34
. . . . . . Section 5.3 Evaluating Definite Integrals V63.0121, Calculus I April 20, 2009 Announcements I Final Exam is Friday, May 8, 2:00–3:50pm I Final is cumulative; topics will be represented roughly according to time spent on them . . Image credit: docman

Lesson 25: Evaluating Definite Integrals (Section 10 version)

Embed Size (px)

DESCRIPTION

Computing integrals with Riemann sums is like computing derivatives with limits. The calculus of integrals turns out to come from antidifferentiation. This startling fact is the Second Fundamental Theorem of Calculus!

Citation preview

Page 1: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Section5.3EvaluatingDefiniteIntegrals

V63.0121, CalculusI

April20, 2009

Announcements

I FinalExamisFriday, May8, 2:00–3:50pmI Finaliscumulative; topicswillberepresentedroughlyaccordingtotimespentonthem

..Imagecredit: docman

Page 2: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Outline

Lasttime: TheDefiniteIntegral

EvaluatingDefiniteIntegralsExamples

TotalChange

IndefiniteIntegralsMyfirsttableofintegrals

Examples“NegativeArea”

Page 3: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Thedefiniteintegralasalimit

DefinitionIf f isafunctiondefinedon [a,b], the definiteintegralof f from ato b isthenumber∫ b

af(x)dx = lim

n→∞

n∑i=1

f(ci)∆x

where ∆x =b− an

, andforeach i, xi = a + i∆x, and ci isapoint

in [xi−1, xi].

Page 4: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Notation/Terminology

∫ b

af(x)dx

I∫

— integralsign (swoopy S)

I f(x) — integrandI a and b — limitsofintegration (a isthe lowerlimit and bthe upperlimit)

I dx —??? (aparenthesis? aninfinitesimal? avariable?)I Theprocessofcomputinganintegraliscalled integration

Page 5: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Propertiesoftheintegral

Theorem(AdditivePropertiesoftheIntegral)Let f and g beintegrablefunctionson [a,b] and c aconstant.Then

1.∫ b

ac dx = c(b− a)

2.∫ b

a[f(x) + g(x)] dx =

∫ b

af(x)dx +

∫ b

ag(x)dx.

3.∫ b

acf(x)dx = c

∫ b

af(x)dx.

4.∫ b

a[f(x) − g(x)] dx =

∫ b

af(x)dx−

∫ b

ag(x)dx.

Page 6: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

MorePropertiesoftheIntegral

Conventions: ∫ a

bf(x)dx = −

∫ b

af(x)dx∫ a

af(x)dx = 0

Thisallowsustohave

5.∫ c

af(x)dx =

∫ b

af(x)dx +

∫ c

bf(x)dx forall a, b, and c.

Page 7: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

ComparisonPropertiesoftheIntegral

TheoremLet f and g beintegrablefunctionson [a,b].

6. If f(x) ≥ 0 forall x in [a,b], then∫ b

af(x)dx ≥ 0

7. If f(x) ≥ g(x) forall x in [a,b], then∫ b

af(x)dx ≥

∫ b

ag(x)dx

8. If m ≤ f(x) ≤ M forall x in [a,b], then

m(b− a) ≤∫ b

af(x)dx ≤ M(b− a)

Page 8: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Outline

Lasttime: TheDefiniteIntegral

EvaluatingDefiniteIntegralsExamples

TotalChange

IndefiniteIntegralsMyfirsttableofintegrals

Examples“NegativeArea”

Page 9: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Socraticproof

I Thedefiniteintegralofvelocitymeasuresdisplacement(netdistance)

I Thederivativeofdisplacementisvelocity

I Sowecancomputedisplacementwiththeantiderivativeofvelocity?

Page 10: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

TheoremoftheDay

Theorem(TheSecondFundamentalTheoremofCalculus)Suppose f isintegrableon [a,b] and f = F′ foranotherfunction F,then ∫ b

af(x)dx = F(b) − F(a).

NoteInSection5.3., thistheoremiscalled“TheEvaluationTheorem”.Nobodyelseintheworldcallsitthat.

Page 11: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

TheoremoftheDay

Theorem(TheSecondFundamentalTheoremofCalculus)Suppose f isintegrableon [a,b] and f = F′ foranotherfunction F,then ∫ b

af(x)dx = F(b) − F(a).

NoteInSection5.3., thistheoremiscalled“TheEvaluationTheorem”.Nobodyelseintheworldcallsitthat.

Page 12: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Proving2FTC

Divideup [a,b] into n piecesofequalwidth ∆x =b− an

as

usual. Foreach i, F iscontinuouson [xi−1, xi] anddifferentiableon (xi−1, xi). Sothereisapoint ci in (xi−1, xi) with

F(xi) − F(xi−1)

xi − xi−1= F′(ci) = f(ci)

Orf(ci)∆x = F(xi) − F(xi−1)

Page 13: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Wehaveforeach i

f(ci)∆x = F(xi) − F(xi−1)

FormtheRiemannSum:

Sn =n∑

i=1

f(ci)∆x =n∑

i=1

(F(xi) − F(xi−1))

= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·· · · + (F(xn−1) − F(xn−1)) + (F(xn) − F(xn−1))

= F(xn) − F(x0) = F(b) − F(a)

Page 14: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Wehaveshownforeach n,

Sn = F(b) − F(a)

sointhelimit∫ b

af(x)dx = lim

n→∞Sn = lim

n→∞(F(b) − F(a)) = F(b) − F(a)

Page 15: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

ExampleFindtheareabetween y = x3 andthe x-axis, between x = 0 andx = 1.

Solution

A =

∫ 1

0x3 dx =

x4

4

∣∣∣∣10

=14

.

Hereweusethenotation F(x)|ba or [F(x)]ba tomean F(b) − F(a).

Page 16: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

ExampleFindtheareabetween y = x3 andthe x-axis, between x = 0 andx = 1.

Solution

A =

∫ 1

0x3 dx =

x4

4

∣∣∣∣10

=14 .

Hereweusethenotation F(x)|ba or [F(x)]ba tomean F(b) − F(a).

Page 17: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

ExampleFindtheareabetween y = x3 andthe x-axis, between x = 0 andx = 1.

Solution

A =

∫ 1

0x3 dx =

x4

4

∣∣∣∣10

=14 .

Hereweusethenotation F(x)|ba or [F(x)]ba tomean F(b) − F(a).

Page 18: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

ExampleFindtheareaenclosedbytheparabola y = x2 and y = 1.

.

Solution

A = 2−∫ 1

−1x2 dx = 2−

[x3

3

]1−1

= 2−[13−

(−−1

3

)]=

43

Page 19: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

ExampleFindtheareaenclosedbytheparabola y = x2 and y = 1.

.

Solution

A = 2−∫ 1

−1x2 dx = 2−

[x3

3

]1−1

= 2−[13−

(−−1

3

)]=

43

Page 20: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

ExampleFindtheareaenclosedbytheparabola y = x2 and y = 1.

.

Solution

A = 2−∫ 1

−1x2 dx = 2−

[x3

3

]1−1

= 2−[13−

(−−1

3

)]=

43

Page 21: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Outline

Lasttime: TheDefiniteIntegral

EvaluatingDefiniteIntegralsExamples

TotalChange

IndefiniteIntegralsMyfirsttableofintegrals

Examples“NegativeArea”

Page 22: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

Page 23: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf v(t) representsthevelocityofaparticlemovingrectilinearly,then ∫ t1

t0v(t)dt = s(t1) − s(t0).

Page 24: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf MC(x) representsthemarginalcostofmaking x unitsofaproduct, then

C(x) = C(0) +

∫ x

0MC(q)dq.

Page 25: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf ρ(x) representsthedensityofathinrodatadistanceof x fromitsend, thenthemassoftherodupto x is

m(x) =

∫ x

0ρ(s)ds.

Page 26: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Outline

Lasttime: TheDefiniteIntegral

EvaluatingDefiniteIntegralsExamples

TotalChange

IndefiniteIntegralsMyfirsttableofintegrals

Examples“NegativeArea”

Page 27: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

A newnotationforantiderivatives

Toemphasizetherelationshipbetweenantidifferentiationandintegration, weusethe indefiniteintegral notation∫

f(x)dx

foranyfunctionwhosederivativeis f(x).

Thus∫x2 dx = 1

3x3 + C.

Page 28: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

A newnotationforantiderivatives

Toemphasizetherelationshipbetweenantidifferentiationandintegration, weusethe indefiniteintegral notation∫

f(x)dx

foranyfunctionwhosederivativeis f(x). Thus∫x2 dx = 1

3x3 + C.

Page 29: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Myfirsttableofintegrals∫[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx∫

xn dx =xn+1

n + 1+ C (n ̸= −1)∫

ex dx = ex + C∫sin x dx = − cos x + C∫cos x dx = sin x + C∫sec2 x dx = tan x + C∫

sec x tan x dx = sec x + C∫1

1 + x2dx = arctan x + C

∫cf(x)dx = c

∫f(x)dx∫

1xdx = ln |x| + C∫

ax dx =ax

ln a+ C∫

csc2 x dx = − cot x + C∫csc x cot x dx = − csc x + C∫

1√1− x2

dx = arcsin x + C

Page 30: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Outline

Lasttime: TheDefiniteIntegral

EvaluatingDefiniteIntegralsExamples

TotalChange

IndefiniteIntegralsMyfirsttableofintegrals

Examples“NegativeArea”

Page 31: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

ExampleFindtheareabetweenthegraphof y = (x− 1)(x− 2), the x-axis,andtheverticallines x = 0 and x = 3.

Solution

Consider∫ 3

0(x− 1)(x− 2)dx. Noticetheintegrandispositiveon

[0, 1) and (2, 3], andnegativeon (1, 2). Ifwewanttheareaoftheregion, wehavetodo

A =

∫ 1

0(x− 1)(x− 2)dx−

∫ 2

1(x− 1)(x− 2)dx +

∫ 3

2(x− 1)(x− 2)dx

=[13x

3 − 32x

2 + 2x]10 −

[13x

3 − 32x

2 + 2x]21 +

[13x

3 − 32x

2 + 2x]32

=56−

(−16

)+

56

=116

.

Page 32: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

ExampleFindtheareabetweenthegraphof y = (x− 1)(x− 2), the x-axis,andtheverticallines x = 0 and x = 3.

Solution

Consider∫ 3

0(x− 1)(x− 2)dx. Noticetheintegrandispositiveon

[0, 1) and (2, 3], andnegativeon (1, 2). Ifwewanttheareaoftheregion, wehavetodo

A =

∫ 1

0(x− 1)(x− 2)dx−

∫ 2

1(x− 1)(x− 2)dx +

∫ 3

2(x− 1)(x− 2)dx

=[13x

3 − 32x

2 + 2x]10 −

[13x

3 − 32x

2 + 2x]21 +

[13x

3 − 32x

2 + 2x]32

=56−

(−16

)+

56

=116

.

Page 33: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Graphfrompreviousexample

. .x

.y

..1

..2

..3

Page 34: Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Summary

I integralscanbecomputedwithantidifferentiationI integralofinstantaneousrateofchangeistotalnetchangeI ThesecondFunamentalTheoremofCalculusrequirestheMeanValueTheorem