561
La Baule - Pornichet, France 29 th sept. - 3 rd oct. 2014 8 th International Symposium on Technetium and Rhenium: Science and Utilization 1

2014 proceed-istr version 0

Embed Size (px)

Citation preview

  • La Baule - Pornichet, France 29th sept. - 3rd oct. 2014

    8th International Symposium on Technetium and

    Rhenium: Science and Utilization

    1

  • 8th

    International Symposium on Technetium and Rhenium: Science and Utilization.

    September 29th

    to October 3rd

    2014. Proceedings and selected lectures. La Baule -

    Pornichet, France. Eds. K.German, F.Poineau, M. Fattahi., Ya. Obruchnikova, A.

    Safonov. Nantes Moscow Las Vegas : Granica Publishing Group, 2014. 561 p.

    IPCE RAS 2014

    SUBATEC 2014

    GRANICA PUBLISHING GROUP 2014

    UNLV 2014

    UDK 546.718 : 548.736

    ISBN 978-5-94691-703-2

    Nantes Moscow Las Vegas

    Granica Publishing Group 2014

    2

    German

  • Table of Contents

    Chemistry of Technetium in the nuclear fuel cycle

    Multiple Facets of Technetium and Rhenium Chemistry in Molecular

    Imaging and Therapy. Roger Alberto, Samer Ursillo, Henrik

    Braband, Michael Benz, Michael Felber, Sebastian Imstepf 10

    Techntium behavior in the PUREX process. P. Baron 47

    The role of a choice of the target form for 99

    Tc transmutation. ..Kozar, K.E. German, V.F. Peretrukhin

    61

    Complexation and extraction of Pu(IV) in the presence of

    pertechnetic acid. L. Venault, L. Abiad and Ph. Moisy 74

    The ways of technetium localization at the SNF reprocessing. N.D.

    Goletsky, B.Ya. Zilberman, Yu.S. Fedorov, A.S. Kudinov, A.A.

    Timoshuk, L.V., Sytniuk, E.A. Puzikov, S.A. Rodionov, A.P.

    Krinitsyn, V.I. Ryasantsev, D.V. Ryabkov, T.A. Boytsova

    85

    The nature of the technetium volatile species formed during

    vitrification in borosilicate glass. Bradley Childs, Frederic Poineau,

    Kenneth R. Czerwinski, and Alfred P Sattelberger.

    102

    Electrochemical studies of technetium-ruthenium and rhenium-

    ruthenium alloys in nitric acid: implications for the long term

    behavior of metallic technetium waste forms. Romina Farmand,

    Frederic Poineau, Daniel J. Koury, David G. Kolman, Gordon D.

    Jarvinen and Kenneth R. Czerwinski

    114

    Fundamental chemistry of Technetium and Rhenium

    Review on the Tc Chemistry at SUBATECH in Inorganic Media

    (Chloride, Sulfate, Carbonate) with or without Radiation Effect.

    J. Vandenborre, M. Fattahi

    128

    Speciation of technetium in acidic media (CF3SO3H, H2SO4): Effect

    of alpha radiations. Ibtihel Denden, Jrme Roques, Frdric Poineau, Massoud Fattahi

    141

    Study induced oxidation/reduction of Tc in carbonate media by and radiolysis. M. Ghalei, J.Vandenborre, G. Blain, F. Haddad, M. Fattahi-Vanani

    159

    Speciation of Technetium in Sulfuric Acid/Hydrogen Sulfide

    Solutions. Maryline Ferrier, Frederic Poineau, Jerome Roques, 176

    33

  • Alfred P. Satteleberger and Kenneth R. Czerwinski

    Electrochemical properties of technetium species in acidic media. M.

    Chotkowski 190

    Aquatic chemistry and thermodynamics of Tc in dilute to

    concentrated saline systems. E. Yalcintas, X. Gaona, A. C. Scheinost,

    M. Altmaier, H. Geckeis

    204

    Density and activity of perrhenic and pertechnetic acid aqueous

    solutions at 25C. P. Moeyaert, L. Abiad, C. Sorel, J.-F. Dufrche, M. Miguirditchian and P. Moisy

    218

    Comparative study of several supramolecular TcO4- and ReO4

    -

    receptors. K.E. German, Ya.A. Obruchnikova, G.V. Kolesnikov,

    G.A. Kirakosyan, I.G. Tananaev, B.F. Myasoedov

    229

    The Chemistry of Technetium Chlorides. A. Sattelberger. 245

    Synthesis and Characterization of Binary Technetium Bromides and

    Iodides. Erik Johnstone, Frederic Poineau, Paul M. Forster, Alfred P.

    Sattelberger and Kenneth R. Czerwinski

    258

    Dinuclear Technetium complexes with multiple metal-metal bonds.

    Poineau F., Forster P.M., Todorova T.K., Johnstone E.V., Kerlin

    W.M., Gagliardi L., Czerwinski K.R., Sattelberger A.P.

    272

    Polynuclear Technetium Iodides Compounds with Multiple Metal-

    metal Bonds. W.M. Kerlin, F. Poineau, C. Malliakas, P.M. Forster,

    A.P. Sattelberger, K.R. Czerwinski .

    284

    In-Situ Study Of Minor And Major Phase Formation And

    Transformation In Tc Bearing Mineral Analogues with Carbonate

    Starting Components. Gordon Thorogood, Brendan Kennedy, Emily

    Reynolds, Massey De Los Reyes and Helen Brand.

    302

    Spectroscopic and Photophysical Properties of

    Tetracyanidonitridorhenium(V) and -technetium(V) Complexes.

    Takashi Yoshimura, Hayato Ikeda, Akitaka Ito, Eri Sakuda, Noboru

    Kitamura, Tsutomu Takayama, Tsutomu Sekine and Atsushi

    Shinohara

    328

    Educational Opportunities Within the UNLV Radiochemistry PhD

    Program, J. Wendee. 344

    Rhenium complexes of benzothiazoles as models for the diagnosis of

    Alzheimer`s disease. T.I.A._Gerber,_X._Schoultz 356

    44

  • Nitrosyltechnetium Complexes with Various P,N Ligands. Janine Ackermann, Adelheid Hagenbach, Ulrich Abram

    374

    Fluorido Complexes of Low-valent Technetium. Samundeeswari Mariappan Balasekaran, Adelheid Hagenbach, Ulrich Abram

    390

    Formation of nitrosyl-containing o-phenanthroline complex of iron in presence of TcO4- and HNO3. Tatiana Boytsova, V.A. Babain, A.A. Lumpov, A.A. Murzin

    403

    A new method for rapid extraction of rhenium from raw vegetation with subsequent determination of the metal under field conditions. Ognyan Bozhkov and Christina Tzvetkova

    414

    Rhenium in the industry

    Sorption separation of Rhenium and associated components of polymetallic raw materials. I. Troshkina, N.V. Balanovskyi, A.V. Shilyaev, V.A. Moiseenko, Nway Shwan Oo, A.P. Grekhov

    424

    Ionosilicas for Ion Exchange Reaction. P. Hesemann, M. Gigue, P. Moisy, B. Prelot, U. D. Thach

    442

    Study on Rhenium sorption at high rate from washing acid of the sulphuric acid plant at balkhash copper plant. Sergey Zakharyan, A.B. Yun, E.I. Gedgagov, I.V.Terentieva

    464

    Study on Rhenium desorption at high rate from macroporous low base ionites. S. Zakharyan, A.B. Yun, E.I. Gedgagov, V.A. Chen

    467

    Technetium and Rhenium in nuclear medicine

    Molybdenum-99 production from a thorium target irradiated by light charged particles up to 70 MeV. C. Duchemin, Arnaud Guertin, Ferid Haddad, Vincent Mtivier, Nathalie Michel

    472

    Rhenium-188: application for glioblastoma internal radiotherapy. Annabelle Cikankowitz

    473

    Starch based microparticles radiolabelling with 99mTc and 188Re for diagnostic and therapy of Hepatocellular carcinoma. E.Verger, A. Cikankowitz, A. Bouvier, N. Lepareur, J. Benoit, J. Deloye, C. Aub, O. Couturier, F. Lacoeuille, R. Hustinx, F. Hindr

    474

    Rhenium-tricarbonyl with a new tripodal N2O ligand: from structural investigations to a therapeutic radiopharmaceutical. Romain

    475

    5

  • Echeynne, Sihem Guizani, Mariusz Wolff, Eric Benoist, Nicolas

    Lepareur

    Interdisciplinary consortium collaboration for the development of

    radiopharmaceutical approach for effective diagnostics and therapy of

    prostate cancer in Russia. K. German, O. Vlasova, V. Petriev, V.

    Skvortsov, G. Kodina, A. Maruk, N. Airapetova, N. Epshtein, N.

    Nerozin, A. Safonov, V. Lebedev, Ya. Obruchnikova, Yu. Shevko

    476

    Influence of oxygen isotopes on the NMR parameters of the

    pertechnetate anion TcO4- . Use of technetium-99g in PET nuclear

    chemistry technology: application of 99gTc-NMR for analysis of O-

    18 content in water. K. German, G. Kirakosyan, V. Tarasov

    491

    Poster session

    Technetium and Rhenium sulfides formation: kinetics, structure and properties, K. E. German, A.V. Safonov A.A. Shiryaev, Ya. A.

    Obruchnikova, V.A. Ilin, V.P. Tarasov, A. V. Afanasiev, V.E.

    Tregubova, S.N. Kalmykov

    494

    Supramolecular interactions of caffeine molecules with each other,

    water molecules and oxygen atoms of tetraoxidoanions in the three

    new different compounds Me(H2O)6[ReO4]2.caffeine (Me = Co, Cd,

    Mg ). K. German, M.N. Glazkova, M.S. Grigoriev, Ya.A.

    Obruchnikova, G.V. Kolesnikov, Yu.A. Ustynyuk, F. Poineau, O.S.

    Kryzhovets

    503

    Biological reduction of pertechnetate ion in the implementation of

    technology biobarrer into aquifers contaminated with radioactive

    waste. A. Safonov T. Khijniak, V. Ilin, K. German

    510

    Development of Bio filtration system for cleaning solutions from

    uranyl and pertechnetate anions. A. Safonov, O. Gorbunova, T.

    Khijniak, K. German

    511

    Platinum And Rhenium Recovery From PtRe Reforming Catalysts via Plasma Arc Technology. Peter Keeley, Neil Rowson, David

    Deegan

    512

    Technetium and Rhenium Complexes with Heavy

    Arylchalcogenolates. Bruno N. Cabral, Ernesto S. Lang, Adelheid

    Hagenbach, Lars Kirsten, Ulrich Abram

    516

    Solvent extraction separation of Rhenium and Molybdenum using

    octanols and mixtures of trisooctilamine 2-octanone in acid media. A. 523

    66

  • Petrova, A. Kasikov

    Evaluation of Rhenium Production Rates in Tungsten Irradiated in

    Fast Reactors by Using Continuous Energy Monte Carlo Code MVP.

    Tsugio Yokoyama, Atsunori Terashima and Masaki Ozawa

    526

    Application of Solvent Extraction Preconcentration methods for

    Spectrophotometric Determination of Traces of Molybdenum in

    Radiopharmaceutical Preparation using 1,5-Diphenylcarbazide.

    Nafisa H. Gmati and M. A. Abuzwida

    533

    Biosorption processes for radioactive waste purification from Tc, U, Sr and Cs. Alexey Safonov, Varvara Tregubova, Olga Gorbunova,

    Kjnstantin German, T. Nazina

    537

    Measurement of 99

    Tc via Cherenkov counting. Mojmr Nmec,Kateina ubov

    539

    Tc(V) and Re(V) oxido complexes with tetradentate

    thiocarbamoylbenzamidines for bioconjugation. Adelhei Hagenbach,

    U.Abram

    540

    Review on Chemical Separation of Tc with Extraction

    Chromatographic Resins. A. Bombard, S. Happel 544

    Microorganisms from extreme habitats for use in biological

    technologies to LRW treatment. A. Safonov, S. Gavrilov, T.

    Khijniak, K. German, I. Troshkina

    545

    Octahedral chalcogenide rhenium cluster complexes with phosphine

    and pyridine derivatives : synthesis, structure and properties. A.A.

    Ivanov, V.K. Khlestkin, M.. Shestopalov, K.A.Brylev, Y.V. Mironov

    550

    Prospects of octahedral rhenium cluster complexes in biology and

    medicine. Michael A. Shestopalov, Anna A. Krasilnikova, Kristina

    E. Zubareva, Konstantin A. Brylev, Yuri V. Mironov

    551

    Rhenium recovery from secondary raw material. Anna Petrova,

    Aleksandr Kasikov 552

    77

  • The 8th

    International

    Symposium

    on Technetium and Rhenium:

    Science and Utilization, September 29th to October 3rd 2014

    La Baule - Pornichet, France.

    The 8th

    ISTR aimed at continuing 20 years of tradition on Technetium and Rhenium conferences

    and the symposium happening every 3 years. It was originally created in 1993 and has been

    successively held in 1993 (Sendai, Japan), 1996 (Moscow, Russia), 1999 (Shizuoka, Japan),

    2002 (Dubna, Russia), 2005 (Oarai-Ibaraki, Japan), 2008 (Port-Elizabeth, South Africa) and

    2011 (Moscow, Russia).

    The aims of the 8th

    ISTR was to cover all aspects of Technetium and Rhenium chemistry. The

    conference was organized around plenary lectures (30-40 minutes), short lectures (15-20)

    minutes and poster sessions. The technical program has covered the following topics :

    Chemistry of Technetium in the nuclear fuel cycle (separation, disposal, waste form) Technetium and Rhenium in nuclear medicine (isotopes production, labeling,

    coordination chemistry) Radioanalytical chemistry (Measure of Tc an Re in biosphere) Fundamental chemistry of Technetium and Rhenium (synthetic, materials and

    coordination chemistry, inorganic and organometallic complexes, properties...)

    Rhenium in the industry (mining, metallurgy, catalysis)

    88

  • Committees

    International Advisory Committee

    R. Alberto (Switzerland)

    J. Barbet (France)

    B. Bryskin (USA)

    K. Czerwinski (USA)

    J. R. Dilworth (England)

    Y. Fujii (Japan)

    T.I.A. Gerber (South Africa)

    K.E. German (Russia)

    G.E. Kodina (Russia)

    Ph. Moisy (France)

    M. Ozawa (Japan)

    V.F. Peretrukhin (Russia)

    A. Sattelberger (USA)

    T. Sekine (Japan)

    I.D. Troshkina (Russia)

    A.Yu. Tsivadze (Russia)

    F. Poineau (USA)

    Yuezhou WEI (China)

    Shuao Wang (China)

    Local committee

    Massoud Fattahi - Chair, Laboratoire SUBATECH - Ecole des Mines de Nantes La Chantrerie - 4 rue Alfred Kastler - BP 20722

    44307 NANTES Cedex 3 - France - together with

    :

    Sverine Gadeyne Sophie Girault

    Bernard Kubica

    Tanja Pierret

    Pascaline Rtout,

    Philippe Moisy Co-chair, CEA MARCOULE - DEN/DRCP/SERA/LCAR - Bt 399,BP17171 30207 BAGNOLS-SUR-CEZE Cedex

    Frdric Poineau Co-Chair, Department of Chemistry / University of Nevada, Las Vegas - 4505 S. Maryland Pkwy - Las Vegas, NV 89154

    Contact : [email protected]

    Sponsored by :

    99

  • Multiple Facets of Technetium and Rhenium Chemistry in Molecular

    Imaging and Therapy

    Roger Alberto, Samer Ursillo, Henrik Braband, Michael Benz, Michael Felber, Sebastian Imstepf

    Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich

    PET is becoming more and more important, but 99mTc as a radionuclide for Single Photon Emission Computed Tomography (SPECT) has still the strongest impact on diagnostic health care. Whereas SPECT cameras can compete with PET cameras, chemical research efforts are required for keeping the role of Tc alive. Complementing diagnosis with 99mTc by therapeutic modalities is a clear asset over PET strategies (with 18F). Adapting the theranostic concept, we aim at synthesizing 99mTc complexes which mimic pharmacophores (imaging) with cold Re homologues (therapy), the 99mTc complex is a structural moiety in pharmaceutically active lead structures. This strategy requires demanding organometallic reactions. The preparation of cyclopentadienyl based bioorganometallic compounds is a focus since the Cp-ring can mimic phenyls in pharmaceuticals. Complexes of the type [(Cp-R)99mTc(CO)3] opened the so-called Cp-phenyl analogy.1 The Cp complex can be a tag, as will be shown with peptides (A),2 but also an integral part of structure in which it plays an essential role for receptor recognition. Examples with CA and HDAC inhibitors will be presented.3 Replacing Tc by Re will yield homologues with almost identical, pharmacological properties but with therapeutic potential.

    We have extended the approach to cyclopentadienyl derivatives with two carboxylato groups (B) allowing to couple two bioactive functionalities to one 99mTc or Re complex. Finally, for replacing a phenyl ring in a pharmaceutical by a "true" phenyl ring, first insights in arene chemistry will be given. These aspects from low valent, organometallic chemistry will be rounded up by insights from high valent 99mTc and Re chemistry.4

    1. Liu, Y.; Spingler, B.; Alberto, R. et al., J. Am. Chem. Soc., 2008, 130, 1554.2. Nadeem, Q.; Can, D.; Alberto, R. et al., Org. & Biomol. Chem., 2014, 12, 1966.3. Can, D.; Spingler, B.; Alberto, R.; et al., Angew. Chem. Int. Edit., 2012, 51, 3354.4. Braband, H., Benz, M., Tooyama, Y. Alberto, R. Chem. Commun., 2014, 50, 4126.

    1010

  • 10/7/2014

    1

    MultipleFacetsofTechnetiumandRhenium

    Chemistry in Molecular Imaging and Therapy

    MultipleFacetsofTechnetiumandRhenium

    Chemistry in Molecular Imaging and TherapyChemistryinMolecularImagingandTherapyChemistryinMolecularImagingandTherapy

    RogerAlberto

    D f Ch i

    RogerAlberto

    D f Ch iDepartmentofChemistryUniversityofZrich

    DepartmentofChemistryUniversityofZrich

    LaBaule Pornichet,France,September29,2014LaBaule Pornichet,France,September29,2014

    OutlineOutline

    Abitofhistory

    Organometallic Chemistry and Coordination Chemistry

    Abitofhistory

    Organometallic Chemistry and Coordination ChemistryOrganometallicChemistryandCoordinationChemistry

    OrganometallicChemistry andCoordinationChemistry

    WhatcanwelearnfromMetalsinMedicine

    IntegratedMolecularImagingAgents:Theranostics

    Phenyl Cyclopentadienyl Analogy

    OrganometallicChemistryandCoordinationChemistry

    OrganometallicChemistry andCoordinationChemistry

    WhatcanwelearnfromMetalsinMedicine

    IntegratedMolecularImagingAgents:Theranostics

    Phenyl Cyclopentadienyl Analogy

    2

    Functionalized Cyclopentadienylcomplexes

    MissedOpportunities

    Functionalized Cyclopentadienylcomplexes

    MissedOpportunities

    111

  • 10/7/2014

    2

    Duringthepastfiveyears,therehasbeenadramaticsurgeofactivityintechnetiumchemistry,thisactivityhasbeendriventoalargeextentbythedesireofinorganicchemiststoobtainabasicunderstandingofthislargelyunexploredelement.AnevengreaterdrivingforcehasbeenprovidedbytheextensiveuseofTc99mindiagnosticnuclear

    AbitofHistory..AbitofHistory..

    e e g eate d g o ce as bee p o ded by t e e te s e use o c 99 d ag ost c uc eamedicineproceduresandthegrowingrealizationthatsignificantadvanceinthisappliedfieldwilldependuponbasicresearchinthefieldofinorganicTechnetiumchemistry

    the several oxidation states of technetium exhibit diverse chemistries which will allow Tc99m

    E.Deutsch,K.Libson andS.Jurisson,L.F.Lindoy inProgressinInorganicChemistry,1983,30,75

    3

    theseveraloxidationstatesoftechnetiumexhibitdiversechemistrieswhichwillallowTc 99mtobeincorporatedintoavarietyofformulationsthatarespecificfordifferentorgans,thus,variouschemicalformsofthesingleisotope

    E.Deutsch,K.Libson andS.Jurisson,L.F.Lindoy inProgressinInorganicChemistry,1983,30,75

    Oneofthereasonsfortheincreasedinterestintechnetiumchemistryduringthelastfewyearsisthewidespreaduseofradiopharmaceuticallabelledwith99mTc.{..}However,Fig.2showsthatthenumberofstudiesreportedonnew99mTcradiopharmaceuticalshasdecreasedfrom1977to1980.Thisfactevidencesastall

    i i i di h i l h h ill l b ll i d b h

    AbitofHistory..AbitofHistory..

    positioninradiopharmaceuticalresearchthatwillonlybealleviatedbyFurtherdevelopmentoftechnetiumchemistry.Fortunatelystudiesonthecoordinationchemistryareexpanding.

    JACS,1952

    G.Bandoli,U,Mazzi,E.Roncari,Coord.Chem.Rev.1982,44,191

    TechnetiumandChemistry

    4

    112

  • 10/7/2014

    3

    Duringthisperiodoftime*,thecoordinationchemistryoftechnetiumplayedasignificantrole.Thesuccessfuldevelopmentof99mTcimagingagentswastotallydependentonthedesignoftechnetiumcomplexes sincethebiodistributionandtargeting capability depend exclusively on their lipophilicity, size and charge.

    AbitofHistory..AbitofHistory..

    targetingcapabilitydependexclusivelyontheirlipophilicity,sizeandcharge.

    Theroleofcoordinationchemistryinthedevelopmentoftargetspecificradiopharmaceuticals

    Althoughthefocusofradiopharmaceuticalresearchhasshiftedtowardsbiologicalcharacterizationofradiolabeledreceptorligandsinthelastseveralyears,coordination chemistrystillplaysasignificantroleinthedesignanddevelopmentofnewtargetspecificradiopharmaceuticals.

    5

    S.Liu, Chem.Soc.Rev.2004,33,445

    Muchofthisworkhasbeendirectedtowardtheinvestigationofkineticallyinertcomplexesformedinoxidationstatesthatarereadilyaccessibleinaqueousmediab th d ti f th t h t t i Th t di h d t t d th t

    AbitofHistory..AbitofHistory..

    bythereductionofthepertechnetateion.ThesestudieshavedemonstratedthatitispossibletoprepareclassesofstablecomplexesinboththeVandtheIIIoxidationstateswiththeappropriatechoiceofligand.

    Thisinturnhasenabledus(a)tosynthesizethisclassofair andwaterstablecomplexesattracerconcentrations(ca.108109 M)withmetastable 99mTc(b,)tobegintoevaluatethebiologicaldistributionsofthesecomplexesinanimals,and( )

    6

    (c)toestablishstructurefunctioncorrelationsonapotentiallylargeclassofwellcharacterizedcomplexes.

    SynthesisandCharacterizationofHexakis(alkylisocyanide)andHexakis(arylisocyanide)ComplexesofTechnetium(I)M.J.Abrams,A.Davison,A.G.Jones,C.E.Costello,H.Pang,Inorg.Chem.,1983,22,2798

    113

  • 10/7/2014

    4

    Forthesynthesisofspecificradiopharmaceuticals,theversatilechemistryofthistransitionelement,apparentfromtheexistenceofcompoundsinalargenumberoftechnetiumoxidationstates,isanadvantage.However the labeling requires the complexing of 99mTc with suitable functional groups

    AbitofHistory..AbitofHistory..

    However.thelabelingrequiresthecomplexing of99mTcwithsuitablefunctionalgroups.

    K.Schwochau,Angew.Chem.Int.Ed.,1994,33,2258

    TheearlyhistoryoftechnetiumandtechnetiumradiopharmaceuticalsisbestcharacterizedbythequotefromLouisPasteur:Inthefieldsofobservations,chancefavors onlythepreparedmind

    7

    UnparalleledcontributionsofTechentium99mtoMedicineover5decadesW.C.Eckelman,CardiovascularImaging,2009,2,364

    OrganometallicchemistryandCoordinationchemistryOrganometallicchemistryandCoordinationchemistry

    Complexes;noMCbondsCoordinationcompoundsaregenerallythermodynamicallyverystableChelateeffectplaysanimportantrole;entropiccontrolpH dependencies; competition metalbindingH+

    Complexes;noMCbondsCoordinationcompoundsaregenerallythermodynamicallyverystableChelateeffectplaysanimportantrole;entropiccontrolpH dependencies; competition metalbindingH+

    InTechnetiumcoordinationchemistry:afewbasicligandtypesInTechnetiumcoordinationchemistry:afewbasicligandtypes

    pHdependencies;competitionmetal binding HpHdependencies;competitionmetal binding H

    8

    PnAO,MAMA,MAGs,DADTetcandderivativesPnAO,MAMA,MAGs,DADTetcandderivatives

    Designedforthe{Tc=O}3+ andthe{TcN}2+ coreDesignedforthe{Tc=O}3+ andthe{TcN}2+ core

    114

  • 10/7/2014

    5

    DTPA

    Ligandsforthe3+family,Ga3+,Lu3+,In3+,Gd3+ etcLigandsforthe3+family,Ga3+,Lu3+,In3+,Gd3+ etc

    OrganometallicchemistryandCoordinationchemistryOrganometallicchemistryandCoordinationchemistry

    DOTA TETA

    NOTA

    YDOTAYDOTA YDOTAYDOTA

    9

    HYNIC,awonderfulcoordinationchemistryapproach..HYNIC,awonderfulcoordinationchemistryapproach..

    OrganometallicchemistryandCoordinationchemistryOrganometallicchemistryandCoordinationchemistry

    terminaldiazenidoterminaldiazenido

    zwitterionicdiazenidozwitterionicdiazenido

    bidentatediazenidobidentatediazenido

    monodentatediazene

    monodentatediazene

    bentdiazenidobent

    diazenido

    O NH

    R..butrequiresmultidentatecoligands..butrequiresmultidentatecoligands

    10

    N

    N

    N

    TcLO

    NHN

    O

    O

    H

    OH

    COOH

    tricine tricine tricine +LEDDA

    J.Dilworthetal.

    115

  • 10/7/2014

    6

    HYNIC,awonderfulcoordinationchemistryapproach..HYNIC,awonderfulcoordinationchemistryapproach..

    OrganometallicchemistryandCoordinationchemistryOrganometallicchemistryandCoordinationchemistry

    Modelcomplexes

    TcNCl

    NH

    Cl

    Cl

    NN

    N

    N

    H

    11J.Dilworth J.etal., J.Chem.Soc.DaltonT. 1994,1251;T.Nicholson,J.Zubieta,J.Babich etal., Inorg.Chim.Acta, 1996,252,421;Inorg.Chem., 1998,37,2701.

    Organometallicchemistry andCoordinationchemistryOrganometallicchemistry andCoordinationchemistry

    oneormoreMCbondsbondsessentiallycovalentstabilityratherkineticthanthermodynamicchelate effect plays a minor role (robustness)

    oneormoreMCbondsbondsessentiallycovalentstabilityratherkineticthanthermodynamicchelate effect plays a minor role (robustness)chelateeffectplaysaminorrole(robustness)closedshellcomplexes,diamagnetic,oftenredoxinertrarelypHdependenciesduetocovalentbonds

    chelateeffectplaysaminorrole(robustness)closedshellcomplexes,diamagnetic,oftenredoxinertrarelypHdependenciesduetocovalentbonds

    OrganometalliccompoundsrelyonafewbasicligandclassesOrganometalliccompoundsrelyonafewbasicligandclasses

    OR

    R'

    12

    [Tc2(CO)10]

    J.C.Hileman etal.,JACS,1961,83,2953W.Hieber etal.ANIE,1961,73,579

    [Tc(5C5H5)(CO)3]Carbonmonoxide Cyclopentadienyl Carbene

    [Tc2(CO)9(=C(COMe)R)]

    E.O.Fischeretal.,Chem.Ber.,1972,105,3027

    Ch.Palmetal.Naturwissenschaften,1962,49,279

    areneF.Baumgrtner etal.

    Chem.Ber.,1961,94,2198

    [Tc(C6H6)2]+

    116

  • 10/7/2014

    7

    Organometallicchemistry andCoordinationchemistryOrganometallicchemistry andCoordinationchemistry

    oneormoreMCbondsbondsessentiallycovalentstabilityratherkineticthanthermodynamicchelate effect plays a minor role (robustness)

    oneormoreMCbondsbondsessentiallycovalentstabilityratherkineticthanthermodynamicchelate effect plays a minor role (robustness)chelateeffectplaysaminorrole(robustness)closedshellcomplexes,diamagnetic,oftenredoxinertrarelypHdependenciesduetocovalentbonds

    chelateeffectplaysaminorrole(robustness)closedshellcomplexes,diamagnetic,oftenredoxinertrarelypHdependenciesduetocovalentbonds

    OrganometalliccompoundsrelyonafewbasicligandclassesOrganometalliccompoundsrelyonafewbasicligandclasses

    otherligands

    13

    [Tc(CNtBu)6]+

    isonitrileM.J.Abrams etal.

    J.LabelledComp.Radiopharm.,1982,14,1596

    alkyle

    [Tc2O4(CH3)4]

    W.A.Herrmannetal.ANIE.,1990,29,189

    alkenealkine

    ? ?

    Organometallicchemistry andCoordinationchemistryOrganometallicchemistry andCoordinationchemistry

    Difficultieswithorganometallic(technetium)compoundsDifficultieswithorganometallic(technetium)compoundslowoxidationsstates;reductionpronetobackoxidationsolubilitiesofligandsinwaterhydrolytic stability of complexes

    lowoxidationsstates;reductionpronetobackoxidationsolubilitiesofligandsinwaterhydrolytic stability of complexeshydrolyticstability ofcomplexesStabilityofligandsinwateraccessibilityofligands andderivativesligandcentredreactivities

    hydrolyticstability ofcomplexesStabilityofligandsinwateraccessibilityofligands andderivativesligandcentredreactivities

    notveryattractiveconditionsforradiopharmaceuticalapproaches!notveryattractiveconditionsforradiopharmaceuticalapproaches!

    14

    CN-R

    Tc

    CN-RR-NC CN-R

    CN-RR-NC[99mTcO4]-[S2O4]2- Cu+

    H2O / 10min 98o C

    yield >98%

    M.J.Abrams etal. Inorg.Chem.1983,22,2798

    arock!!

    117

  • 10/7/2014

    8

    Organometallicchemistry/MetalsinMedicineOrganometallicchemistry/MetalsinMedicine

    OrganometalliccompoundsinotherfieldsoflifesciencesOrganometalliccompoundsinotherfieldsoflifesciences

    BioorganometallicChemistry:TherapyBioorganometallicChemistry:Therapy

    Cyclopentadienyls Carbenes Arenes

    15P.J.Dysonetal.J.Med.Chem. 2011,54,3895/G.Savaetal.DaltonT. 2011,40,9069/C.Hartinger etal.Organometallics,2012,31,5677G.Jaouenetal.Chem.Brit.,2001,37,36;J.Med.Chem.2006,48, 3937,M.Tackeetal.Metallomics,2011,3,74.

    OrganometalliccompoundsinotherfieldsoflifesciencesOrganometalliccompoundsinotherfieldsoflifesciences

    BioorganometallicChemistry:TherapyBioorganometallicChemistry:Therapy

    Organometallicchemistry/MetalsinMedicineOrganometallicchemistry/MetalsinMedicine

    NH2O

    N Peptide

    cyclopentadienyl alkines /alkyls arenes

    16

    Mo

    COCO

    ONH2N N Peptide

    P.KpfMaieretal.,ANIE. 1984,23,456/D.R.vanStaveren etal.Chem.Commun. 2002,1406.G.Jaouen(ed)inBioorganometallics,WileyVCH,2004

    carbonyls 3allyl

    EssentiallyallorganometallicligandsarefoundinMetalsinMedicineEssentiallyallorganometallicligandsarefoundinMetalsinMedicine

    118

  • 10/7/2014

    9

    OrganometalliccompoundsinotherfieldsoflifesciencesOrganometalliccompoundsinotherfieldsoflifesciences

    MetalsinMedicineMetalsinMedicine

    C M F C Ni CC M F C Ni C

    Organometallicchemistry/MetalsinMedicineOrganometallicchemistry/MetalsinMedicine

    Cr Mn Fe Co Ni CuMo Tc Ru Rh Pd Ag

    Re Os Ir Pt Au

    Cr Mn Fe Co Ni CuMo Tc Ru Rh Pd Ag

    Re Os Ir Pt Au

    Essentiallynothingwithrhenium, notwithcoldandscarcelywith186/188ReEssentiallynothingwithrhenium, notwithcoldandscarcelywith186/188Re

    T h ti Rh i th t h d i diT h ti Rh i th t h d i di

    17

    didwemisssomething?didwemisssomething?

    Technetium Rhenium,thematchedpairparadigmTechnetium Rhenium,thematchedpairparadigm

    OrganometalliccompoundsinotherfieldsoflifesciencesOrganometalliccompoundsinotherfieldsoflifesciencesUnderestimatedPotentialofOrganometallicRheniumComplexesasAnticancerAgents*

    Organometallicchemistry/MetalsinMedicineOrganometallicchemistry/MetalsinMedicine

    18

    *GillesGasseretal.ACSChem.Biol.2014,inpress

    ManyRecomplexesshowlowmicromolar cytotoxicity againstvarietiesofcancercelllines!ManyRecomplexesshowlowmicromolar cytotoxicity againstvarietiesofcancercelllines!

    Rheniumastherapeuticcomplexes areessentiallynotexploredRheniumastherapeuticcomplexes areessentiallynotexplored

    119

  • 10/7/2014

    10

    RecentdevelopmentsinbioorganometallicchemistryRecentdevelopmentsinbioorganometallicchemistry

    mostcomplexesinbomc arenontargeting,cisplatinlikemostcomplexesinbomc arenontargeting,cisplatinlike

    ExtensionoftheconceptExtensionoftheconcept

    Organometallicchemistry/MetalsinMedicineOrganometallicchemistry/MetalsinMedicine

    pp

    A

    D CB

  • 10/7/2014

    11

    MetalsinMedicine:ComplexmediatedactivityMetalsinMedicine:Complexmediatedactivity

    Organometallicchemistry/MetalsinMedicineOrganometallicchemistry/MetalsinMedicine

    IC50=130nMPAK1

    IC50=130nMPAK1

    IC50=70nMMSK1

    IC50=70nMMSK1

    IC50=40nMPi3K

    IC50=40nMPi3K

    IC50=0.5nMPim1

    IC50=0.5nMPim1

    IC50=0.4nMGSK3

    IC50=0.4nMGSK3

    ProteinKinase InhibitorProteinKinase Inhibitor MLCKinhibitor4.4nMMLCKinhibitor4.4nM Pim1inhibitor0.07nMPim1inhibitor0.07nM

    E.Meggersetal., Chem.Commun.2009,1001; JACS.2011,133,5976;ANIE 2011,50,2442

    21Rhenium fortherapy Technetium fordiagnosisRhenium fortherapy Technetium fordiagnosis

    FinetuningofmetalcomplexguidesaffinityandselectivityFinetuningofmetalcomplexguidesaffinityandselectivity

    canweestablishsimilarformatchedpairelementscanweestablishsimilarformatchedpairelements

    MetalsinMedicine:ComplexmediatedactivityMetalsinMedicine:Complexmediatedactivity

    Structuralmimics ofsteroidhormonesStructuralmimics ofsteroidhormones

    Organometallicchemistry/MetalsinMedicineOrganometallicchemistry/MetalsinMedicine

    22

    J.A.Katzenellenbogen etal.,JACS,1993,115,7045;J.Med.Chem.,1994,37,928; J.Org.Chem.,1997,62,6290;J.Org.Chem.,1996, 61,2624

    Denovoinhibitors forreceptorsDenovoinhibitors forreceptors

    Challengingfor99mTcchemistrywithcoordinationcompoundsChallengingfor99mTcchemistrywithcoordinationcompounds

    2121

  • 10/7/2014

    12

    Tc vectorTc

    bioinactivebioinactive bioactivebioactive bioactivebioactive

    M

    IntegratedMolecularImagingAgentsIntegratedMolecularImagingAgents

    TcessentialperfusionTcessentialperfusion

    Tcpendent/BFCtargeting

    Tcpendent/BFCtargeting

    integratedimagingagentsintegrated

    imagingagents

    M receptorreceptorvectorvector

    lead M

    TherapyTherapy

    TheranosticsTheranostics

    inactiveinactive activeactive Tc receptorreceptorvectorvector

    DiagnosisDiagnosisstructuralrecognitionbymetalcomplex

    structuralrecognitionbymetalcomplex

    23

    OrganometallicComplexesarewellsuitedfortheconcept

    bioactivebioactive

    M

    i t t di t t d

    IntegratedMolecularImagingAgentsIntegratedMolecularImagingAgents

    integratedimagingagentsintegrated

    imagingagents

    TechnetiumforimaginganditsRheniumhomologuefortherapyTechnetiumforimaginganditsRheniumhomologuefortherapy

    since..since..

    OrganometallicComplexesarewellsuitedfortheconceptOrganometallicComplexesarewellsuitedfortheconcept

    24

    ..manyleadstructurescompriseorganometallicstructuralmotives..manyleadstructurescompriseorganometallicstructuralmotives

    2222

  • 10/7/2014

    13

    HN OO

    TherapyandImagingwithMetalComplexesTherapyandImagingwithMetalComplexes

    PracticallimitationsPracticallimitations

    Optimizedstructurerecognizingcomplexesb th i d b

    Optimizedstructurerecognizingcomplexesb th i d b

    N N

    OO

    ReCORHN

    O

    inaccessible

    25

    canbesynthesizedbyanymeanscanbesynthesizedbyanymeans

    [99mTcO4] productssaline

    3060min/r.t.or100Csaline

    3060min/r.t.or100C

    TrueTcRe(andMn)homologyonlyinlowoxidationstatesTrueTcRe(andMn)homologyonlyinlowoxidationstates

    TherapyandImagingwithMetalComplexesTherapyandImagingwithMetalComplexes

    OrganicleadstructureOrganicleadstructure ImagingImaging TherapyTherapy

    Aminoacids

    Aminoacids

    Inhibitor

    Inhibitor

    Aminoacids

    Aminoacids

    Inhibitor

    Inhibitor

    Re

    CONH

    SOC

    OCO

    O

    SO2NH2

    HDAC

    HD

    AC

    CAInhibitor

    CAInhibitor

    HDAC

    HD

    AC

    CAInhibitor

    CAInhibitor

    2626

    2323

  • 10/7/2014

    14

    TheCyclopentadienyl PhenylAnalogyTheCyclopentadienyl PhenylAnalogy

    Thieles acidThieles acidDielsAlder:DielsAlder:

    Synthesisof[(5CpR)99mTc(CO)3]+ complexesfromwaterSynthesisof[(5CpR)99mTc(CO)3]+ complexesfromwater

    dienophiledienophiledienedieneT>160 CT>160 C

    [(HCpCOOH)2][(HCpCOOH)2]

    H2O/95 C/3060minH2O/95 C/3060min[99mTcO4][99mTcO4]allinoneallinone

    >97%>97%

    27

    Liu,Y.etal.J.Am.Chem.Soc.2008, 130,155

    TheCyclopentadienyl PhenylAnalogyTheCyclopentadienyl PhenylAnalogy

    ReCO

    COOH

    NH2

    Synthesisof[(5CpR)99mTc(CO)3]+ complexesfromwaterSynthesisof[(5CpR)99mTc(CO)3]+ complexesfromwater

    OC COCO

    therapytherapy diagnosisdiagnosis

    OTc

    O OO Isolink

    98C/30 min

    OH2

    Tc

    COOC CO

    OH2H2O

    28

    2424

  • 10/7/2014

    15

    OTc

    O OO Isolink

    98C/30 min

    OH2

    TcOC CO

    OH2H2O

    60 min / 90C

    TheCyclopentadienyl PhenylAnalogyTheCyclopentadienyl PhenylAnalogy

    Synthesisof[(5CpR)99mTc(CO)3]+ complexesfromwaterSynthesisof[(5CpR)99mTc(CO)3]+ complexesfromwater

    O 98 C/30 minCO

    insituBoc deprotection

    60min/90 C

    D.Canetal,.Organometallics,2012,31,6880

    29

    TheCyclopentadienyl PhenylAnalogyTheCyclopentadienyl PhenylAnalogy

    Synthesisof[(5CpR)99mTc(CO)3]+ complexesfromwaterSynthesisof[(5CpR)99mTc(CO)3]+ complexesfromwater

    0 5 10 15 20 25 30

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Inte

    nsity

    22.30

    17.10

    UV-trace

    labelling

    30

    Minutes

    0 5 10 15 20 25 30

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Inte

    nsity

    UV-trace -trace

    22.1921.71

    0 5 10 15 20 25 30

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0 UV trace -trace

    Inte

    nsity

    15.67 16.77

    99mTcReneutralize

    2525

  • 10/7/2014

    16

    TheCyclopentadienyl PhenylAnalogyTheCyclopentadienyl PhenylAnalogy

    Whichisthelabelingsite?Whichisthelabelingsite?

    Synthesisof[(5CpR)99mTc(CO)3]+ complexesfromwaterSynthesisof[(5CpR)99mTc(CO)3]+ complexesfromwater

    R1R1R2R2

    31

    D.Canetall,Chem.Biodivers.2012,9,1849

    Tworadiopharmaceuticalsfromonesingleprecursor!Tworadiopharmaceuticalsfromonesingleprecursor!

    CarbonicAnhydrase(CA)InhibitorsCarbonicAnhydrase(CA)Inhibitors

    1 01 0

    Labeling

    [99mTcO4]Isolink

    0 5 10 15 20 25 30

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 5 10 15 20 25 30

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    32

    C.Supuran,Nature,2008,7,168181

    Re

    99mTc

    Ligand

    26

  • 10/7/2014

    17

    IC50 valuesIC50 values

    CarbonicAnhydrase(CA)InhibitorsCarbonicAnhydrase(CA)Inhibitors

    HC I II III IV VA VB VI VII IX XII XIII XIV XV

    BA

    CAinhibition (nM affinities)CAinhibition (nM affinities)

    AZA

    33

    A 50 49 5217 624 658 556 647 470 57 69 727 29 585

    B 39 15 4600 467 481 305 497 360 43 7 482 20 313

    AZA 250 12 20000 74 63 54 11 2 25 6 17 41 72

    CarbonicAnhydrase(CA)InhibitorsCarbonicAnhydrase(CA)Inhibitors

    IC50 valuesIC50 values

    HC I II IV VA VB VI VII IX XII XIII XIV XV

    CC DD EE

    CAinhibition (nM affinities)CAinhibition (nM affinities)

    34

    HC I II IV VA VB VI VII IX XII XIII XIV XV

    C 4590 35.5 41.1 124 104 22.1 21.3 5.2 6.9 78.5 7.9 36.8

    D 2570 25.3 32.9 113 105 10.6 7.6 3.7 4.5 62.1 4.1 28.4

    E 2775 27.4 33.8 109 102 14.5 10.1 7.0 4.4 56.8 85.4 12.5

    AZA 250 12 74 63 54 11 2 25 6 17 41 72

    27

  • 10/7/2014

    18

    ReceptorSubtypeSpecificitiesReceptorSubtypeSpecificities

    CarbonicAnhydrase(CA)InhibitorsCarbonicAnhydrase(CA)Inhibitors

    FC5

    HN

    OSO

    ONH2

    Re

    COOC

    OC

    DCB40

    H

    FC5

    35

    HN

    OSO

    ONH2

    Re

    COOC

    OC

    O

    HN

    ORe

    COOC

    OC

    SO

    O

    NH2

    DCB41

    DCB43

    CocrystallizationwithCAIICocrystallizationwithCAII

    CarbonicAnhydrase(CA)InhibitorsCarbonicAnhydrase(CA)Inhibitors

    36

    D.Canetal.Angew.Chem.Int.Ed.2012,51,3354

    28

  • 10/7/2014

    19

    HDACInhibitor,SAHA VorinostatHDACInhibitor,SAHA Vorinostat

    IC50 (M)MCF-7 A431 HeLa A375 B16F1

    Re-(i7)SAHA 9.47 13.7 14.4 14.7 9.82

    IntegratedapproachIntegratedapproach

    Re-(i6)SAHA 15.2 17.1 13.3 23.3 12.6Re-SAHA 11.4 17.3 8.34 12.5 15.2(i7)SAHA 1.71 2.51 1.65 2.63 3.10(i6)SAHA 7.19 5.22 5.83 4.85 8.88

    SAHA 3.74 4.44 4.45 4.58 3.67

    37

    ReSAHA Re(i6)SAHA Re(i7)SAHA

    (i7)SAHA (i6)SAHA

    verylowaffinitywithout phenylorCpringverylowaffinitywithout phenylorCpring

    HDACInhibitor,SAHA VorinostatHDACInhibitor,SAHA Vorinostat

    IntegratedapproachIntegratedapproach

    99mTc(i7)SAHA99mTc(i7)SAHA

    [99mTc(OH2)3(CO)3]+[99mTc(OH2)3(CO)3]+

    [99mTcO4][99mTcO4]Nr.9

    38

    Smallyieldonly,oxidationtopertechnetate!!Smallyieldonly,oxidationtopertechnetate!!

    Systemlimited bychemicalstabilityof[99mTc(OH2)3(CO)3]+ towardsfunctionalgroupsSystemlimited bychemicalstabilityof[99mTc(OH2)3(CO)3]+ towardsfunctionalgroups

    29

  • 10/7/2014

    20

    Cyclopentadienyl PeptidesCyclopentadienyl Peptides

    Pendentvs integratedapproachPendentvs integratedapproach

    PeptideTransporter2(PEP2)inhibitors:smalltripeptidesPeptideTransporter2(PEP2)inhibitors:smalltripeptides

    Cl

    PClCl

    Cl

    39

    Q.Nadeem etal.,Org.&Biomol.Chem.,2014,12,1966;Y.Liuetal.,BioconjugateChem.,2013,24,26

    Cyclopentadienyl PeptidesCyclopentadienyl Peptides

    Pendentvs.integratedapproachPendentvs.integratedapproach

    from[99mTcO4]from[99mTcO4]microwave30 120min3080%yield

    microwave30 120min3080%yield

    40

    30

  • 10/7/2014

    21

    ExtendingthecyclopentadienylscaffoldExtendingthecyclopentadienylscaffold

    dimerizessolubilitydimerizessolubility

    FunctionalizedCpDerivativesFunctionalizedCpDerivatives

    spacerpK

    spacerpKsolubility

    derivatizationssolubility

    derivatizations dimerizevery slowlydimerizevery slowly

    Labeling,30min60C

    pKapKa

    41

    faster,moreefficientthanC0faster,moreefficientthanC0

    nolabelingatall!!nolabelingatall!!

    IntroducingatargetingfunctionIntroducingatargetingfunction

    onepottwopotonepottwopot

    FunctionalizedCpDerivativesFunctionalizedCpDerivatives

    rearrangement!rearrangement!

    activationactivation peptideformationpeptideformation

    42

    31

  • 10/7/2014

    22

    IntroducingasecondfunctionalityIntroducingasecondfunctionality

    FunctionalizedCpDerivativesFunctionalizedCpDerivatives

    Pharmaceuticallyactiveleadstructuresoftencompriseanintegrated andnotaterminalphenylgroup

    Pharmaceuticallyactiveleadstructuresoftencompriseanintegrated andnotaterminalphenylgroup

    twodifferentfunctionscanbeconjugatedviathemetalcomplex..twodifferentfunctionscanbeconjugatedviathemetalcomplex..

    ..oronlyasingleoneindifferentmodalities..oronlyasingleoneindifferentmodalities

    O

    O

    N function 1

    FunctionalizedCpDerivativesFunctionalizedCpDerivatives

    IntroducingasecondfunctionalityIntroducingasecondfunctionality

    baseexc.Cpp

    isomersisomers

    +isomers+isomers

    sideproductsideproduct

    44

    alternativeroutealternativeroute 8MNaOH80C/3d

    ca.30%

    32

  • 10/7/2014

    23

    pKa =5pKa =5

    existsatpH=7.4inwaterasmonoanionexistsatpH=7.4inwaterasmonoanion

    FunctionalizedCpDerivativesFunctionalizedCpDerivatives

    Introducingasecondfunctionality:RheniumIntroducingasecondfunctionality:Rhenium

    +H++H+aa

    tautomerstautomers

    1,2and1,3CpasaWernertypeligands?1,2and1,3CpasaWernertypeligands?

    45Cpchemistryinwaterwithanyelement?Cpchemistryinwaterwithanyelement?

    30 C/120min

    Na+

    >90%

    1,2

    >90%

    1,3

    R

    OOCH3

    OH3CO

    FunctionalizedCpDerivativesFunctionalizedCpDerivatives

    Introducingasecondfunctionality:RheniumIntroducingasecondfunctionality:Rhenium

    Re

    COCOOC

    waternoradrenalinwaternoradrenalin HBTUamineHBTUamine

    46

    HBTUamineHBTUamine

    33

  • 10/7/2014

    24

    LabelinginsalineLabelinginsaline

    Na+

    FunctionalizedCpDerivativesFunctionalizedCpDerivatives

    Introducingasecondfunctionality:TechnetiumIntroducingasecondfunctionality:Technetium

    standard conditionspH=10,30min70Cstandard conditionspH=10,30min70C BA

    CAC

    D

    47

    D

    A

    B

    OOCH3

    OH3CO

    Na+

    LabelingLabeling

    O OH2

    FunctionalizedCpDerivativesFunctionalizedCpDerivatives

    Introducingasecondfunctionality:TechnetiumIntroducingasecondfunctionality:Technetium

    pH=5,15min60CpH=5,15min60C

    Tc

    COCOOC

    OTc

    O OO Isolink

    98C/30 min

    OH2

    Tc

    COOC CO

    OH2H2O

    trace(99mTc)

    48StartingcompoundformultifunctionalityimagingagentsStartingcompoundformultifunctionalityimagingagents

    UVtrace(Re)

    34

  • 10/7/2014

    25

    Rhenium:stepwiseintroductionofbiofunctionsRhenium:stepwiseintroductionofbiofunctions

    FunctionalizedCpDerivativesFunctionalizedCpDerivatives

    OOCH3

    OH3CO

    NaOH /H2ONaOH /H2O NaOH /H2ONaOH /H2ORe

    COCOOC

    HBTU

    HBTUHBTU

    HBTU

    HNNH

    49

    Re

    COCOOC

    OO

    symmetricsymmetricasymmetricasymmetric

    FunctionalizedCpDerivativesFunctionalizedCpDerivatives

    Technetium:directlabelingwithaminesinwaterTechnetium:directlabelingwithaminesinwater

    Buildingblockfor mono and homo difunctionalized complexes

    Buildingblockfor mono and homo difunctionalized complexes R

    OOCH3

    OH3CO

    anyaminewater

    formonoandhomodi functionalizedcomplexesformonoandhomodi functionalizedcomplexes Re

    COCOOC

    anyaminewater

    35

  • 10/7/2014

    26

    TargetingtheNucleusTargetingtheNucleus

    NuclearTargetingwithAugerEmittersNuclearTargetingwithAugerEmitters

    Doxorubicin,anucleustargeting,fluorescentmoleculeDoxorubicin,anucleustargeting,fluorescentmolecule

    51Radiotoxic Doxorubicin Tc99mConjugatesImstepf etal. inpreparation

    Nucleus Targeting Bifunctional Tc99mComplexesBioconjugateChem.,2011,22,958.

    TargetingtheNucleusTargetingtheNucleus

    NuclearTargetingwithAugerEmittersNuclearTargetingwithAugerEmittersAsystematicapproach:Synthesis,PropertiesandinvitroProfilAsystematicapproach:Synthesis,PropertiesandinvitroProfil

    ctDNA Titration:DNABinding

    5252

    IC50:Cytotoxicity

    36

  • 10/7/2014

    27

    TargetingtheNucleusTargetingtheNucleus

    NuclearTargetingwithAugerEmittersNuclearTargetingwithAugerEmittersAsystematicapproach:Synthesis,PropertiesandinvitroProfilAsystematicapproach:Synthesis,PropertiesandinvitroProfil

    OHOOH

    O

    OH

    OHO OO

    O

    HN

    OH

    N

    O99mTc

    N

    N

    O

    OO

    S1

    Surviving Fraction @50CiHeLa: 74.5 2.0%A431: 70 0 5 5%

    IC50:~14Ci (500kBq)

    53

    A431: 70.0 5.5%B16F1: 22.5 1.4%

    IC50 of coldRecomplex:>100M

    Exhibits most significant killingability inmurine melanoma (B16F1)cells.

    Radiosensitivity:B16F1>A431>HeLa

    TargetingtheNucleusTargetingtheNucleus

    NuclearTargetingwithAugerEmittersNuclearTargetingwithAugerEmittersAsystematicapproach:Synthesis,PropertiesandinvitroProfilAsystematicapproach:Synthesis,PropertiesandinvitroProfil

    Maxuptake 4hrs:~610%

    Maxuptake 4hrs:~3%

    54

    Maxuptake 4hrs:~67%

    Maxuptake 4hrs:~4%

    Cellularinternalizationisnotcompleteafter4hrsSomewhathigheruptakeforS1Nosignificantdifferencesbetweencelllines

    37

  • 10/7/2014

    28

    TargetingtheNucleusTargetingtheNucleus

    M Nucleus Mitochondria Nucleus MitochondriaRe185 (ICPMS) 71% 1.6% 74% 2.1%Tc99m (activity meter) 81% 1.2% 76% 1.8%

    55

    majoraccumulationofcompoundsinthenucleus~7080%minoraccumulationinmitochondria~12%good(excellent)agreementbetweenquantificationmodalities

    M Nucleus Mitochondria Nucleus MitochondriaRe185 (ICPMS) 80% 1.6% 66% 1.8%Tc99m (activity meter) 82% 1.4% 79% 3.2%

    Values:Nuclearandmitochondrialinternalization,respectively,asthepercentageofactivityorRecontentwithrespecttowholecell uptake.

    TargetingtheNucleusTargetingtheNucleus

    NuclearTargetingwithAugerEmittersNuclearTargetingwithAugerEmittersOHO

    OHO OO

    OHO

    OH

    HN

    N N

    OOH

    N

    O99mTc

    N

    N

    O

    OO

    S1

    M Nucleus Mitochondria

    Re185 (ICPMS) 71% 1.6%Tc99m (activity meter) 81% 1.2%

    R di t i it ( 80 M) Ch t i it ( 100 M)

    56

    Radiotoxicity ( 80nM)>>Chemotoxicity(>100M)ComplexS1 exhibitedmarkedlyradiotoxiceffect:IC50 500kBq (B16F1)Majoraccumulationofallderivativesinnucleus:notvisiblewithfluorescenceimaging

    FluorescenceQuenchingbyintercalation!!

    Verificationwithtwoquantificationmodalities

    38

  • 10/7/2014

    29

    FromCyclopentadienyltoArenesFromCyclopentadienyltoArenes

    Chromocene:FischerHafner Synthesis

    attractivesinceitcontainsPhenyls

    arenescanbesubstituted

    arenesareactivated

    Chromocene:FischerHafner Synthesis

    attractivesinceitcontainsPhenyls

    arenescanbesubstituted

    arenesareactivated

    Chromocene:FischerHafner Synthesis

    attractivesinceitcontainsPhenyls

    arenescanbesubstituted

    arenesareactivated

    metalcentredactivity(Dyson,Sadleretal.)

    areneringtendstobelost

    introductionoffunctionalities

    Multivariationsatmetal(X,Y,Z)

    metalcentredactivity(Dyson,Sadleretal.)

    areneringtendstobelost

    introductionoffunctionalities

    Multivariationsatmetal(X,Y,Z)

    metalcentredactivity(Dyson,Sadleretal.)

    areneringtendstobelost

    introductionoffunctionalities

    Multivariationsatmetal(X,Y,Z)

    S th i d b E O Fi h t l f 99MS th i d b E O Fi h t l f 99M

    57

    SynthesizedbyE.O.Fischeretal.from99Mo

    Chemistryessentiallynotinvestigated

    Sourceforhigheroxidationstates

    Precursorforlabeling

    Rheniumanalogues

    SynthesizedbyE.O.Fischeretal.from99Mo

    Chemistryessentiallynotinvestigated

    Sourceforhigheroxidationstates

    Precursorforlabeling

    Rheniumanalogues

    F.Baumgrtner etal.TetrahedronLett.1962,6,253;Chem.Ber.1961,94,2198

    MissedOpportunities(Terachem 2010)MissedOpportunities(Terachem 2010)

    Tc

    [TcCl4]

    Al/AlCl3 C6H6 /135 C

    5858FischerE.O.etal.Tetrahedron Lett.,1962

    it is water stable

    39

  • 10/7/2014

    30

    Radiopharmaceuticalchemistrybranch4methodsforthepreparationoftheanalogues99mTccomplex

    [99mTcO4] (dry)

    Basicchemistry branchTc

    MissedOpportunities(Terachem 2010)MissedOpportunities(Terachem 2010)

    orultrasoundr.t.

    Purification HPLC50 95%

    Moderatemyocardialuptake

    [TcCl4]

    Al/AlCl3 C6H6 /135 C

    Al/AlCl3 /C6H6135 C60min

    59

    Wester,D.W.etal.J.Med.Chem. 1991 and this conference

    it is water stable

    FischerE.O.etal.Tetrahedron Lett. 1962

    monocationic99mTcbisarenecomplexesformyocardialimagingmonocationic99mTcbisarenecomplexesformyocardialimaging

    [99mTcO4][99mTcO4] Al /AlCl3Al /AlCl3

    FromCyclopentadienyltoArenesFromCyclopentadienyltoArenes

    arenearene

    notenoughheartuptake discarded stableinwaterunderphysiologicalconditions

    notenoughheartuptake discarded stableinwaterunderphysiologicalconditions

    [99TcCl4][99TcCl4]

    R3 E05

    [Re(C6H6)2 ]PF6

    60

    D.W.Wester etal.J.Med.Chem.1991,34,3284D.W.Wester etal.J.Med.Chem.1991,34,3284

    [ReO4]Zn /AlCl3arene/810hZn /AlCl3arene/810h

    Re

    R

    2030%4,E05

    3,E05

    2,E05

    1,E05

    0,E+00

    1,E05

    2,E05

    3,E05

    2,50 2,00 1,50 1,00 0,50 0,00 0,50 1,00 1,50 2,00

    40

  • 10/7/2014

    31

    FromCyclopentadienyltoArenesFromCyclopentadienyltoArenes

    ExtendingthechemistrywithRheniummodelcomplexesExtendingthechemistrywithRheniummodelcomplexes

    [R O ] Zn / AlCl3Zn / AlCl3BuLi Re

    H

    Bu

    [ReO4]Zn /AlCl3benzene/810hZn /AlCl3benzene/810h

    70%

    Re

    80%

    COOH

    LDACO2

    COOH

    61

    ReRe

    COOH

    introductionoftargetingfunctionsintroductionoftargetingfunctions

    Technetiumcomplexes?Technetiumcomplexes?

    [99T O ][99T O ]Zn /AlCl3Zn /AlCl3

    R

    Modelcomplexeswith99TcModelcomplexeswith99Tc

    FromCyclopentadienyltoArenesFromCyclopentadienyltoArenes

    [99TcO4][99TcO4]3

    arene/810h3

    arene/810hTc

    R

    2030%2030%

    99TcNMR(benzene)99TcNMR(benzene)

    62

    41

  • 10/7/2014

    32

    [99T O ][99T O ]Zn /AlCl3Zn /AlCl3

    R

    Modelcomplexeswith99TcModelcomplexeswith99Tc

    XX

    FromCyclopentadienyltoArenesFromCyclopentadienyltoArenes

    [99TcO4][99TcO4]3

    arene/810h3

    arene/810hTc

    R

    XXFriedelCraftsconditionsFriedelCraftsconditions

    63

    99TcNMR99TcNMR

    From99Tcto99mTcFrom99Tcto99mTc

    Na[99mTcO4]insaline(0.9%NaCl):Howtotransferintoarenes?Na[99mTcO4]insaline(0.9%NaCl):Howtotransferintoarenes?

    ILIL

    FromCyclopentadienyltoArenesFromCyclopentadienyltoArenes

    [99mTcO4] /0.9%saline[99mTcO4] /0.9%salinefewmgILfewmgIL [99mTcO4] inIL[99mTcO4] inIL

    arenearene >95%99mTcdissolvedinarene>95%99mTcdissolvedinarene

    [99mTcO4] /arene[99mTcO4] /areneZn /AlCl31h/95 CZn /AlCl31h/95 C

    extractintobufferextractintobuffer

    64

    20 80%yield20 80%yield

    stablefrompH=2 12at37C

    notairsensitiveatall

    stablefrompH=2 12at37C

    notairsensitiveatall

    arenecomplexesareanoptionformolecularimaging!arenecomplexesareanoptionformolecularimaging!H.Brabandetal.Chem.Sci. 2014,inpress

    42

  • 10/7/2014

    33

    ConclusionsConclusions

    imagingneedstobecombinedwiththerapy,orviceversaimagingneedstobecombinedwiththerapy,orviceversa

    Forthefuture..Forthefuture..

    ClassicalMetalsinMedicineconceptshaverelevancetomolecularimagingClassicalMetalsinMedicineconceptshaverelevancetomolecularimaging

    65

    cytotoxic,fluorescent imaging,metabolism

    Technetium(andRhenium)chemistry....isstillanexcitingfieldforresearchwithimpactforotherelements

    Technetium(andRhenium)chemistry....isstillanexcitingfieldforresearchwithimpactforotherelements

    ConclusionsConclusions

    TheinertnessoflowvalentReandTc complexes enablesnewconceptsintheranosticsTheinertnessoflowvalentReandTc complexes enablesnewconceptsintheranostics

    [99mTcO4] /0.9%saline[99mTcO4] /0.9%saline

    66

    Nothingisimpossible!Nothingisimpossible!

    43

  • 10/7/2014

    34

    AcknowledgmentsAcknowledgments

    99(m)Tc Chemistry99(m)Tc Chemistry

    Henrik BrabandMichaelBenz

    Sebastian Imstepf

    Henrik BrabandMichaelBenz

    Sebastian Imstepf

    UniversityofZrichUniversityofZrich

    ITN,LisbonPortugalITN,LisbonPortugalI.Santos

    P.RaposinhoF.Mendes

    I.SantosP.RaposinhoF.Mendes

    TU MunichTU MunichSebastianImstepfMichaelFelberQaisar NadeemSamer SuliemanAngeloFrei

    Guiseppe Meola

    SebastianImstepfMichaelFelberQaisar NadeemSamer SuliemanAngeloFrei

    Guiseppe Meola

    BildungundForschungSBFBildungundForschungSBF

    UniversityofFlorence,ItalyUniversityofFlorence,ItalyProf.C.SupuranProf.C.Supuran

    SSAJRP JRPSSAJRP JRP0101SSAJRP JRPSSAJRP JRP0101

    TUMunichTUMunich

    M.SchotteliusH.J.WesterM.SchotteliusH.J.Wester

    67

    SSAJRPJRPSSAJRPJRP 0101SSAJRPJRPSSAJRPJRP 0101

    68

    44

  • 10/7/2014

    35

    SolutionstoProblemsSolutionstoProblems

    Nr.1B.Noll,P.Leibnitz,H.Spies,ForschungszentRossendorf(Ber.)1999,270,153

    Nr.2N.Bryson,J.ListerJames,A.G.Jones,W.M.Davis,A.Davison,Inorg.Chem.1990,29,2948.

    6969Nr.3U.Mazzi,D.A.Clemente,G.Bandoli,L.Magon,A.A.Orio,Inorg.Chem. 1977,16,1042.

    SolutionstoProblemsSolutionstoProblems

    C.K.Fair,D.E.Troutner,E.O.Schlemper,R.K.Murmann,M.L.Hoppe,Acta Crystallogr.,Sect.C:Cryst.Struct.Commun.1984,40,1544.Nr.5

    Nr.4J.L.Vanderheyden,A.R.Ketring,K.Libson,M.J.Heeg,L.Roecker,P.Motz,R.Whittle,R.C.Elder,E.Deutsch, Inorg.Chem.1984,23,3184.

    70Nr.6W.A.Herrmann,R.Alberto,J.C.Bryan,A.P.Sattelberger, Chem.Ber.1991,124,1107.

    Nr.7F.A.Cotton,L.Daniels,A.Davison,C.Orvig,Inorg.Chem.1981,20,3051.F.Poineau,E.V.Johnstone,P.M.Forster,Longzou Ma,A.P.Sattelberger,K.R.Czerwinski,Inorg.Chem.2012,51,9563.

    45

  • 10/7/2014

    36

    SolutionstoProblemsSolutionstoProblems

    Nr.8C.Bolzati,A.Boschi,L.Uccelli,F.Tisato,F.Refosco,A.Cagnolini,A.Duatti,S.Prakash,G.Bandoli,A.Vittadini,JACS,2002,124,11468

    71

    Nr.9R.Alberto,R.Schibli,D.Angst,P.A.Schubiger,U.Abram,S.Abram,T.A.Kaden,Trans.Met.Chem. 1997,22,597

    46

  • 23/11/2014

    1

    TECHNETIUMBEHAVIORINTHEPUREX PROCESS

    PascalBARONCurrentFuelCycleBackEndProgramy g

    CEA,NuclearEnergyDivision

    | PAGE 1

    ISTR2014 8th INTERNATIONALSYMPOSIUMONTECHNETIUM ANDRHENIUM29th SEPTEMBER 3rd OCTOBER 2014,Pornichet LABAULEFRANCE

    THE PUREX PROCESS

    SPENT FUEL HNO3

    TBPU

    Pu

    U, Pu, FPs,MAssolution

    3 Pu

    DISSOLUTION EXTRACTION

    HULLS FPs, MAs

    47

  • 23/11/2014

    2

    1ST CYCLE U-Pu WITH U/Pu PARTITIONING

    EXTRACTANTCLEANING

    TBP

    stripping stripping

    RaffinateFP, MA

    FEEDU,Pu,FP,MA

    UPu

    RductorU(IV)

    Scrubbingstripping. stripping.

    INTRODUCTION

    Tc is just one FP among many othersYES, BUT:

    Tc production yield in reactor is high

    on the contrary than most of the others, Tc is

    able to be extracted by TBP (multiple mechanisms)

    Tc can have deleterious impact on U/Pu REDOX

    chemistry in the PUREX process (multiple oxydation

    state)

    4

    48

  • 23/11/2014

    3

    FISSION PRODUCTS YIELD

    Tc 99

    INTRODUCTION

    Tc is just one FP among many othersYES, BUT:

    Tc production yield in reactor is high

    on the contrary than most of the others, Tc is

    able to be extracted by TBP (multiple mechanisms)

    Tc can have deleterious impact on U/Pu REDOX

    chemistry in the PUREX process (multiple oxydation

    state)

    6

    49

  • 23/11/2014

    4

    TECHNETIUM BEHAVIOR IN THE DISSOLUTION STEP

    AMOUNT:About 1kg / ton (burn up dependent)not cooling-time dependent ( 99Tc , half-life= 2,1.105years),

    SPECIESTcO2 and poly mtallic compounds

    (undissolved species)

    TcO4- in the dissolution solution

    DISSOLUTION YIELDDISSOLUTION YIELDFuel type dependent at lab scale: UOX ~ 90 %, MOX ~ 60 %, SFR ~ 20 %

    Lower yield at industrial scale (rotating dissolver): ~50% for UOX and MOX

    7

    TECHNETIUM EXTRACTION BY TBP

    SIMPLIFIED EXTRACTION MECHANISMS [ ]+ ++ 44 ,3TBPHTcO3TBPTcOH

    ( )[ ] ( )( )[ ]( )[ ] ( )( )[ ]

    ++

    ++

    3334443

    33424232

    NO,2TBPNOTcOPuTcO,2TBPNOPu

    NO,2TBPNOTcOUOTcO,2TBPNOUO

    ( )[ ] ( )( )[ ] ++ 3334443 NO,2TBPNOTcOZrTcO,2TBPNOZrCo-extraction:

    Higher for Zr >> Pu > U Reduced at high [NO3-] (competition)

    50

  • 23/11/2014

    5

    TECHNETIUM BEHAVIOR IN EXTRACTION STEP

    ExtractionU + Pu

    scrubbingFP

    TBP-dodecane ZrTc +U UTc

    Zr AcidHNO3Zr, FP

    U, Pu, Tc

    U u

    ZrTc

    Zr +Tc

    FeedU, Pu, Tc, Zr, FP

    HNO3

    TECHNETIUM BEHAVIOR IN EXTRACTION STEPOPTIONS TO LIMIT THE IMPACT

    CHEMICAL ADJUSTMENTIntroduction of Zr complexing agent: carboxylic acids

    Oxalic acid (forgiven / Pu leakage risk)( g g )Other acids (ex.: KMA)

    NOT READY FOR UP3

    OPERATING ADJUSTMENT / TOPOLOGYAdjunction of a complementary operation the "Tc scrubbing"(allow separate management of Tc / others FPs)( p g )

    SOLUTION CHOOSEN FOR UP3 AND UP2-800

    10

    51

  • 23/11/2014

    6

    TECHNETIUM BEHAVIOR IN EXTRACTION STEP

    TBP 30 %

    Main FPs U, Pu, Tcextraction

    sscrubbing

    FeedU, Pu, FPs HNO3 3 M

    HNO3 2 M

    Secondaryextraction

    Tc scrubbing

    FPs, ,

    TBP 30 %

    U, Pu

    TcHNO3 10 M HNO3 1,5 M

    TECHNETIUM SCRUBBING FOR LA HAGUE

    PRINCIPLES:Zr scrubbing at first stepTc back extraction (high acidity)( g y)

    DESIGN CONSTRAINT (1985, active start of UP3 1989)Minimization of the impact on upstream/downstream steps(mainly acid effluents)

    OPTIMISATION USING PAREX CODE:DF Tc = 2,8 UP3 (1989), ( )

    (validated at lab scale on genuine solution and confirmed by UP3)

    Today DF > 30 routinely performed at UP2800 and UP3

    12

    52

  • 23/11/2014

    7

    1

    10

    Zr(IV)

    Concent

    0.001

    0.01

    0.1

    FP scrubbing sectionMain extraction section

    Tc(VII)

    ration

    g/l

    N of stage

    0.0001

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    FP scrubbing sectionMain extraction section

    Aqueous technetium profile: experimental ( ), calculated ( )

    Aqueous zirconium profile: experimental ( ), calculated ( .....)

    1

    T (VII)

    Concent

    0.1

    Secondaryextraction

    Technetiumscrubbing

    Tc(VII)

    section section

    ration

    g/l

    N of stage

    0.01

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    Profils techntium aqueux: experimental ( ), calcul ( )

    53

  • 23/11/2014

    8

    U/Pu SPLITTING STEP

    FUNCTIONAL REACTION : Pu(IV) Reduction

    U4+ + 2Pu4+ + 2H2O UO22+ + 2Pu3+ + 4H+U + 2Pu + 2H2O UO2 + 2Pu + 4H

    PARASISTIC REACTION : Pu(III) Oxydation

    Pu3+ + HNO2 + H+ + 0,5HNO3 Pu4+ + 0,5H2O + 1,5HNO2

    USEFULL or STABILIZING REACTION : HNO Destruction USEFULL or STABILIZING REACTION : HNO2 Destruction

    N2H5NO3 + HNO2 HN3 + HNO3 + 2H2O

    U/Pu SPLITTING STEP

    Pu(IV)

    Pu(IV)Pu(III)

    TBP 30%Loaded solvent

    U(VI), Pu(IV) U(VI)

    Pu(III)

    HNO3 0.2 M hydrazineU(IV), hydrazine

    Pu(III)

    54

  • 23/11/2014

    9

    TECHNETIUM BEHAVIOR IN URANIUM/PLUTONIUM SPLITTING STEP

    SIMPLIFIED REDOX MECHANISM

    fast)(very ...UOTc...UTc(VII) 22ox4 ++++ ++ ww

    reaction) (limiting...HNOTc...HNOTc

    fast)(very ...UOTc...UTc

    (fast)...Tc...HNTc

    2ox3red

    22red

    4ox

    red52ox

    ++++++++

    +++++

    +

    zz

    yy

    x

    Tcox is for Tc(V) and/or Tc(VI)Tcred is for Tc(IV) (ou Tc(III) ?)

    where

    Globally Kinetic of first-order versus [ Tc ]With relatively high activation energy (22 kcal/mol)

    DELETERIOUS IMPACT OF Tc ON PUREX PROCESS

    Pu(IV)

    Pu(IV)Pu(III)

    TBP 30%Loaded solvent

    U(VI), Pu(IV) U(VI)

    Pu(IV)

    Pu(III)Pu(IV)

    HNO3 0.2 M hydrazineU(IV), hydrazine

    Pu(III) HNO2

    N2H4

    Tc

    55

  • 23/11/2014

    10

    DELETERIOUS IMPACT OF Tc ON PUREX PROCESS

    NHPu

    Pu(IV)Pu(III)Pu(III) NHx Pu

    Pu(IV)

    DELETERIOUS IMPACT OF Tc ON PUREX PROCESS

    Pu(IV)Pu(III)Pu(III)x Pu

    Pu

    Pu(IV)

    56

  • 23/11/2014

    11

    TECHNETIUM BEHAVIORARRANGEMENT TAKEN FOR U/Pu SPLITTING STEP

    OPERATING CONDITIONS Increase excess of hydrazineyLimiting operating temperatureNeutrons on line monitoring

    UP3 - UP2 800 RESULTS Outstanding stable operationOutstanding stable operationDF of uranium vs plutonium > 106Good agreement with model predictions

    IN CONCLUSION

    Tc is just one FP among many others

    YES BUT:YES, BUT:

    It has an atypical behavior in the PUREX process

    That must be taken into account in the fl h t d i tflowsheet design step

    Its chemistry needs to be deepen in the frame of FR fuel reprocessing (high Pu)

    22

    57

  • 23/11/2014

    12

    ISTR2014

    THANK YOUFOR YOUR ATTENTION !

    | PAGE 23

    Pornichet LABAULE,FRANCE29TH SEPTEMBER,3RD OCTOBER2014

    PascalBARON

    58

  • 23/11/2014

    13

    ____________________________________Family Amount (kg/t)____________________________________

    R G (K X ) K 96 Nd 3 (0 3 PB )

    FISSION PRODUCTS :AVERAGEDISTRIBUTION (1 ton UOX, 3,5 % 235U ,33 GWj/t)

    Rare Gas (Kr, Xe) Kr : 96 Ndm3 (0,3 PBq) Xe : 736 Ndm3

    3T & Alkali (Cs, Rb) 3T = 16 TBq ; 3,977Alkaline earth (Sr, Ba) 2,407Yttrium & Lanthanides 10,198Zirconium 3,586Chalcogens (Se, Te) 0,527Molybdenum 3 335Molybdenum 3,335

    Technetium 0,814Platinoids (Ru, Rh, Pd) 3,892Ag, Cd, Sn, Sb, etc... 0,216____________________________________

    TECHNETIUM BEHAVIOR OF IN NITRIC ACID

    INITIATION INDUCTION FAST REACTIONh d i hydrazine hydrazine

    Tc(VII) Tc(VI).Tc(V) Tc(IV) Tc(VI)

    hydrazine

    very slow

    hydrazine

    fast

    hydrazine

    fast

    slow

    NO3-slow

    NO3-

    very

    fast

    TERMINATION3NO3

    Tc(VII)

    J. Garraway and P.D. Wilson, Journal of Less-Common Metals, 97(1984) 191-203

    59

  • 23/11/2014

    14

    CINTIQUE DE DCOMPOSITION DE L'HYDRAZINE EN PRSENCE DE TECHNTIUM

    0,5

    0,6

    (mol

    /L/h

    )

    0,1

    0,2

    0,3

    0,4

    -d[N

    2H5+

    ]/dt

    40C

    30C

    00 100 200 300 400 500

    [Tc] (mg/L)

    TECHNETIUM BEHAVIOR IN URANIUM/PLUTONIUM SPLITTING STEP

    J. Garraway and P.D. Wilson, Journal of Less-Common Metals, 97(1984) 191-203

    60

  • THE ROLE OF A CHOICE OF THE TARGET FORM FOR 99

    Tc TRANSMUTATION

    .. Kozar, V.F. Peretrukhin, K.E. German

    Frumkin Institute of Physical Chemistry and Electrochemistry of RAS, 31/4 Leninsky

    prosp., Moscow, 119071, Russia, [email protected]

    99Tc transmutation can be the source of artificial stable ruthenium

    100102Ru. Such

    ruthenium has been received as a result of a neutron irradiation of Tc targets up to 20 70 % burn-up (for 3 different groups of Tc targets) in experiments on SM high-flux reactor. Metal

    homogeneous Tc targets had the form of disks in diameter 6 and with thickness of 0.3 mm [1, 2]. They have been irradiated in geometry of a thin plate and consequently occupied

    irradiated volume corresponding to the cylinder in diameter and with height of 6 mm.

    Artificial ruthenium demanded exposure during 8 10 years for application without restrictions, as it contained fission fragment

    106Ru (T1/2 = 369 days) which can not be

    removed from this material by chemical methods.

    Application of heterogeneous targets with nuclear-inert stuff to reduce a 106

    Ru

    radioactivity in artificial Ru and to lower its exposure time before application or to exclude a

    technological step on additional preliminary purification of commercial Tc from actinide

    impurities [3]. Hence, the target form has effect on the artificial ruthenium purity at equal Tc

    nuclear density in irradiated volume.

    Transformation of disks in cylinders in the conditions of identical irradiated volume

    could allow to lower 106

    Ru concentration in artificial ruthenium. The minimum fission-

    fragment path length in Tc metal makes about 5 microns (average fission-fragment path

    length is about 8 microns). The corresponding form of a heterogeneous target is a tablet

    consisting of a mix of spherical Tc metal particle in diameter of 5 microns and a nuclear-inert

    stuff with Tc average density which in 20 times is less, than Tc metal. In this case all fission-

    fragments, including 106

    Ru, escape the Tc (Tc-Ru) grains to stuff. The average distance

    between Tc spherical grains is about 23 microns, between their surfaces is about 18 microns

    at regular distribution of Tc particles in a target.

    Fission-fragment path length in the most applicable nuclear-inert materials (such as

    ZrO2, Y2O3, MgAl2O4, MgO, Y3Al5O12, SiC, Al2O3, ZrO2-Y2O3, ZrO2-CaO and many others)

    makes 12 15 microns, hence hit probability of 106Ru fission-fragments in the next Tc grainis negligibly small. Artificial ruthenium from such target would be almost free from

    106Ru

    nuclei. Additional purification of commercial Tc from actinide impurities would be not

    necessary at a choice of such target form instead of metal disks. In this case artificial

    ruthenium could be applied in non-nuclear field through 3 3.5 years after an irradiation, necessary to decay of transmutation product

    103Ru (T1/2 = 39.3 days).

    References

    1. V. Peretroukhine, V. Radchenko, A. Kozar et al. Technetium transmutation andproduction of artifical stable ruthenium. // Comptes Rendus. Ser. Chimie. 2004. Tome 7. Fascicule 12. P. 1215 1218.

    2. .. Kozar, V.F. Peretroukhin, K.V. Rotmanov, V.A. Tarasov. The elaboration oftechnology bases for the artificial stable ruthenium preparation from technetium-99

    transmutation products. // 7th

    International Symposium on Technetium and Rhenium Science and Utilization. Moscow, Russia, July 4 8, 2011. Book of Proceedings. P. 113. Publishing House GRANITSA, Moscow, 2011. 460 p.

    3. .. Kozar, V.F. Peretroukhin, K.V. Rotmanov, V.A. Tarasov. The elaboration oftechnology bases for the artificial stable ruthenium preparation from technetium-99

    transmutation products. // Ibid. P. 113.

    4/73 61

  • 11/23/2014

    1

    THEROLEOFACHOICEOF THE TARGET FORMOFTHETARGETFORM

    FOR99TcTRANSMUTATION

    ..Kozar, V.F.Peretrukhin, K.E.German FrumkinInstituteofPhysical

    ChemistryandElectrochemistryofRAS,

    31/4Leninskyprosp.,Moscow,119071,Russia,

    [email protected] [email protected]

    ITSWELLKNOWN(SINCE2000) 99Tctransmutationcanbethesourceof

    artificialstableruthenium100102Ru,thesecondofthemjst interestingelementsj g

    ofthePeriodictable.SuchrutheniumhasbeensynthesizedasaresultofaneutronirradiationofTc

    targetsupto20 70%burnup(for3differentgroupsofTctargets)

    inexperimentsatSMhighfluxreactorin1999 2003.

    62

  • 11/23/2014

    2

    Russian Tc - Transmutation program (1992-2003)------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    99Tc(n,)100Tc()100Ru75,00%

    %

    P tt (NL)

    Dimitrovgrad (Russia)

    IPC RAS - NIIAR 65%

    2

    25,00%

    50,00%

    netiu

    m-9

    9 Bu

    rnup

    , %

    Hanford (USA) 1989

    Wootan WJordheim DP

    Matsumoto WY

    Petten (NL) 1994-1998

    Konings RJMFranken WMP

    Conrad RP et al.

    1999 - 2000Kozar AA

    Peretroukhine VFTarasov VA et al.

    18%

    34%

    0,00%1 2 3 4 5

    Irradiation time, days

    Tech

    n

    6%

    10.5 days 193 days 579 days 72 days 260 days

    0,67 % = Pessimistic

    Tc transmutationexperiment(IPCERAS NIIAR,19992008)InIPCRASasetofmetaldisctargets(10x10x0.3mm)preparedandassembledintwobatcheswithtotalweightupto5g.Transmutationexperimentwascarriedoutathighflux

    SM3reactor(NIIAR,Dimitrovgrad )

    2nd2nd batchbatch: F: F > 2> 2 10101155 cmcm--22ss--11 1

    2

    2nd2nd batchbatch: F: Ftt > 2> 2 10101155 cmcm 22ss 111st batch1st batch: F: Ftt=1.3=1.3 10101155 cmcm--22ss--119999TcTc burnupsburnups havemade:havemade:

    34 34 6 % and 65 6 % and 65 11 %11 %forthe1stand2ndtargetsbatchesforthe1stand2ndtargetsbatches

    TheThe highhigh 9999TcTc burnburnupupss werewerereachedreached andand aboutabout 22 55 gg ofof newnew

    1

    -3 -1

    9 12

    465666768696

    6575 45558595

    425262728292

    4151617181

    44548494

    43538393

    43

    1912

    -2

    2

    6

    3

    7

    816

    -4

    -5

    17

    -6

    -10

    -9

    13

    -8

    1

    19

    4

    10-7

    5

    20

    11 2118

    reachedreached andand aboutabout 22..55 gg ofof newnewmattermatter transmutationtransmutation rutheniumrutheniumwerewere accumulatedaccumulated asas aa resultresult ofofexperimentsexperiments onon SMSM33 reactorreactor

    TheseThese valuesvalues areare significantlysignificantlyhigherhigher ofof burnupsburnups 66 andand 1616 %%achievedachieved onon HFRHFR inin PettenPetten earlierearlier

    1 ; 2 ;3 ; 4

    7 -2 81

    91-

    4 3

    2

    6

    1415

    7

    .5.

    63

  • 11/23/2014

    3

    IRRADIATIONOF99TcMETALTARGETSINNUCLEARHIGHFLUXREACTORS

    Petten transmutationexperiment99 l l d d h h h

    3

    Dimitrovgrad transmutationexperimentonSMhigh

    99Tctargets:metalcylinders4.8mmandwithheightof25mm99Tc burnupinPetten reactorare6% (T1) and 1618% (T2).

    fluxreactor99Tc targets:metaldisks 6.0 0.3mmandwiththickness of 0.3 0.02mmTotal targetsmassis 10g

    99Tc BURNUPANDHALFCONVERSIONPERIOD

    of group

    Burn-up, % Irradiation time,

    eff. days

    Half-conversion period ,

    eff. days measured calculated 1 192 202 72 7 240

    Measured and calculated 99Tc burnup and halfconversion periods in SM reactor.

    burnT 2/1

    4

    1 192 202 72.7 2402 453 505 262.7 305 3 705 707 424.8 245

    99Tc burnupinPetten reactorare6% (T1)and 16 18% (T2).99Tchalfconversionperiodb 2160eff.days.burnT 2/1

    Fig. 2. Calculated dependence of 99Tc burnup onirradiation time () and its experimental values() for 3 groups of targets.

    64

  • 11/23/2014

    4

    ARTIFICIALRuACTIVITYDECAY

    Activityof 106Ru+106Rh inartificialRu ,371.6days ,29.8 sec

    ActinidecontentinTc:5108gAnpergofTc(bettervaluesareexpensive!)Actinidefission product 106Ru(T1/2=371.6days)cantbeseparatedfromartificialRubychemical methods.

    5

    106Ru(pure radiator, isabsent) 106Rh 106Pd (stable)106Rhhas 2 main lineswithenergies511.8keV and 621.8keVIn 2006106RhactivityinRufrom20%burnuptargetslater 2100days{5.7T1/2 (106Ru)}after irradiationstop:

    15 2 Bk/g of Ru total activity of pair 106Ru + 106Rh 30 Bk/g of RuLater10yearsafterirradiationstop: =3.2 0.4Bk/gof Ru

  • 11/23/2014

    5

    Transformationofdisks6mm 0.3mmincylindricaltargets6mm 6mm

    7

    Fig.4.RelativepositionofTc(TcRu)grainsinheterogeneoustarget.

    Possibletargetchemicalsubstances8

    TcMetal Tc

    TcCarbide Tc6C TcDioxide TcO2 Tc Disulfide TcS TcDisulfide TcS2

    anditsmixtureswithinertmatter

    66

  • 11/23/2014

    6

    Targetsubstances1. Metal

    InstrumentationSample type : Starting

    9

    Instrumentation Furnaces 6%H2|Arindusturialballoonmixture

    Sampletype: OrdinaryPowdermetal

    Fusedmetal

    Startingmaterial:

    TcO2 NH4TcO4 R NTcO

    Ingots Rollingmill etcetera

    Singlecrystal

    Foil

    R4NTcO4

    1. BulkTcmetal

    SetupusedforfusionandcastingofTcmetal

    11

    SinglecrystalTcmetal

    67

  • 11/23/2014

    7

    1. Tcmetal foil,Xraystudy12

    d:20micrometers SystematicabsenceofXrayreflex =PreferentialorientationofcrystalliteswithCaxeperpendiculartothefoilsurface

    1. Tcmetal foil,assembling13

    Spacer gridbushwith99Tctargets(1)andaluminium core (2)ofcapsule forloadinginreactor.

    68

  • 11/23/2014

    8

    1. Tcmetal foilchemicalconsequences

    DissolutioninHNO3 dramaticallysloweddowni f 20% T R i

    12

    startingfrom20%TctoRuconversion

    Possibletoincreasethedissolutionratebyaggressiveagentsaddition(Ag2+,IO4)butcorrosionproblemsarises

    PossiblythebestreprocessingprocedureburninginO2 notapprovedbyindustrytodate

    Targetsubstances2. TcCarbide

    OrthorhombicTcmetalisformedatlowCcontent

    50

    75

    100

    Grey bars : ref. hcp Tc metalCurves : exp. spectra

    %

    30 40 50 60 70 80 900

    25

    50

    75

    100

    30 40 50 60 70 80 900

    25B

    I, %

    2Theta, deg

    A

    I, %

    69

  • 11/23/2014

    9

    Targetsubstances2. TcCarbide

    Tc6C nonstoechiometry6 y Tc6C+nCexcesscarbonforno slowingdown

    Tc6C formedby: Tc+Creaction Tc+C6H6 R4NTcO4 thermaldecompositioninAr

    Targetsubstances Tccarbide2. Tc6C+nCexcesscarbon

    EXAFSstudyofTc6C+nC[1]

    waveletpresentation

    [1]K.German,Ya.Zubavichus ISTR2011

    70

  • 11/23/2014

    10

    1. Tccarbidechemicalconsequences

    Dissolution of Tc is more active as no RuC is known

    12

    DissolutionofTcismoreactiveasnoRuC isknownandsoitisnt formedduringtransmutationofTccarbidetoRu TcandRubeingstabilizedinseparatephases

    Drawback:PossiblemechanicalinclusionsofTcinRu residue at high burnupsRuresidueathighburnups

    MixtureswithCexcesscouldbethebestchoicebecauseresonanceenergyneutronsareparticipatingintransmutationduetoenhancedthermolisation insidethetarget

    1. Tcdioxidechemicalconsequences

    12

    Preparationbychemicalreduction highimpuritycontent

    PreparationfromNH4TcO4 similartoTcmetal TargetinstabilityduetoexcessOreleased(Ruisstabilised asmetal))

    SomeTc2O7formedathighburnup Thistargetmaterialisnotrecommended

    71

  • 11/23/2014

    11

    PreparationofartificialstableRutheniumbytransmutationofTechnetium

    NewRutheniumisalmostz Tctargetmaterial:monoisotopic Ru100,ithasdifferentspectralproperties

    Itisavailableonlytoseveralcountriesthatdevelopnuclearindustry

    z Tcmetalpowder/Kozar(2008)

    z Tc CcompositeTccarbide/German(2005)

    z Rotmanov K.etall.Radiochemistry, 50(2008)408:

    99Tctransmutationcanbethesourceofartificialstableruthenium100102Ru.

    Conclusions

    MetalhomogeneousTctargetsarepossible Tccarbidetargetsarefavorabale Artificialrutheniumdemandedexposureduring810yearsforapplicationwithoutrestrictions

    Application of heterogeneous targets with nuclear Applicationofheterogeneoustargetswithnuclearinertstufftoreducea106RuradioactivityinartificialRu

    ThetargetformeffecttheartificialrutheniumpurityatequalTcnucleardensityinirradiatedvolume.

    72

  • 11/23/2014

    12

    Transformationofdisksincylindersintheconditionsofidenticalirradiatedvolumecouldallowtolower106Ruconcentrationinartificialruthenium.TheminimumfissionfragmentpathlengthinTcmetalmakesabout5microns(averagefissionfragmentpathlengthisabout8microns).ThecorrespondingformofaheterogeneoustargetisatabletconsistingofamixofsphericalTcmetalparticleindiameterof5micronsandanuclearinertstuffwithTcaveragedensitywhichin20times is less than Tc metal In this case all fission fragments includingtimesisless,thanTcmetal.Inthiscaseallfissionfragments,including106Ru,escapetheTc(TcRu)grainstostuff.TheaveragedistancebetweenTcsphericalgrainsisabout23microns,betweentheirsurfacesisabout18micronsatregulardistributionofTcparticlesinatarget.

    Fissionfragmentpathlengthinthemostapplicablenuclearinertmaterials(suchasZrO2,Y2O3,MgAl2O4,MgO,Y3Al5O12,SiC,Al2O3,ZrO2Y2O3,ZrO2CaOandmanyothers)makes12 15microns,hencehitprobabilityof106RufissionfragmentsinthenextTcgrainisnegligiblysmall. Artificial ruthenium from such target would be almost free fromsmall.Artificialrutheniumfromsuchtargetwouldbealmostfreefrom106Runuclei.AdditionalpurificationofcommercialTcfromactinideimpuritieswouldbenotnecessaryatachoiceofsuchtargetforminsteadofmetaldisks.Inthiscaseartificialrutheniumcouldbeappliedinnonnuclearfieldthrough3 3.5yearsafteranirradiation,necessarytodecayoftransmutationproduct103Ru(T1/2 =39.3days).

    References 1.V.Peretroukhine,V.Radchenko,A.Kozaretal.Technetium

    transmutationandproductionofartificalstableruthenium.//ComptesRendus. Ser.Chimie. 2004. Tome7. Fascicule12. P.12151218.

    2 Kozar V F Peretroukhin K V 2...Kozar ,V.F.Peretroukhin,K.V, ,, .Rotmanov,V.A.Tarasov.Theelaborationoftechnologybasesfortheartificialstablerutheniumpreparationfromtechnetium99transmutationproducts.//7th InternationalSymposiumonTechnetiumandRhenium ScienceandUtilization.Moscow,Russia,July4 8,2011. BookofProceedings. P.113. PublishingHouseGRANITSA,Moscow,2011. 460p.

    3. .. Kozar, V.F. Peretroukhin, K.V , 3...Kozar ,V.F.Peretroukhin,K.V, ,, .Rotmanov,V.A.Tarasov.Theelaborationoftechnologybasesfortheartificialstablerutheniumpreparationfromtechnetium99transmutationproducts.//Ibid. P.113.

    73

  • Complexation and extraction of Pu(IV) in the presence of pertechnetic acid

    L. Abiad, L. Venault and Ph. Moisy

    CEA Marcoule, DEN/DRCP, BP 17171, 30207 Bagnols-sur-Cze Cedex, France

    The hypothesis that pertechnetate ion can form extractible complexes with actinides at the +IV or

    +VI oxidation state in nitric acid is quite commonly pointed out. Therefore, in nitric acid, the

    pertechnetate anion could act as a co-ligand with the nitrate ion and then could replace it in the

    extracted species. It can be noticed that in the absence of nitric acid a complex of U(VI) with the

    pertechnetate anion 2(4)2 . 2 has already been identified in an organic phase made of

    TBP. However, even in the presence of nitric acid, a mixed complex can be formed by replacing a

    nitrate anion by a pertechnetate one:

    2(3)2 . 2 + 4 2 3 4 . 2 + 3

    To check the ability of pertechnetate ions to give rise to complexes with actinides, the study of the

    complexation of Pu(IV) by TcO4- was carried out by spectrophotometry in perchloric acid media.

    Absorption spectra of Pu(IV)-Tc(VII) mixtures, according to the temperature, enable the calculation of

    the complexation constant i of the complex present in solution by chemometric treatment. It was

    found that for [Tc]/[Pu] ratio up to 1300, two species are present in solution: the aquo ion Pu4+ and a

    complex which could either be Pu(TcO4)3+ or Pu(TcO4)4.The complexation constants have been

    respectively estimated to 3 ~ 2.3 0.1 and 4 ~ 3.5 0.2 at T = 298 K.

    Onthe other hand, some measurements of the distribution of Tc(VII) and Pu(IV) in biphasic system

    (HClO4 TBP 30%/cyclohexane) were carried out. Firstly, it has been shown that the extraction of

    pertechnetic acid alone involves 2.5 molecules of TBP perpertechnetic acid, indicating that the

    extracted species are both 4 . 2and 4 . 3.Secondly, in the presence of Pu(IV), this

    latter is highly extracted when the ratio [Tc]/[Pu] is close to 2500 with DPu 10. Therefore, two

    extraction equilibria for the extracted neutral complex Pu(TcO4)4 in organic phase are proposed:

    84 + 24+ + 3 (4)4 . + (4)4 . 2

    84 + 24+ + 3 ((4)4)2. + (4)4. 2

    Nevertheless, as the [Tc]/[Pu] ratio becomes lower than 1400, Pu(IV) is then poorly extracted with D-

    values not higher than 1. It is in accordance with the spectrophotometric observations and

    chemometric calculations assuming that, in these conditions the complex formed is Pu(TcO4)3+. The

    thermodynamic characteristics of this complex have thenbeen calculated.

    6/73 74

  • 23/11/2014

    8thISTR,LaBaule(FRANCE),Spet.29th,Oct.3rd,2014 1

    PPuu(IV(IV))COMPLEXATIONCOMPLEXATION ANDANDEXTRACTIONEXTRACTION

    INPRESENCEOFINPRESENCEOFPERTECHNETICPERTECHNETIC ACIDACID

    L.ABIAD,L.VENAULT,Ph.MOISY

    CEAMarcoule

    | PAGE 1

    NuclearEnergyDivision

    RadiochemistryandProcessDepartment

    9 Main GoalGoalTo improve knowledge about Tc complexation chemistry with

    GOALS & CONTEXT

    o p o e o edge about c co p e at o c e st y tactinides

    99 IndustrialIndustrial interestinterest:: PUREX process Disturbances in actinide extraction due to Tc Specific Tc scrubbing step

    Nuclear Energy DivisionRadioChemistry and Process Department 2

    Chemistry of Tc in the process still not well described

    75

  • 23/11/2014

    8thISTR,LaBaule(FRANCE),Spet.29th,Oct.3rd,2014 2

    Chemical behavior of Tc(VII) with metallic cations (U, Th, Zr, Pu)

    LITTERATURE DATA

    Many studies only on the distribution of metallic cations between an aqueous and an organic solutions

    Sole identified complex in organic phaseQuoted in litterature (but not identified)

    Co-extraction of TcO4- with nitrate ion

    [ ]TBP2,)TcO(UO 242[Macasek, 1983]

    [ ]TBP2),TcO()NO(Th 433[Pruett, 1984]

    [ ]TBP2),TcO()NO(Zr 433[Jassim, 1984]

    Nuclear Energy DivisionRadioChemistry and Process Department 3

    No studies about the complexation Pu(IV) Tc(VII)Can Pu(IV) be complexed by Tc(VII) alone ? ++ + )4(444 )( nnTcOPunTcOPu

    Complexation Complexation reactionreaction

    EXPERIMENTAL

    ++ + )4(444 )( nnTcOPunTcOPu[ ][ ][ ]n

    nn

    nTcOPu

    TcOPu+

    +=

    44

    )4(4

    .)(

    9 Inert acidic medium towards Pu(IV) chemistry : HClO4 Limitation : radiolysis - competiting extraction of HClO4 and HTcO4

    9 Preparation of about 50 samples Tc(VII) Pu(IV)

    Nuclear Energy DivisionRadioChemistry and Process Department 4

    9 R = 0 to 1400 where

    9 Temperatures vary from T = 10 C to T = 50 C

    [ ][ ]init.

    init.

    Pu(IV)Tc(VII)R =

    8th ISTR,LaBaule(FRANCE),Sept.29th,Oct.3rd,2014

    76

  • 23/11/2014

    8thISTR,LaBaule(FRANCE),Spet.29th,Oct.3rd,2014 3

    Experimental absorption spectra for 5 mixtures Pu(IV)-Tc(VII)

    I = 2 (HClO4 2 M), [Pu]total = 2.10-3M 25C

    RESULTS

    9 No Pu(VI) at = 830 nm9 No band for HTcO49 Increase and changes in UV bands at < 500 nm as R 9 Pu(III) at = 600 nm due to radiolysis in Pu(IV) sol. subtraction of Pu(III) spectra

    Abs

    .

    0,04

    0,06

    0,08

    0,10

    0,12

    0,14 HTcO4 2MR = 1308R = 677R = 500R = 346R = 144

    [Tc]

    830 nm600 nm

    Nuclear Energy DivisionRadioChemistry and Process Department 5

    Longueur d'onde (nm)

    400 500 600 700 800-0,02

    0,00

    0,02

    ,

    8th ISTR,LaBaule(FRANCE),Sept.29th,Oct.3rd,2014

    cm/m

    ol)

    30

    40

    50

    For For everyevery spectrumspectrum, at , at everyevery TT subtraction of Pu(III) spectrumA() = Atot.() Pu()()

    RESULTS

    0,14

    HTcO4 2M 680 nm

    475 nm

    Longueur d'onde (nm)400 450 500 550 600 650 700 750 800

    (L/

    c

    0

    10

    20

    Extinction coefficient for a 10-3 M Pu(III) solution in HClO4 2 M at 25C

    Increase of Abs. / Changes in bands complexation of Pu(IV) ?

    Abs

    .

    0 02

    0,04

    0,06

    0,08

    0,10

    0,12 R = 1308R = 677R = 500R = 346R = 144R = 0

    655 nm

    550 nm

    Nuclear Energy DivisionRadioChemistry and Process Department 6

    Absorption spectra of Pu(IV)-Tc(VII) mixtures corrected fromPu(III) contribution

    I = 2 (HClO4 2 M, [Pu]total = 2.10-3M 35C

    p ( )

    Changes in hydratation sphere ?

    aw and [H+] kept constant Complexation of Pu(IV) withTc(VII)

    Longueur d'onde (nm)350 400 450 500 550 600 650 700 750 800

    0,00

    0,02

    8th ISTR,LaBaule(FRANCE),Sept.29th,Oct.3rd,2014

    77

  • 23/11/2014

    8thISTR,LaBaule(FRANCE),Spet.29th,Oct.3rd,2014 4

    RESULTS

    Qualitative Qualitative studystudy9 Changes in spectra Existence of one or several complexes Pu(TcO4)i(4-i)+9 Effect of T determination of thermodynamic data

    Quantitative Quantitative studystudy9 Spectrum = 520 760 nm 9 Small changes in spectrum9 Free Pu(IV) & complexes in the same wavelength range9 No reference spectra for the complexes

    Direct treatment of spectra impossible Chimiometric method

    Nuclear Energy DivisionRadioChemistry and Process Department 7

    Chimiometric method Treatment of a lot of data Few hypothesis about the chemical composition

    8th ISTR,LaBaule(FRANCE),Sept.29th,Oct.3rd,2014

    ProgramRECONS

    11stst stepstep:: Principal Component Analysis Number of species

    ProgramNBESPECE

    CHIMIOMETRIC METHOD

    Hypothesis :2species Reconstructionofspectra reconstructed spectra similar to

    experimental ones

    statistical &empirical tests 2species T

    Number of spectra

    [Tc]

    1st species

    Apparitionofa2nd

    Nuclear Energy DivisionRadioChemistry and Process Department 8

    At T = 40CWavelength (nm)

    ln (

    i/ i)

    species

    background

    2species

    8th ISTR,LaBaule(FRANCE),Sept.29th,Oct.3rd,2014

    78

  • 23/11/2014

    8thISTR,LaBaule(FRANCE),Spet.29th,Oct.3rd,2014 5

    22ndnd stepstep:: Modeling Factors Analysis (MFA) Complexation constants & reference spectra

    Comparison

    CHIMIOMETRIC METHOD

    Estimationof n

    ExperimentalabsorbanceExperimental

    conditions

    Hypothesis aboutchemical species

    EstimationofabsorbanceAbsestim

    Comparison

    Nuclear Energy DivisionRadioChemistry and Process Department 9

    Estimationofn EstimationofconcentrationsCestim IfAbsestim =Absexper Estimated concentrations=real Criterion :calculated reference spectra &relativedeviation

    8th ISTR,LaBaule(FRANCE),Sept.29th,Oct.3rd,2014

    22ndnd stepstep:: Modeling Factor Analysis (MFA)

    Reference spectra for the two Relative deviation

    CHIMIOMETRIC METHOD

    +3%

    on c

    oeff

    icie

    nt

    /mol

    /cm

    )

    4050607080 R maximum upper complex

    R = 0 [Pu4+] libre 0.002 M

    Reference spectra for the twospecies

    Relative deviation

    Absexp - Absest

    Nuclear Energy DivisionRadioChemistry and Process Department 10

    -3%

    Wavelength (nm)400 450 500 550 600 650 700 750 800

    Extin

    ctio

    (L/

    0102030

    8th ISTR,LaBaule(FRANCE),Sept.29th,Oct.3rd,2014

    79

  • 23/11/2014

    8thISTR,LaBaule(FRANCE),Spet.29th,Oct.3rd,2014 6

    Results from MFA calculations[Pu4+]o = 0.002 M, I = 2, et [TcO4-] = 0 to 2 M)

    MFA calculations areT 3 4

    CHIMIOMETRIC METHOD

    ( )( )4444

    344

    4

    TcOPuPuTcO4

    TcOPuPuTcO3

    4

    3

    +

    +

    +

    ++

    or

    consistent with ML3 & ML410C 2,8 5% 7,3 16%18C 4,8 21% 9,5 21%25C 2,3 4% 3,4 5%35C 3,5 2% 6,2 2%40C 4,5 2% 8,3 4%

    Nuclear Energy DivisionRadioChemistry and Process Department 11

    50C 7,9 14% 19,1 14%

    8th ISTR,LaBaule(FRANCE),Sept.29th,Oct.3rd,2014

    Pu(IVPu(IV) Distribution Ration in ) Distribution Ration in presencepresence of of Tc(VII)Tc(VII)