Transcript
Page 1: Section 3 Laplace Transforms & Transfer Functions

ESE 499 โ€“ Feedback Control Systems

SECTION 3: LAPLACE TRANSFORMS & TRANSFER FUNCTIONS

Page 2: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

This section of notes contains an introductionto Laplace transforms. This should mostly be areview of material covered in your differentialequations course.

Introduction โ€“ Transforms2

Page 3: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

3

Transforms

What is a transform? A mapping of a mathematical function from one domain to

another A change in perspective not a change of the function

Why use transforms? Some mathematical problems are difficult to solve in their

natural domain Transform to and solve in a new domain, where the problem is

simplified Transform back to the original domain

Trade off the extra effort of transforming/inverse-transforming for simplification of the solution procedure

Page 4: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

4

Transform Example โ€“ Slide Rules

Slide rules make use of a logarithmic transform

Multiplication/division of large numbers is difficult Transform the numbers to the logarithmic domain Add/subtract (easy) in the log domain to multiply/divide

(difficult) in the linear domain Apply the inverse transform to get back to the original

domain Extra effort is required, but the problem is simplified

Page 5: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

Laplace Transforms5

Page 6: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

6

Laplace Transforms

An integral transform mapping functions from the time domain to the Laplace domain or s-domain

๐‘”๐‘” ๐‘ก๐‘ก โ†”โ„’

๐บ๐บ ๐‘ ๐‘  Time-domain functions are functions of time, ๐‘ก๐‘ก

๐‘”๐‘” ๐‘ก๐‘ก Laplace-domain functions are functions of ๐’”๐’”

๐บ๐บ ๐‘ ๐‘  ๐‘ ๐‘  is a complex variable

๐‘ ๐‘  = ๐œŽ๐œŽ + ๐‘—๐‘—๐‘—๐‘—

Page 7: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

7

Laplace Transforms โ€“ Motivation

Weโ€™ll use Laplace transforms to solve differential equations

Differential equations in the time domain difficult to solve

Apply the Laplace transform Transform to the s-domain

Differential equations become algebraic equations easy to solve

Transform the s-domain solution back to the time domain

Transforming back and forth requires extra effort, but the solution is greatly simplified

Page 8: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

8

Laplace Transform

Laplace Transform:

โ„’ ๐‘”๐‘” ๐‘ก๐‘ก = ๐บ๐บ ๐‘ ๐‘  = โˆซ0โˆž๐‘”๐‘” ๐‘ก๐‘ก ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก (1)

Unilateral or one-sided transform Lower limit of integration is ๐‘ก๐‘ก = 0 Assumed that the time domain function is zero for all

negative time, i.e.

๐‘”๐‘” ๐‘ก๐‘ก = 0, ๐‘ก๐‘ก < 0

Page 9: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

In the following subsection of notes, weโ€™ll derive a few important properties of the Laplace transform.

Laplace Transform Properties9

Page 10: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

10

Laplace Transform โ€“ Linearity

Say we have two time-domain functions:๐‘”๐‘”1 ๐‘ก๐‘ก and ๐‘”๐‘”2 ๐‘ก๐‘ก

Applying the transform definition, (1)

โ„’ ๐›ผ๐›ผ๐‘”๐‘”1 ๐‘ก๐‘ก + ๐›ฝ๐›ฝ๐‘”๐‘”2 ๐‘ก๐‘ก = ๏ฟฝ0

โˆž๐›ผ๐›ผ๐‘”๐‘”1 ๐‘ก๐‘ก + ๐›ฝ๐›ฝ๐‘”๐‘”2 ๐‘ก๐‘ก ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

= ๏ฟฝ0

โˆž๐›ผ๐›ผ๐‘”๐‘”1 ๐‘ก๐‘ก ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก + ๏ฟฝ

0

โˆž๐›ฝ๐›ฝ๐‘”๐‘”2 ๐‘ก๐‘ก ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

= ๐›ผ๐›ผ๏ฟฝ0

โˆž๐‘”๐‘”1 ๐‘ก๐‘ก ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก + ๐›ฝ๐›ฝ๏ฟฝ

0

โˆž๐‘”๐‘”2 ๐‘ก๐‘ก ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

= ๐›ผ๐›ผ ๏ฟฝ โ„’ ๐‘”๐‘”1 ๐‘ก๐‘ก + ๐›ฝ๐›ฝ ๏ฟฝ โ„’ ๐‘”๐‘”2 ๐‘ก๐‘ก

โ„’ ๐›ผ๐›ผ๐‘”๐‘”1 ๐‘ก๐‘ก + ๐›ฝ๐›ฝ๐‘”๐‘”2 ๐‘ก๐‘ก = ๐›ผ๐›ผ๐บ๐บ1 ๐‘ ๐‘  + ๐›ฝ๐›ฝ๐บ๐บ2 ๐‘ ๐‘  (2)

The Laplace transform is a linear operation

Page 11: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

11

Laplace Transform of a Derivative

Of particular interest, given that we want to use Laplace transform to solve differential equations

โ„’ ๏ฟฝฬ‡๏ฟฝ๐‘” ๐‘ก๐‘ก = ๏ฟฝ0

โˆž๏ฟฝฬ‡๏ฟฝ๐‘” ๐‘ก๐‘ก ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

Use integration by parts to evaluate

โˆซ ๐‘ข๐‘ข๐‘‘๐‘‘๐‘ข๐‘ข = ๐‘ข๐‘ข๐‘ข๐‘ข โˆ’ โˆซ ๐‘ข๐‘ข๐‘‘๐‘‘๐‘ข๐‘ข Let

๐‘ข๐‘ข = ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘  and ๐‘‘๐‘‘๐‘ข๐‘ข = ๏ฟฝฬ‡๏ฟฝ๐‘” ๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ก๐‘กthen

๐‘‘๐‘‘๐‘ข๐‘ข = โˆ’๐‘ ๐‘ ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก and ๐‘ข๐‘ข = ๐‘”๐‘” ๐‘ก๐‘ก

Page 12: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

12

Laplace Transform of a Derivative

โ„’ ๏ฟฝฬ‡๏ฟฝ๐‘” ๐‘ก๐‘ก = ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘”๐‘” ๐‘ก๐‘ก ๏ฟฝ0

โˆžโˆ’ ๏ฟฝ

0

โˆž๐‘”๐‘” ๐‘ก๐‘ก โˆ’๐‘ ๐‘ ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘  ๐‘‘๐‘‘๐‘ก๐‘ก

= 0 โˆ’ ๐‘”๐‘” 0 + ๐‘ ๐‘  ๏ฟฝ0

โˆž๐‘”๐‘” ๐‘ก๐‘ก ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก = โˆ’๐‘”๐‘” 0 + ๐‘ ๐‘ โ„’ ๐‘”๐‘” ๐‘ก๐‘ก

The Laplace transform of the derivative of a function is the Laplace transform of that function multiplied by ๐‘ ๐‘  minus the initial value of that function

โ„’ ๏ฟฝฬ‡๏ฟฝ๐‘” ๐‘ก๐‘ก = ๐‘ ๐‘ ๐บ๐บ ๐‘ ๐‘  โˆ’ ๐‘”๐‘”(0) (3)

Page 13: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

13

Higher-Order Derivatives

The Laplace transform of a second derivative is

โ„’ ๏ฟฝฬˆ๏ฟฝ๐‘” ๐‘ก๐‘ก = ๐‘ ๐‘ 2๐บ๐บ ๐‘ ๐‘  โˆ’ ๐‘ ๐‘ ๐‘”๐‘” 0 โˆ’ ๏ฟฝฬ‡๏ฟฝ๐‘” 0 (4)

In general, the Laplace transform of the ๐’๐’๐’•๐’•๐’•๐’• derivativeof a function is given by

โ„’ ๐‘”๐‘” ๐‘›๐‘› = ๐‘ ๐‘ ๐‘›๐‘›๐บ๐บ ๐‘ ๐‘  โˆ’ ๐‘ ๐‘ ๐‘›๐‘›โˆ’1๐‘”๐‘” 0 โˆ’ ๐‘ ๐‘ ๐‘›๐‘›โˆ’2๏ฟฝฬ‡๏ฟฝ๐‘” 0 โˆ’โ‹ฏโˆ’ ๐‘”๐‘” ๐‘›๐‘›โˆ’1 0 (5)

Page 14: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

14

Laplace Transform of an Integral

The Laplace Transform of a definite integral of a function is given by

โ„’ โˆซ0๐‘ ๐‘  ๐‘”๐‘” ๐œ๐œ ๐‘‘๐‘‘๐œ๐œ = 1

๐‘ ๐‘ ๐บ๐บ ๐‘ ๐‘  (6)

Differentiation in the time domain corresponds to multiplication by ๐’”๐’” in the Laplace domain

Integration in the time domain corresponds to division by ๐’”๐’” in the Laplace domain

Page 15: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

Next, weโ€™ll derive the Laplace transform of some common mathematical functions

Laplace Transforms of Common Functions

15

Page 16: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

16

Unit Step Function

A useful and common way of characterizing a linear system is with its step response The systemโ€™s response (output) to a unit step input

The unit step function or Heaviside step function:

1 ๐‘ก๐‘ก = ๏ฟฝ0, ๐‘ก๐‘ก < 01, ๐‘ก๐‘ก โ‰ฅ 0

Page 17: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

17

Unit Step Function โ€“ Laplace Transform

Using the definition of the Laplace transform

โ„’ 1 ๐‘ก๐‘ก = ๏ฟฝ0

โˆž1 ๐‘ก๐‘ก ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก = ๏ฟฝ

0

โˆž๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

= โˆ’1๐‘ ๐‘ ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ

0

โˆž= 0 โˆ’ โˆ’

1๐‘ ๐‘ 

=1๐‘ ๐‘ 

The Laplace transform of the unit step

โ„’ 1 ๐‘ก๐‘ก = 1๐‘ ๐‘ 

(7)

Note that the unilateral Laplace transform assumes that the signal being transformed is zero for ๐‘ก๐‘ก < 0 Equivalent to multiplying any signal by a unit step

Page 18: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

18

Unit Ramp Function

The unit ramp function is a useful input signal for evaluating how well a system tracks a constantly-increasing input

The unit ramp function:

๐‘”๐‘” ๐‘ก๐‘ก = ๏ฟฝ0, ๐‘ก๐‘ก < 0๐‘ก๐‘ก, ๐‘ก๐‘ก โ‰ฅ 0

Page 19: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

19

Unit Ramp Function โ€“ Laplace Transform

Could easily evaluate the transform integral Requires integration by parts

Alternatively, recognize the relationship between the unit ramp and the unit step Unit ramp is the integral of the unit step

Apply the integration property, (6)

โ„’ ๐‘ก๐‘ก = โ„’ ๏ฟฝ0

๐‘ ๐‘ 1 ๐œ๐œ ๐‘‘๐‘‘๐œ๐œ =

1๐‘ ๐‘ ๏ฟฝ

1๐‘ ๐‘ 

โ„’ ๐‘ก๐‘ก = 1๐‘ ๐‘ 2

(8)

Page 20: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

20

Exponential โ€“ Laplace Transform

๐‘”๐‘” ๐‘ก๐‘ก = ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘ 

Exponentials are common components of the responses of dynamic systems

โ„’ ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘  = ๏ฟฝ0

โˆž๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘ ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก = ๏ฟฝ

0

โˆž๐‘’๐‘’โˆ’(๐‘ ๐‘ +๐‘Ž๐‘Ž)๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

= โˆ’๐‘’๐‘’โˆ’ ๐‘ ๐‘ +๐‘Ž๐‘Ž ๐‘ ๐‘ 

๐‘ ๐‘  + ๐‘Ž๐‘Ž๏ฟฝ0

โˆž= 0 โˆ’ โˆ’

1๐‘ ๐‘  + ๐‘Ž๐‘Ž

โ„’ ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘  = 1๐‘ ๐‘ +๐‘Ž๐‘Ž

(9)

Page 21: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

21

Sinusoidal functions

Another class of commonly occurring signals, when dealing with dynamic systems, is sinusoidal signals โ€“both sin ๐‘—๐‘—๐‘ก๐‘ก and cos ๐‘—๐‘—๐‘ก๐‘ก

๐‘”๐‘” ๐‘ก๐‘ก = sin ๐‘—๐‘—๐‘ก๐‘ก

Recall Eulerโ€™s formula

๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘ ๐‘  = cos ๐‘—๐‘—๐‘ก๐‘ก + ๐‘—๐‘— sin ๐‘—๐‘—๐‘ก๐‘ก

From which it follows that

sin ๐‘—๐‘—๐‘ก๐‘ก =๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘ ๐‘  โˆ’ ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘ ๐‘ 

2๐‘—๐‘—

Page 22: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

22

Sinusoidal functions

โ„’ sin ๐‘—๐‘—๐‘ก๐‘ก =12๐‘—๐‘—๏ฟฝ0

โˆž๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘ ๐‘  โˆ’ ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘ ๐‘  ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

=12๐‘—๐‘—๏ฟฝ0

โˆž๐‘’๐‘’โˆ’ ๐‘ ๐‘ โˆ’๐‘—๐‘—๐‘—๐‘— ๐‘ ๐‘  โˆ’ ๐‘’๐‘’โˆ’ ๐‘ ๐‘ +๐‘—๐‘—๐‘—๐‘— ๐‘ ๐‘  ๐‘‘๐‘‘๐‘ก๐‘ก

=12๐‘—๐‘—๏ฟฝ0

โˆž๐‘’๐‘’โˆ’ ๐‘ ๐‘ โˆ’๐‘—๐‘—๐‘—๐‘— ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก โˆ’

12๐‘—๐‘—๏ฟฝ0

โˆž๐‘’๐‘’โˆ’ ๐‘ ๐‘ +๐‘—๐‘—๐‘—๐‘— ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

=12๐‘—๐‘—

๐‘’๐‘’โˆ’ ๐‘ ๐‘ โˆ’๐‘—๐‘—๐‘—๐‘— ๐‘ ๐‘ 

โˆ’ ๐‘ ๐‘  โˆ’ ๐‘—๐‘—๐‘—๐‘— ๏ฟฝ0

โˆžโˆ’

12๐‘—๐‘—

๐‘’๐‘’โˆ’ ๐‘ ๐‘ +๐‘—๐‘—๐‘—๐‘— ๐‘ ๐‘ 

โˆ’ ๐‘ ๐‘  + ๐‘—๐‘—๐‘—๐‘— ๏ฟฝ0

โˆž

=12๐‘—๐‘—

0 +1

๐‘ ๐‘  โˆ’ ๐‘—๐‘—๐‘—๐‘—โˆ’

12๐‘—๐‘—

0 +1

๐‘ ๐‘  + ๐‘—๐‘—๐‘—๐‘—=

12๐‘—๐‘—

2๐‘—๐‘—๐‘—๐‘—๐‘ ๐‘ 2 + ๐‘—๐‘—2

โ„’ sin ๐‘—๐‘—๐‘ก๐‘ก = ๐‘—๐‘—๐‘ ๐‘ 2+๐‘—๐‘—2 (10)

Page 23: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

23

Sinusoidal functions

It can similarly be shown that

โ„’ cos ๐‘—๐‘—๐‘ก๐‘ก = ๐‘ ๐‘ ๐‘ ๐‘ 2+๐‘—๐‘—2 (11)

Note that for neither sin(๐‘—๐‘—๐‘ก๐‘ก) nor cos ๐‘—๐‘—๐‘ก๐‘ก is the function equal to zero for ๐‘ก๐‘ก < 0 as the Laplace transform assumes

Really, what weโ€™ve derived is

โ„’ 1 ๐‘ก๐‘ก ๏ฟฝ sin ๐‘—๐‘—๐‘ก๐‘ก and โ„’ 1 ๐‘ก๐‘ก ๏ฟฝ cos ๐‘—๐‘—๐‘ก๐‘ก

Page 24: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

More Properties and Theorems24

Page 25: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

25

Multiplication by an Exponential, ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘ 

Weโ€™ve seen that โ„’ ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘  = 1๐‘ ๐‘ +๐‘Ž๐‘Ž

What if another function is multiplied by the decaying exponential term?

โ„’ ๐‘”๐‘” ๐‘ก๐‘ก ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘  = ๏ฟฝ0

โˆž๐‘”๐‘” ๐‘ก๐‘ก ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘ ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก =๏ฟฝ

0

โˆž๐‘”๐‘” ๐‘ก๐‘ก ๐‘’๐‘’โˆ’ ๐‘ ๐‘ +๐‘Ž๐‘Ž ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

This is just the Laplace transform of ๐‘”๐‘” ๐‘ก๐‘ก with ๐‘ ๐‘ replaced by ๐‘ ๐‘  + ๐‘Ž๐‘Ž

โ„’ ๐‘”๐‘” ๐‘ก๐‘ก ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘  = ๐บ๐บ ๐‘ ๐‘  + ๐‘Ž๐‘Ž (12)

Page 26: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

26

Decaying Sinusoids

The Laplace transform of a sinusoid is

โ„’ sin ๐‘—๐‘—๐‘ก๐‘ก =๐‘—๐‘—

๐‘ ๐‘ 2 + ๐‘—๐‘—2

And, multiplication by an decaying exponential, ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘ , results in a substitution of ๐‘ ๐‘  + ๐‘Ž๐‘Ž for ๐‘ ๐‘ , so

โ„’ ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘  sin ๐‘—๐‘—๐‘ก๐‘ก =๐‘—๐‘—

๐‘ ๐‘  + ๐‘Ž๐‘Ž 2 + ๐‘—๐‘—2

and

โ„’ ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘  cos ๐‘—๐‘—๐‘ก๐‘ก =๐‘ ๐‘  + ๐‘Ž๐‘Ž

๐‘ ๐‘  + ๐‘Ž๐‘Ž 2 + ๐‘—๐‘—2

Page 27: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

27

Time Shifting

Consider a time-domain function, ๐‘”๐‘” ๐‘ก๐‘ก

To Laplace transform ๐‘”๐‘” ๐‘ก๐‘กweโ€™ve assumed ๐‘”๐‘” ๐‘ก๐‘ก = 0 for ๐‘ก๐‘ก < 0, or equivalently multiplied by 1(๐‘ก๐‘ก)

To shift ๐‘”๐‘” ๐‘ก๐‘ก by an amount, ๐‘Ž๐‘Ž, in time, we must also multiply by a shifted step function, 1 ๐‘ก๐‘ก โˆ’ ๐‘Ž๐‘Ž

Page 28: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

28

Time Shifting โ€“ Laplace Transform

The transform of the shifted function is given by

โ„’ ๐‘”๐‘” ๐‘ก๐‘ก โˆ’ ๐‘Ž๐‘Ž ๏ฟฝ 1 ๐‘ก๐‘ก โˆ’ ๐‘Ž๐‘Ž = ๏ฟฝ๐‘Ž๐‘Ž

โˆž๐‘”๐‘” ๐‘ก๐‘ก โˆ’ ๐‘Ž๐‘Ž ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

Performing a change of variables, let

๐œ๐œ = ๐‘ก๐‘ก โˆ’ ๐‘Ž๐‘Ž and ๐‘‘๐‘‘๐œ๐œ = ๐‘‘๐‘‘๐‘ก๐‘ก

The transform becomes

โ„’ ๐‘”๐‘” ๐œ๐œ ๏ฟฝ 1 ๐œ๐œ = ๏ฟฝ0

โˆž๐‘”๐‘” ๐œ๐œ ๐‘’๐‘’โˆ’๐‘ ๐‘  ๐œ๐œ+๐‘Ž๐‘Ž ๐‘‘๐‘‘๐œ๐œ = ๏ฟฝ

0

โˆž๐‘”๐‘” ๐œ๐œ ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘ ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐œ๐œ๐‘‘๐‘‘๐œ๐œ = ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘  ๏ฟฝ

0

โˆž๐‘”๐‘” ๐œ๐œ ๐‘’๐‘’โˆ’๐‘ ๐‘ ๐œ๐œ๐‘‘๐‘‘๐œ๐œ

A shift by ๐‘Ž๐‘Ž in the time domain corresponds to multiplication by ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘  in the Laplace domain

โ„’ ๐‘”๐‘” ๐‘ก๐‘ก โˆ’ ๐‘Ž๐‘Ž ๏ฟฝ 1 ๐‘ก๐‘ก โˆ’ ๐‘Ž๐‘Ž = ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘ ๐บ๐บ ๐‘ ๐‘  (13)

Page 29: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

29

Multiplication by time, ๐‘ก๐‘ก

The Laplace transform of a function multiplied by time:

โ„’ ๐‘ก๐‘ก โ‹… ๐‘“๐‘“ ๐‘ก๐‘ก = โˆ’ ๐‘‘๐‘‘๐‘‘๐‘‘๐‘ ๐‘ ๐น๐น(๐‘ ๐‘ ) (14)

Consider a unit ramp function:

โ„’ ๐‘ก๐‘ก = โ„’ ๐‘ก๐‘ก โ‹… 1 ๐‘ก๐‘ก = โˆ’๐‘‘๐‘‘๐‘‘๐‘‘๐‘ ๐‘ 

1๐‘ ๐‘  =

1๐‘ ๐‘ 2

Or a parabola:โ„’ ๐‘ก๐‘ก2 = โ„’ ๐‘ก๐‘ก โ‹… ๐‘ก๐‘ก = โˆ’ ๐‘‘๐‘‘

๐‘‘๐‘‘๐‘ ๐‘ 1๐‘ ๐‘ 2

= 2๐‘ ๐‘ 3

In general

โ„’ ๐‘ก๐‘ก๐‘š๐‘š =๐‘š๐‘š!๐‘ ๐‘ ๐‘š๐‘š+1

Page 30: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

30

Initial and Final Value Theorems

Initial Value Theorem Can determine the initial value of a time-domain signal or

function from its Laplace transform

(15)

Final Value Theorem Can determine the steady-state value of a time-domain

signal or function from its Laplace transform

(16)

๐‘”๐‘” 0 = lim๐‘ ๐‘ โ†’โˆž

๐‘ ๐‘ ๐บ๐บ ๐‘ ๐‘ 

๐‘”๐‘” โˆž = lim๐‘ ๐‘ โ†’0

๐‘ ๐‘ ๐บ๐บ ๐‘ ๐‘ 

Page 31: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

31

Convolution

Convolution of two functions or signals is given by

๐‘”๐‘” ๐‘ก๐‘ก โˆ— ๐‘ฅ๐‘ฅ ๐‘ก๐‘ก = ๏ฟฝ0

๐‘ ๐‘ ๐‘”๐‘” ๐œ๐œ ๐‘ฅ๐‘ฅ ๐‘ก๐‘ก โˆ’ ๐œ๐œ ๐‘‘๐‘‘๐œ๐œ

Result is a function of time ๐‘ฅ๐‘ฅ ๐œ๐œ is flipped in time and shifted by ๐‘ก๐‘ก Multiply the flipped/shifted signal and the other signal Integrate the result from ๐œ๐œ = 0 โ€ฆ ๐‘ก๐‘ก

May seem like an odd, arbitrary function now, but weโ€™ll later see why it is very important

Convolution in the time domain corresponds to multiplication in the Laplace domain

โ„’ ๐‘”๐‘” ๐‘ก๐‘ก โˆ— ๐‘ฅ๐‘ฅ ๐‘ก๐‘ก = ๐บ๐บ ๐‘ ๐‘  ๐‘‹๐‘‹ ๐‘ ๐‘  (17)

Page 32: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

32

Impulse Function

Another common way to describe a dynamic system is with its impulse response System output in response to an impulse function input

Impulse function defined by๐›ฟ๐›ฟ ๐‘ก๐‘ก = 0, ๐‘ก๐‘ก โ‰  0

๏ฟฝโˆ’โˆž

โˆž๐›ฟ๐›ฟ ๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ก๐‘ก = 1

An infinitely tall, infinitely narrow pulse

Page 33: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

33

Impulse Function โ€“ Laplace Transform

To derive โ„’ ๐›ฟ๐›ฟ ๐‘ก๐‘ก , consider the following function

๐‘”๐‘” ๐‘ก๐‘ก = ๏ฟฝ1๐‘ก๐‘ก0

, 0 โ‰ค ๐‘ก๐‘ก โ‰ค ๐‘ก๐‘ก0

0, ๐‘ก๐‘ก < 0 or ๐‘ก๐‘ก > ๐‘ก๐‘ก0

Can think of ๐‘”๐‘” ๐‘ก๐‘ก as the sum of two step functions:

๐‘”๐‘” ๐‘ก๐‘ก =1๐‘ก๐‘ก0

1 ๐‘ก๐‘ก โˆ’1๐‘ก๐‘ก0

1 ๐‘ก๐‘ก โˆ’ ๐‘ก๐‘ก0

The transform of the first term is

โ„’1๐‘ก๐‘ก0

1 ๐‘ก๐‘ก =1๐‘ก๐‘ก0๐‘ ๐‘ 

Using the time-shifting property, the second term transforms to

โ„’ โˆ’1๐‘ก๐‘ก0

1 ๐‘ก๐‘ก โˆ’ ๐‘ก๐‘ก0 = โˆ’๐‘’๐‘’โˆ’๐‘ ๐‘ 0๐‘ ๐‘ 

๐‘ก๐‘ก0๐‘ ๐‘ 

Page 34: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

34

Impulse Function โ€“ Laplace Transform

In the limit, as ๐‘ก๐‘ก0 โ†’ 0, ๐‘”๐‘” ๐‘ก๐‘ก โ†’ ๐›ฟ๐›ฟ ๐‘ก๐‘ก , so

โ„’ ๐›ฟ๐›ฟ ๐‘ก๐‘ก = lim๐‘ ๐‘ 0โ†’0

โ„’ ๐‘”๐‘” ๐‘ก๐‘ก

โ„’ ๐›ฟ๐›ฟ ๐‘ก๐‘ก = lim๐‘ ๐‘ 0โ†’0

1 โˆ’ ๐‘’๐‘’โˆ’๐‘ ๐‘ 0๐‘ ๐‘ 

๐‘ก๐‘ก0๐‘ ๐‘ 

Apply lโ€™Hรดpitalโ€™s rule

โ„’ ๐›ฟ๐›ฟ ๐‘ก๐‘ก = lim๐‘ ๐‘ 0โ†’0

๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก0

1 โˆ’ ๐‘’๐‘’โˆ’๐‘ ๐‘ 0๐‘ ๐‘ 

๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก0

๐‘ก๐‘ก0๐‘ ๐‘ = lim

๐‘ ๐‘ 0โ†’0

๐‘ ๐‘ ๐‘’๐‘’โˆ’๐‘ ๐‘ 0๐‘ ๐‘ 

๐‘ ๐‘ =๐‘ ๐‘ ๐‘ ๐‘ 

The Laplace transform of an impulse function is one

โ„’ ๐›ฟ๐›ฟ ๐‘ก๐‘ก = 1 (18)

Page 35: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

35

Common Laplace Transforms

๐’ˆ๐’ˆ ๐’•๐’• ๐‘ฎ๐‘ฎ ๐’”๐’”

๐›ฟ๐›ฟ ๐‘ก๐‘ก 1

1 ๐‘ก๐‘ก 1๐‘ ๐‘ 

๐‘ก๐‘ก 1๐‘ ๐‘ 2

๐‘ก๐‘ก๐‘š๐‘š ๐‘š๐‘š!๐‘ ๐‘ ๐‘š๐‘š+1

๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘  1๐‘ ๐‘  + ๐‘Ž๐‘Ž

๐‘ก๐‘ก๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘ 1

๐‘ ๐‘  + ๐‘Ž๐‘Ž 2

sin ๐‘—๐‘—๐‘ก๐‘ก๐‘—๐‘—

๐‘ ๐‘ 2 + ๐‘—๐‘—2

cos ๐‘—๐‘—๐‘ก๐‘ก๐‘ ๐‘ 

๐‘ ๐‘ 2 + ๐‘—๐‘—2

๐’ˆ๐’ˆ ๐’•๐’• ๐‘ฎ๐‘ฎ ๐’”๐’”

๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘  sin ๐‘—๐‘—๐‘ก๐‘ก๐‘—๐‘—

๐‘ ๐‘  + ๐‘Ž๐‘Ž 2 + ๐‘—๐‘—2

๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘  cos ๐‘—๐‘—๐‘ก๐‘ก๐‘ ๐‘  + ๐‘Ž๐‘Ž

๐‘ ๐‘  + ๐‘Ž๐‘Ž 2 + ๐‘—๐‘—2

๏ฟฝฬ‡๏ฟฝ๐‘”(๐‘ก๐‘ก) ๐‘ ๐‘ ๐บ๐บ ๐‘ ๐‘  โˆ’ ๐‘”๐‘”(0)

๏ฟฝฬˆ๏ฟฝ๐‘” ๐‘ก๐‘ก ๐‘ ๐‘ 2๐บ๐บ ๐‘ ๐‘  โˆ’ ๐‘ ๐‘ ๐‘”๐‘” 0 โˆ’ ๏ฟฝฬ‡๏ฟฝ๐‘” 0

๏ฟฝ0

๐‘ ๐‘ ๐‘”๐‘” ๐œ๐œ ๐‘‘๐‘‘๐œ๐œ

1๐‘ ๐‘ ๐บ๐บ ๐‘ ๐‘ 

๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘ ๐‘”๐‘” ๐‘ก๐‘ก ๐บ๐บ ๐‘ ๐‘  + ๐‘Ž๐‘Ž

๐‘”๐‘” ๐‘ก๐‘ก โˆ’ ๐‘Ž๐‘Ž ๏ฟฝ 1 ๐‘ก๐‘ก โˆ’ ๐‘Ž๐‘Ž ๐‘’๐‘’โˆ’๐‘Ž๐‘Ž๐‘ ๐‘ ๐บ๐บ ๐‘ ๐‘ 

๐‘ก๐‘ก ๏ฟฝ ๐‘”๐‘” ๐‘ก๐‘ก โˆ’๐‘‘๐‘‘๐‘‘๐‘‘๐‘ ๐‘ ๐บ๐บ ๐‘ ๐‘ 

Page 36: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

Weโ€™ve just seen how time-domain functions can betransformed to the Laplace domain. Next, weโ€™ll look athow we can solve differential equations in the Laplacedomain and transform back to the time domain.

Inverse Laplace Transform36

Page 37: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

37

Laplace Transforms โ€“ Differential Equations

Consider the simple spring/mass/damper system from the previous section of notes

Applying Newtonโ€™s 2nd law at the mass:

๐น๐น๐‘–๐‘–๐‘›๐‘› ๐‘ก๐‘ก โˆ’ ๐‘๐‘๏ฟฝฬ‡๏ฟฝ๐‘ฅ โˆ’ ๐‘˜๐‘˜๐‘ฅ๐‘ฅ = ๐‘š๐‘š๏ฟฝฬˆ๏ฟฝ๐‘ฅ

Rearranging, gives the governing second-order differential equation

๏ฟฝฬˆ๏ฟฝ๐‘ฅ + ๐‘๐‘๐‘š๐‘š๏ฟฝฬ‡๏ฟฝ๐‘ฅ + ๐‘˜๐‘˜

๐‘š๐‘š๐‘ฅ๐‘ฅ = 1

๐‘š๐‘š๐น๐น๐‘–๐‘–๐‘›๐‘› ๐‘ก๐‘ก (1)

This equations describes the dynamic response of the system to some applied input force, ๐น๐น๐‘–๐‘–๐‘›๐‘› ๐‘ก๐‘ก

That input may take many forms, e.g.: Step Sinusoidal Impulse, etc.

Page 38: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

38

Laplace Transforms โ€“ Differential Equations

Weโ€™ll now use Laplace transforms to determine the step response of the system

1N step force input

๐น๐น๐‘–๐‘–๐‘›๐‘› ๐‘ก๐‘ก = 1๐‘๐‘ ๏ฟฝ 1 ๐‘ก๐‘ก = ๏ฟฝ0๐‘๐‘, ๐‘ก๐‘ก < 01๐‘๐‘, ๐‘ก๐‘ก โ‰ฅ 0 (2)

For the step response, we assume zero initial conditions

๐‘ฅ๐‘ฅ 0 = 0 and ๏ฟฝฬ‡๏ฟฝ๐‘ฅ 0 = 0 (3)

Using the derivative property of the Laplace transform, (1) becomes

๐‘ ๐‘ 2๐‘‹๐‘‹ ๐‘ ๐‘  โˆ’ ๐‘ ๐‘ ๐‘ฅ๐‘ฅ 0 โˆ’ ๏ฟฝฬ‡๏ฟฝ๐‘ฅ 0 +๐‘๐‘๐‘š๐‘š๐‘ ๐‘ ๐‘‹๐‘‹ ๐‘ ๐‘  โˆ’

๐‘๐‘๐‘š๐‘š๐‘ฅ๐‘ฅ(0) +

๐‘˜๐‘˜๐‘š๐‘š๐‘‹๐‘‹ ๐‘ ๐‘  =

1๐‘š๐‘š๐น๐น๐‘–๐‘–๐‘›๐‘› ๐‘ ๐‘ 

๐‘ ๐‘ 2๐‘‹๐‘‹ ๐‘ ๐‘  + ๐‘๐‘๐‘š๐‘š๐‘ ๐‘ ๐‘‹๐‘‹ ๐‘ ๐‘  + ๐‘˜๐‘˜

๐‘š๐‘š๐‘‹๐‘‹ ๐‘ ๐‘  = 1

๐‘š๐‘š๐น๐น๐‘–๐‘–๐‘›๐‘› ๐‘ ๐‘  (4)

Page 39: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

39

Laplace Transforms โ€“ Differential Equations

The input is a step, so (7) becomes

๐‘ ๐‘ 2๐‘‹๐‘‹ ๐‘ ๐‘  + ๐‘๐‘๐‘š๐‘š๐‘ ๐‘ ๐‘‹๐‘‹ ๐‘ ๐‘  + ๐‘˜๐‘˜

๐‘š๐‘š๐‘‹๐‘‹ ๐‘ ๐‘  = 1

๐‘š๐‘š1๐‘๐‘ 1

๐‘ ๐‘ (5)

Solving (5) for ๐‘‹๐‘‹ ๐‘ ๐‘ 

๐‘‹๐‘‹ ๐‘ ๐‘  ๐‘ ๐‘ 2 +๐‘๐‘๐‘š๐‘š ๐‘ ๐‘  +

๐‘˜๐‘˜๐‘š๐‘š =

1๐‘š๐‘š

1๐‘ ๐‘ 

๐‘‹๐‘‹ ๐‘ ๐‘  = 1/๐‘š๐‘š

๐‘ ๐‘  ๐‘ ๐‘ 2+๐‘๐‘๐‘š๐‘š๐‘ ๐‘ +

๐‘˜๐‘˜๐‘š๐‘š

(6)

Equation (6) is the solution to the differential equation of (1), given the step input and I.C.โ€™s The system step response in the Laplace domain Next, we need to transform back to the time domain

Page 40: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

40

Laplace Transforms โ€“ Differential Equations

๐‘‹๐‘‹ ๐‘ ๐‘  = 1/๐‘š๐‘š

๐‘ ๐‘  ๐‘ ๐‘ 2+๐‘๐‘๐‘š๐‘š๐‘ ๐‘ +

๐‘˜๐‘˜๐‘š๐‘š

(6)

The form of (6) is typical of Laplace transforms when dealing with linear systems

A rational polynomial in ๐‘ ๐‘  Here, the numerator is 0th-order

๐‘‹๐‘‹ ๐‘ ๐‘  =๐ต๐ต ๐‘ ๐‘ ๐ด๐ด ๐‘ ๐‘ 

Roots of the numerator polynomial, ๐ต๐ต ๐‘ ๐‘  , are called the zeros of the function

Roots of the denominator polynomial, ๐ด๐ด ๐‘ ๐‘  , are called the polesof the function

Page 41: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

41

Inverse Laplace Transforms

๐‘‹๐‘‹ ๐‘ ๐‘  = 1/๐‘š๐‘š

๐‘ ๐‘  ๐‘ ๐‘ 2+๐‘๐‘๐‘š๐‘š๐‘ ๐‘ +

๐‘˜๐‘˜๐‘š๐‘š

(6)

To get (6) back into the time domain, we need to perform an inverse Laplace transform An integral inverse transform exists, but we donโ€™t use it Instead, we use partial fraction expansion

Partial fraction expansion Idea is to express the Laplace transform solution, (6), as a sum of

Laplace transform terms that appear in the table Procedure depends on the type of roots of the denominator polynomial

Real and distinct Repeated Complex

Page 42: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

42

Inverse Laplace Transforms โ€“ Example 1

Consider the following system parameters๐‘š๐‘š = 1๐‘˜๐‘˜๐‘”๐‘”

๐‘˜๐‘˜ =16๐‘๐‘๐‘š๐‘š

๐‘๐‘ = 10๐‘๐‘ ๏ฟฝ ๐‘ ๐‘ ๐‘š๐‘š

Laplace transform of the step response becomes

๐‘‹๐‘‹ ๐‘ ๐‘  = 1๐‘ ๐‘  ๐‘ ๐‘ 2+10๐‘ ๐‘ +16

(7)

Factoring the denominator

๐‘‹๐‘‹ ๐‘ ๐‘  = 1๐‘ ๐‘  ๐‘ ๐‘ +2 ๐‘ ๐‘ +8

(8)

In this case, the denominator polynomial has three real, distinct roots

๐‘ ๐‘ 1 = 0, ๐‘ ๐‘ 2 = โˆ’2, ๐‘ ๐‘ 3 = โˆ’8

Page 43: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

43

Inverse Laplace Transforms โ€“ Example 1

Partial fraction expansion of (8) has the form

๐‘‹๐‘‹ ๐‘ ๐‘  = 1๐‘ ๐‘  ๐‘ ๐‘ +2 ๐‘ ๐‘ +8

= ๐‘Ÿ๐‘Ÿ1๐‘ ๐‘ 

+ ๐‘Ÿ๐‘Ÿ2๐‘ ๐‘ +2

+ ๐‘Ÿ๐‘Ÿ3๐‘ ๐‘ +8

(9)

The numerator coefficients, ๐‘Ÿ๐‘Ÿ1, ๐‘Ÿ๐‘Ÿ2, and ๐‘Ÿ๐‘Ÿ3, are called residues

Can already see the form of the time-domain function Sum of a constant and two decaying exponentials

To determine the residues, multiply both sides of (9) by the denominator of the left-hand side

1 = ๐‘Ÿ๐‘Ÿ1 ๐‘ ๐‘  + 2 ๐‘ ๐‘  + 8 + ๐‘Ÿ๐‘Ÿ2๐‘ ๐‘  ๐‘ ๐‘  + 8 + ๐‘Ÿ๐‘Ÿ3๐‘ ๐‘  ๐‘ ๐‘  + 2

1 = ๐‘Ÿ๐‘Ÿ1๐‘ ๐‘ 2 + 10๐‘Ÿ๐‘Ÿ1๐‘ ๐‘  + 16๐‘Ÿ๐‘Ÿ1 + ๐‘Ÿ๐‘Ÿ2๐‘ ๐‘ 2 + 8๐‘Ÿ๐‘Ÿ2๐‘ ๐‘  + ๐‘Ÿ๐‘Ÿ3๐‘ ๐‘ 2 + 2๐‘Ÿ๐‘Ÿ3๐‘ ๐‘ 

Collecting terms, we have

1 = ๐‘ ๐‘ 2 ๐‘Ÿ๐‘Ÿ1 + ๐‘Ÿ๐‘Ÿ2 + ๐‘Ÿ๐‘Ÿ3 + ๐‘ ๐‘  10๐‘Ÿ๐‘Ÿ1 + 8๐‘Ÿ๐‘Ÿ2 + 2๐‘Ÿ๐‘Ÿ3 + 16๐‘Ÿ๐‘Ÿ1 (10)

Page 44: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

44

Inverse Laplace Transforms โ€“ Example 1

Equating coefficients of powers of ๐‘ ๐‘  on both sides of (10) gives a system of three equations in three unknowns

๐‘ ๐‘ 2: ๐‘Ÿ๐‘Ÿ1 + ๐‘Ÿ๐‘Ÿ2 + ๐‘Ÿ๐‘Ÿ3 = 0๐‘ ๐‘ 1: 10๐‘Ÿ๐‘Ÿ1 + 8๐‘Ÿ๐‘Ÿ2 + 2๐‘Ÿ๐‘Ÿ3 = 0๐‘ ๐‘ 0: 16๐‘Ÿ๐‘Ÿ1 = 1

Solving for the residues gives๐‘Ÿ๐‘Ÿ1 = 0.0625๐‘Ÿ๐‘Ÿ2 = โˆ’0.0833๐‘Ÿ๐‘Ÿ3 = 0.0208

The Laplace transform of the step response is

๐‘‹๐‘‹ ๐‘ ๐‘  = 0.0625๐‘ ๐‘ 

โˆ’ 0.0833๐‘ ๐‘ +2

+ 0.0208๐‘ ๐‘ +8

(11)

Equation (11) can now be transformed back to the time domain using the Laplace transform table

Page 45: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

45

Inverse Laplace Transforms โ€“ Example 1

The time-domain step response of the system is the sum of a constant term and two decaying exponentials:

๐‘ฅ๐‘ฅ ๐‘ก๐‘ก = 0.0625 โˆ’ 0.0833๐‘’๐‘’โˆ’2๐‘ ๐‘  + 0.0208๐‘’๐‘’โˆ’8๐‘ ๐‘  (12)

Step response plotted in MATLAB

Characteristic of a signal having only real poles No overshoot/ringing

Steady-state displacement agrees with intuition 1๐‘๐‘ force applied to a 16๐‘๐‘/๐‘š๐‘š

spring

Page 46: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

46

Inverse Laplace Transforms โ€“ Example 1

Go back to (7) and apply the initial value theorem

๐‘ฅ๐‘ฅ 0 = lim๐‘ ๐‘ โ†’โˆž

๐‘ ๐‘ ๐‘‹๐‘‹ ๐‘ ๐‘  = lim๐‘ ๐‘ โ†’โˆž

1๐‘ ๐‘ 2 + 10๐‘ ๐‘  + 16

= 0๐‘๐‘๐‘š๐‘š

Which is, in fact our assumed initial condition

Next, apply the final value theorem to the Laplace transform step response, (7)

๐‘ฅ๐‘ฅ โˆž = lim๐‘ ๐‘ โ†’0

๐‘ ๐‘ ๐‘Œ๐‘Œ ๐‘ ๐‘  = lim๐‘ ๐‘ โ†’0

1๐‘ ๐‘ 2 + 10๐‘ ๐‘  + 16

๐‘ฅ๐‘ฅ โˆž = 116

= 0.0625๐‘š๐‘š = 6.25๐‘๐‘๐‘š๐‘š

This final value agrees with both intuition and our numerical analysis

Page 47: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

47

Inverse Laplace Transforms โ€“ Example 2

Reduce the damping and re-calculate the step response

๐‘š๐‘š = 1๐‘˜๐‘˜๐‘”๐‘”

๐‘˜๐‘˜ =16๐‘๐‘๐‘š๐‘š

๐‘๐‘ = 8๐‘๐‘ ๏ฟฝ ๐‘ ๐‘ ๐‘š๐‘š

Laplace transform of the step response becomes

๐‘‹๐‘‹ ๐‘ ๐‘  = 1๐‘ ๐‘  ๐‘ ๐‘ 2+8๐‘ ๐‘ +16

(13)

Factoring the denominator

๐‘‹๐‘‹ ๐‘ ๐‘  = 1๐‘ ๐‘  ๐‘ ๐‘ +4 2 (14)

In this case, the denominator polynomial has three real roots, two of which are identical

๐‘ ๐‘ 1 = 0, ๐‘ ๐‘ 2 = โˆ’4, ๐‘ ๐‘ 3 = โˆ’4

Page 48: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

48

Inverse Laplace Transforms โ€“ Example 2

Partial fraction expansion of (14) has the form

๐‘‹๐‘‹ ๐‘ ๐‘  = 1๐‘ ๐‘  ๐‘ ๐‘ +4 2 = ๐‘Ÿ๐‘Ÿ1

๐‘ ๐‘ + ๐‘Ÿ๐‘Ÿ2

๐‘ ๐‘ +4+ ๐‘Ÿ๐‘Ÿ3

๐‘ ๐‘ +4 2 (15)

Again, find residues by multiplying both sides of (15) by the left-hand side denominator

1 = ๐‘Ÿ๐‘Ÿ1 ๐‘ ๐‘  + 4 2 + ๐‘Ÿ๐‘Ÿ2๐‘ ๐‘  ๐‘ ๐‘  + 4 + ๐‘Ÿ๐‘Ÿ3๐‘ ๐‘ 

1 = ๐‘Ÿ๐‘Ÿ1๐‘ ๐‘ 2 + 8๐‘Ÿ๐‘Ÿ1๐‘ ๐‘  + 16๐‘Ÿ๐‘Ÿ1 + ๐‘Ÿ๐‘Ÿ2๐‘ ๐‘ 2 + 4๐‘Ÿ๐‘Ÿ2๐‘ ๐‘  + ๐‘Ÿ๐‘Ÿ3๐‘ ๐‘ 

Collecting terms, we have

1 = ๐‘ ๐‘ 2 ๐‘Ÿ๐‘Ÿ1 + ๐‘Ÿ๐‘Ÿ2 + ๐‘ ๐‘  8๐‘Ÿ๐‘Ÿ1 + 4๐‘Ÿ๐‘Ÿ2 + ๐‘Ÿ๐‘Ÿ3 + 16๐‘Ÿ๐‘Ÿ1 (16)

Page 49: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

49

Inverse Laplace Transforms โ€“ Example 2

Equating coefficients of powers of ๐‘ ๐‘  on both sides of (16) gives a system of three equations in three unknowns

๐‘ ๐‘ 2: ๐‘Ÿ๐‘Ÿ1 + ๐‘Ÿ๐‘Ÿ2 = 0๐‘ ๐‘ 1: 8๐‘Ÿ๐‘Ÿ1 + 4๐‘Ÿ๐‘Ÿ2 + ๐‘Ÿ๐‘Ÿ3 = 0๐‘ ๐‘ 0: 16๐‘Ÿ๐‘Ÿ1 = 1

Solving for the residues gives๐‘Ÿ๐‘Ÿ1 = 0.0625๐‘Ÿ๐‘Ÿ2 = โˆ’0.0625๐‘Ÿ๐‘Ÿ3 = โˆ’0.2500

The Laplace transform of the step response is

๐‘‹๐‘‹ ๐‘ ๐‘  = 0.0625๐‘ ๐‘ 

โˆ’ 0.0625๐‘ ๐‘ +4

โˆ’ 0.25๐‘ ๐‘ +4 2 (17)

Equation (17) can now be transformed back to the time domain using the Laplace transform table

Page 50: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

50

Inverse Laplace Transforms โ€“ Example 2

The time-domain step response of the system is the sum of a constant, a decaying exponential, and a decaying exponential scaled by time:

๐‘ฅ๐‘ฅ ๐‘ก๐‘ก = 0.0625 โˆ’ 0.0625๐‘’๐‘’โˆ’4๐‘ ๐‘  โˆ’ 0. 25๐‘ก๐‘ก๐‘’๐‘’โˆ’4๐‘ ๐‘  (18)

Step response plotted in MATLAB

Again, characteristic of a signal having only real poles

Similar to the last case

A bit faster โ€“ slow pole at ๐‘ ๐‘  = โˆ’2was eliminated

Page 51: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

51

Inverse Laplace Transforms โ€“ Example 3

Reduce the damping even further and go through the process once again

๐‘š๐‘š = 1๐‘˜๐‘˜๐‘”๐‘”

๐‘˜๐‘˜ =16๐‘๐‘๐‘š๐‘š

๐‘๐‘ = 4๐‘๐‘ ๏ฟฝ ๐‘ ๐‘ ๐‘š๐‘š

Laplace transform of the step response becomes

๐‘‹๐‘‹ ๐‘ ๐‘  = 1๐‘ ๐‘  ๐‘ ๐‘ 2+4๐‘ ๐‘ +16

(19)

The second-order term in the denominator now has complex roots, so we wonโ€™t factor any further

The denominator polynomial still has a root at zero and now has two roots which are a complex-conjugate pair

๐‘ ๐‘ 1 = 0, ๐‘ ๐‘ 2 = โˆ’2 + ๐‘—๐‘—๐‘—.464, ๐‘ ๐‘ 3 = โˆ’2 โˆ’ ๐‘—๐‘—๐‘—.464

Page 52: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

52

Inverse Laplace Transforms โ€“ Example 3

Want to cast the partial fraction terms into forms that appear in the Laplace transform table

Second-order terms should be of the form

๐‘Ÿ๐‘Ÿ๐‘–๐‘–(๐‘ ๐‘ +๐œŽ๐œŽ)+๐‘Ÿ๐‘Ÿ๐‘–๐‘–+1๐‘—๐‘—๐‘ ๐‘ +๐œŽ๐œŽ 2+๐‘—๐‘—2 (20)

This will transform into the sum of damped sine and cosine terms

โ„’โˆ’1 ๐‘Ÿ๐‘Ÿ๐‘–๐‘–๐‘ ๐‘  + ๐œŽ๐œŽ

๐‘ ๐‘  + ๐œŽ๐œŽ 2 + ๐‘—๐‘—2 + ๐‘Ÿ๐‘Ÿ๐‘–๐‘–+1๐‘—๐‘—

๐‘ ๐‘  + ๐œŽ๐œŽ 2 + ๐‘—๐‘—2 = ๐‘Ÿ๐‘Ÿ๐‘–๐‘–๐‘’๐‘’โˆ’๐œŽ๐œŽ๐‘ ๐‘  cos ๐‘—๐‘—๐‘ก๐‘ก + ๐‘Ÿ๐‘Ÿ๐‘–๐‘–+1๐‘’๐‘’โˆ’๐œŽ๐œŽ๐‘ ๐‘  sin ๐‘—๐‘—๐‘ก๐‘ก

To get the second-order term in the denominator of (19) into the form of (20), complete the square, to give the following partial fraction expansion

๐‘‹๐‘‹ ๐‘ ๐‘  = 1๐‘ ๐‘  ๐‘ ๐‘ 2+4๐‘ ๐‘ +16

= ๐‘Ÿ๐‘Ÿ1๐‘ ๐‘ 

+ ๐‘Ÿ๐‘Ÿ2 ๐‘ ๐‘ +2 +๐‘Ÿ๐‘Ÿ3 3.464๐‘ ๐‘ +2 2+ 3.464 2 (21)

Page 53: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

53

Inverse Laplace Transforms โ€“ Example 3

Note that the ๐œŽ๐œŽ and ๐‘—๐‘— terms in (20) and (24) are the real and imaginary parts of the complex-conjugate denominator roots

๐‘ ๐‘ 2,3 = โˆ’๐œŽ๐œŽ ยฑ ๐‘—๐‘—๐‘—๐‘— = โˆ’2 ยฑ ๐‘—๐‘—๐‘—.464

Multiplying both sides of (21) by the left-hand-side denominator, equate coefficients and solve for residues as before:

๐‘Ÿ๐‘Ÿ1 = 0.0625๐‘Ÿ๐‘Ÿ2 = โˆ’0.0625๐‘Ÿ๐‘Ÿ3 = โˆ’0.0361

Laplace transform of the step response is

๐‘‹๐‘‹ ๐‘ ๐‘  = 0.0625๐‘ ๐‘ 

โˆ’ 0.0625 ๐‘ ๐‘ +2๐‘ ๐‘ +2 2+ 3.464 2 โˆ’

0.0361 3.464๐‘ ๐‘ +2 2+ 3.464 2 (22)

Page 54: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

54

Inverse Laplace Transforms โ€“ Example 3

The time-domain step response of the system is the sum of a constant and two decaying sinusoids:

๐‘ฅ๐‘ฅ ๐‘ก๐‘ก = 0.0625 โˆ’ 0.0625๐‘’๐‘’โˆ’2๐‘ ๐‘  cos 3.464๐‘ก๐‘ก โˆ’ 0.0361๐‘’๐‘’โˆ’2๐‘ ๐‘ sin(3.464๐‘ก๐‘ก) (23)

Step response and individual components plotted in MATLAB

Characteristic of a signal having complex poles

Sinusoidal terms result in overshoot and (possibly) ringing

Page 55: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

55

Laplace-Domain Signals with Complex Poles

The Laplace transform of the step response in the last example had complex poles A complex-conjugate pair: ๐‘ ๐‘  = โˆ’๐œŽ๐œŽ ยฑ ๐‘—๐‘—๐‘—๐‘—

Results in sine and cosine terms in the time domain

๐ด๐ด๐‘’๐‘’โˆ’๐œŽ๐œŽ๐‘ ๐‘  cos ๐‘—๐‘—๐‘ก๐‘ก + ๐ต๐ต๐‘’๐‘’โˆ’๐œŽ๐œŽ๐‘ ๐‘  sin ๐‘—๐‘—๐‘ก๐‘ก

Imaginary part of the roots, ๐‘—๐‘— Frequency of oscillation of sinusoidal

components of the signal

Real part of the roots, ๐œŽ๐œŽ, Rate of decay of the sinusoidal

components

Much more on this later

Page 56: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

Natural and Forced Responses56

Page 57: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

57

Natural and Forced Responses

So far, weโ€™ve used Laplace transforms to determine the response of a system to a step input, given zero initial conditions The driven response

Now, consider the response of the same system to non-zero initial conditions only The natural response

Page 58: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

58

Natural Response

๏ฟฝฬˆ๏ฟฝ๐‘ฅ + ๐‘๐‘๐‘š๐‘š๏ฟฝฬ‡๏ฟฝ๐‘ฅ + ๐‘˜๐‘˜

๐‘š๐‘š๐‘ฅ๐‘ฅ = 0 (1)

Use the derivative property to Laplace transform (1) Allow for non-zero initial-conditions

๐‘ ๐‘ 2๐‘‹๐‘‹ ๐‘ ๐‘  โˆ’ ๐‘ ๐‘ ๐‘ฅ๐‘ฅ 0 โˆ’ ๏ฟฝฬ‡๏ฟฝ๐‘ฅ 0 + ๐‘๐‘๐‘š๐‘š๐‘ ๐‘ ๐‘‹๐‘‹ ๐‘ ๐‘  โˆ’ ๐‘๐‘

๐‘š๐‘š๐‘ฅ๐‘ฅ 0 + ๐‘˜๐‘˜

๐‘š๐‘š๐‘‹๐‘‹ ๐‘ ๐‘  = 0 (2)

Same spring/mass/damper system Set the input to zero Second-order ODE for displacement

of the mass:

Page 59: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

59

Natural Response

Solving (2) for ๐‘‹๐‘‹ ๐‘ ๐‘  gives the Laplace transform of the output due solely to initial conditions

Laplace transform of the natural response

๐‘‹๐‘‹ ๐‘ ๐‘  =๐‘ ๐‘  ๐‘ฅ๐‘ฅ 0 + ๏ฟฝฬ‡๏ฟฝ๐‘ฅ 0 + ๐‘๐‘

๐‘š๐‘š๐‘ฅ๐‘ฅ 0

๐‘ ๐‘ 2+๐‘๐‘๐‘š๐‘š๐‘ ๐‘ +

๐‘˜๐‘˜๐‘š๐‘š

(3)

Consider the under-damped system with the following initial conditions

๐‘š๐‘š = 1 ๐‘˜๐‘˜๐‘”๐‘”

๐‘˜๐‘˜ = 16 ๐‘๐‘๐‘š๐‘š

๐‘๐‘ = 4 ๐‘๐‘๏ฟฝ๐‘ ๐‘ ๐‘š๐‘š

๐‘ฅ๐‘ฅ 0 = 0.15 ๐‘š๐‘š

๏ฟฝฬ‡๏ฟฝ๐‘ฅ 0 = 0.1๐‘š๐‘š๐‘ ๐‘ 

Page 60: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

60

Natural Response

Substituting component parameters and initial conditions into (3)

๐‘‹๐‘‹ ๐‘ ๐‘  = 0.15๐‘ ๐‘  +0.7๐‘ ๐‘ 2+4๐‘ ๐‘ +16

(4)

Remember, itโ€™s the roots of the denominator polynomial that dictate the form of the response Real roots โ€“ decaying exponentials Complex roots โ€“ decaying sinusoids

For the under-damped case, roots are complex Complete the square Partial fraction expansion has the form

๐‘‹๐‘‹ ๐‘ ๐‘  = 0.15๐‘ ๐‘  +0.7๐‘ ๐‘ 2+4๐‘ ๐‘ +16

= ๐‘Ÿ๐‘Ÿ1 ๐‘ ๐‘ +2 +๐‘Ÿ๐‘Ÿ2 3.464๐‘ ๐‘ +2 2+ 3.464 2 (5)

Page 61: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

61

Natural Response

๐‘‹๐‘‹ ๐‘ ๐‘  = 0.15๐‘ ๐‘  +0.7๐‘ ๐‘ 2+4๐‘ ๐‘ +16

= ๐‘Ÿ๐‘Ÿ1 ๐‘ ๐‘ +2 +๐‘Ÿ๐‘Ÿ2 3.464๐‘ ๐‘ +2 2+ 3.464 2 (5)

Multiply both sides of (5) by the denominator of the left-hand side

0.15๐‘ ๐‘  + 0.7 = ๐‘Ÿ๐‘Ÿ1๐‘ ๐‘  + 2๐‘Ÿ๐‘Ÿ1 + 3.464๐‘Ÿ๐‘Ÿ2

Equating coefficients and solving for ๐‘Ÿ๐‘Ÿ1 and ๐‘Ÿ๐‘Ÿ2 gives

๐‘Ÿ๐‘Ÿ1 = 0.15, ๐‘Ÿ๐‘Ÿ2 = 0.115

The Laplace transform of the natural response:

๐‘‹๐‘‹ ๐‘ ๐‘  = 0.15 ๐‘ ๐‘ +2๐‘ ๐‘ +2 2+ 3.464 2 + 0.115 3.464

๐‘ ๐‘ +2 2+ 3.464 2 (6)

Page 62: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

62

Natural Response

Inverse Laplace transform is the natural response๐‘ฅ๐‘ฅ ๐‘ก๐‘ก = 0.15๐‘’๐‘’โˆ’2๐‘ ๐‘  cos 3.464 ๏ฟฝ ๐‘ก๐‘ก + 0.115๐‘’๐‘’โˆ’2๐‘ ๐‘  sin 3.464 ๏ฟฝ ๐‘ก๐‘ก (7)

Under-damped response is the sum of decaying sine and cosine terms

Page 63: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

63

Now, Laplace transform, allowing for both non-zero input and initial conditions

๐‘ ๐‘ 2๐‘‹๐‘‹ ๐‘ ๐‘  โˆ’ ๐‘ ๐‘ ๐‘ฅ๐‘ฅ 0 โˆ’ ๏ฟฝฬ‡๏ฟฝ๐‘ฅ 0 + ๐‘๐‘๐‘š๐‘š๐‘ ๐‘ ๐‘‹๐‘‹ ๐‘ ๐‘  โˆ’ ๐‘๐‘

๐‘š๐‘š๐‘ฅ๐‘ฅ 0 + ๐‘˜๐‘˜

๐‘š๐‘š๐‘‹๐‘‹ ๐‘ ๐‘  = 1

๐‘š๐‘š๐น๐น๐‘–๐‘–๐‘›๐‘› ๐‘ ๐‘ 

Solving for ๐‘‹๐‘‹ ๐‘ ๐‘  , gives the Laplace transform of the response to both the input and the initial conditions

๐‘‹๐‘‹ ๐‘ ๐‘  =๐‘ ๐‘  ๐‘ฅ๐‘ฅ 0 + ๏ฟฝฬ‡๏ฟฝ๐‘ฅ 0 + ๐‘๐‘

๐‘š๐‘š๐‘ฅ๐‘ฅ 0 +1๐‘š๐‘š๐น๐น๐‘–๐‘–๐‘–๐‘– ๐‘ ๐‘ 

๐‘ ๐‘ 2+๐‘๐‘๐‘š๐‘š๐‘ ๐‘ +

๐‘˜๐‘˜๐‘š๐‘š

(8)

Driven Response with Non-Zero I.C.โ€™s

๏ฟฝฬˆ๏ฟฝ๐‘ฅ +๐‘๐‘๐‘š๐‘š๏ฟฝฬ‡๏ฟฝ๐‘ฅ +

๐‘˜๐‘˜๐‘š๐‘š๐‘ฅ๐‘ฅ =

1๐‘š๐‘š๐น๐น๐‘–๐‘–๐‘›๐‘› ๐‘ก๐‘ก

Page 64: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

64

Laplace transform of the response has two components

๐‘‹๐‘‹ ๐‘ ๐‘  =๐‘ ๐‘  ๐‘ฅ๐‘ฅ 0 + ๏ฟฝฬ‡๏ฟฝ๐‘ฅ 0 + ๐‘๐‘

๐‘š๐‘š๐‘ฅ๐‘ฅ 0

๐‘ ๐‘ 2+๐‘๐‘๐‘š๐‘š๐‘ ๐‘ +

๐‘˜๐‘˜๐‘š๐‘š

+1๐‘š๐‘š๐น๐น๐‘–๐‘–๐‘–๐‘– ๐‘ ๐‘ 

๐‘ ๐‘ 2+๐‘๐‘๐‘š๐‘š๐‘ ๐‘ +

๐‘˜๐‘˜๐‘š๐‘š

Total response is a superposition of the initial condition response and the driven response

Both have the same denominator polynomial Same roots, same type of response

Over-, under-, critically-damped

Driven Response with Non-Zero I.C.โ€™s

Natural response - initial conditions Driven response - input

Page 65: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

65

Driven Response with Non-Zero I.C.โ€™s

Laplace transform of the total response

๐‘‹๐‘‹ ๐‘ ๐‘  =0.15๐‘ ๐‘  + 0.7 + 1

๐‘ ๐‘ ๐‘ ๐‘ 2 + 4๐‘ ๐‘  + 16

=0.15๐‘ ๐‘ 2 + 0.7๐‘ ๐‘  + 1๐‘ ๐‘  ๐‘ ๐‘ 2 + 4๐‘ ๐‘  + 16

Transform back to time domain via partial fraction expansion

๐‘‹๐‘‹ ๐‘ ๐‘  =๐‘Ÿ๐‘Ÿ1๐‘ ๐‘ 

+๐‘Ÿ๐‘Ÿ2 ๐‘ ๐‘  + 2

๐‘ ๐‘  + 2 2 + 3.464 2 +๐‘Ÿ๐‘Ÿ3 3.464

๐‘ ๐‘  + 2 2 + 3.464 2

Solving for the residues gives

๐‘Ÿ๐‘Ÿ1 = 0.0625, ๐‘Ÿ๐‘Ÿ2 = 0.0875, ๐‘Ÿ๐‘Ÿ3 = 0.0794

๐‘š๐‘š = 1 ๐‘˜๐‘˜๐‘”๐‘”

๐‘˜๐‘˜ = 16 ๐‘๐‘๐‘š๐‘š

๐‘๐‘ = 4 ๐‘๐‘๏ฟฝ๐‘ ๐‘ ๐‘š๐‘š

๐‘ฅ๐‘ฅ 0 = 0.15 ๐‘š๐‘š

๏ฟฝฬ‡๏ฟฝ๐‘ฅ 0 = 0.1๐‘š๐‘š๐‘ ๐‘ 

๐น๐น๐‘–๐‘–๐‘›๐‘› ๐‘ก๐‘ก = 1๐‘๐‘ ๏ฟฝ 1 ๐‘ก๐‘ก

Page 66: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

66

Driven Response with Non-Zero I.C.โ€™s

Total response:๐‘ฅ๐‘ฅ ๐‘ก๐‘ก = 0.0625 + 0.0875๐‘’๐‘’โˆ’2๐‘ ๐‘  cos 3.464 ๏ฟฝ ๐‘ก๐‘ก + 0.0794๐‘’๐‘’โˆ’2๐‘ ๐‘  sin 3.464 ๏ฟฝ ๐‘ก๐‘ก

Superposition of two components Natural response

due to initial conditions

Driven response due to the input

Page 67: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

Transfer Functions67

Page 68: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

68

Transfer Functions

Consider a system block diagram in the Laplace domain ๐‘ˆ๐‘ˆ ๐‘ ๐‘  is the Laplace-domain input ๐‘Œ๐‘Œ ๐‘ ๐‘  is the Laplace-domain output ๐บ๐บ ๐‘ ๐‘  is a Laplace-domain model

for the plant To understand what ๐บ๐บ ๐‘ ๐‘  is, revisit the previous example

We saw that if we assume zero initial conditions, the Laplace-domain output is

๐‘Œ๐‘Œ ๐‘ ๐‘  =๏ฟฝ1 ๐‘š๐‘š

๐‘ ๐‘ 2 + ๐‘๐‘๐‘š๐‘š ๐‘ ๐‘  + ๐‘˜๐‘˜

๐‘š๐‘š๐‘ˆ๐‘ˆ ๐‘ ๐‘ 

Page 69: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

69

Transfer Functions

๐‘Œ๐‘Œ ๐‘ ๐‘  =1๐‘š๐‘š

๐‘ ๐‘ 2 + ๐‘๐‘๐‘š๐‘š ๐‘ ๐‘  + ๐‘˜๐‘˜

๐‘š๐‘š๐‘ˆ๐‘ˆ ๐‘ ๐‘ 

The Laplace transform of the output is the Laplace transform of the input multiplied by the stuff in square brackets

๐‘Œ๐‘Œ ๐‘ ๐‘  = ๐บ๐บ ๐‘ ๐‘  โ‹… ๐‘ˆ๐‘ˆ ๐‘ ๐‘ 

This is the transfer function

๐บ๐บ ๐‘ ๐‘  =๐‘Œ๐‘Œ ๐‘ ๐‘ ๐‘ˆ๐‘ˆ ๐‘ ๐‘ 

The ratio of the systemโ€™s output to input in the Laplace domain, assuming zero initial conditions

A mathematical model for a dynamic system This is the model we will use for control system design in this course

Page 70: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

70

Transfer Functions

The transfer function for our example system is

๐บ๐บ ๐‘ ๐‘  =๏ฟฝ1 ๐‘š๐‘š

๐‘ ๐‘ 2 + ๐‘๐‘๐‘š๐‘š ๐‘ ๐‘  + ๐‘˜๐‘˜

๐‘š๐‘š

Note that, as was the case for the Laplace transform of the output, the transfer function is a rational polynomial in s

๐บ๐บ ๐‘ ๐‘  =๐ต๐ต ๐‘ ๐‘ ๐ด๐ด ๐‘ ๐‘ 

Roots of ๐ต๐ต ๐‘ ๐‘  are the system zeros Roots of ๐ด๐ด ๐‘ ๐‘  are the system poles These poles and zeros dictate the nature of the systemโ€™s

response

Page 71: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

71

SISO vs. MIMO Systems

Note that we have assumed a system with one input and one output

A single-input single-output (SISO) system

Often, systems have multiple inputs and multiple outputs

A multiple-input multiple-output (MIMO) system

Page 72: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

72

MIMO Systems โ€“ Transfer Matrix

For MIMO systems, the transfer function becomes a transfer matrix For an m-input p-output system, a pร—m matrix of transfer

functions

๐‘ฎ๐‘ฎ ๐‘ ๐‘  =๐บ๐บ11 ๐‘ ๐‘  โ‹ฏ ๐บ๐บ1๐‘š๐‘š ๐‘ ๐‘ โ‹ฎ โ‹ฑ โ‹ฎ

๐บ๐บ๐‘๐‘1 ๐‘ ๐‘  โ‹ฏ ๐บ๐บ๐‘๐‘๐‘š๐‘š ๐‘ ๐‘ 

Transfer function ๐บ๐บ๐‘–๐‘–๐‘—๐‘— ๐‘ ๐‘  relates the ๐‘–๐‘–๐‘ ๐‘ ๐‘ก output to the ๐‘—๐‘—๐‘ ๐‘ ๐‘ก input

๐บ๐บ๐‘–๐‘–๐‘—๐‘— ๐‘ ๐‘  =๐‘Œ๐‘Œ๐‘–๐‘– ๐‘ ๐‘ ๐‘ˆ๐‘ˆ๐‘—๐‘— ๐‘ ๐‘ 

In this course, weโ€™ll restrict our focus entirely to SISO systems

m inputsp outputs

Page 73: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

73

Characteristic Polynomial

๐บ๐บ ๐‘ ๐‘  =๐ต๐ต ๐‘ ๐‘ ๐ด๐ด ๐‘ ๐‘ 

The denominator of the transfer function is the characteristic polynomial, ฮ” ๐‘ ๐‘ 

๐บ๐บ ๐‘ ๐‘  =๐ต๐ต ๐‘ ๐‘ ฮ” ๐‘ ๐‘ 

Poles of the transfer function are roots of ฮ” ๐‘ ๐‘  System poles or eigenvalues Poles determine the terms in the partial-fraction-expansion of the

systemโ€™s natural response Along with the input, system poles determine the nature of the time-

domain response

Page 74: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

Using the Transfer Function to Determine System Response74

Page 75: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

75

Using ๐บ๐บ ๐‘ ๐‘  to determine System Response

System output in the Laplace domain can be expressed in terms of the transfer function as

๐‘Œ๐‘Œ ๐‘ ๐‘  = ๐‘ˆ๐‘ˆ ๐‘ ๐‘  ๐บ๐บ ๐‘ ๐‘  (1)

Laplace-domain output is the product of the Laplace-domain input and the transfer function

Response to two specific types of inputs often used to characterize dynamic systems Impulse response Step response

Weโ€™ll use the approach of (1) to determine these responses

Page 76: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

76

Impulse response

Impulse function

๐›ฟ๐›ฟ ๐‘ก๐‘ก = 0, ๐‘ก๐‘ก โ‰  0

โˆซโˆ’โˆžโˆž ๐›ฟ๐›ฟ ๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ก๐‘ก = 1

Laplace transform of the impulse function is

โ„’ ๐›ฟ๐›ฟ ๐‘ก๐‘ก = 1

Impulse response in the Laplace domain is

๐‘Œ๐‘Œ ๐‘ ๐‘  = 1 ๏ฟฝ ๐บ๐บ ๐‘ ๐‘  = ๐บ๐บ ๐‘ ๐‘ 

The transfer function is the Laplace transform of the impulse response Impulse response in the time domain is the inverse transform of the

transfer function

๐‘ฆ๐‘ฆ ๐‘ก๐‘ก = ๐‘”๐‘” ๐‘ก๐‘ก = โ„’โˆ’1 ๐บ๐บ ๐‘ ๐‘ 

Page 77: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

77

Step Response

Step function: 1 ๐‘ก๐‘ก = ๏ฟฝ0 ๐‘ก๐‘ก < 01 ๐‘ก๐‘ก โ‰ฅ 0

Laplace transform of the step function

โ„’ 1 ๐‘ก๐‘ก = 1๐‘ ๐‘ 

Laplace-domain step response

๐‘Œ๐‘Œ ๐‘ ๐‘  = 1๐‘ ๐‘ ๏ฟฝ ๐บ๐บ ๐‘ ๐‘ 

Time-domain step response

๐‘ฆ๐‘ฆ ๐‘ก๐‘ก = โ„’โˆ’1 1๐‘ ๐‘ ๏ฟฝ ๐บ๐บ ๐‘ ๐‘ 

Recall the integral property of the Laplace transform

โ„’ โˆซ0๐‘ ๐‘  ๐‘”๐‘” ๐œ๐œ ๐‘‘๐‘‘๐œ๐œ = 1

๐‘ ๐‘ ๏ฟฝ ๐บ๐บ ๐‘ ๐‘  , and โ„’โˆ’1 1

๐‘ ๐‘ ๏ฟฝ ๐บ๐บ ๐‘ ๐‘  = โˆซ0

๐‘ ๐‘  ๐‘”๐‘” ๐œ๐œ ๐‘‘๐‘‘๐œ๐œ

The step response is the integral of the impulse response

Page 78: Section 3 Laplace Transforms & Transfer Functions

K. Webb ESE 499

78

Transfer Function and Dynamic Response

We just saw that the impulse response is๐‘”๐‘” ๐‘ก๐‘ก = โ„’โˆ’1 ๐บ๐บ ๐‘ ๐‘ 

And the step response is

๐‘ฆ๐‘ฆ ๐‘ก๐‘ก = โ„’โˆ’11๐‘ ๐‘ ๏ฟฝ ๐บ๐บ ๐‘ ๐‘ 

Both are entirely determined by the system transfer function, ๐บ๐บ ๐‘ ๐‘  System poles and zeros determine the nature of these

responses ๐บ๐บ ๐‘ ๐‘  is a complete mathematical model for the system


Recommended