43
Prediction of Financial Processes Parameter Estimation in Stochastic Differential Equations by Continuous Optimization 4th International Summer School Achievements and Applications of Contemporary Informatics, Mathematics and Physics National University of Technology of the Ukraine Kiev, Ukraine, August 5-16, 2009 Gerhard Gerhard Gerhard Gerhard Gerhard Gerhard Gerhard Gerhard- - - - -Wilhelm Weber Wilhelm Weber Wilhelm Weber Wilhelm Weber Wilhelm Weber Wilhelm Weber Wilhelm Weber Wilhelm Weber * Vefa Gafarova, Nüket Erbil, Cem Ali Gökçen, Azer Kerimov Institute of Applied Mathematics Institute of Applied Mathematics Middle East Technical University, Ankara, Turkey Middle East Technical University, Ankara, Turkey * Faculty of Economics, Management and Law, University of Siegen, Germany Faculty of Economics, Management and Law, University of Siegen, Germany Center for Research on Optimization and Control, University of Aveiro, Portugal Pakize Taylan Dept. Mathematics, Dicle University, Diyarbakır, Turkey Dept. Mathematics, Dicle University, Diyarbakır, Turkey by Continuous Optimization

Prediction of Financial Processes

  • Upload
    ssa-kpi

  • View
    677

  • Download
    2

Embed Size (px)

DESCRIPTION

AACIMP 2009 Summer School lecture by Gerhard Wilhelm Weber. "Modern Operational Research and Its Mathematical Methods" course.

Citation preview

Page 1: Prediction of Financial Processes

Prediction of Financial Processes

Parameter Estimation in Stochastic Differential Equations

by Continuous Optimization

4th International Summer SchoolAchievements and Applications of Contemporary Informatics, Mathematics and PhysicsNational University of Technology of the UkraineKiev, Ukraine, August 5-16, 2009

GerhardGerhardGerhardGerhardGerhardGerhardGerhardGerhard--------Wilhelm Weber Wilhelm Weber Wilhelm Weber Wilhelm Weber Wilhelm Weber Wilhelm Weber Wilhelm Weber Wilhelm Weber **

Vefa Gafarova, Nüket Erbil, Cem Ali Gökçen, Azer Kerimov

Institute of Applied Mathematics Institute of Applied Mathematics Middle East Technical University, Ankara, TurkeyMiddle East Technical University, Ankara, Turkey

** Faculty of Economics, Management and Law, Universi ty of Siegen, GermanyFaculty of Economics, Management and Law, Universi ty of Siegen, GermanyCenter for Research on Optimization and Control, Univ ersity of Aveiro, Portugal

Pakize Taylan Dept. Mathematics, Dicle University, Diyarbakır, Tu rkeyDept. Mathematics, Dicle University, Diyarbakır, Tu rkey

by Continuous Optimization

Page 2: Prediction of Financial Processes

• Stochastic Differential Equations

• Parameter Estimation

• Various Statistical Models

• C-MARS

Outline

• Accuracy vs. Stability

• Tikhonov Regularization

• Conic Quadratic Programming

• Nonlinear Regression

• Portfolio Optimization

• Outlook and Conclusion

Page 3: Prediction of Financial Processes

Stock Markets

Page 4: Prediction of Financial Processes

drift and diffusion term

( , ) ( , )= +t t t tdX a X t dt b X t dW

Stochastic Differential Equations

Wiener process

(0, ) ( [0, ])∈tW N t t T

Page 5: Prediction of Financial Processes

drift and diffusion term

( , ) ( , )= +t t t tdX a X t dt b X t dW

Stochastic Differential Equations

Wiener process

(0, ) ( [0, ])∈tW N t t T

Ex.: price , wealth , interest rate , volatility

processes

Page 6: Prediction of Financial Processes

Input vector and output variable Y ;

linear regression :

( )1 2, ,...,T

mX X X X=

1 01

( ,..., ) ,ε β β ε=

= + = + +∑m

m j jj

Y E Y X X X

Regression

which minimizes( )0 1, ,...,T

mβ β β β=

( ) ( )2

1

:N

Ti i

i

RSS y x=

= −∑β β

( ) 1ˆ ,T TX X X y−

( ) 1 2ˆCov( ) Tβ X X σ−

=

Page 7: Prediction of Financial Processes

are estimated by a smoothing on a single coordinate.jf

Generalized Additive Models

( ) ( )1 2 01

, ,..., β=

+= ∑i i i i m ij j

m

j

E x fx x xY

Standard convention .

• Backfitting algorithm (Gauss-Seidel)

it “cycles” and iterates.

( )0ˆ ,β

= − −∑i i kjj

ikk

r y f x

( )( ): 0=j ijE f x

Page 8: Prediction of Financial Processes

• Given data

• penalized residual sum of squares

22''

0 0( , ,..., ) : ( ) ( )β β

= − − + ∑ ∑ ∑ ∫bN m m

1 m i j ij j j jPRSS f f y f x f t dtjµ

( , ) ( = 1,2,..., ),i iy x i N

Generalized Additive Models

• New estimation methods for additive model with CQP :

0 01 1 1

( , ,..., ) : ( ) ( )β β= = =

= − − +

∑ ∑ ∑ ∫1 m i j ij j j ji j j a

PRSS f f y f x f t dtjµ

0.µ ≥j

Page 9: Prediction of Financial Processes

0, ,

2

20

1 1

2''

min

subject to ( ) , 0,

( ) ( 1,2,..., ),

=

− − ≤ ≥

≤ =

∑ ∑

t β f

N m

i j iji= j

j j j j

t

y β f x t t

f t dt M j m

jdj jθ=∑

Generalized Additive Models

splines:

By discretizing, we get

1

( ) ( ).j jj l l

l

f x h xθ=

=∑

0, ,

2 20 2

2

0 2

min

subject to ( , ) , 0,

( , ) ( 1,..., ).

β θ

β θ

≤ ≥

≤ =

t β f

j j

t

W t t

V M j m

Page 10: Prediction of Financial Processes

0, ,

2

20

1 1

2''

min

subject to ( ) , 0,

( ) ( 1,2,..., ),

=

− − ≤ ≥

≤ =

∑ ∑

t β f

N m

i j iji= j

j j j j

t

y β f x t t

f t dt M j m

jdj jθ=∑

Generalized Additive Models

splines:

By discretizing, we get

1

( ) ( ).j jj l l

l

f x h xθ=

=∑

0, ,

2 20 2

2

0 2

min

subject to ( , ) , 0,

( , ) ( 1,..., ).

β θ

β θ

≤ ≥

≤ =

t β f

j j

t

W t t

V M j m

Page 11: Prediction of Financial Processes

0, ,

2

20

1 1

2''

min

subject to ( ) , 0,

( ) ( 1,2,..., ),

=

− − ≤ ≥

≤ =

∑ ∑

t β f

N m

i j iji= j

j j j j

t

y β f x t t

f t dt M j m

jdj jθ=∑

Generalized Additive Models

splines:

By discretizing, we get

1

( ) ( ).j jj l l

l

f x h xθ=

=∑

0, ,

2 20 2

2

0 2

min

subject to ( , ) , 0,

( , ) ( 1,..., ).

β θ

β θ

≤ ≥

≤ =

t β f

j j

t

W t t

V M j m

Page 12: Prediction of Financial Processes

Generalized Additive Models

: ( ) ( )⋅j j j j jInd = d D v V

Page 13: Prediction of Financial Processes

MARS

y

• ••

••

••

y

••

••

••

τ x

• ••

••

•• •

••

••

•••

+( , )=[ ( )]c x x +τ + −τ( , )=[ ( )]-c x x +τ − −τ

τ x

• ••

••

•• •

••

••

•••

+( , )=[ ( )]c x x +τ + −τ( , )=[ ( )]-c x x +τ − −τ r egression w ith

Page 14: Prediction of Financial Processes

( )max

1 2

2 22 2,

1 1 1, ( )( , )

: ( ) ( )α

αα α α

θ ψ= = = <

∈=

= − + ∑ ∑ ∑ ∑ ∫MN

m mi i m r s m

i m r sr s V m

PRSS y f D dmx t tµ

C-MARS

Tradeoff between both accuracy and complexity.

{ }

{ }

1 2

1 2

1 2 1 2

( ) : | 1,2,...,

: ( , ,..., )

( , )

: , , 0,1

Km

mj m

m Tm m m

V m j K

t t t

κ

α α αα α α α α

= =

== + ∈

t =

where

( )1 2, ( ) : ( )m m m m

r s m m r sD t tα αα αψ ψ= ∂ ∂ ∂t t

Page 15: Prediction of Financial Processes

Tikhonov regularization:

2 2

22( )= − +PRSS y d Lθθθθ µµµµψ θψ θψ θψ θ

2θL

C-MARS

Conic quadratic programming:

,

2

2

subject to

min ,

( ) ,

θ

tt

td y

ML

ψ θ −ψ θ −ψ θ −ψ θ −

θθθθ

2( )−ψ θψ θψ θψ θy d

Page 16: Prediction of Financial Processes

Tikhonov regularization:

2 2

22( )= − +PRSS y d Lθθθθ µµµµψ θψ θψ θψ θ

2θL

C-MARS

Conic quadratic programming:

,

2

2

subject to

min ,

( ) ,

θ

tt

td y

ML

ψ θ −ψ θ −ψ θ −ψ θ −

θθθθ

2( )−ψ θψ θψ θψ θy d

Page 17: Prediction of Financial Processes

cluster

C-MARS

cluster

robust optimization

Page 18: Prediction of Financial Processes

drift and diffusion term

( , ) ( , )= +t t t tdX a X t dt b X t dW

Stochastic Differential Equations Revisited

Wiener process

(0, ) ( [0, ])∈tW N t t T

Ex.: price , wealth , interest rate , volatility ,

processes

Page 19: Prediction of Financial Processes

drift and diffusion term

( , ) ( , )= +t t t tdX a X t dt b X t dW

Stochastic Differential Equations

Wiener process

(0, ) ( [0, ])∈tW N t t T

bioinformatics, biotechnology(fermentation, population dynamics)

Universiti Teknologi Malaysia

Ex.:

Page 20: Prediction of Financial Processes

drift and diffusion term

( , ) ( , )= +t t t tdX a X t dt b X t dW

Stochastic Differential Equations Revisited

Wiener process

(0, ) ( [0, ])∈tW N t t T

Ex.: price , wealth , interest rate , volatility ,

processes

Page 21: Prediction of Financial Processes

Milstein Scheme :

( )21 1 1 1 1

1ˆ ˆ ˆ ˆ ˆ( , )( ) ( , )( ) ( )( , ) ( ) ( )2+ + + + +′= + − + − + − − −j j j j j j j j j j j j j j j jX X a X t t t b X t W W b b X t W W t t

Stochastic Differential Equations

and, based on our finitely many data:

2

2( )( , ) ( , ) 1 2( )( , ) 1 .

∆ ∆′= + + −

& j jj j j j j j j

j j

W WX a X t b X t b b X t

h h

Page 22: Prediction of Financial Processes

• step length 1 :j j j jh t t t+= − = ∆

1

1

, if 1,2,..., 1

:

, if

j

j j

j

N N

N

X Xj N

hX

X Xj N

h

+

−= −

=− =

&

Stochastic Differential Equations

• (independent),

∆ jW Var( )∆ = ∆j jW t

( )21( , ) ( , ) ( )( , ) 1

2′= + + −& j

j j j j j j j j

j

ZX a X t b X t b b X t Z

h

(0, ),tW N t

, (0,1)∆ = ∆j j j jW Z t Z N

Page 23: Prediction of Financial Processes

• More simple form:

where

( ): ( , ) , : ( , ),= =j j j j j jG a X t H b X t

( ) ,j j j j j j jX G H c H H d′= + +&

Stochastic Differential Equations

• Our problem:

is a vector which comprises a subset of all the parameters.

( )2: , : 1 2 1 .= = −j j j j jc Z h d Z

y

( )2

21

min ( ( ) )=

′− + +∑ &N

j j j j j j jy

j

X G H c H H d

Page 24: Prediction of Financial Processes

2 2

0 , 0 ,1 1 1

2 2

0 , 0 ,1 1 1

2 2

0 , 0 ,1 1 1

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )

gp

hr

fs

dl l

j j j p j p p p j pp p l

dm m

j j j j j r j r r r j rr r m

dn n

j j j j j s j s s s j ss s n

G a X t f U B U

H c b X t c g U C U

F d b b X t d h U D U

α α α

β β β

ϕ ϕ ϕ

= = =

= = =

= = =

= = + = +

= = + = +

′= = + = +

∑ ∑∑

∑ ∑∑

∑ ∑∑

Stochastic Differential Equations

where

• k th order base spline : a polynomial of degree k − 1, with knots, say

( ) ( ),1 ,2, : , ;j j j j jU U U X t= =

,kBη ,xη

1,1

, , 1 1, 11 1

1,( )

0, otherwise

( ) ( ) ( )kk k k

k k

x x xB x

x x x xB x B x B x

x x x x

η ηη

η ηη η η

η η η η

+

+− + −

+ − + +

≤ <=

− −= +

− −

Page 25: Prediction of Financial Processes

• penalized sum of squares PRRS

( ){ }[ ] [ ]

22 2

1 1

2 22 2

1 1

( , , ) : ( )

( ) ( )

N

j j j j j j p p p pj p

r r r r s s s sr s

PRSS f g h X G H c F d f U dU

g U dU h U dU

θ λ

µ ϕ

= =

= =

′′ , = − + + +

′′ ′′+ +

∑ ∑ ∫

∑ ∑∫ ∫

&

Stochastic Differential Equations

• (smoothing parameters ),

• large values of yield smoother curves,smaller ones allow more fluctuation

( ){ }2

1

22 2 2

0 , 0 , 0 ,1 1 1 1 1 1 1

( ) ( ) ( )

h fgp sr

N

j j j j j jj

d ddNl l m m n n

j p p j p r r j r s s j sj p l r m s n

X G H c F d

X B U C U D Uα α β β ϕ ϕ

=

= = = = = = =

− + + =

− + + + + +

∑ ∑∑ ∑∑ ∑∑

&

&

, , 0p r sλ µ ϕ ≥

, ,p r sλ µ ϕ

( , , )κ

κ

κ= =∫ ∫b

a

p r s

Page 26: Prediction of Financial Processes

( ) ( ) ( )( ) ( )( ) ( )

1 20 1 2

1 20 1 2

1 20 1 2

, , , , , , , ,..., ( 1,2),

, , , , ,..., ( 1,2),

, , , , ,..., ( 1,2).

gp

hr

fs

TT T dT T T T Tp p p p

TT dT Tr r r r

TT dT Ts s s s

p

r

s

θ α β ϕ α α α α α α α α

β β β β β β β β

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

= = = =

= = =

= = =

{ } 22N ( )T

Stochastic Differential Equations

• Then,

• Furthermore,

{ } 22

21

.N

j jj

X A X Aθ θ=

− = −∑ & & ( )( )

1 2

1 2

, ,...,

, ,...,

TT T TN

T

N

A A A A

X X X X

=

=& & & &

12 2

1,1

21

1 1

( ) ( ) ( )

( ) .

gp

b N

p p p p jp j p jpja

dNl lp p jP j

j l

f U dU f U U U

B U uα

+=

= =

′′ ′′≅ −

′′=

∑∫

∑ ∑

Page 27: Prediction of Financial Processes

12 2 2

21

( ) ( 1,2)b N

p Bp p p j j p P p

ja

f U dU B u A pα α−

=

′′ ′′≅ = = ∑∫

( )1 1 2 2 1 1

1, ,

: , ,...,

: ( 1,2,..., 1).

TB p T p T p Tp N N

j j p j p

A B u B u B u

u U U j N

− −

+

′′ ′′ ′′=

= − = −

[ ]1 2 22

( ) ( 1,2)b N

r Cg U dU C v A rβ β− ′′′′ ≅ = =∑∫

Appendix Stochastic Differential Equations

[ ]2

21

( ) ( 1,2)r Cr r r j j r r r

ja

g U dU C v A rβ β=

′′′′ ≅ = = ∑∫

( )1 1 2 2 1 1

1, ,

: , ,...,

: ( 1,2,..., 1).

TC r T r T r Tr N N

j j r j r

A C v C v C v

v U U j N

− −

+

′′ ′′ ′′=

= − = −

12 2 2

21

( ) ( 1,2)b N

s Ds s s j j s s s

ja

h U dU D w A sϕ ϕ−

=

′′ ′′≅ = = ∑∫

( )1 1 2 2 1 1

1, ,

: , ,...,

: ( 1,2,..., 1).

TD s T s T s Ts N N

j j s j s

A D w D w D w

w U U j N

− −

+

′′ ′′ ′′=

= − = −

Page 28: Prediction of Financial Processes

• Let us assume that

2 2 22 2 2 2

2 2 22 1 1 1

( , , )θ θ λ α µ β ϕ ϕ= = =

, = − + + +∑ ∑ ∑& B C Dp p p r r r s s s

p r s

PRSS f g h X A A A A

2: :λ µµ ϕ δ= = = =p r s

2 22( , , ) ,θ θ δ θ, ≈ − +&PRSS f g h X A L

Stochastic Differential Equations

where is a matrix:

22

22( , , ) ,θ θ δ θ, ≈ − +&PRSS f g h X A L

( ), , .θ α β ϕ=TT T T

1

2

1

2

1

2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0: ,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

=

B

B

C

C

D

D

A

A

AL

A

A

A

L 6( 1)N m− ×

Page 29: Prediction of Financial Processes

2 2

22min

θθ θ− +&X A Lµ

Tikhonov regularization

Stochastic Differential Equations

,

2

2

subject to

min ,

,

θ

θ −

θ

&

tt

A X t

L M

Conic quadratic programming

Page 30: Prediction of Financial Processes

Stochastic Differential Equations

,

6( 1)6( 1)

1 6( 1) 1

min

0subject to : ,

1 0 0

00: ,

0 0

,

θ

χθ

ηθ

χ η

−−

+ − +

−= +

= +

∈ ∈

&

t

NTm

NNTm

N N

t

tA X

t

M

L L

L

primal problem

,χ η∈ ∈L L

{ }1 1 2 2 21 2 1 1 2: ( , ,..., ) | ...+ += = ∈ ≥ + + +N T N

N N+ NL x x x x x x x xR

( )

6( 1) 1

1 6( 1) 2

6( 1)1 2

11 2

max ( ,0) 0 ,

10 1 0 0subject to ,

00 0

, − +

+

+ −

+ =

∈ ∈

&

N

T TN

T TN N

T Tmm m

N

X M

A

L L

L

κ κκ κκ κκ κ

κ κκ κκ κκ κ

κ κκ κκ κκ κ

dual problem

Page 31: Prediction of Financial Processes

is a primal dual optimal solution if and only if 1 2( , , , , , )t θ χ η κ κ

0: ,

1 0 0

00

NTm

tA X

t

χθ

−= +

&

L

Stochastic Differential Equations

6( 1)6( 1)

6( 1)1 2

1 2

1 6( 1) 11 2

1 6( 1) 1

00:

0 0

10 1 0 0

00 0

0, 0

,

, .

NNTm

T TN NT T

mm m

T T

N N

N N

t

M

A

L L

L L

ηθ

χ η

χ η

−−

+ − +

+ − +

= +

+ =

= =

∈ ∈

∈ ∈

L

Lκ κκ κκ κκ κ

κ κκ κκ κκ κ

κ κκ κκ κκ κ

Page 32: Prediction of Financial Processes

Stochastic Differential Equations

Ex.:

( ) ( ), , , ,µ σ= +t t t t t tdX t X Z dt t X Z dW .

( )( ) + ,θ − θ = − + T T

t t t t t t t t tdV V dt cr dr t V dWµ σ

( ) ,σ= ⋅ − + ⋅ ⋅t t t t td R r dt rr dWτα

non linear regression

( ) ( ), , , ,µ σ= +t t t t t tdX t X Z dt t X Z dW .

Page 33: Prediction of Financial Processes

( ) ( )

( )

2

,

1

2

1

min

:

β β

β

=

=

= −

=

N

j jj

N

jj

f d g x

f

Nonlinear Regression

min ( ) ( ) ( )β β β=

Tf F F

( )1( ) : ( ),..., ( )β β β= T

NF f f

Page 34: Prediction of Financial Processes

• Gauss-Newton method :

( ) ( ) ( ) ( )β β β β∇ ∇ = −∇T qF F F F

1 :β β+ = +k k kq

Nonlinear Regression

• Levenberg-Marquardt method :

( )( ) ( ) I ( ) ( )β β λ β β∇ ∇ + = −∇Tp qF F F F

0λ ≥

Page 35: Prediction of Financial Processes

( ) ( ),

min ,

subject to ( ) ( ) I ( ) ( ) , 0,β β λ β β∇ ∇ + − −∇ ≤ ≥

t

T

qt

F F F Fq t t

alternative solution

Nonlinear Regression

( ) ( )2

2

subject to ( ) ( ) I ( ) ( ) , 0,

|| ||

β β λ β β∇ ∇ + − −∇ ≤ ≥

TpF F F F

qL

q t t

M

conic quadratic programming

Page 36: Prediction of Financial Processes

( ) ( ),

min ,

subject to ( ) ( ) I ( ) ( ) , 0,β β λ β β∇ ∇ + − −∇ ≤ ≥

t

T

qt

F F F Fq t t

Nonlinear Regression

alternative solution

( ) ( )2

2

subject to ( ) ( ) I ( ) ( ) , 0,

|| ||

β β λ β β∇ ∇ + − −∇ ≤ ≥

TpF F F F

qL

q t t

M

interior point methods

conic quadratic programming

Page 37: Prediction of Financial Processes

( ) ( ),

min ,

subject to ( ) ( ) I ( ) ( ) , 0,β β λ β β∇ ∇ + − −∇ ≤ ≥

t

T

qt

F F F Fq t t

Nonlinear Regression

alternative solution

( ) ( )2

2

subject to ( ) ( ) I ( ) ( ) , 0,

|| ||

β β λ β β∇ ∇ + − −∇ ≤ ≥

TpF F F F

qL

q t t

M

2

1min ( ) := ( ) + ( ) ( ) + ( ) ( )

2

subject to

β β β β β ∇ ∇ ∇ ≤ ∆

T T T

q

Q q f q F F q F F q

q

trust regiontrust region

Page 38: Prediction of Financial Processes

max utility ! or

min costs !

martingale method:

Portfolio Optimization

Optimization ProblemOptimization Problem

Representation ProblemRepresentation Problem

or or stochastic control

Page 39: Prediction of Financial Processes

max utility ! or

min costs !

martingale method:

Parameter Estimation

Portfolio Optimization

Optimization ProblemOptimization Problem

Representation ProblemRepresentation Problem

or or stochastic control

Page 40: Prediction of Financial Processes

max utility ! or

min costs !

martingale method:

Portfolio Optimization

Optimization ProblemOptimization Problem

Representation ProblemRepresentation Problem

or or stochastic control

Parameter Estimation

Page 41: Prediction of Financial Processes

max utility ! or

min costs !

martingale method:

Portfolio Optimization

Optimization ProblemOptimization Problem

Representation ProblemRepresentation Problem

or or stochastic control

Parameter Estimation

Page 42: Prediction of Financial Processes

Aster, A., Borchers, B., and Thurber, C., Parameter Estimation and Inverse Problems, Academic Press, 2004.

Boyd, S., and Vandenberghe, L., Convex Optimization, Cambridge University Press, 2004.

Buja, A., Hastie, T., and Tibshirani, R., Linear smoothers and additive models, The Ann. Stat. 17, 2 (1989) 453-510.

Fox, J., Nonparametric regression, Appendix to an R and S-Plus Companion to Applied Regression, Sage Publications, 2002.

Friedman, J.H., Multivariate adaptive regression splines, Annals of Statistics 19, 1 (1991) 1-141.

Friedman, J.H., and Stuetzle, W., Projection pursuit regression, J. Amer. Statist Assoc. 76 (1981) 817-823.

References

Hastie, T., and Tibshirani, R., Generalized additive models, Statist. Science 1, 3 (1986) 297-310.

Hastie, T., and Tibshirani, R., Generalized additive models: some applications, J. Amer. Statist. Assoc.82, 398 (1987) 371-386.

Hastie, T., Tibshirani, R., and Friedman, J.H., The Element of Statistical Learning, Springer, 2001.

Hastie, T.J., and Tibshirani, R.J., Generalized Additive Models, New York, Chapman and Hall, 1990.

Kloeden, P.E, Platen, E., and Schurz, H., Numerical Solution of SDE Through Computer Experiments, Springer Verlag, New York, 1994.

Korn, R., and Korn, E., Options Pricing and Portfolio Optimization: Modern Methods of Financial Mathematics, Oxford University Press, 2001.

Nash, G., and Sofer, A., Linear and Nonlinear Programming, McGraw-Hill, New York, 1996.

Nemirovski, A., Lectures on modern convex optimization, Israel Institute of Technology (2002).

Page 43: Prediction of Financial Processes

Nemirovski, A., Modern Convex Optimization, lecture notes, Israel Institute of Technology (2005).

Nesterov, Y.E , and Nemirovskii, A.S., Interior Point Methods in Convex Programming, SIAM, 1993.

Önalan, Ö., Martingale measures for NIG Lévy processes with applications to mathematical finance,presentation in: Advanced Mathematical Methods for Finance, Side, Antalya, Turkey, April 26-29, 2006.

Taylan, P., Weber G.-W., and Kropat, E., Approximation of stochastic differential equations by additive models using splines and conic programming, International Journal of Computing Anticipatory Systems 21(2008) 341-352.

Taylan, P., Weber, G.-W., and A. Beck, New approaches to regression by generalized additive modelsand continuous optimization for modern applications in finance, science and techology, in the special issue in honour of Prof. Dr. Alexander Rubinov, of Optimization 56, 5-6 (2007) 1-24.

References

in honour of Prof. Dr. Alexander Rubinov, of Optimization 56, 5-6 (2007) 1-24.

Taylan, P., Weber, G.-W., and Yerlikaya, F., A new approach to multivariate adaptive regression splineby using Tikhonov regularization and continuous optimization, to appear in TOP, Selected Papers at theOccasion of 20th EURO Mini Conference (Neringa, Lithuania, May 20-23, 2008) 317- 322.

Seydel, R., Tools for Computational Finance, Springer, Universitext, 2004.

Stone, C.J., Additive regression and other nonparametric models, Annals of Statistics 13, 2 (1985) 689-705.

Weber, G.-W., Taylan, P., Akteke-Öztürk, B., and Uğur, Ö., Mathematical and data mining contributionsdynamics and optimization of gene-environment networks, in the special issue Organization in Matterfrom Quarks to Proteins of Electronic Journal of Theoretical Physics.

Weber, G.-W., Taylan, P., Yıldırak, K., and Görgülü, Z.K., Financial regression and organization, to appear in the Special Issue on Optimization in Finance, of DCDIS-B (Dynamics of Continuous, Discrete andImpulsive Systems (Series B)).