Transcript

0

Extreme Space Weather and Aviation

Understanding the Issue, Evaluating the Risk and Planning for Events 

October 22, 2014

NATO’s 2014 Civil Aviation Training SeminarIstanbul, Turkey

Prepared for:

11

Extreme Space Weather and Aviation

The Problem: What is Space Weather? What is our vulnerability?

Effects on Key Systems: Impacts on power, communications, aviation

Aviation Impacts: Satellite and communications, avionicsand ground systems, aircraft crew and passengers

Managing through and Mitigating Extreme Space Weather: Response and coordination mechanisms

Implications for NATO’s Mission: Protocols and remaining questions

INTRODUCTION

Prominence Eruption: Solar Dynamics Observatory (Oct. 2, 2014)

22

The Big PictureTHE PROBLEM

33

Space Weather: What we need to know

Space Storms: Produced by eruptions of turbulent and high energy plasma from the sun, referred to as coronal mass ejections (CME), that collide with the Earth’s magnetic field extending into space.  Nearer to Earth, created too by instabilities in the Earth’s upper atmosphere, generated by winds and special conditions near the equator.

Effects on the Earth: While the Earth’s magnetic field provides a partial shield, hazardous space radiation and solar wind dynamics interact with the Earth’s environment and cause a variety of effects to many of the advanced technology systems that guide our lives today.

Vulnerable Systems:– Power and Long‐Distance Pipelines: voltage control problems 

impact grids, transformers, operations (false alarms). Effects most pronounced above 50 degrees latitude, but connectivity makes it a system issue

– Satellites: degradation of signals, older satellites may age prematurely or be rendered inoperable

– Radio: HF radio interrupted by solar flares, radio navigation disrupted

THE PROBLEM

CINDI satellite (NASA and Air Force Laboratory) launched in 2008 to monitor the upper atmosphere (60‐400 miles)

44

Understanding Severity and Vulnerability

Weather‐Like Variability: Sun activity generally occurs on 11‐year cycles—we are in the midst of “solar maximum,” although activity heretofore less than expected, the cycle is similar to the one under which “Carrington” took place. 

Scales: Similar to hurricanes and tornados, scales devised for the following (where 1 are minor and 5 are extreme impacts):– Geomagnetic Storms:  G1 – G5  (G5, 4 days per cycle)

– Solar Radiation Storms:  S1 – S5  (S5, fewer than 1 day per cycle)

– Radio Blackouts: R1 – R5  (R5, fewer than 1 day per cycle)

History: Science is less certain than meteorology, but science and understanding of solar weather increasing. – “Carrington” (1859): Telegraph operators in Europe, USA shocked, wires fried.  Lloyd’s of London 

determined in 2008 that a similar event in the USA alone would cost $0.6 to $2.0 trillion.

– Quebec (1989): Severe geomagnetic and solar radiation storm hit Earth, knocking out satellites and communications for hours and took James Bay’s power network off‐line for minutes, leading to a nine‐hour blackout. Since then, Quebec has invested over 1.2 billion (CAN) in capacitors to mitigate charging—US regulators required mitigation measures.

– Near “Miss” (2012): Carrington‐like event hit STEREO‐A spacecraft in orbit but missed a direct impact.  

EFFECTS ON KEY SYSTEMS

GOES‐7 satellite monitoring Space Weather March 1989

55

The Need for Resiliency: A Reminder from Chicago (Sept. 2014)AVIATION IMPACTS

66

Context for Modern AviationTrends in aviation make Space Weather a dynamic challenge:

1. Polar Routes: Since the year 2000, commercial airline traffic over the pole has increased from a few hundred annual operations to more than 10,000 (2011)

2. Satellite Navigation: The ongoing shift from ground‐based to ubiquitous systems of satellites for air navigation, while introducing great efficiencies into aviation, present specific issues

3. Commercial Spaceflight: The increasing development of public and private spaceflight present challenges to personnel, vehicles, and navigation.

4. Micro‐Technology: Increasing use of nanotechnology and electronic components introduce vulnerabilities into satellites, avionics and ground‐based systems

5. Dependence on Power: Modern aviation is dependent on the provision of ground‐based power for many important functions, including with airports and air navigation system providers

AVIATION IMPACTS

7

RADIATION BELTS30+  Satellites

MAGNETOSPHERE50+  SatellitesGeomagnetic

Storming

High EnergyParticles

MESOSPHERE

Scintillation

Solar RadioBurst

ElectromagneticRadiation

STRATOSPHERE

THERMOSPHERE25+  Satellites

SEAMLESS

ENVIRONMENT

TROPOSPHERE

A Map of the Atmospheric and Space Environment

88

We have knowledge but gap remains for extreme events (G5) Aviation is heavily dependent on advanced technology and human operators, both of which face challenges by Space Weather’s effects.  These include (but are not limited to):– Satellites and Communications: Many important communication satellites fly high, geosynchronous 

orbits and are particularly susceptible to charging and to high‐energy particles penetrating the satellite causing potential loss of signal tracking, degradation of orbit, and loss of service.

– Avionics and Ground Systems: Ionizing particles are a threat to small components, including air and ground  for increasingly used microelectronic devices. Upsets to Random Access Memory have been documented to cause auto‐pilots and flight instruments to fail. International standards addressing concern with avionics today; efforts ongoing.

– Aircraft Crew and Passengers: Civilian aircraft today are routinely rerouted (where sufficient warnings are received), especially at higher latitudes where radiation risk is more acute. [Note: flights at polar altitudes (>82nd North) face special communications and crew health concerns]

– Power Dependent Systems: ATC, airports andground stations dependent on power systems that may be susceptible to blackout.Focus on resiliency needed to maintain independent service (e.g., micro‐grids) forremote and critical systems.

AVIATION IMPACTS

99

Focus: Satellites and Space Weather

Spacecraft generally resilient, but:– A spacecraft insurance company estimates $500 million in insurance claims between 1994‐1999 

– The Space Weather Prediction Center (SWPC) has analyzed over 300 satellite service anomalies and found that at least one‐third are related to the effects of space weather

Impacts on Satellite Navigation:– Global Navigation Systems (GNSS): During a geomagnetic storm, satellite to ground radio waves 

are upset and can introduce positioning errors of tens of meters. Satellite receivers can adjust  through a network of fixed ground‐based GPS transmitters. Solar Radio bursts may interfere with GNSS as well by introducing background noise and degrading signals—duration of outages may last tens of seconds to a few hours 

– Wide Area Augmentation System (WAAS): Severe geomagnetic storms (e.g., late 2003) can disrupt Approach with Vertical Guidance (APV), which assists WAAS users with the ability to fly approaches into airports.  Availability may be restricted for hours during extremely bad days 

– System Capabilities: The mix of satellites by type, orbits, and day/night positioning make the “system” resilient.  However, a series of storms could cause premature ageing and altitude loss across a number of satellites, which could pose a threat to selective capabilities.  Given the long lead time for replacement, this could be problematic for service recipients

AVIATION IMPACTS

1010

GPS’s use of high frequency waves can be disrupted in ionosphereAVIATION IMPACTS

• A December 2006 solar radioburst caused “profound impacts on GPS performance, leading to positioning errors and outages ofover five minutes” (Carrano et al).

• Two researchers posit that Operation ANACONDA in Afghanistan (2002) experiencedradio communication failures due to in part an equatorial plasmabubble—a relatively common nightly occurrence during Equinoxmonths.‐http://news.agu.org/press‐release/space‐bubbles‐may‐have‐aided‐enemy‐in‐fatal‐afghan‐battle/

1111

MANAGING THROUGH AND MITIGATING SPACE WEATHER

1212

Summarizing Response Time and Effects

Solar Radiation (X‐rays, Radio, EUV)– Arrives in 8 minutes 

– Duration: 1‐2 days

– Satellite communications interference

– Radar interference

– HF radio blackout

– Geolocation errors

– Satellite orbit decay

Energetic Particles– Arrives 15 minutes

– Duration: hours to days

– High altitude radiation hazards

– Spacecraft damage

– Satellite disorientation

– False sensor readings

– Degraded HF communications

MANAGING THROUGH AND MITIGATING EXTREME SPACE WEATHER

Solar Plasma– Arrives 1‐3 days, duration days

– Spacecraft charging and drag

– Geolocation and tracking errors

– Radar interference

– Radio propagation anomalies

– Power grid failures

(Integrating Space Weather Observations & Forecasts into Aviation Operations)

1313

NATO Coordination: Civilian International

– World Meteorological Organization (WMO)

– International Civil Aviation Organization (ICAO)

Governments:– FAA in conjunction with Office 

of Science and Technology Policy and National Weather Service/SWPC

– European Space Agency, Space Situational Awareness Programme 

Military– Air Force Weather

(Boulder, CO) 

MANAGING THROUGH AND MITIGATING EXTREME SPACE WEATHER

The U.S. and EU both maintain websites that report on space weather conditions and their impacts: http://www.swpc.noaa.govhttp://www.spaceweather.eu

1414

Perspectives for Space Weather

1. Determine if Extreme Space Weather is Actionable: Widespread power blackouts, communication outages and transportation limitations could cause severe regional dislocation—possibly a trigger for NATO assistance Likely to trigger NATO response only at most extreme levels

2. Evaluate the Effect of Space Weather on Existing NATO Missions: Ongoing civilian and military missions may be affected by a space weather event—protocols likely to be similar for other impacted civilian and military operations. Operational awareness of temporary dislocations in communications and transportation can be made part of contingency planning

3. Keep Current on Research and Harmonization of Standards: As a “prestige issue” there continue to be differences in standards for space weather information and how operators should incorporate information in their planning and briefing processes. ICAO, through Annex 3 (Metrological Services), is to “provide space weather services to aviation in an internationally consistent way” and tasked the International Airways Volcano Watch Operations Group to work on consistent approaches to the dissemination of information and CONOPS.

IMPLICATIONS FOR NATO’S MISSION

1515

Sources Consulted

American Meteorological Society Policy Program and Solarmetrics (2007), “Integrating Space Weather Observations & Forecasts into Aviation Operations: Report of a Policy Workshop,” The American Meteorological Society, (http://www2.ametsoc.org/ams/assets/File/space_Wx_aviation_2007.pdf). 

Boeing Aero Magazine 16 (2001), “Polar Routes,” Boeing, (http://www.boeing.com/commercial/aeromagazine/aero_16/polar_story.html). 

Carrano, C. S., C. T. Bridgewood and K. M. Groves (2014), “Impacts of the December 2006 Solar Radio Bursts on GPS Operations,” Radio Sci., 44, RS0A25, (http://dx.doi.org/10.1029/2008RS004071).

International Civil Aviation Organization and World Meteorological Organization (2014), “Space Weather Services in Aviation,” MET/14‐WP/15, CAeM‐15/Doc. 15 16/4/14 (for more see):http://www.icao.int/Meetings/METDIV14/YellowCoverReport/MET.14.WP.064.2.en%20(Yellow).FINAL.pdf)

National Space Weather Council (2010), “The National Space Weather Program Strategic Plan,” National Space Weather Council, Office of the Federal Coordinator for Meteorological Services and Supporting Research, (http://www.ofcm.gov/nswp‐sp/fcm‐p30.htm). 

Royal Academy of Engineering  Extreme Weather Study Group (2013), “Extreme space weather: impacts on engineered systems and infrastructure,” Royal Academy of Engineering, (http://www.raeng.org.uk/publications/reports/space‐weather‐full‐report). 

Space Weather Prediction Center Topic Paper, (2014), “Satellites and Space Weather,” NOAA/Space Weather Prediction Center, (http://www.swpc.noaa.gov/info/Satellites.html), accessed October 9, 2014.

REFERENCES

16

Stephen D. Van Beek, Ph.D.Vice PresidentICF International9300 Lee Highway

Fairfax, VA 22031 USA+1.703.934.3865

[email protected]


Recommended