44
DNA Replication Model By: Katelyn Note: The DNA molecules are twisted

Perry Dna model

Embed Size (px)

Citation preview

Page 1: Perry Dna model

DNA Replication ModelBy: Katelyn Perry

Note: The DNA molecules are twisted

Page 2: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

3’

5’

5’

3’

The DNA strands would be twisted around each other

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

Page 3: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

The replication begins when helicase break the hydrogen bonds between the complementary strands and splits the molecule in half.

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

Page 4: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

DNA polymerase can only add new nucleotides to a free 3’ end of the growing chain. The synthesis on the leading strand proceeds in the 5’ to 3’ direction

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

Page 5: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

Page 6: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

Leading strand

Lagging strand

Synthesis of the lagging strand is much more complex. DNA polymerase can add new deoxyribonucleotides only to a free 3’ OH

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

Page 7: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

To provide a free 3’ OH starting point on the lagging strand, RNA primase attaches to the DNA and synthesizes a short RNA primer.

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

Page 8: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

Page 9: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

Page 10: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase III adds deoxyribonucleotides to the 3’ end of the RNA primer

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

Page 11: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

Page 12: Perry Dna model

G

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

Okazaki fragment

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

T

G

C

Page 13: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA polymerase I replaces DNA polymerase III, removes the RNA and replace it with DNA

Okazaki fragment

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

Page 14: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA polymerase I replaces DNA polymerase III, removes the RNA and replace it with DNA

Okazaki fragment

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

Page 15: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA polymerase I replaces DNA polymerase III, removes the RNA and replace it with DNA

Okazaki fragment

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

Page 16: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

C

Page 17: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

C

Page 18: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

C

Page 19: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

Finally, the enzyme DNA ligase forms a phosphodiester bond between the 3’ OH of the growing strand and the 5’ phosphate in front of it.

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

C

A

Page 20: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

Now the process continues on the lagging strand until the whole strand it replicated.

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

Page 21: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

Page 22: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

Page 23: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

Page 24: Perry Dna model

A

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

Page 25: Perry Dna model

A

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

Page 26: Perry Dna model

C

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

T

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

A

C

Page 27: Perry Dna model

T

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

C

C

T

A

A

G

Page 28: Perry Dna model

T

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

C

C

T

A

A

G

Page 29: Perry Dna model

T

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

C

C

T

A

A

G

Page 30: Perry Dna model

T

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

C

C

T

A

A

G

Page 31: Perry Dna model

T

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

C

C

T

A

A

G

Page 32: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

C

C

T

A

A

G

Page 33: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

C

C

T

A

A

G

Page 34: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

C

C

T

A

A

G

A

A

Page 35: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

C

C

T

A

A

G

A

A

Page 36: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

A

A

A

A

A

T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

C

C

T

A

A

G

A

A

Page 37: Perry Dna model

Key:

Phosphate

Sugar

Adenine

Thymine

Guanine

Cytosine

Helicase

DNA polymerase

RNA primer

RNA

primase

DNA polymerase III

DNA polymerase I

DNA ligase

The end product of DNA replication is having two identical DNA molecules.

A

A

A

A T

T

T

T

T

C

C

C

C

G

G

G

G

T

G

C

A

C

G

T

T

C

C

T

A

A

G

A

A

A

G

T

Page 38: Perry Dna model

DNA Molecules are twisted

Page 39: Perry Dna model

The Purpose of DNA Replication

• The primary purpose of DNA is to store information. The DNA molecule consist of bases adenine, thymine, guanine, and cytosine. These bases are attached to each other by the help of hydrogen bonds. The sequence of the bases determines the genetic code. Physical traits and characteristics are stored within the molecular formula of this macromolecule.

• The secondary purpose of DNA is for the synthesis of RNA. DNA direct the synthesis of RNA under a chemical process known as transcription. The cellular enzymes are directed by the genetic code to recreate strands of RNA in relation to the coded sequence stored in the DNA molecule.

Page 40: Perry Dna model

Additional Information• A telomere is a region of repetitive DNA bases at the end of a

chromosome. The telomeric regions consist of telomeric repeat sequences. The exact sequence of the telomeric repeat can vary depending on the species.

Page 41: Perry Dna model

• Telomerase is an enzyme that adds nucleotides to telomeres, especially in cancer cells. Telomerase is an unique enzyme because in addition to having DNA polymerase activity it as contains an RNA sequence that provides a template for the synthesis of telomeric repeat DNA.

• A cell transplant is the infusion, or injection, of healthy cells into the body to replace damaged or diseased cells. An example is a stem cell transplant.

Page 42: Perry Dna model

• DNA cloning refers to the process of creating multiple copies of a DNA fragment. Two other types of cloning are reproductive and therapeutic cloning.

• Aging is when the body grows old, but there is a DNA damage theory of aging. This theory proposes that aging is a consequence of the accumulation of unrepaired DNA damages. The damage is a DNA alteration that has abnormal structure.

• Okazaki fragments are relatively short fragments of DNA synthesis on the lagging strand. The lagging strand is synthesized discontinuously in the form of short fragments. These fragments are Okazaki fragments and are later connected to covalently to form a continuous strand.

Page 43: Perry Dna model

• DNA ligase is an enzyme that in the cell that repairs both complementary strands if there is a break in both of them. Purified DNA ligase is used in gene cloning in order to join DNA molecules together. A single-strand break, is fixed by a different type of DNA ligase using the complementary strand as a template.

• Normal cells become cancer cell due to DNA damage. In normal cells, the DNA would repair the damage, but if the damage is not repair and it is still reproducing then it turns into a cancer cell. The new cancer cell have the same abnormal DNA damage as the first. The damage in DNA can either be inherit or the bases can be matched up wrong to create a mutation in the DNA molecules.

Page 44: Perry Dna model

• During interphase the cell grows, accumulating nutrients for mitosis preparing it for cell division and duplicating its DNA (DNA is split into two identical molecules). Next is the mitotic phase, during which the cell splits into two identical cells called “daughter cells”. Lastly, cytokinesis where the new cell is completely divided. Therefore, DNA replication occurs during interphase.

• A mutation in DNA replication can occur when the base pairs (adenine, thymine, guanine, and cytosine) are matched up wrong. Adenine is suppose to match up with thymine and guanine is suppose to match up with cytosine.