71
M h i f lid Mechanics of solids Stress and strain Dr. Rajesh K. N. Assistant Professor in Civil Engineering Assistant Professor in Civil Engineering Govt. College of Engineering, Kannur Dept. of CE, GCE Kannur Dr.RajeshKN

Mechanics of structures - module1

Embed Size (px)

DESCRIPTION

GCE Kannur

Citation preview

Page 1: Mechanics of structures - module1

M h i f lidMechanics of solids

Stress and strain

Dr. Rajesh K. N.Assistant Professor in Civil EngineeringAssistant Professor in Civil EngineeringGovt. College of Engineering, Kannur

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 2: Mechanics of structures - module1

Module IStress and strain

Module I

Introduction – general concepts - definition of stress –stress tensor –stress tensor –stress analysis of axially loaded members –strength design of members –axial strains and deformations in bars axial strains and deformations in bars –stress-strain relationships –Poisson's ratio – relationships between elastic constants -h l i thermal strain –

Saint Venant's principle –elastic strain energy for uniaxial stress –statically indeterminate systems –generalised Hooke's law for isotropic materials introduction to anisotropy – orthotropy

Dept. of CE, GCE Kannur Dr.RajeshKN

2

py py

Page 3: Mechanics of structures - module1

Introduction

• What is mechanics of solids (or strength of materials)?

– Mechanics of deformable solids

• Why to study mechanics of solids?

– Principles of mechanics of solids are applied to predict the response (forces/displacements) of a p p ( p )structure/machine part subjected to loads

– In turn helps in the design of such structures or machine parts

Dept. of CE, GCE Kannur Dr.RajeshKN

3

machine parts3

Page 4: Mechanics of structures - module1

Loads Structure/ ResponseLoads

input

Structure/machine

Response

t tinput system output

•Support reactions•Internal force resultants Internal force resultants

(SF, BM, axial forces, twisting moments etc.)g )

•Displacements (deflections & rotations)

Dept. of CE, GCE Kannur Dr.RajeshKN

4Analysis, calibration, design

Page 5: Mechanics of structures - module1

Geometric propertiesMaterial properties

ElasticityPlasticity

LengthArea

DuctilityMalleability

VolumeMoment of inertia

DuctilityBrittlenessToughnessHardnessStiffnessStrength

Dept. of CE, GCE Kannur Dr.RajeshKN

5

Page 6: Mechanics of structures - module1

Types of forcesTypes of forces

• Axial forces• Tension

• CompressionCompression

• Bending

• Torsion

• Shear

Dept. of CE, GCE Kannur Dr.RajeshKN

6

Page 7: Mechanics of structures - module1

ElasticityElasticityProperty by virtue of which a deformed body under the action of loads regains its original under the action of loads regains its original shape once the loads are removed.

Dept. of CE, GCE Kannur Dr.RajeshKN

7

Page 8: Mechanics of structures - module1

Linear elasticity and Hooke’s lawy

Elastic limit

σess

σE σ

ε=St

re

ε

StrainStrain

Dept. of CE, GCE Kannur Dr.RajeshKN

8

Page 9: Mechanics of structures - module1

HomogeneityHomogeneity

•Same composition throughout bodyp g y•Elastic properties are same at every point in the body•Elastic properties need not be same in all directions

Isotropy•Elastic properties are same in all directions

A i tAnisotropy•Elastic properties different in various directionsElastic properties different in various directions

Dept. of CE, GCE Kannur Dr.RajeshKN

9

Page 10: Mechanics of structures - module1

StressStress• Internal resistance against deformation

F / f i • Force/area - average force on unit area• Axial, bending, torsional etc.• Fundamental types of stresses:

• Normal (tensile or compressive)• Tangential (shear)

• Units

Dept. of CE, GCE Kannur Dr.RajeshKN

1010

Page 11: Mechanics of structures - module1

Dept. of CE, GCE Kannur Dr.RajeshKN

1111

Page 12: Mechanics of structures - module1

Stresses in 3D spaceStress tensor

p

x xy xz xx xy xz

ORσ τ τ τ τ τ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

yx y yz yx yy yz

zx zy z zx zy zz

ORτ σ τ τ τ ττ τ σ τ τ τ

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

1212

Page 13: Mechanics of structures - module1

Stresses in three dimensionsStresses in three dimensions

General linearly elastic material

x xσ ε⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪

11 12 19

xy xy

xz xzD D D

τ γτ γ

⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪

⎡ ⎤⎪ ⎪ ⎪ ⎪xyτ

yxτ

τyzτ

11 12 19

21 22 29yx yx

y y

D D Dτ γσ ε

⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥

xσxzτzxτ

zyτ

91 92 99yz yz

zx zx

D D Dτ γτ γ

⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪

zy zy

z z

τ γσ ε

⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭Generalised Hooke’s Law

Dept. of CE, GCE Kannur Dr.RajeshKN

81 independent elastic constants 13

Page 14: Mechanics of structures - module1

General anisotropic material

We have, xy yxτ τ= x xσ ε⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪

p

We ave, xy yx

yz zyτ τ

τ τ

=

=

11 12 16

12 22 26

x x

y y

z z

D D DD D D

σ εσ ε

⎪ ⎪ ⎪ ⎪⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎨ ⎬ ⎨ ⎬Hence,

xz zxτ τ

Also, the constant matrix is 16 26 66

xy xy

yz yzD D Dτ γτ γ

⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎪ ⎪ ⎪ ⎪symmetric.zx zxτ γ

⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

21 independent elastic constants Constitutive matrix (Stiffness matrix)

{ } [ ]{ }Dσ ε=Constitutive matrix (Stiffness matrix)

{ } [ ]{ }Cε σ=

Dept. of CE, GCE Kannur Dr.RajeshKN

Compliance matrix (Flexibility matrix) 14

Page 15: Mechanics of structures - module1

For a general anisotropic material,- Infinite number of planes of symmetry – Different properties along different directions

g p ,

Orthotropic material- Three planes of symmetry

11 12 13 0 0 0D D Dσ ε⎧ ⎫ ⎧ ⎫⎡ ⎤

p y y– Different properties along three orthogonal directions

11 12 13

12 22 23

13 23 33

0 0 00 0 00 0 0

x x

y y

z z

D D DD D DD D D

σ εσ εσ ε

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎨ ⎬ ⎨ ⎬

13 23 33

44

55

0 0 0 0 00 0 0 0 0

z z

xy xy

yz yz

DD

τ γτ γ

⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥

55

660 0 0 0 0yz yz

zx zxDγ

τ γ⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

9 independent elastic constants 15

Page 16: Mechanics of structures - module1

1 0 0 0xy xz

x y zE E Eμ μ−⎡ ⎤−

⎢ ⎥⎢ ⎥⎢ ⎥1 0 0 0xy yz

x y zxx xxE E Eμ μ

γ τ

⎢ ⎥− −⎢ ⎥

⎧ ⎫ ⎧ ⎫⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥1 0 0 0yy yyyzxz

zz zzx y zE E Eγ τμμγ τ

⎪ ⎪ ⎪ ⎪⎢ ⎥−−⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥10 0 0 0 0xy xy

yz yzxyGγ τγ τ

=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥

10 0 0 0 0zx zx

yzG

γ τ⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎢ ⎥

⎢ ⎥⎢ ⎥

10 0 0 0 0zxG

⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

Orthotropic materialCompliance matrix16

Page 17: Mechanics of structures - module1

Isotropic material

1 0 0 0E E E

μ μ− −⎡ ⎤⎢ ⎥

1 0 0 0xx xx

E E E

E E Eμ μ

γ τ

⎢ ⎥⎢ ⎥− −⎢ ⎥⎧ ⎫ ⎧ ⎫⎢ ⎥⎪ ⎪ ⎪ ⎪

1 0 0 0;

yy yy

zz zz

E E E

EE E E G

γ τμ μγ τ

⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥− −⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎨ ⎬ ( );

1 2 10 0 0 0 0

1

xy xy

yz yz

G

Gγ τ μγ τ

⎢ ⎥= =⎨ ⎬ ⎨ ⎬⎢ ⎥ +⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥10 0 0 0 0

1

zx zxG

γ τ⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎢ ⎥

⎢ ⎥⎢ ⎥10 0 0 0 0

G⎢ ⎥⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

2 independent elastic constants 17

Page 18: Mechanics of structures - module1

Special cases of stresses in 3D space

Pure shear

τxyτ

yxτ

τyzτ 0 0

0 0xy xz xy xz

yx yz xy yz

τ τ τ ττ τ τ τ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥

xzτzxτ

zyτ0 0zx zy xz yzτ τ τ τ

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

18

Page 19: Mechanics of structures - module1

Special cases of stresses in 3D space (contd…)p p ( )

1 0 0σ⎡ ⎤⎢ ⎥

σ1σ

2

3

0 00 0

σσ

⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

3σ2σ

0 0σ−⎡ ⎤⎢ ⎥

σ0 00 0

σσ

⎢ ⎥−⎢ ⎥−⎢ ⎥⎣ ⎦

σ σ Hydrostatic pressure

Dept. of CE, GCE Kannur Dr.RajeshKN

1919

Page 20: Mechanics of structures - module1

General case of Stresses in 2D spaceGeneral case of Stresses in 2D space

yxτxyτ 0x xyσ τ⎡ ⎤

⎢ ⎥

σ

00 0 0

y

yx yτ σ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

yxτ

xyτ

yσyx

Pl t ditiPlane stress condition

Dept. of CE, GCE Kannur Dr.RajeshKN

2020

Page 21: Mechanics of structures - module1

StrainStrain• Measure of deformation • Deformation per unit length in the direction of deformation• Fundamental types of strains:

• Normal (tensile or compressive)( p )• Tangential (shear)

• Units?

Dept. of CE, GCE Kannur Dr.RajeshKN

2121

Page 22: Mechanics of structures - module1

Stress-strain diagrams for brittle and ductile materials

Brittle material

Stre

ss Ductile material

S

Strain

Dept. of CE, GCE Kannur Dr.RajeshKN

22Toughness?

Page 23: Mechanics of structures - module1

Ideal stress-strain diagram – mild steelIdeal stress strain diagram mild steelActual breaking stress

El ti li itUltimate stress

Elastic limit

Upper yield pointLimit of proportionality

Stre

ss

Yield plateau

Breaking stress

S

Lower yield point

Strain

Dept. of CE, GCE Kannur Dr.RajeshKN

23

Page 24: Mechanics of structures - module1

• Ultimate stress

W ki t• Working stress

• Factor of safety Ultimate stress=Factor of safety

Working stress

Dept. of CE, GCE Kannur Dr.RajeshKN

24

Page 25: Mechanics of structures - module1

Normal stressN

P

L Lδ

PA

σ =Normal stress (Intensity of force)A

P -> ForceA > A f ti l t th i

( y )

A-> Area of cross-section normal to the axis

P A PLP A PLEL L A LPL

σε δ δ

= = =Modulus of elasticity (Young’s modulus)

Dept. of CE, GCE Kannur Dr.RajeshKN

25• St. Venant’s principlePLLAE

δ∴ =

Page 26: Mechanics of structures - module1

Dept. of CE, GCE Kannur Dr.RajeshKN

26

Page 27: Mechanics of structures - module1

• Problems• Problems• Bars of uniform section (prismatic bars)

B f i i• Bars of varying sections

• Bars of varying sections of different materials

• Uniformly tapering circular & rectangular bars

• Elongation of bar of uniform section due to self weight• Elongation of bar of uniform section due to self weight

• Elongation of uniformly tapering bar due to self weight

• Elongation of bar with a truncated cone shape

• Bar of uniform strengthg

• Compound bars - Composite section

Dept. of CE, GCE Kannur Dr.RajeshKN

27

Page 28: Mechanics of structures - module1

10mm2

Bar of uniform section (prismatic bars)

10kN5kN

15kN 20kN

10kN

15kN 20kN2m 3m4m 3m

B f i ti

4m 3m4m

Bar of varying sections

100kN 100kN10mm2 5mm2

20 2

Dept. of CE, GCE Kannur Dr.RajeshKN

28

20mm2

Page 29: Mechanics of structures - module1

Bar of varying sections of different materials

4m 3m4m

Bar of varying sections of different materials

Al i i

100kN 100kN10mm2 5mm2

20 2

Steel Brass Aluminium

20mm2

Steel : ES=2x105 N/mm2S /

Brass : Eb=1x105 N/mm2

Aluminium : Ea=0.7x105 N/mm2

Dept. of CE, GCE Kannur Dr.RajeshKN

29

Page 30: Mechanics of structures - module1

Uniformly tapering circular bar

PD1

D2DxP P

x

1

xδx

1 21x

D DD D xL−⎛ ⎞= −⎜ ⎟

⎝ ⎠1x L⎜ ⎟

⎝ ⎠

2

P xδΔ =

⎛ ⎞2

1 20

4Total elongation, L

x

P x PLLED DD E

δππ

∴ Δ = =⎛ ⎞⎜ ⎟∫

2

4xD Eπ⎛ ⎞

⎜ ⎟⎝ ⎠

1 20

44When =

x E

PLD D D L

⎜ ⎟⎝ ⎠

= Δ =

Dept. of CE, GCE Kannur Dr.RajeshKN

30

1 2 2When , D D D LEDπ

= Δ =

Page 31: Mechanics of structures - module1

P b A i f t i t t i if l t i i di tProb: A specimen for tension test is uniformly tapering in diameterFrom D+a to D-a. Estimate the error in using the average diameter D to calculate the Young’s Modulus.g

Elongation L LΔ Δ

( )( )

1 2

1

Elongation, 4

L LPLE

L D a D aπ

Δ =Δ

=Δ + −( )( )

2 2

4L D a D aPLELD

π

π

Δ +

21 2

21

Error 100 100E E aE D−

= × =

Dept. of CE, GCE Kannur Dr.RajeshKN

31

Page 32: Mechanics of structures - module1

A = 800 mm2

P = 100 kNL 3

P/2 P/2

L1 = 3mL2 = 4mE = 1000N/mm2L1

L2

/

P

P

Dept. of CE, GCE Kannur Dr.RajeshKN

32Ans: Downward movement of pulley = 218.5 mm

Page 33: Mechanics of structures - module1

A = 800 mm2

P = 100 kNL 3 P1

P2

L1

L2L1 = 3mL2 = 4mE = 1000N/mm2

P12

/

PPP

Dept. of CE, GCE Kannur Dr.RajeshKN

33

Page 34: Mechanics of structures - module1

4

Alu Steel

Ea=7x104 MPaEs=2x105 MPaA = 3 mm2 Alu Steel

1m 1m

Aa 3 mmAs= 2 mm2

0.5md2

d1

20 kN20 kN

Dept. of CE, GCE Kannur Dr.RajeshKN

34

Page 35: Mechanics of structures - module1

Compound bars (Composite sections)Compound bars (Composite sections)

PP1 2P P P+ =

1 2L L Lδ δ δ= =

1 2PL P L=

E

1 1 2 2A E A E

1 2 11 2

1 2 2

EE E Eσ σ σ σ= ⇒ =

Modular ratio

Dept. of CE, GCE Kannur Dr.RajeshKN

35

Page 36: Mechanics of structures - module1

Compound tubeCompound tube

1000 kN Eb=105 MPaEs=2x105 MPaInternal dia of steel tube = 150mmThickness of steel tube = 10mmThickness of brass tube = 10mm

1000s bP P+ =

s bL L Lδ δ δ= =s b

St l t bs bP L P L

=Steel tubes s b bA E A E

Ans: Pb=360kN

Dept. of CE, GCE Kannur Dr.RajeshKN

36Brass tubeAns: Pb 360kNPs= 640kN

Page 37: Mechanics of structures - module1

Elongation of bar of uniform section due to self weight

AX Stress at X, x

Ax xA

γσ γ= =

, ,E AγElement of length

. . .El ti f l t x

dxdx x dxσ γδ

2

Elongation of element,

. .Total elongation of bar

xx

LE E

x dx LL

γδ

γ γδ

= =

= =∫0

Total elongation of bar, 2

LE E

δ ∫Xdx

Dept. of CE, GCE Kannur Dr.RajeshKN

37Axγ

Page 38: Mechanics of structures - module1

Bar of uniform strength • Uniform stress throughout the length of bar

( )xA dAσ +

xA dxγ

( )A dA A A dA

Ax+dA

LxAσ

( )x x xA dA A A dxσ σ γ+ = +Ax

x

L

dA dxσ γ=

AxA

γ

xA xdA dxγ=∫ ∫

P 0

log

xA

x

dxA

A x

σ

γ

=

⎛ ⎞ =⎜ ⎟

∫ ∫

Dept. of CE, GCE Kannur Dr.RajeshKN

38

loge xA σ

=⎜ ⎟⎝ ⎠

Page 39: Mechanics of structures - module1

Temperature stress α : Coefficient of thermal expansion, T : Rise in temperature,L : Length

αTL : Change in length, if bar is free to expand.No stress in bar.

If deformation of bar is prevented, stress develops in barIf elongation is prevented, stress is compressive If shortening is prevented, stress is tensileIf shortening is prevented, stress is tensile

Compressive strain, TL TL TL TL Lα αε αα

= ≅ =+

LCompressive str ,e ss

L TL LTEα

σ α+

=

If expansion is allowed partially,

Compressive strain TLα δε −=

Dept. of CE, GCE Kannur Dr.RajeshKN

39

Compressive st , rainL

ε =L δ

Page 40: Mechanics of structures - module1

Example 1: What is the maximum stress in the steel rod if temperature i th h 30oC?

7 2 62 10 N/cm 12 10 cm/cm/oE Cα −= × = ×

212 cm218 cm

rises through 30oC? 2 10 N/cm , 12 10 cm/cm/E Cα= × = ×

30 cm 45 cm

( ) PL PL( ) 1 21 2

1 2

Total elongation, PL PLT L LAE A E

α + = +

67

30 45i.e., 12 10 30 752 10 12 18

P− ⎛ ⎞× × × = +⎜ ⎟× ⎝ ⎠108000NP∴ =

21 2

108000N 9000N cm12

σ∴ = =

Dept. of CE, GCE Kannur Dr.RajeshKN

1 212cm40

Page 41: Mechanics of structures - module1

Dept. of CE, GCE Kannur Dr.RajeshKN

41Problems: Sc P 90-96 Pun

Page 42: Mechanics of structures - module1

Dept. of CE, GCE Kannur Dr.RajeshKN

42

Page 43: Mechanics of structures - module1

7

8

Dept. of CE, GCE Kannur Dr.RajeshKN

43

Page 44: Mechanics of structures - module1

STRAIN ENERGY

due to axial loadaxial loadbending

shear torsion

Dept. of CE, GCE Kannur Dr.RajeshKN

44

Page 45: Mechanics of structures - module1

– When an elastic body is loaded it undergoes deformation

STRAIN ENERGY

– When an elastic body is loaded, it undergoes deformation– Energy is stored during this process, and released when the

load is removed This energy is strain energy– This energy is strain energy

• Within elastic limit energy stored is RESILIENCE• Within elastic limit, energy stored is RESILIENCE

• Maximum energy stored upto elastic limit is PROOF RESILIENCERESILIENCE

• Proof resilience is the capacity to bear shocks. Proof resilience per l funit volume of piece is MODULUS OF RESILIENCE

Dept. of CE, GCE Kannur Dr.RajeshKN

45

Page 46: Mechanics of structures - module1

Strain energy due to axial load – Variable force St a e e gy due to ax a oad Va ab e o ce along length

Axial strain energy in a member of length L and axial rigidity EA, subject to tensile force P(x) and corresponding axial strain ε(x) = P(x)/EA is obtained as below:

( )1 1 P d

P(x)/EA is obtained as below:

For an elemental length dx, ( ) ( ) ( )1 1

2 2axial

P x dxlu P x x

EAPδ= =strain energy

2( ) ( )2

2

0 0

1 12 2

L L

axial

P xU dx EA x dx

EAε= =∫ ∫strain energy

*axial axialU U=Complementary strain energy

Dept. of CE, GCE Kannur Dr.RajeshKN

46

axial axial

for linear elastic material

Page 47: Mechanics of structures - module1

Strain energy due to axial load–gyUniform force throughout length

Strain energy stored in the bar, 12

U W lδ= W2

2 21 l Al Vσ σ σ⎛ ⎞

W

lδ( )1

2 2 2l Al VU A

E E Eσ σ σσ ⎛ ⎞= = =⎜ ⎟⎝ ⎠

If σP is proof stress (stress upto elastic limit), then proof resilience =

2P Vσp

2E

Modulus of resilience = 2

2P

Dept. of CE, GCE Kannur Dr.RajeshKN

47

2E

Page 48: Mechanics of structures - module1

Example 1: A bar 100 cm length is subjected to an axial pull, such that the maximum stress is 150MN/m2. Its area of cross-section is 2 cm2 over a length of 95 cm and for the middle 5 cm it is only 1 g ycm2. If E= 200 GN/m2 , calculate the strain energy stored in bar.

Dept. of CE, GCE Kannur Dr.RajeshKN

48

Page 49: Mechanics of structures - module1

Dept. of CE, GCE Kannur Dr.RajeshKN

49

Page 50: Mechanics of structures - module1

Example 2: Two elastic bars, whose proportions are shown in figure, areto absorb the same amount of energy delivered by axial forces at theto absorb the same amount of energy delivered by axial forces at thefree end. Compare the stresses in the bars at the free end. Cross-sectional areas are shown.

1 2U U=

( ) ( )222 2

1 2 2 2 .3AL AL A Lσ

σ σ ⎛ ⎞ ⎛ ⎞ L34L 2A

( ) ( )1 2 2 2 .3

2 2 4 2 4AL A L

E E Eσ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠A L

A42 11.265σ σ=

Dept. of CE, GCE Kannur Dr.RajeshKN

50

Page 51: Mechanics of structures - module1

Strain energy due to axial load for multiple membersSt a e e gy due to ax a oad o u t p e e be s– Uniform force throughout length

If the axial force is constant, and the ith element has an axial stiffness EA/L, (i.e., axial flexibility L/EA), and a tensile force Pi is acting on the ith element causing an elongation ei, axial strain energy is given by

2 * 21 12 2truss i truss i

i i

EA LU e U PL EA

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑2 2i ii iL EA⎝ ⎠ ⎝ ⎠

Dept. of CE, GCE Kannur Dr.RajeshKN

51

Page 52: Mechanics of structures - module1

Elastic constantsElastic constants

M d l f l ti it (Y ’ d l ) E• Modulus of elasticity (Young’s modulus) E• Modulus of rigidity (Shear modulus) G

B lk d l K• Bulk modulus K• Poisson’s ratio µ

Dept. of CE, GCE Kannur Dr.RajeshKN

52

Page 53: Mechanics of structures - module1

Poisson’s ratioLinear and lateral strain

LC

B Bδ−B 1σ

L Lδ+

A normal stress in a direction causes linear strain in its direction and

Lδ Lateral strain Poisson's ratio = = B Bδμ

causes lateral strains in directions perpendicular to it.

1

2

Linear strain =

Lateral strain =

LL

BB

δε

δε −

Poisson s ratio Linear strain L L

μδ

2 12 1= ε σμ ε με μ−

⇒ = − = −

Dept. of CE, GCE Kannur Dr.RajeshKN

53

B 2 11 E

μ ε με με

Page 54: Mechanics of structures - module1

• Poisson’s ratio is a material propertyPoisson s ratio is a material property

Dept. of CE, GCE Kannur Dr.RajeshKN

54

Page 55: Mechanics of structures - module1

Volumetric strain

• A single normal stress – rectangular cross section

BPP

Hσ σ

Linear (longitudinal) strain 1 (Tensile)Lδ σε = =Linear (longitudinal) strain 1 (Tensile)L E

ε

2 (Compressive)BB Eδ σε μ−

= = −Lateral strainB E

3 (Compressive)HH Eδ σε μ−

= = −Lateral strain

Dept. of CE, GCE Kannur Dr.RajeshKN

55

Page 56: Mechanics of structures - module1

BPP

HP

σ σ

V LBH=

( ) ( ) ( )V V L L B B H Hδ δ δ δ+ = + + +

L B Hδ δ δ⎛ ⎞⎛ ⎞⎛ ⎞1 1 1L B HLBHL B Hδ δ δ⎛ ⎞⎛ ⎞⎛ ⎞= + + +⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠

1 L B HV δ δ δ⎛ ⎞≅ + + +⎜ ⎟

L B HV V δ δ δδ ⎛ ⎞⇒ ≅ + +⎜ ⎟

1VL B H

≅ + + +⎜ ⎟⎝ ⎠

V VL B H

δ⇒ ≅ + +⎜ ⎟⎝ ⎠

1 2 3Volumetric strain vV

V E E Eδ σ σ σε ε ε ε μ μ= ≅ + + = − −V E E E

( )= 1 2v Eσε μ−

Dept. of CE, GCE Kannur Dr.RajeshKN

56

E

Page 57: Mechanics of structures - module1

A l l lVolumetric strain

P

• A single normal stress – circular cross section

P P

2

4D LV π

=

( )2

2

2 . .4

2

V D L D D L

D L D L

πδ δ δ

π δ δ

= +

⎛ ⎞+⎜ ⎟ Lδ24 D L

= +⎜ ⎟⎝ ⎠

2V D LV D Lδ δ δ

= +

1Here,

and

LL ED

δ σε

δ σε μ

= =

= =V D L 2and, D E

ε μ= = −

( )Volumetric strain, 1 2vV

V Eδ σε μ= = −

Dept. of CE, GCE Kannur Dr.RajeshKN

57

V E

Page 58: Mechanics of structures - module1

Volumetric strain

• Three mutually perpendicular normal stresses

1 2 3Volumetric strain vV

Vδε ε ε ε= ≅ + +

2P 2σ2ε

1 2 31 E E E

σ σ σε μ μ= − −1P

3P1σ1ε 2 3 1

2 E E Eσ σ σε μ μ= − −

3P3σ

3ε3 1 2

3 E E Eσ σ σε μ μ= − −

( ) 1 2 31 2 3 1 2v

Vδ σ σ σε ε ε ε μ + +⎛ ⎞∴ = ≅ + + = − ⎜ ⎟⎝ ⎠

Dept. of CE, GCE Kannur Dr.RajeshKN

58

( )1 2 3v V Eμ ⎜ ⎟

⎝ ⎠

Page 59: Mechanics of structures - module1

Hydrostatic pressure: Equal pressure on all sidesHydrostatic pressure: Equal pressure on all sides

1 2 3σ σ σ σ= = = 1 2 3ε ε ε ε= = =

( )1 2 333 1 2v

VV Eδ σε ε ε ε ε μ ⎛ ⎞∴ = ≅ + + = = − ⎜ ⎟

⎝ ⎠( )1 2 3v V E

μ ⎜ ⎟⎝ ⎠

( )1 2Eσε μ ⎛ ⎞= − ⎜ ⎟⎝ ⎠σ σ

σ

Maximum possible value of Poisson’s ratio

E⎝ ⎠σ

( )1 2 σε μ ⎛ ⎞⎜ ⎟

Maximum possible value of Poisson s ratio

( ) a +ve value1 2Eε μ= −( )1 2E

ε μ= − ⎜ ⎟⎝ ⎠

( )

( )

a +ve value1 2 ,

11 2 02

μσ

μ μ∴ − > ⇒ <

Dept. of CE, GCE Kannur Dr.RajeshKN

59

( )2

Page 60: Mechanics of structures - module1

Bulk modulus

• When a body is subjected to mutually perpendicular likestresses of equal intensity the ratio of normal stress to the stresses of equal intensity σ, the ratio of normal stress σ to the corresponding volumetric strain εv is defined as bulk modulus of the material

K σ=

Dept. of CE, GCE Kannur Dr.RajeshKN

60

Page 61: Mechanics of structures - module1

Relation between Young’s modulus E and bulk modulus KRelation between Young s modulus E and bulk modulus K

Consider equal pressure on all sides of a cube

σ

Consider equal pressure on all sides of a cubeof side L

σ σ( ) 31 2vV

V Eδ σε μ ⎛ ⎞= = − ⎜ ⎟

⎝ ⎠

( ) 31 2K Eσ σμ ⎛ ⎞= − ⎜ ⎟

⎝ ⎠

( )3 1 2E K μ= −

Dept. of CE, GCE Kannur Dr.RajeshKN

61

Page 62: Mechanics of structures - module1

Problem

Dept. of CE, GCE Kannur Dr.RajeshKN

62

Page 63: Mechanics of structures - module1

Dept. of CE, GCE Kannur Dr.RajeshKN

63

Page 64: Mechanics of structures - module1

Shear modulus (modulus of rigidity)

Shear stressShear modulusSh t

, = i

G τ=

PA

Shear strain γ

Sl N M t i l M d l f Sl. No. Material Modulus of rigidity

1 Aluminium (pure) 26

γ γ

P Aτ =2 Aluminium alloys 26-30

3 Brass 36-41

4 B 36 44 γ4 Bronze 36-44

5 Cast iron 32-69

6 Copper (pure) 40-476 Copper (pure) 40-47

7 Rubber 0.0002-0.001

8 Steel 75-80

Dept. of CE, GCE Kannur Dr.RajeshKN

649 Wrought iron 75

Page 65: Mechanics of structures - module1

•Complimentary shear stress

AEτ ′F

AB τ

τAD AF = BC BEτ τ× × × ×

CD τ ′

AD AF BC BEτ τ× × × ×

( )( )

Moment of the couple

Moment of the balancing couple

= AD AF AB

= AB BE AD

τ

τ

× × ×

′× × ×( )g pEquating the above two moments, τ τ ′=

Principle of complimentary shear stresses: Shear stress in a direction cannot exist without a complimentary shear stress

di l t it

Dept. of CE, GCE Kannur Dr.RajeshKN

65

perpendicular to it

Page 66: Mechanics of structures - module1

τ τRelation between Young’s modulus E and shear modulus G

τ τ

τ045

A B

ττ τ nτ

045

C iτ

Square element cos45 cos45 0BC AB ACτ τ τ= − =

nσC Compressive

Square elementUnder pure shear

. . .cos45 . .cos45 00

n

n

BC AB ACτ τ ττ

= =⇒ =

. . .sin 45 . .sin 45

sin 45 sin 45

n BC AC ABAC AC AC

σ τ τ

σ τ τ

= +

= + τ045

nσ τ=Tensile

. . .sin 45 . .sin 45sin 45n AC ACσ τ τ= +

22 sin 45nσ τ=045

Dept. of CE, GCE Kannur Dr.RajeshKN

66nσ τ= Compressiveτ

Page 67: Mechanics of structures - module1

τC 045≅

ττ2γSquare

element γ γ

C C’

C’’

045

45≅

τ2γ

γ

A D

AC AC C CAC AC

ε′ ′′ ′ ′′−

= =′′

Tensile strain in diagonal

A D

( )cos45cos45 2 2 2

CC CCCD CD G

γ τ′ ′= = = =( )

Tensile strain in diagonal

( )1τ τ τε μ μ= + = +

τ

Tensileτ( )1E E E

ε μ μ+ +ττ

Tensile

Compressive

τ

τ( )1τ τ μ= + ( )2 1E G μ+

Dept. of CE, GCE Kannur Dr.RajeshKN

67τ

Compressive( )12G E

μ= + ( )2 1E G μ= +

Page 68: Mechanics of structures - module1

Dept. of CE, GCE Kannur Dr.RajeshKN

68

Page 69: Mechanics of structures - module1

Dept. of CE, GCE Kannur Dr.RajeshKN

69

Page 70: Mechanics of structures - module1

Prob: P1= 480 kN, P2= 900 kN, P3= 1000 kN P3P

1 , 2 , 3AB = 250 mm, AC = 80 mm, CD = 100 mm,E = 2x105 N/mm2, Poisson’s ratio = 0.25.Find a) shear modulus, b) change in volume.

1P

2P

C

D

) ) g1P

A B( )( )2 1 GE G μ= + ⇒ = 0.8x105 N/mm2

1 2 31

1 2 3

P P PA E A E A E

ε μ μ= − + = 2.9375x10-4

2 1 32

2 1 3

P P PA E A E A E

ε μ μ= − +1 2 3v

VVδε ε ε ε∴ = = + +

= 2x10-4

1 625 10 42 1 3

3 1 23

P P PA E A E A E

ε μ μ= − − − = -3.3125x10-4

= 1.625x10-4

vV Vδ ε=

Dept. of CE, GCE Kannur Dr.RajeshKN

70

33 1 2A E A E A E = 325 mm3

Page 71: Mechanics of structures - module1

SummarySummaryStress and strain

Introduction - general concepts - definition of stress - stress tensor -stress analysis of axially loaded members - strength design of members - axial strains and deformations in bars - stress-strain relationships - Poisson's ratio - thermal strain - Saint Venant's pprinciple - elastic strain energy for uniaxial stress - statically indeterminate systems - generalised Hooke's law for isotropic materials - relationships between elastic constants - introduction to materials relationships between elastic constants introduction to anisotropy – orthotropy

Dept. of CE, GCE Kannur Dr.RajeshKN

71