16
January 18, 2008 Computational Physiology for Critical Care Monitoring Stuart Russell, UC Berkeley Stuart Russell, UC Berkeley Joint work with Joint work with Geoff Manley Geoff Manley , Mitch Cohen, Kristan , Mitch Cohen, Kristan Staudenmayer, Diane Morabito (UCSF), Norm Aleks, Nimar Staudenmayer, Diane Morabito (UCSF), Norm Aleks, Nimar Arora, Shaunak Chatterjee (UCB) Arora, Shaunak Chatterjee (UCB)

russell-icu.ppt

Embed Size (px)

Citation preview

Page 1: russell-icu.ppt

January 18, 2008

Computational Physiology for Critical Care Monitoring

Stuart Russell, UC BerkeleyStuart Russell, UC BerkeleyJoint work with Joint work with Geoff ManleyGeoff Manley, Mitch Cohen, Kristan Staudenmayer, Diane , Mitch Cohen, Kristan Staudenmayer, Diane Morabito (UCSF), Norm Aleks, Nimar Arora, Shaunak Chatterjee (UCB)Morabito (UCSF), Norm Aleks, Nimar Arora, Shaunak Chatterjee (UCB)

Page 2: russell-icu.ppt

January 18, 2008

Page 3: russell-icu.ppt

January 18, 2008

Critical care $300B/yr in US, high morbidity/mortality

Goal: improve outcomes, reduce length of stay, do science

Approach: Large-scale data repository for worldwide research use

Currently 60GB, 16 ICU beds monitored 24/7, soon multi-institutional First release any day now ….

Data mining for outcome prediction, early warning, etc. Real-time model-based estimation of patient state (And systems physiology model-building)

Page 4: russell-icu.ppt

January 18, 2008

Critical care state estimation Given

~140 initial presentation fields ~40 real-time sensor streams ~1500 asynchronous measures (blood, drugs, etc.)

Compute posterior probability distribution for ~100 (patho)physiological state variables

Method Patient-adaptive dynamic Bayesian network (DBN): stochastic models of physiology and sensor dynamics (c.f. Guyton et al., 1972, 354-variable nonlinear ODE)

Flexible across time scales, models, sensors (images, text, etc.) Can incorporate genetic factors (observed or unobserved)

Page 5: russell-icu.ppt

January 18, 2008

Human physiology v0.1

Page 6: russell-icu.ppt

January 18, 2008

Medullary cardiovascular center

Cardiac parasympathetic output

Cardiac sympathetic output

Card. M2 Card. β1 Card. β2 Vasc. α1 Vasc. α2 Vasc. β2

Heart rate

Cardiac contrac-

tility

Venous tone

Arterio-lar tone

Cardiac preload

Capillary pressure

Cardiac stroke

volume

Cardiac output

Vascular resistance

Mean arterial blood

pressure

Barorecep-tor

discharge

Brain

Neurotransmitters

Heart

Blood flow

Vasculature

Page 7: russell-icu.ppt

January 18, 2008

Medullary cardiovascular center

Cardiac parasympathetic output

Cardiac sympathetic output

Card. M2 Card. β1 Card. β2 Vasc. α1 Vasc. α2 Vasc. β2

Heart rate

Cardiac contrac-

tility

Venous tone

Arterio-lar tone

Cardiac preload

Capillary pressure

Cardiac stroke

volume

Cardiac output

Vascular resistance

Mean arterial blood

pressure

Barorecep-tor

discharge

Medullary cardiovascular center

Cardiac parasympathetic output

Cardiac sympathetic output

Card. M2 Card. β1 Card. β2 Vasc. α1 Vasc. α2 Vasc. β2

Heart rate

Cardiac contrac-

tility

Venous tone

Arterio-lar tone

Cardiac preload

Capillary pressure

Cardiac stroke

volume

Cardiac output

Vascular resistance

Mean arterial blood

pressure

Barorecep-tor

discharge

Brain

Neurotransmitters

Heart

Blood flow

Vasculature

Page 8: russell-icu.ppt

January 18, 2008

Medullary cardiovascular center

Cardiac parasympathetic output

Cardiac sympathetic output

Card. M2 Card. β1 Card. β2 Vasc. α1 Vasc. α2 Vasc. β2

Heart rate

Cardiac contrac-

tility

Venous tone

Blood [volume]

Arterio-lar tone

Cardiac preload

Capillary pressure

Cardiac stroke

volume

Cardiac output

Vascular resistance

Mean arterial blood

pressure

Barorecep-tor

discharge

Intracranial physiology

Tissues-NOS [perfusion]

GI/Liver [perfusion]

Blood [transu-dation]

Setpoint inputs from ANS, CNS,

intracranial, blood

Pulm. [intra-

thoracic press.]

Medullary cardiovascular center

Cardiac parasympathetic output

Cardiac sympathetic output

Card. M2 Card. β1 Card. β2 Vasc. α1 Vasc. α2 Vasc. β2

Heart rate

Cardiac contrac-

tility

Venous tone

Blood [volume]

Arterio-lar tone

Cardiac preload

Capillary pressure

Cardiac stroke

volume

Cardiac output

Vascular resistance

Mean arterial blood

pressure

Barorecep-tor

discharge

Intracranial physiology

Tissues-NOS [perfusion]

GI/Liver [perfusion]

Blood [transu-dation]

Setpoint inputs from ANS, CNS,

intracranial, blood

Pulm. [intra-

thoracic press.]

Page 9: russell-icu.ppt

January 18, 2008

Medullary cardiovascular center

Cardiac parasympathetic output

Cardiac sympathetic output

Card. M2 Card. β1 Card. β2 Vasc. α1 Vasc. α2 Vasc. β2

Heart rate

Cardiac contrac-

tility

Venous tone

Blood [volume]

Arterio-lar tone

Cardiac preload

Capillary pressure

Cardiac stroke

volume

Cardiac output

Vascular resistance

Mean arterial blood

pressure

Barorecep-tor

discharge

Intracranial physiology

Tissues-NOS [perfusion]

MAP sensor model

GI/Liver [perfusion]

Heart rate sensor model

Central venous

pressure sensor model

Blood [transu-dation]

Setpoint inputs from ANS, CNS,

intracranial, blood

Pulm. [intra-

thoracic press.]

Medullary cardiovascular center

Cardiac parasympathetic output

Cardiac sympathetic output

Card. M2 Card. β1 Card. β2 Vasc. α1 Vasc. α2 Vasc. β2

Heart rate

Cardiac contrac-

tility

Venous tone

Blood [volume]

Arterio-lar tone

Cardiac preload

Capillary pressure

Cardiac stroke

volume

Cardiac output

Vascular resistance

Mean arterial blood

pressure

Barorecep-tor

discharge

Intracranial physiology

Tissues-NOS [perfusion]

MAP sensor model

GI/Liver [perfusion]

Heart rate sensor model

Central venous

pressure sensor model

Blood [transu-dation]

Setpoint inputs from ANS, CNS,

intracranial, blood

Pulm. [intra-

thoracic press.]

Page 10: russell-icu.ppt

January 18, 2008

Medullary cardiovascular center

Cardiac parasympathetic output

Cardiac sympathetic output

Card. M2 Card. β1 Card. β2 Vasc. α1 Vasc. α2 Vasc. β2

Heart rate

Cardiac contrac-

tility

Venous tone

Blood [volume]

Arterio-lar tone

Cardiac preload

Capillary pressure

Cardiac stroke

volume

Cardiac output

Vascular resistance

Mean arterial blood

pressure

Barorecep-tor

discharge

Intracranial physiology

Tissues-NOS [perfusion]

MAP sensor model

GI/Liver [perfusion]

Heart rate sensor model

Central venous

pressure sensor model

PK [conc. of phenyl-

ephrine]

Blood [transu-dation]

Setpoint inputs from ANS, CNS,

intracranial, blood

Pulm. [intra-

thoracic press.]

Medullary cardiovascular center

Cardiac parasympathetic output

Cardiac sympathetic output

Card. M2 Card. β1 Card. β2 Vasc. α1 Vasc. α2 Vasc. β2

Heart rate

Cardiac contrac-

tility

Venous tone

Blood [volume]

Arterio-lar tone

Cardiac preload

Capillary pressure

Cardiac stroke

volume

Cardiac output

Vascular resistance

Mean arterial blood

pressure

Barorecep-tor

discharge

Intracranial physiology

Tissues-NOS [perfusion]

MAP sensor model

GI/Liver [perfusion]

Heart rate sensor model

Central venous

pressure sensor model

PK [conc. of phenyl-

ephrine]

Blood [transu-dation]

Setpoint inputs from ANS, CNS,

intracranial, blood

Pulm. [intra-

thoracic press.]

Page 11: russell-icu.ppt

January 18, 2008

Real data are messy

Page 12: russell-icu.ppt

January 18, 2008

Page 13: russell-icu.ppt

January 18, 2008

Page 14: russell-icu.ppt

January 18, 2008

ALARM

Page 15: russell-icu.ppt

January 18, 2008

Page 16: russell-icu.ppt

January 18, 2008

Next Steps

Reduce ICU false alarms from >90% to <5%

Demonstrate clinically relevant inferences, e.g., Vascular stiffness Erroneous drug administration Pulmonary artery pressure (w/o catheter!)

Extend physiology model to all major systems

Multiscale: connect physiology to molecules