 2H+ + 2e-

Disulfide

Protein Structure Protein function?

Page 57: Basic mechanisms to improve systolic function

LTCCRyR2

SERCA2a

PLN

Ca2+

Myofilaments

Diastole Systole

Ca2+

HNO …

• enhances Ca2+ cycling at the SR level• sensitizes myofilaments• does not increase diastolic Ca2+ or SR Ca 2+

load • does not recruit extracellular Ca2+

Page 58: Basic mechanisms to improve systolic function

CXL-1020 in normal and failing mice myocytes

Sabbah et al, Circ Heart Fail 2013

Page 59: Basic mechanisms to improve systolic function

CXL-1020 in conscious failing dogs

Sabbah et al, Circ Heart Fail 2013

Page 60: Basic mechanisms to improve systolic function

CXL-1020 in patients with symptomatic HF

Sabbah et al, Circ Heart Fail 2013

Page 61: Basic mechanisms to improve systolic function

Ca2+Ca2+

ATP

Ca2+

Ca2+

NCX

Na+

Ca2+

Na+

ICa

Ca2+

SERCA SERCA

ADP

Ca2+ Ca2+SR

T-tu

bule

ETC

1-AR

cAMP

INa

NKA

K+ K+

Ca2+

Leck

PKAPDEs +

O2 H2O

Actin-myosincross bridges

OMECAMTIV

SERCA2a GENE-THERAPY

DOBUTAMINE

HNO

RYCALS

ISTAROXIME

ISTAROXIME

BENDAVIA

RyR

+ +

+ENOXIMONEMILRINONE

DIGITALIS

+

+Troponin C

Ca2+

+

LEVOSIMENDAN

Strategies to improve systolic function

Page 62: Basic mechanisms to improve systolic function

Thank you!

Christoph Maack, MDKlinik für Innere Medizin III

Kardiologie, Angiologie und Internistische IntensivmedizinUniversitätsklinikum des Saarlandes

Homburg/[email protected]