67
STRAIGHT MOTION REGULAR Fildia Putri, Rafika Sri Rahayu , Nul Lailah , Nurul Wisna Afianti, Nur Rahmah Marisa Raden. Departement of Chemistry, Faculity of Mathematics and Natural Science State University of Makassar 2013 Abstract Have done experiment titled “Straight Motion Regular”. The purpose of experiment are understand the difference between distance and displacement, determine the speed and the average speed, determining the relationship between displacement (Δx) with mileage time (t) objects moving Straight Motion Regular (GLB) , and (4) understand the regular rectilinear motion (GLB). Data obtained from measurements of distance, displacement and travel time by using the three-track a moving object with a rectangular-shaped objects, each of which varies the speed, the three objects start at point A and then move to the next point until the point where the first object moves. Then proceed with data collection by measuring the distance and travel time in regular “Straight Motion Regular” GLB tube that hung in stative by taking four samples, each point has a different distance and any use distance measurements using different also, measurements were made three

Straight Motion Regular Report by Fildia Putri

Embed Size (px)

DESCRIPTION

Laporan Lengkap Fisika Dasar Univeristas - Gerak Lurus Beraturan .

Citation preview

Page 1: Straight Motion Regular Report by Fildia Putri

STRAIGHT MOTION REGULAR

Fildia Putri, Rafika Sri Rahayu , Nul Lailah , Nurul Wisna Afianti, Nur Rahmah

Marisa Raden.

Departement of Chemistry, Faculity of Mathematics and Natural Science

State University of Makassar 2013

Abstract

Have done experiment titled “Straight Motion Regular”. The purpose of

experiment are understand the difference between distance and displacement,

determine the speed and the average speed, determining the relationship between

displacement (Δx) with mileage time (t) objects moving Straight Motion Regular

(GLB) , and (4) understand the regular rectilinear motion (GLB). Data obtained

from measurements of distance, displacement and travel time by using the three-

track a moving object with a rectangular-shaped objects, each of which varies the

speed, the three objects start at point A and then move to the next point until the

point where the first object moves. Then proceed with data collection by

measuring the distance and travel time in regular “Straight Motion Regular” GLB

tube that hung in stative by taking four samples, each point has a different

distance and any use distance measurements using different also, measurements

were made three times over and to get the maximum results and accurate. Activity

results 1 in lab can be concluded that the faster object moves does it take to get

geared increasingly shorter and the activities 2 can be concluded that the higher an

object is placed, faster the movement of objects from one to the other.

Keywords: GLB, distance, displacement, velocity, pace, travel time, speed, meter,

stative, GLB tube.

I. PURPOSE

Page 2: Straight Motion Regular Report by Fildia Putri

1. Students can understand the difference between distance and the

displacement.

2. Students can determine the speed and average speed.

3. Students can investigate the relationship between displacement (Δx)

with time (t) regular moving body straight (GLB).

4. Students can understand the regular rectilinear motion (GLB).

II. EXPERIMENTAL METHODOLOGY

A. A Brief Theory

PositionIn order to describe the motion of an object, you must first be able to

describe its position—where it is at any particular time. More precisely, you need

to specify its position relative to a convenient reference frame. Earth is often used

as a reference frame, and we often describe the position of an object as it relates to

stationary objects in that reference frame. For example, a rocket launch would be

described in terms of the position of the rocket with respect to the Earth as a

whole, while a professor’s position could be described in terms of where she is in

relation to the nearby white.

Displacement

If an object moves relative to a reference frame (for example, if a

professor moves to the right relative to a white board or a passenger moves toward

the rear of an airplane), then the object’s position changes. This change in position

is known as displacement. The word “displacement” implies that an object has

moved, or has been displaced.

Displacement is the change in position of an object:

Δx = xf − x0 where Δx is displacement, xf is the final position, and x0 is the initial

position. In this text the upper case Greek letter Δ (delta) always means “change

in” whatever quantity follows it; thus, Δx means change in position.

Always solve for displacement by subtracting initial position x0 from final

position xf.

Page 3: Straight Motion Regular Report by Fildia Putri

Distance

Although displacement is described in terms of direction, distance is not.

Distance is defined to be the magnitude or size of displacement between two

positions. Note that the distance between two positions is not the same as the

distance traveled between them. Distance traveled is the total length of the path

traveled between two positions. Distance has no direction and, thus, no sign. For

example, the distance the professor walks is 2.0

m. The distance the airplane passenger walks is 4.0 m.

It is important to note that the distance traveled, however, can be greater

than the magnitude of the displacement (by magnitude, we mean just the size of

the displacement without regard to its direction; that is, just a number with a unit).

For example, the professor could pace back and forth many times, perhaps

walking a distance of 150 m during a lecture, yet still end up only 2.0 m to the

right of her starting point. In this case her displacement would be +2.0 m, the

magnitude of her displacement would be 2.0 m, but the distance she traveled

would be 150 m. In kinematics we nearly always deal with displacement and

magnitude of displacement, and almost never with distance traveled. One way to

think about this is to assume you marked the start of the motion and the end of the

motion. The displacement is simply the difference in the position of the two marks

and is independent of the path taken in traveling between the two marks. The

distance traveled, however, is the total length of the path taken between the two

marks.

Time, Velocity, and Speed.

Time

As discussed in Physical Quantities and Units, the most fundamental

physical quantities are defined by how they are measured. This is the case with

time. Every measurement of time involves measuring a change in some physical

quantity. It may be a number on a digital clock, a heartbeat, or the position of the

Sun in the sky. In physics, the definition of time is simple— time is change, or

the interval over which change occurs. It is impossible to know that time has

Page 4: Straight Motion Regular Report by Fildia Putri

passed unless something changes. The amount of time or change is calibrated by

comparison with a standard. The SI unit for time is the second, abbreviated s. We

might, for example, observe that a certain pendulum makes one full swing every

0.75 s. We could then use the pendulum to measure time by counting its swings

or, of course, by connecting the pendulum to a clock mechanism that registers

time on a dial. This allows us to not only measure the amount of time, but also to

determine a sequence of events.

How does time relate to motion? We are usually interested in elapsed time

for a particular motion, such as how long it takes an airplane passenger to get

from his seat to the back of the plane. To find elapsed time, we note the time at

the beginning and end of the motion and subtract the two.

Velocity

Your notion of velocity is probably the same as its scientific definition.

You know that if you have a large displacement in a small amount of time you

have a large velocity, and that velocity has units of distance divided by time, such

as miles per hour or kilometers per hour.

Average Velocity

Average velocity is displacement (change in position) divided by the time of

travel,

(2.5) v - = Δx

Δt = xf − x0

tf − t0

, where v - is the average (indicated by the bar over the v) velocity, Δx is the

change in position (or displacement), and xf and x0 are the final and beginning

positions at times tf and t0, respectively. If the starting time t0 is taken to be zero,

then the average velocity is simply

(2.6) v - = Δxt.

Notice that this definition indicates that velocity is a vector because displacement

is a vector. It has both magnitude and direction. The SI unit for velocity is meters

per second or m/s, but many other units, such as km/h, mi/h (also written as mph),

and cm/s, are in common use. Suppose, for example, an airplane passenger took 5

Page 5: Straight Motion Regular Report by Fildia Putri

seconds to move −4 m (the negative sign indicates that displacement is toward the

back of the plane). His average velocity would be

(2.7) v - = Δx

t = −4 m

5 s = − 0.8 m/s.

Speed

In everyday language, most people use the terms “speed” and “velocity”

interchangeably. In physics, however, they do not have the same meaning and

they are distinct concepts. One major difference is that speed has no direction.

Thus speed is a scalar. Just as we need to distinguish between instantaneous

velocity and average velocity, we also need to distinguish between instantaneous

speed and average speed.

Instantaneous speed is the magnitude of instantaneous velocity. For

example, suppose the airplane passenger at one instant had an instantaneous

velocity of −3.0 m/s (the minus meaning toward the rear of the plane). At that

same time his instantaneous speed was 3.0 m/s. Or suppose that at one time during

a shopping trip your instantaneous velocity is 40 km/h due north. Your

instantaneous speed at that instant would be 40 km/h—the same magnitude but

without a direction. Average speed, however, is very different from average

velocity. Average speed is the distance traveled divided by elapsed time.

We have noted that distance traveled can be greater than displacement. So average

speed can be greater than average velocity, which is displacement divided by

time. For example, if you drive to a store and return home in half an hour, and

your car’s odometer shows the total distance traveled was 6 km, then your average

speed was 12 km/h. Your average velocity, however, was zero, because your

displacement for the round trip is zero. (Displacement is change in position and,

thus, is zero for a round trip.) Thus average speed is not simply the magnitude of

average velocity.

Page 6: Straight Motion Regular Report by Fildia Putri

Said moving object if the object changed position to a reference point.

Objects will move through a trajectory with a certain length of time. The total

length of the path traversed is called the distance, while the change in the

position of the object from the initial position to the final position is called the

displacement. Distance is a scalar quantity, whereas the displacement is a vector

quantity.

Said object moving regular straight (GLB) if the object is moving on a

straight path and move at a constant speed or no speed change with time,

so the acceleration is zero. Speed is defined as the change in position at

any time or in the form of written mathematical;

v⃗=∆ xt

(1.1)

while the pace is great mileage per unit of time or in the form of written

mathematical

v= xt

(1.2)

Description :

v⃗ : Speeds (m/s)

Δx : Change the position or the displacement (m)

t : The time interval (s)

v : Speed of (m/s)

x : Distance (m)

B. Tool and Material

Page 7: Straight Motion Regular Report by Fildia Putri

1. Meter

2. Stopwatch

3. GLB tube

4. Stative

5. Tool written write

C. Identification Variables

Activity 1

1. Variable Control

As for the control variables of activity 1 is always

constant and fixed value is the distance.

2. Variable Manipulation

1 can be seen in the activities that are being manipulated

variable displacement because it causes changes in lab

activities.

3. Variable Response

Response variable in this practicum is the travel time

from the object.

Activity 2

1. Variable Control

Control variables in the second practicum is mileage.

Page 8: Straight Motion Regular Report by Fildia Putri

2. Variable Manipulation

In the second activity, the height of which is variable

manipulation.

3. Variable Response

2 activity response variable is the travel time from titk

one particle to another point.

D. Definition Operational Variables

Activity 1

1. Variable Control

Distance is the total length of the path traversed. In the

first activity within each track together and fixed.

2. Variable Manipulation

Displacement is a big change of body position from the

initial position to the final position. In the first movement of

each activity is different trajectories result of the independent

variable.

3. Variable Response

Travel time is faster than an object to get to a certain

distance. Travel time changes due to the distance through which

the object trajectory.

Activity 2

1. Variable Control

Page 9: Straight Motion Regular Report by Fildia Putri

Mileage distance is the total length of the path traversed.

In the second activity within each track together and fixed.

2. Variable Manipulation

Height is the vertical position of an object from a

specific point. Height in this activity is affected by distance

trajectory.

3. Variable Response

Travel time travel time is faster than an object to get to a

certain distance. Travel time changes due to the distance through

which the object trajectory.

E. Work Procedures

a. Activity 1

1. Making tracks in the rectangular space, then measure the length of

each side.

2. Provide the code on each corner with code A, B, C, and D.

3. Setting up your friends, as the object is moving at different speeds.

4. The first person standing at point A, then move toward point B, and

then measure the time it used to take the path from point A to point

B (try moving with constant velocity). Proceed to the second and

third then record the results in the table of observations.

5. Perform step 4 with different trajectory for example from point A

to point B and then to point C. Followed by some other path, record

the results in the table of observations

b. Activity 2

1. Take the tube GLB and Statif to pocket one end of the tube

2. Mark of at least 4 points as points A, B, C, and D on the tube (try

having the same interval).

Page 10: Straight Motion Regular Report by Fildia Putri

3. Determine / measure the path length of the bottom of the tube (0

cm) to point A, to point B, to point C, and to point D.

4. Hanging one end of the tube at a certain height stative, start of

height about 5 cm from the bottom / base.

5. Lifting the other end of the tube, so that the bubble in the tube is in

the raised end.

6. Lowering the tip had reached the base / pedestal so that the bubble

will move up, measure the time it takes a bubble to reach point A

(start the stopwatch when the bubble right across the 0 cm position

on the tube), repeated retrieval of data as much as 3 times.

7. Repeat steps 4, 5 and 6, with different mileage (to point B, to C,

and to point C) record the results in the table of observations.

III. EXPERIMENTAL RESULTS AND DATA ANALYSIS

A. Observations

D 1,55 C

3,7 2,15

A B

2,13

1. Activity 1

Tabel 1.1.Results Measurement Distance, Displacement and Travel

Time.

NST Stopwatch : 0,1 s

NST Metered : 0,1 cm

No Trajectory Distance Shift Travel Time

Page 11: Straight Motion Regular Report by Fildia Putri

(m) (m) (s)

1 From point A to B

1. 2,13

2. 2,13

3. 2,13

1. 2,13

2. 2,13

3. 2,13

1. 8,00

2. 2,50

3. 2,3

2From point A to B

and to C

1. 4,28

2. 4,28

3. 4,28

1. 3,02

2. 3,02

3. 3,02

1. 13,60

2. 5,70

3. 4,80

3 From point A to D

1. 3,70

2. 3,70

3. 3,70

1. 1,53

2. 1,53

3. 1,53

1. 16,00

2. 10,90

3. 7,00

4From point A to B

to C to D

1. 5,83

2. 5,83

3. 5,83

1. 2,13

2. 2,13

3. 2,13

1. 4,61

2. 4,61

3. 4,61

2. Activity 2

40302010

DCBA

cm

Page 12: Straight Motion Regular Report by Fildia Putri

Tabel 1.2.Results Measurement Mileage and Travel Time Regular

Straight In Motion.

NST Stopwatch : 0,1 s

NST GLB Tube : 0,1 cm

No Height (cm) Mileage (cm) Travel Time (s)

1 5

10

1. 2,00

2. 2,00

3. 2,30

20

1. 4,00

2. 4,00

3. 4,40

30

1. 6,50

2. 6,70

3. 6,50

40

1. 8,70

2. 8,70

3. 8,40

2 10 10 1. 1,30

Page 13: Straight Motion Regular Report by Fildia Putri

2. 1,30

3. 1,20

20

1. 2,60

2. 2,50

3. 2,70

30

1. 3,60

2. 3,60

3. 3,70

40

1. 5,10

2. 5,00

3. 5,00

3 15

10

1. 1,00

2. 1,00

3. 1,00

20

1. 1,90

2. 2,00

3. 2,00

30 1. 2,90

Page 14: Straight Motion Regular Report by Fildia Putri

2. 3,00

3. 2,90

40

1. 4,00

2. 3,90

3. 3,80

B. Data Analysis

1. Activity 1

Based on the observations / measurements, great speed and

average speed of each person on each track are as follows:

a. Speed

From point A to B

First Person:

v1=Δ xt

=2,138,00

=0,26 m /s

Second Person:

v2=Δ xt

=2,132,50

=0,30 m / s

Third Person:

v3=Δ xt

=2,132,30

=0,43 m/ s

Page 15: Straight Motion Regular Report by Fildia Putri

From point A to B to C

First Person :

v1=Δ xt

= 3,0213,60

=0,22 m /s

Second Person :

v2=Δ xt

=3,025,70

=0,53 m / s

Third Person :

v3=Δ xt

=3,024,80

=0,63 m /s

From point A to D

First Person :

v1=Δ xt

= 1,5316,00

=0,09m /s

Second Person :

v2=Δ xt

= 1,5310,90

=0,14 m /s

Third Person :

v3=Δ xt

=1,537,00

=0,22 m /s

From point A to B to C to D

First Person :

v1=Δ xt

=2,134,61

=0,46 m /s

Second Person :

v2=Δ xt

=2,134,61

=0,46 m /s

Third Person :

v3=Δ xt

=2,134,61

=0,46 m /s

Page 16: Straight Motion Regular Report by Fildia Putri

b. Speed of

From point A to B

First Person :

v1=xt=2,13

8,00=0,29 m /s

Second Person :

v2=xt=2,13

2,50=0,85 m /s

Third Person

v3=xt=2,13

2,30=1,00 m /s

From point A to B to C

First Person :

v1=xt= 4,28

13,60=0,31 m /s

Second Person :

v2=xt=4,28

5,70=0,75 m / s

Third Person :

v3=xt=4,28

4,80=0,89m / s

From point A to D

First Person :

v1=xt= 3,70

16,00=0,23 m /s

Second Person :

v2=xt= 3,70

10,90=0,34 m / s

Third Person :

v3=xt=3,70

7,00=0,53 m /s

Page 17: Straight Motion Regular Report by Fildia Putri

From point A to B to C to D

First Person :

v1=xt=5,83

4,61=1,26 m /s

Second Person :

v2=xt=5,83

4,61=1,26 m /s

Third Person :

v3=xt=5,83

4,61=1,26 m /s

c. Errors Analysis

v= st

→ v=s t−1

∆ v=|δvδs|∆ s+|δv

δt |∆ t

¿|δs t−1

δs |∆ s+|δs t−1

δt |∆ t

∆ vv

=∆ stv

+ s ∆ t

t2

v

∆ vv

=|∆ ss |+|∆ t

t |∆ v=|∆ s

s+ ∆ t

t |v

Speed

From point A to B

First Person :

Page 18: Straight Motion Regular Report by Fildia Putri

∆ v1=|∆ ss

+ ∆ tt |v1

¿|0,102,13

+ 0,058,00|0,26

¿|0,10 x8,00+2,13 x 0,052,13 x 8,00 |0,26

¿|0,80+0,1117,04 |0,26

¿| 0,9117,04|0,26

¿0,05 x 0,26

¿0,013m /s

KR=∆ v1

v1

x100 %

¿ 0,0130,26

x 100 %

¿5,9 %

KR=|0,260 ±0,013|

Second Person :

∆ v2=|∆ ss

+ ∆ tt |v2

¿|0,102,13

+ 0,052,50|0,30

¿|0,10 x2,50+2,30 x 0,052,13 x2,50 |0,30

Page 19: Straight Motion Regular Report by Fildia Putri

¿|0,25+0,015,33 |0,30

¿|0,265,33|0,30

¿0,048 x 0,30

¿0,014 m/ s

KR=∆ v2

v2

x100 %

¿ 0,0140,30

x 100 %

¿4,8 %

KR=|0,300 ±0,014|

Third Person :

∆ v3=|∆ ss

+ ∆ tt |v3

¿|0,102,13

+ 0,052,30|0,43

¿|0,10 x2,30+2,13 x 0,052,13 x 2,30 |0,43

¿|0,23+0,114,89 |0,43

¿|0,344,89|0,43

¿0,07 x 0,43

Page 20: Straight Motion Regular Report by Fildia Putri

¿0,03 m /s

KR=∆ v3

v3

x100 %

¿ 0,030,43

x100 %

¿6,9 %

KR=|0,430 ±0,030|

From point A to B to C

First Person :

∆ v1=|∆ ss

+ ∆ tt |v1

¿|0,103,02

+ 0,0513,60|0,22

¿|0,10 x13,60+3,02 x 0,053,02 x 13,60 |0,22

¿|1,36+0,1541,07 |0,22

¿| 1,5141,07|0,22

¿0,04 x 0,22

¿0,008m /s

KR=∆ v1

v1

x100 %

¿ 0,0080,22

x 100 %

Page 21: Straight Motion Regular Report by Fildia Putri

¿4 %

KR=|0,220 ±0,008|

Second Person :

∆ v2=|∆ ss

+ ∆ tt |v2

¿|0,103,02

+ 0,055,70|0,53

¿|0,10 x5,70+3,02 x 0,053,02x 5,7 |0,53

¿|0,57+0,1517,21 |0,53

¿| 0,7217,21|0,53

¿0,04 x 0,53

¿0,021 m /s

KR=∆ v2

v2

x100 %

¿ 0,0210,53

x100%

¿3,9 %

KR=|0,530 ±0,021|

Third Person :

∆ v3=|∆ ss

+ ∆ tt |v3

Page 22: Straight Motion Regular Report by Fildia Putri

¿|0,103,02

+ 0,054,80|0,63

¿|0,10 x 4,80+3,02 x 0,053,29 x 8,00 |0,63

¿|0,48+0,1514,49 |0,63

¿| 0,6314,49|0,63

¿0,043 x 0,63

¿0,027 m / s

KR=∆ v3

v3

x100 %

¿ 0,0270,63

x 100 %

¿4,3 %

KR=|0,630 ±0,027|

From point A to D

First Person :

∆ v1=|∆ ss

+ ∆ tt |v1

¿|0,101,53

+ 0,0516,00|0,09

¿|0,10 x16,00+1,53 x 0,051,53 x 16,00 |0,09

Page 23: Straight Motion Regular Report by Fildia Putri

¿|1,6+0,0924,48 |0,09

¿| 3,1355,63|0,09

¿0,069 x0,09

¿0,006 m / s

KR=∆ v1

v1

x100 %

¿ 0,0060,09

x 100 %

¿6,60 %

KR=|0,090 ±0,006|

Second Person :

∆ v2=|∆ ss

+ ∆ tt |v2

¿|0,101,53

+ 0,0510,90|0,14

¿|0,10 x10,90+1,53 x 0,051,53 x 10,90 |0,14

¿|1,09+0,0716,67 |0,14

¿| 1,1616,67|0,14

¿0,069 x0,14

Page 24: Straight Motion Regular Report by Fildia Putri

¿0,009 m /s

KR=∆ v2

v2

x100 %

¿ 0,0090,14

x100 %

¿6,4 %

KR=|0,140 ±0,009|

Third Person :

∆ v3=|∆ ss

+ ∆ tt |v3

¿|0,101,53

+ 0,057,00|0,22

¿|0,10 x7,00+1,53 x 0,051,53 x 7,00 |0,22

¿|0,70+0,0810,70 |0,22

¿| 0,7810,70|0,22

¿0,072 x0,22

¿0,015m /s

KR=∆ v3

v3

x100 %

¿ 0,0150,22

x 100 %

Page 25: Straight Motion Regular Report by Fildia Putri

¿6,80 %

KR=|0,220 ±0,015|

From point A to B to C to D

First Person :

∆ v1=|∆ ss

+ ∆ tt |v1

¿|0,102,13

+ 0,054,61|0,46

¿|0,10 x 4,61+2,13 x 0,052,13 x2,61 |0,46

¿|0,046+0,1069,82 |0,46

¿|0,159,82|0,46

¿0,007 m / s

KR=∆ v1

v1

x100 %

¿ 0,0070,46

x 100 %

¿1,50 %

KR=|0,460 ±0,007|

Second Person :

∆ v2=|∆ ss

+ ∆ tt |v2

Page 26: Straight Motion Regular Report by Fildia Putri

¿|0,102,13

+ 0,054,61|0,46

¿|0,10 x 4,61+2,13 x 0,052,13 x 4,61 |0,46

¿|0,46+0,1069,82 |0,46

= |0,509,82|0,46

¿0,005m /s

KR=∆ v2

v2

x100 %

¿ 0,0050,46

x 100 %

¿1 %

KR=|0,460 ±0,005|

Third Person :

∆ v3=|∆ ss

+ ∆ tt |v3

¿|0,102,13

+ 0,054,61|0,46

¿|0,10 x 4,61+2,13 x 0,052,13 x 4,61 |0,46

¿|0,46+0,1069,82 |0,46

Page 27: Straight Motion Regular Report by Fildia Putri

= |0,509,82|0,46

¿0,005m /s

KR=∆ v3

v3

x100 %

¿ 0,0050,46

x 100 %

¿1 %

KR=|0,460 ±0,005|

Speed of

From point A to B

First Person :

∆ v1=|∆ ss

+ ∆ tt |v1

¿|0,102,13

+ 0,058,00|0,29

¿|0,10 x8,00+2,13 x 0,052,13 x 8,00 |0,29

¿|0,80+0,106517,04 |0,29

¿|0,906517,04 |0,29

¿0,05 x 0,29

¿0,001 m /s

Page 28: Straight Motion Regular Report by Fildia Putri

KR=∆ v1

v1

x100 %

¿ 0,0010,29

x100 %

¿0,34 %

KR=|0,290 ±0,001|

Second Person :

∆ v2=|∆ ss

+ ∆ tt |v2

¿|0,102,13

+ 0,052,50|0,85

¿|0,10 x2,50+2,30 x 0,052,13 x2,50 |0,85

¿|0,25+0,015,33 |0,85

¿|0,265,33|0,85

¿0,048 x 0,85

¿0,04 m/ s

KR=∆ v2

v2

x100 %

¿ 0,040,85

x 100 %

¿4,7 %

Page 29: Straight Motion Regular Report by Fildia Putri

KR=|0,850 ±0,040|

Third Person :

∆ v3=|∆ ss

+ ∆ tt |v3

¿|0,102,13

+ 0,052,30|0,43

¿|0,10 x2,30+2,13 x 0,052,13 x 2,30 |1,00

¿|0,23+0,114,89 |1,00

¿|0,344,89|1,00

¿0,07 x 1,00

¿0,07 m / s

KR=∆ v3

v3

x100 %

¿ 0,071,00

x 100 %

¿7 %

KR=|1,000± 0,070|

From point A to B to C

First Person :

Page 30: Straight Motion Regular Report by Fildia Putri

∆ v1=|∆ ss

+ ∆ tt |v1

¿|0,104,28

+ 0,0513,60|0,31

¿|0,10 x13,60+4,28 x0,054,28 x13,60 |0,31

¿|1,36+0,21458,208 |0,31

¿| 1,5758,208|0,31

¿0,027 x 0,31

¿0,008m /s

KR=∆ v1

v1

x100 %

¿ 0,0080,31

x 100 %

¿2,5 %

KR=|0,3100 ±0,008|

Second Person :

∆ v2=|∆ ss

+ ∆ tt |v2

¿|0,104,28

+ 0,055,70|0,75

¿|0,10 x5,7+4,28 x0,054,28 x5,70 |0,75

Page 31: Straight Motion Regular Report by Fildia Putri

¿|0,57+0,21424,39 |0,75

¿|0,78424,39|0,75

¿0,032 x0,75

¿0,024 m/ s

KR=∆ v2

v2

x100 %

¿ 0,0240,75

x 100 %

¿3,2 %

KR=|0,750 ±0,024|

Third Person :

∆ v3=|∆ ss

+ ∆ tt |v3

¿|0,104,28

+ 0,054,80|0,89

¿|0,10 x 4,80+4,28 x 0,054,28 x 4,80 |0,89

¿|0,48+0,21420,54 |0,89

¿|0,69420,54|0,89

¿0,033 x 0,89

Page 32: Straight Motion Regular Report by Fildia Putri

¿0,029 m /s

KR=∆ v3

v3

x100 %

¿ 0,0290,89

x100 %

¿3,2 %

KR=|0,890 ±0,029|

From point A to D

First Person :

∆ v1=|∆ ss

+ ∆ tt |v1

¿|0,103,70

+ 0,0516,00|0,23

¿|0,10 x16,00+3,70 x 0,053,70 x 16,00 |0,23

¿|1,60+0,18559,20 |0,23

¿|1,78559,20|0,23

¿0,03 x 0,23

¿0,0069 m /s

KR=∆ v1

v1

x100 %

¿ 0,00690,23

x100 %

Page 33: Straight Motion Regular Report by Fildia Putri

¿3 %

KR=|0,230 ±0,007|

Second Person :

∆ v2=|∆ ss

+ ∆ tt |v2

¿|0,103,70

+ 0,0510,90|0,34

¿|0,10 x10,90+3,70 x 0,053,70 x 10,90 |0,34

¿|1,09+0,18540,33 |0,34

¿|1,27540,33|0,34

¿0,0361 x0,34

¿0,0107 m / s

KR=∆ v2

v2

x100 %

¿ 0,01070,34

x 100 %

¿3,15 %

KR=|0,340 ±0,011|

Third Person :

∆ v3=|∆ ss

+ ∆ tt |v3

Page 34: Straight Motion Regular Report by Fildia Putri

¿|0,103,70

+ 0,057,00|0,53

¿|0,10 x7,00+3,70 x 0,053,70 x 7,00 |0,53

¿|0,70+0,18596,360 |0,53

¿|0,88525,9 |0,53

¿0,034 x 0,53

¿0,018m /s

KR=∆ v3

v3

x100 %

¿ 0,0180,53

x 100 %

¿3,4 %

KR=|0,530 ±0,018|

From point A to B to C to D

First Person :

∆ v1=|∆ ss

+ ∆ tt |v1

¿|0,105,83

+ 0,054,61|1,26

¿|0,10 x 4,61+5,83 x 0,055,83 x 4,61 |0,26

Page 35: Straight Motion Regular Report by Fildia Putri

¿|0,46+0,2926,876 |1,26

¿| 0,7526,876|1,26

¿0,0279 x1,26

¿0,035m /s

KR=∆ v1

v1

x100 %

¿ 0,0351,26

x 100 %

¿2,7 %

KR=|1,260± 0,035|

Second Person :

∆ v2=|∆ ss

+ ∆ tt |v2

¿|0,105,83

+ 0,054,61|1,26

¿|0,10 x 4,61+5,83 x 0,055,83 x 4,61 |0,26

¿|0,46+0,2926,876 |1,26

¿| 0,7526,876|1,26

¿0,0279 x1,26

Page 36: Straight Motion Regular Report by Fildia Putri

¿0,035m /s

KR=∆ v2

v2

x100 %

¿ 0,0351,26

x 100 %

¿2,7 %

KR=|1,260± 0,035|

Third Person :

∆ v3=|∆ ss

+ ∆ tt |v3

¿|0,105,83

+ 0,054,61|1,26

¿|0,10 x 4,61+5,83 x 0,055,83 x 4,61 |0,26

¿|0,46+0,2926,876 |1,26

¿| 0,7526,876|1,26

¿0,0279 x1,26

¿0,035m /s

KR=∆ v3

v3

x100 %

¿ 0,0351,26

x 100 %

Page 37: Straight Motion Regular Report by Fildia Putri

¿2,7 %

KR=|1,260± 0,035|

2. Activity 2

a. Speed

Height of 5 cm

Point A

vA=Δ xt

= 102,10

=4,76 cm /s

Point B

vB=Δ xt

= 204,13

=4,84 cm/ s

Point C

vC=Δ xt

= 306,56

=4,57 cm / s

Point D

vD= Δ xt

= 408,60

=4,65 cm/s

Height of 10 cm

Point A

vA=Δ xt

= 101,26

=7,94 cm / s

Point B

vB=Δ xt

= 202,60

=7,69 cm /s

Point C

vC=Δ xt

= 303,63

=8,26 cm /s

Point D

vD= Δ xt

= 405,03

=7,95 cm / s

Height of 15 cm

Point A

Page 38: Straight Motion Regular Report by Fildia Putri

vA=Δ xt

= 101,00

=10,00 cm /s

Point B

vB=Δ xt

= 201,96

=10,20 cm /s

Point C

vC=Δ xt

= 302,93

=10,24 cm /s

Point D

vD= Δ xt

= 403,96

=10,10 m / s

b. Errors Analysis

v= st

→ v=s t−1

∆ v=|δvδs|∆ s+|δv

δt |∆ t

¿|δs t−1

δs |∆ s+|δs t−1

δt |∆ t

∆ vv

=∆ stv

+ s ∆ t

t2

v

∆ vv

=|∆ ss |+|∆ t

t |∆ v=|∆ s

s+ ∆ t

t |v

Height of 5 cm

Point A

Page 39: Straight Motion Regular Report by Fildia Putri

∆ v A=|∆ ss

+ ∆ tt |v A

¿|0,1010

+ 0,052,10|4,76

¿|0,10 x2,10+10 x 0,0510 x 2,10 |4,76

¿|0,21+0,521,00 |4,76

¿| 0,7521,00|4,76

¿0,033 x 4,76

¿0,157cm / s

KR=∆ v A

v A

x 100 %

¿ 0,1574,76

x 100 %

¿3,3 %

KR=|4,76 ± 0,16|

Point B

∆ vB=|∆ ss

+ ∆ tt |vB

¿|0,1020

+ 0,054,13|4,84

¿|0,10 x 4,13+20 x0,0520 x 4,13 |4,84

Page 40: Straight Motion Regular Report by Fildia Putri

¿|0,413+120 x 4,13|4,84

¿|1,41382,6 |4,84

¿0,017 x 4,84

¿0,0822 cm /s

KR=∆ vB

vB

x 100 %

¿ 0,08224,84

x100 %

¿1,69%

KR=|4,84 ± 0,08|

Point C

∆ vC=|∆ ss

+ ∆ tt |vC

¿|0,1030

+ 0,056,56|4,57

¿|0,10 x6,56+30 x 0,0530 x 6,56 |4,57

¿|0,656+1,5196,80 |4,57

¿| 2,156196,80|4,57

¿0,0109 x 4,57

Page 41: Straight Motion Regular Report by Fildia Putri

¿0,0498 cm / s

KR=∆ vC

vC

x100 %

¿ 0,04984,57

x 100 %

¿1,09%

KR=|4,57 ± 0,05|

Point D

∆ vD=|∆ ss

+ ∆ tt |v D

¿|0,1040

+ 0,058,60|4,65

¿|0,10 x8,60+40 x0,0540 x 8,60 |4,65

¿|0,86+2344 |4,65

¿|2,86344 |4,65

¿0,0683 x 4,65

¿0,0385 cm / s

KR=∆ vD

vD

x100 %

¿ 0,03854,65

x 100 %

Page 42: Straight Motion Regular Report by Fildia Putri

¿6,83%

KR=|4,65 ± 0,04|

Height of 10 cm

Point A

∆ v A=|∆ ss

+ ∆ tt |v A

¿|0,1010

+ 0,051,26|7,94

¿|0,10 x1,26+10 x 0,0510 x 1,26 |7,94

¿|0,126+0,512,6 |7,94

¿|0,62612,6 |7,94

¿0,0496 x7,94

¿0,394 cm /s

KR=∆ v A

v A

x 100 %

¿ 0,3947,94

x 100 %

¿4,9 %

KR=|7,94 ± 0,40|

Point B

Page 43: Straight Motion Regular Report by Fildia Putri

∆ vB=|∆ ss

+ ∆ tt |vB

¿|0,1020

+ 0,052,60|7,69

¿|0,10 x2,60+20 x 0,0520 x 2,60 |7,69

¿|0,26+152 |7,69

¿|1,2652 |7,69

¿0,0242 x7,69

¿0,1860 cm / s

KR=∆ vB

vB

x 100 %

¿ 0,18607,69

x 100 %

¿1,34%

KR=|7,70± 0,86|

Point C

∆ vC=|∆ ss

+ ∆ tt |vC

¿|0,1030

+ 0,053,63|8,26

¿|0,10 x3,63+30 x 0,0530 x 8,33 |8,26

Page 44: Straight Motion Regular Report by Fildia Putri

¿|0,363+1,5108,9 |8,26

¿|1,863108,9|8,26

¿0,0171 x8,26

¿0,1412 cm /s

KR=∆ vC

vC

x100 %

¿ 0,14128,26

x100 %

¿1,7 %

KR=|8,26 ± 0,14|

Point D

∆ vD=|∆ ss

+ ∆ tt |v D

¿|0,1040

+ 0,055,03|7,95

¿|0,10 x5,03+40 x0,0540 x12,53 |7,95

¿|0,503+2201,2 |7,95

¿|2,503201,2|7,95

¿0,0124 x 7,95

Page 45: Straight Motion Regular Report by Fildia Putri

¿0,0985 cm / s

KR=∆ vD

vD

x100 %

¿ 0,09857,95

x 100 %

¿1,2 %

KR=|7,95± 0,01|

Height of 15 cm

Point A

∆ v A=|∆ ss

+ ∆ tt |v A

¿|0,1010

+ 0,051,00|10

¿|0,10 x1,00+10 x 0,0510 x 1,00 |10

¿|0,1+0,510 |10

¿|0,6010 |10

¿0,06 x10,00

¿0,60 cm / s

KR=∆ v A

v A

x 100 %

¿ 0,6010,00

x100%

Page 46: Straight Motion Regular Report by Fildia Putri

¿6 %

KR=|10,00± 0,60|

Point B

∆ vB=|∆ ss

+ ∆ tt |vB

¿|0,1020

+ 0,051,96|10,2

¿|0,10 x1,96+20 x 0,0520 x 1,96 |10,2

¿|0,196+139,2 |10,2

¿|1,19639,2 |10,2

¿0,0305 x10,2

¿0,3111cm /s

KR=∆ vB

vB

x 100 %

¿ 0,311110,2

x100 %

¿3,05 %

KR=|10,20± 0,31|

Point C

∆ vC=|∆ ss

+ ∆ tt |vC

Page 47: Straight Motion Regular Report by Fildia Putri

¿|0,1030

+ 0,052,93|10,24

¿|0,10 x2,93+30 x 0,0530 x 2,93 |10,24

¿|0,293+1,587,9 |10,24

¿|1,79387,9 |10,24

¿0,0204 x 10,24

¿0,2089 cm / s

KR=∆ vC

vC

x100 %

¿ 0,208910,24

x100 %

¿2,04 %

KR=|10,2 4± 0,21|

Point D

∆ vD=|∆ ss

+ ∆ tt |v D

¿|0,1040

+ 0,053,96|10,10

¿|0,10 x3,96+40 x0,0540 x3,96 |10,10

¿|0,396+2158,4 |10,10

Page 48: Straight Motion Regular Report by Fildia Putri

¿| 2,3961548,4|10,10

¿0,0151 x10,10

¿0,5151 m /s

KR=∆ vD

vD

x100 %

¿ 0,515110,10

x100 %

¿5,1 %

KR=|10,10± 0,16|

c. Graph showing the relationship between mileage and travel time

Page 49: Straight Motion Regular Report by Fildia Putri

5 10 15 20 25 30 35 40 450

0.51

1.52

2.53

3.54

4.5

f(x) = 0.0987 xR² = 0.999665467755094

Height of 5 cm

Height of 5 cm Travel Dis-tanceLinear (Height of 5 cm Travel Distance)

Travel Distance (cm)

Trav

el T

ime

(s)

t=ms+c

m= st

→ m= ts= 1

m

¿ 10,219

=4,5662 cm / s

KR=(1−R2 ) x100 %

¿ (1−0,998 ) x 100 %

¿0,2 %

Page 50: Straight Motion Regular Report by Fildia Putri

5 10 15 20 25 30 35 40 450

0.51

1.52

2.53

3.54

4.5

f(x) = 0.0987 xR² = 0.999665467755094

Height of 10 cm

Height of 5 cm Travel Dis-tanceLinear (Height of 5 cm Travel Distance)

Travel Distance (cm)

Trav

el T

ime

(s)

t=ms+c

m= st

→ m= ts= 1

m

¿ 10,318

=10,1317 cm /s

KR=(1−R2 ) x100 %

¿ (1−0,9997 ) x 100%

¿0,03 %

Page 51: Straight Motion Regular Report by Fildia Putri

5 10 15 20 25 30 35 40 450

0.51

1.52

2.53

3.54

4.5

f(x) = 0.0987 xR² = 0.999665467755094

Height of 15 cm Travel Distance

Height of 5 cm Travel Dis-tanceLinear (Height of 5 cm Travel Distance)

Travel Distance (cm)

Trav

el T

ime

(s)

t=ms+c

m= st

→ m= ts= 1

m

¿ 10,318

=10,1317 cm /s

KR=(1−R2 ) x100 %

¿ (1−0,9997 ) x 100%

¿0,03 %

IV. DISCUSSION

1. Activity 1

In activities 1 have been carried out on the measurement of

distance, displacement and travel time by using stopwacth and

rectangular shaped trajectory. In Activity 1 required 3 models that will

move at different speeds, but the trajectory starting from point A to B,

point A to B to C, point A to B to C to D, and the last track from point

A to B to C to D and back to A.

Page 52: Straight Motion Regular Report by Fildia Putri

The observations in the table it can be seen that there are

differences in the travel time of each model, it is because the

difference in speed of each model.

In the data analysis performed summation error analysis it is

intended to see the error at the time of measurement, because each

measurement there must be mistakes. Measurement error can be

caused by several factors, among which kejlihan reading measurement

tools, precision holder with models during the stopwatch stops and

starts, the measuring instrument itself, etc.

2. Activity 2

Activities 2 have been carried out on the measurement of

distance and travel time in uniform rectilinear motion with a

stopwatch, stative, and GLB tube, and meters. On the activities needed

four points with the same distance between one point with another

point. Data collection was performed by three in order to obtain more

accurate data.

On the activities of these measurements, the height of the tube

GLB changed from 5 cm to 15 cm in turn. Measurement results

obtained were different from each trajectory and height of the tubes

GLB. However, in these measurements, there are several errors that

are caused by these factors. The factors that promote the occurrence of

measurement errors tube placement is not appropriate, the reading

results are less precise measurements, there is no measurement tool

that can read the distance between the two scales, the slope of the tube

does not fit, the measuring instrument itself, etc..

Page 53: Straight Motion Regular Report by Fildia Putri

V. CONCLUSION

1. Activity 1

Based on the observations that have been made to the

measurements of distance, displacement and travel time of an object

in order to achieve certain goals or to get to the point of one another to

the point that it can be concluded that the faster the object is moving

toward the point purpose the time needed to arrive at the destination is

getting shorter or in other words the slower the object was circling

trajectory the longer the time it takes and vice versa.

2. Activity 2

Based on the observations that have been made to the

measurements of distance and travel time in straight motion regular

can be concluded that the higher the placement of objects then the

faster the object moves left the place of origin or the higher the

position of objects that travel time to the movement of an object or

move for reached the surface only takes a short time.

Page 54: Straight Motion Regular Report by Fildia Putri

REFERENCES

Laboratorium Fisika Unit Praktikum Fisika Dasar-FMIPA Universitas Negeri Makassar. 2013. Penuntun Praktikum Fisika Dasar I.

Rice University & OpenStage College .2013. College Physics.

Alonso, Marcello & Edward J. Finn. 1980. Dasar-Dasar Fisika Universitas. Erlangga. Jakarta .

http://biologimediacentre.com/mengenal-macam-variabel-dalam-percobaan/

http://temukanpengertian.blogspot.com/2013/06/pengertian-variabel-kontrol.html

Makassar, November 2013

Assistant, Praktikan,

Muh. Ihsanul Amri Fildia Putri

Nim: 1112040183 Nim:1313440017