60
1 Challenge the future P-L-3 Mechanics The Modelling Team Department of Design Engineering Faculty of Industrial Design Engineering Delft University of Technology

Lecture Slides: Lecture Mechanics

Embed Size (px)

DESCRIPTION

The lecture slides of lecture Mechanics of the Modelling Course of Industrial Design of the TU Delft

Citation preview

Page 1: Lecture Slides: Lecture Mechanics

1Challenge the future

P-L-3

Mechanics

The Modelling Team Department of Design Engineering

Faculty of Industrial Design EngineeringDelft University of Technology

Page 2: Lecture Slides: Lecture Mechanics

2Challenge the future

Contents

• Systems

• Key components of Mechanical Systems

• Spring

• Damper

• Mass-Spring-Damper Systems

• Applications in product design

Page 3: Lecture Slides: Lecture Mechanics

3Challenge the future

Aim

KnowledgeKnowledge

InsightInsight

CommunicationCommunication

To develop a basic understanding of the properties of mass-spring-damper system and its applications in product designs

To demonstrate that such a system might be modeled so as to provide useful data for designs

To communicate with experts in their professional languages

1

2

3

Page 4: Lecture Slides: Lecture Mechanics

4Challenge the future

Systems

Page 5: Lecture Slides: Lecture Mechanics

5Challenge the future

Repetition: What is a system?

System consists of a set of interacting or interdependent system components (or sub-systems)

System

-Structure & interconnectivity-Boundary-Input & Output-Surroundings

Page 6: Lecture Slides: Lecture Mechanics

6Challenge the future

Example of a system

Tyre

Saddle

Tyre

Courtesy of http://www.cycle9.com/carrboro-chapel-hill-store/batavus-bicycles-lets-go-dutch/Courtesy of http://www.batavus.nl

Page 7: Lecture Slides: Lecture Mechanics

7Challenge the future

System response

Boundary

Inputs Outputs

Courtesy of http://www.batavus.nlCourtesy of http://reviews.mtbr.com/blog/tag/Cycle-Solutions/

Velocity in the vertical direction

Displacement in the vertical direction

Page 8: Lecture Slides: Lecture Mechanics

8Challenge the future

System response

Boundary

Inputs Outputs

Courtesy of http://www.batavus.nlCourtesy of http://www.utilitycycling.org/2009/08/cycling-services/

Velocity in the vertical direction

Displacement in the vertical direction

Page 9: Lecture Slides: Lecture Mechanics

9Challenge the future

System response

Boundary

Inputs Outputs

Courtesy of http://www.batavus.nlCourtesy of http://www.utilitycycling.org/2009/08/cycling-services/

Velocity in the vertical direction

Displacement in the vertical direction

Page 10: Lecture Slides: Lecture Mechanics

10Challenge the future

What are components of the bike’s model?

Tyre

Saddle

Tyre

Courtesy of http://www.batavus.nl

Page 11: Lecture Slides: Lecture Mechanics

11Challenge the future

Components - Spring

Page 12: Lecture Slides: Lecture Mechanics

12Challenge the future

Component - Spring

Ref. http://en.wikipedia.org/wiki/Spring_(device)

A spring is an elastic object used to store mechanical energy

Spring

2 m

eter

s 40

0 N

2 m

eter

s 40

0 N

Page 13: Lecture Slides: Lecture Mechanics

13Challenge the future

Model a spring

Courtesy of http://en.wikipedia.org/wiki/Spring_(device)

Page 14: Lecture Slides: Lecture Mechanics

14Challenge the future

Rehearsal: Bungee jumping

Courtesy of http://www.youtube.com/watch?v=sriUfHuHSXY

Page 15: Lecture Slides: Lecture Mechanics

15Challenge the future

Components

Spring

Human.

Air.

► Earth Bungee jumping system

Page 16: Lecture Slides: Lecture Mechanics

16Challenge the future

Cause-effect

Spring

Inertia force Stretchthe spring

Pull the person back

GravityMass of the person Air friction

Slow down the motion

Effect

Cause

0 =0

101

000

Page 17: Lecture Slides: Lecture Mechanics

17Challenge the future

Modelling using Maple®

Page 18: Lecture Slides: Lecture Mechanics

18Challenge the future

The solution

Page 19: Lecture Slides: Lecture Mechanics

19Challenge the future

The solution

Displacement

Acceleration

Velocity

Page 20: Lecture Slides: Lecture Mechanics

20Challenge the future

The solution

The amplitude is getting smaller, 

Why? 

Displacement

Acceleration

Velocity

Page 21: Lecture Slides: Lecture Mechanics

21Challenge the future

Is it different? - Trampoline

Courtesy of http://www.youtube.com/watch?v=pSazagYBCM8

Page 22: Lecture Slides: Lecture Mechanics

22Challenge the future

Components

Spring

Human.

Air.

► Earth Trampoline system

Page 23: Lecture Slides: Lecture Mechanics

23Challenge the future

Cause-effect

Spring

Inertia force Stretchthe spring

Push the person back

GravityMass of the person Air friction

Slow down the motion

Effect

Cause

0 0 0 =0

101

000

Page 24: Lecture Slides: Lecture Mechanics

24Challenge the future

Modelling using Maple®

Page 25: Lecture Slides: Lecture Mechanics

25Challenge the future

The solution

Page 26: Lecture Slides: Lecture Mechanics

26Challenge the future

The solution

Displacement

Acceleration

Velocity

Page 27: Lecture Slides: Lecture Mechanics

27Challenge the future

The solutionThe amplitude is also getting smaller. The 

same reason? 

SpeedDisplacement Acceleration

Page 28: Lecture Slides: Lecture Mechanics

28Challenge the future

Bungee jumping vs Trampoline

0 =0

0 0 0 =0

Bungee jumping

Trampoline

Page 29: Lecture Slides: Lecture Mechanics

29Challenge the future

Components - Damper

Page 30: Lecture Slides: Lecture Mechanics

30Challenge the future

Component - Damper

A damping elements resists relative velocity across them

Damper

Courtesy of http://en.wikipedia.org/wiki/Shock_absorber

Shock absorber with internal reservoir.

The components are:A - rod,B - the piston with seals,C - the cylinder,D - oil reservoir,E - floating piston,F - air chamber.

Page 31: Lecture Slides: Lecture Mechanics

31Challenge the future

Model a damper

Page 32: Lecture Slides: Lecture Mechanics

32Challenge the future

Case study: The slow closing toilet seat

Courtesy of http://www.youtube.com/watch?v=tBK1rewI8vQ

Page 33: Lecture Slides: Lecture Mechanics

33Challenge the future

System components

The toilet seat

Page 34: Lecture Slides: Lecture Mechanics

34Challenge the future

Cause-effect

Damper

Inertia moment The lid goes down

Slow downthe motion

GravityMass and

geometry of the lid

Effect

Cause

/2=0

Page 35: Lecture Slides: Lecture Mechanics

35Challenge the future

Modelling using Maple®

Page 36: Lecture Slides: Lecture Mechanics

36Challenge the future

Solving the model

Page 37: Lecture Slides: Lecture Mechanics

37Challenge the future

The solution

/2/2

Angular displacement

Angular acceleration

Angular velocity

Page 38: Lecture Slides: Lecture Mechanics

38Challenge the future

The mass-spring-damper system

Page 39: Lecture Slides: Lecture Mechanics

39Challenge the future

The mass-spring-damper system

Courtesy of http://www.taiwan-bicycle.com.tw/Pd_Detail.asp?FKindNO=F000004&SKindNO=S000671&ItemNo=I00002896

Page 40: Lecture Slides: Lecture Mechanics

40Challenge the future

The mass-spring-damper system

Courtesy of http://www.taiwan-bicycle.com.tw/Pd_Detail.asp?FKindNO=F000004&SKindNO=S000671&ItemNo=I00002896

ElasticityYoung's ModulusPoisson's RatioAnisotropy 

Damping Coefficient

Spring Damper

Regarding material

Page 41: Lecture Slides: Lecture Mechanics

41Challenge the future

The mass-spring-damper system

Courtesy http://www.airliners.net/photo/Airbus-Industrie/Airbus-A380-861/1169635/L/

Page 42: Lecture Slides: Lecture Mechanics

42Challenge the future

Case study: The skateboardThe movement in the vertical direction

Courtesy of http://skateboardingmagazine.com/blog/2009/02/01/the-worlds-largest-skateboard/

Designer: 

Rob Dyrde

The World largest skateboard

Page 43: Lecture Slides: Lecture Mechanics

43Challenge the future

System components

The skateboard

Spring

DamperAir

EarthPerson

NeglectNeglect

Neglect, why?Neglect, why?

Page 44: Lecture Slides: Lecture Mechanics

44Challenge the future

System

Damper

Inertia force Drag themass back

Slow down the motion

SpringMass of the board

Effect

Cause

=0

Page 45: Lecture Slides: Lecture Mechanics

45Challenge the future

Modelling using Maple®

Page 46: Lecture Slides: Lecture Mechanics

46Challenge the future

Solution

Displacement

Acceleration

Velocity

The step

Page 47: Lecture Slides: Lecture Mechanics

47Challenge the future

DiscussionC=50

K=1000 K=100 K=10

DisplacementDisplacement

VelocityVelocity

AccelerationAcceleration

Page 48: Lecture Slides: Lecture Mechanics

48Challenge the future

Discussion

K=100

C=200 C=50 C=0.1

DisplacementDisplacement

VelocityVelocity

AccelerationAcceleration

Page 49: Lecture Slides: Lecture Mechanics

49Challenge the future

Consider human also as a spring and a damper, can we model the shock to the head?

21 1 2

1 1 1 2 12

( ) ( ) ( )( ( ) ( )) ( ) 0d x t dx t dx tm k x t x t cdt dt dt

22 1 2 2

2 1 1 2 1 2 2 22

( ) ( ) ( ) ( ) ( )( ( ) ( )) ( ) ( ( ) ( )) ( ) 0d x t dx t dx t dx t dy tm k x t x t c k x t y t cdt dt dt dt dt

Page 50: Lecture Slides: Lecture Mechanics

50Challenge the future

The natural frequency

2

2

( ) ( ) ( ) 0d x t dx tm c kx tdt dt

0km

2cmk

22

0 02

( ) ( )2 ( ) 0d x t dx t x tdt dt

Page 51: Lecture Slides: Lecture Mechanics

51Challenge the future

The damping ratio

Page 52: Lecture Slides: Lecture Mechanics

52Challenge the future

Resonance

Page 53: Lecture Slides: Lecture Mechanics

53Challenge the future

Case study: Tacoma Narrow bridge

Courtesy of http://www.youtube.com/watch?v=P0Fi1VcbpAI

Page 54: Lecture Slides: Lecture Mechanics

54Challenge the future

Interpret the response of a step function

Sett

ling

time

band

Mp St

eady

-sta

te

erro

r

22

0 0( ) ( )2 ( ) step

d x t dx t x t fdt dt

max

ss

ss

xAx x

22

ln

ln

A

A

21n

pt

Page 55: Lecture Slides: Lecture Mechanics

55Challenge the future

Interpret the response - 2Example: If we know the response of a mass-spring-damper system regarding a step function F(t), can we extract parameter c and k from the response?

From definitions

Maximum overshoot ratio

max

ss

ss

xAx x

Damping ratio

22

ln

ln

A

A

Natural frequency21

n

pt

Maximum overshoot ratio

max

13.28

1.3723

ss

p

xt

x

Response

2.686A

Damping ratio0.3

Natural frequency1n

0km

2

cmk

Suppose m=1kg

1 kg/m, 0.6 Ns/mk c

m

k

c

x(t)

F(t)

Page 56: Lecture Slides: Lecture Mechanics

56Challenge the future

Industrial applications

Page 57: Lecture Slides: Lecture Mechanics

57Challenge the future

The pogo-stick

Courtesy of http://connect.in.com/pogo/photos-1-1-1-9ed7a7cecf4cb85de07b7f05697bfe43.html

Question?Where is

the damper?

Page 58: Lecture Slides: Lecture Mechanics

58Challenge the future

The suspension systems (ref/auto.howstuffworks.com/)

Courtesy of http://auto.howstuffworks.com/car-suspension4.htmAI

Page 59: Lecture Slides: Lecture Mechanics

59Challenge the future

The door closer (ref. /www.usbuildersupply.com)

Courtesy of http://www.usbuildersupply.com/index.php/hardware-basics/door-closer-overview/

Page 60: Lecture Slides: Lecture Mechanics

60Challenge the future

Thank You!