Transcript

Path-loss and Shadowing(Large-scale Fading)

PROF. MICHAEL TSAI

2014/03/23

Friis Formula

TX Antenna

EIRP=๐‘ƒ๐‘ก๐บ๐‘ก

๐‘‘

Power spatial density๐‘Š

๐‘š2

1

4๐œ‹๐‘‘2

๐ด๐‘’

ร—

ร—

RX Antenna

โ‡’ ๐‘ƒ๐‘Ÿ=๐‘ƒ๐‘ก๐บ๐‘ก๐ด๐‘’4๐œ‹๐‘‘2

2

Antenna Aperture

โ€ข Antenna Aperture=Effective Area

โ€ข Isotropic Antennaโ€™s effective area ๐‘จ๐’†,๐’Š๐’”๐’ โ‰๐€๐Ÿ

๐Ÿ’๐…

โ€ข Isotropic Antennaโ€™s Gain=1

โ€ข ๐‘ฎ =๐Ÿ’๐…

๐€๐Ÿ๐‘จ๐’†

โ€ข Friis Formula becomes: ๐‘ท๐’“ =๐‘ท๐’•๐‘ฎ๐’•๐‘ฎ๐’“๐€

๐Ÿ

๐Ÿ’๐…๐’… ๐Ÿ =๐‘ท๐’•๐‘จ๐’•๐‘จ๐’“

๐€๐Ÿ๐’…๐Ÿ

3

๐‘ท๐’“ =๐‘ท๐’•๐‘ฎ๐’•๐ด๐‘’4๐œ‹๐‘‘2

Friis Formula

โ€ข๐€๐Ÿ

๐Ÿ’๐…๐’… ๐Ÿ is often referred as โ€œFree-Space Path Lossโ€ (FSPL)

โ€ข Only valid when d is in the โ€œfar-fieldโ€ of the transmitting antenna

โ€ข Far-field: when ๐’… > ๐’…๐’‡, Fraunhofer distance

โ€ข ๐’…๐’‡ =๐Ÿ๐‘ซ๐Ÿ

๐€, and it must satisfies ๐’…๐’‡ โ‰ซ ๐‘ซ and ๐’…๐’‡ โ‰ซ ๐€

โ€ข D: Largest physical linear dimension of the antenna

โ€ข ๐œ†: Wavelength

โ€ข We often choose a ๐’…๐ŸŽ in the far-field region, and smaller than any practical distance used in the system

โ€ข Then we have ๐‘ท๐’“ ๐’… = ๐‘ท๐’“ ๐’…๐ŸŽ๐’…

๐’…๐ŸŽ

๐Ÿ

๐‘ท๐’“ =๐‘ท๐’•๐‘ฎ๐’•๐‘ฎ๐’“๐€

๐Ÿ

๐Ÿ’๐…๐’… ๐Ÿ

4

Received Signal after Free-Space Path Loss

๐’“ ๐’• = ๐‘น๐’†๐€ ๐‘ฎ๐’•๐‘ฎ๐’“๐’†๐’™๐’‘ โˆ’

๐’‹๐Ÿ๐…๐’…๐€

๐Ÿ’๐…๐’… ๐’ˆ ๐’• ๐’†๐’™๐’‘ ๐’‹๐Ÿ๐…๐’‡๐’„๐’•

phase difference due to propagation distance

Free-Space Path Loss

Complex envelope

Carrier (sinusoid)

5

Example: Far-field Distance

โ€ข Find the far-field distance of an antenna with maximum dimension of 1m and operating frequency of 900 MHz (GSM 900)

โ€ข Ans:

โ€ข Largest dimension of antenna: D=1m

โ€ข Operating Frequency: f=900 MHz

โ€ข Wavelength: ๐€ =๐’„

๐’‡=

๐Ÿ‘ร—๐Ÿ๐ŸŽ๐Ÿ–

๐Ÿ—๐ŸŽ๐ŸŽร—๐Ÿ๐ŸŽ๐Ÿ”= ๐ŸŽ. ๐Ÿ‘๐Ÿ‘

โ€ข ๐’…๐’‡ =๐Ÿ๐ƒ๐Ÿ

๐€=

๐Ÿ

๐ŸŽ.๐Ÿ‘๐Ÿ‘= ๐Ÿ”. ๐ŸŽ๐Ÿ” (m)

6

Example: FSPL โ€ข If a transmitter produces 50 watts of power, express the transmit

power in units of (a) dBm and (b) dBW.

โ€ข If 50 watts is applied to a unity gain antenna with a 900 MHz carrier frequency, find the received power in dBm at a free space distance of 100 m from the antenna. What is the received power at 10 km? Assume unity gain for the receiver antenna.

โ€ข Ans:

โ€ข ๐Ÿ๐ŸŽ ๐’๐’๐’ˆ๐Ÿ๐ŸŽ ๐Ÿ“๐ŸŽ = ๐Ÿ๐Ÿ• ๐’…๐‘ฉ๐‘พ = ๐Ÿ’๐Ÿ• ๐๐๐ฆ

โ€ข Received Power at 100m

๐‘ท๐’“(๐Ÿ๐ŸŽ๐ŸŽ๐’Ž) =

๐Ÿ“๐ŸŽ ร— ๐Ÿ ร— ๐Ÿ ร—๐Ÿ‘ ร— ๐Ÿ๐ŸŽ๐Ÿ–

๐Ÿ—๐ŸŽ๐ŸŽ ร— ๐Ÿ๐ŸŽ๐Ÿ”

๐Ÿ

๐Ÿ’๐… ร— ๐Ÿ๐ŸŽ๐ŸŽ ๐Ÿ = ๐Ÿ‘. ๐Ÿ“ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ” ๐‘พ

= โˆ’๐Ÿ“๐Ÿ’. ๐Ÿ“ (๐’…๐‘ฉ๐‘พ)

โ€ข Received Power at 10km

๐‘ท๐’“ ๐Ÿ๐ŸŽ๐’Œ๐’Ž = ๐‘ท๐’“ ๐Ÿ๐ŸŽ๐ŸŽ๐’Ž๐Ÿ๐ŸŽ๐ŸŽ

๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ

๐Ÿ

= ๐Ÿ‘. ๐Ÿ“ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ๐ŸŽ ๐‘พ

= โˆ’๐Ÿ—๐Ÿ’. ๐Ÿ“ (๐’…๐‘ฉ๐‘พ) 7

Two-ray Model

TX Antenna

๐‘‘

๐œƒ

๐‘™

๐‘ฅ ๐‘ฅโ€ฒ

RX Antenna

โ„Ž๐‘กโ„Ž๐‘Ÿ

๐บ๐‘Ž

๐บ๐‘๐บ๐‘

๐บ๐‘‘

๐‘Ÿ2โˆ’๐‘Ÿ๐‘Ž๐‘ฆ ๐‘ก =

๐‘…๐‘’๐œ†

4๐œ‹

๐บ๐‘Ž๐บ๐‘ ๐‘” ๐‘ก exp โˆ’๐‘—2๐œ‹๐‘™๐œ†

๐‘™+๐‘… ๐บ๐‘๐บ๐‘‘ ๐‘” ๐‘ก โˆ’ ๐œ exp โˆ’

๐‘—2๐œ‹ ๐‘ฅ + ๐‘ฅโ€ฒ

๐œ†

๐‘ฅ + ๐‘ฅโ€ฒexp ๐‘—2๐œ‹๐‘“๐‘๐‘ก

Delayed since x+xโ€™ is longer. ๐œ = (๐‘ฅ + ๐‘ฅโ€ฒ โˆ’ ๐‘™)/๐‘

R: ground reflection coefficient (phase and amplitude change) 8

Two-ray Model: Received Power

โ€ข ๐‘ท๐’“ = ๐‘ท๐’•๐€

๐Ÿ’๐…

๐Ÿ ๐‘ฎ๐’‚๐‘ฎ๐’ƒ

๐’+

๐‘ฎ๐’„๐‘ฎ๐’…๐’†๐’™๐’‘ โˆ’๐’‹๐šซ๐“

๐’™+๐’™โ€ฒ

๐Ÿ

โ€ข The above is verified by empirical results.

โ€ข ๐šซ๐“ = ๐Ÿ๐…(๐’™ + ๐’™โ€ฒ โˆ’ ๐’)/๐€

โ€ข ๐’™ + ๐’™โ€ฒ โˆ’ ๐’ = ๐’‰๐’• + ๐’‰๐’“๐Ÿ + ๐’…๐Ÿ โˆ’ ๐’‰๐’• โˆ’ ๐’‰๐’“

๐Ÿ + ๐’…๐Ÿ

9

l

x

xโ€™

xโ€™

x

Two-ray Model: Received Power

โ€ข When ๐’… โ‰ซ ๐’‰๐’• + ๐’‰๐’“, ๐šซ๐“ =๐Ÿ๐… ๐’™+๐’™โ€ฒโˆ’๐’

๐€โ‰ˆ

๐Ÿ’๐…๐’‰๐’•๐’‰๐’“

๐€๐’…

โ€ข For asymptotically large d, ๐’™ + ๐’™โ€ฒ โ‰ˆ ๐ฅ โ‰ˆ ๐’…, ๐œƒ โ‰ˆ ๐ŸŽ, ๐†๐š๐†๐› โ‰ˆ๐‘ฎ๐’„๐‘ฎ๐’…, ๐‘ โ‰ˆ โˆ’๐Ÿ (phase is inverted after reflection)

โ€ข๐‘ฎ๐’‚๐‘ฎ๐’ƒ

๐’+

๐‘ฎ๐’„๐‘ฎ๐’…๐’†๐’™๐’‘ โˆ’๐’‹๐šซ๐“

๐’™+๐’™โ€ฒ

๐Ÿ

โ‰ˆ๐‘ฎ๐’‚๐‘ฎ๐’ƒ

๐’…

๐Ÿ

๐Ÿ + ๐’†๐’™๐’‘ โˆ’๐’‹๐šซ๐“ ๐Ÿ

โ€ข ๐Ÿ + ๐’†๐’™๐’‘ โˆ’๐’‹๐šซ๐“ ๐Ÿ = ๐Ÿ โˆ’ ๐’„๐’๐’” ๐šซ๐“๐Ÿ+ ๐’”๐’Š๐’๐Ÿ๐šซ๐“ = ๐Ÿ โˆ’

๐Ÿ๐œ๐จ๐ฌ ๐šซ๐“ = ๐Ÿ’๐’”๐’Š๐’๐Ÿ(๐šซ๐“

๐Ÿ) โ‰ˆ ๐šซ๐“๐Ÿ

โ€ข ๐‘ท๐’“ โ‰ˆ๐€ ๐‘ฎ๐’‚๐‘ฎ๐’ƒ

๐Ÿ’๐…๐’…

๐Ÿ๐Ÿ’๐…๐’‰๐’•๐’‰๐’“

๐€๐’…

๐Ÿ๐๐ญ =

๐‘ฎ๐’‚๐‘ฎ๐’ƒ๐’‰๐’•๐’‰๐’“

๐’…๐Ÿ

๐Ÿ

๐๐ญ

10Independent of ๐œ† now

11

๐‘‘๐‘ =4โ„Ž๐‘กโ„Ž๐‘Ÿ๐œ†

โ„Ž๐‘ก

Could be a natural choice of cell size

Indoor Attenuation

โ€ข Factors which affect the indoor path-loss:

โ€ข Wall/floor materials

โ€ข Room/hallway/window/open area layouts

โ€ข Obstructing objectsโ€™ location and materials

โ€ข Room size/floor numbers

โ€ข Partition Loss:

12

Partition type Partition Loss (dB) for 900-1300 MHz

Floor 10-20 for the first one,6-10 per floor for the next 3,A few dB per floor afterwards.

Cloth partition 1.4

Double plasterboard wall 3.4

Foil insulation 3.9

Concrete wall 13

Aluminum siding 20.4

All metal 26

Simplified Path-Loss Model

โ€ข Back to the simplest:

โ€ข ๐‘‘0: reference distance for the antenna far field (usually 1-10m indoors and 10-100m outdoors)

โ€ข ๐พ: constant path-loss factor (antenna, average channel attenuation), and sometimes we use

โ€ข ๐›พ: path-loss exponent

13

๐‘ƒ๐‘Ÿ = ๐‘ƒ๐‘ก๐พ๐‘‘0๐‘‘

๐›พ

๐พ =๐œ†

4๐œ‹๐‘‘0

2

Some empirical results

14

Measurements in Germany Cities

Environment Path-loss Exponent

Free-space 2

Urban area cellular radio 2.7-3.5

Shadowed urban cellular radio

3-5

In building LOS 1.6 to 1.8

Obstructed in building 4 to 6

Obstructed in factories 2 to 3

Empirical Path-Loss Model

โ€ข Based on empirical measurements

โ€ข over a given distance

โ€ข in a given frequency range

โ€ข for a particular geographical area or building

โ€ข Could be applicable to other environments as well

โ€ข Less accurate in a more general environment

โ€ข Analytical model: ๐‘ท๐’“/๐‘ท๐’• is characterized as a function of distance.

โ€ข Empirical Model: ๐‘ท๐’“/๐‘ท๐’• is a function of distance including the effects of path loss, shadowing, and multipath.

โ€ข Need to average the received power measurements to remove multipath effects Local Mean Attenuation (LMA) at distance d.

15

Example: Okumura Model

โ€ข Okumura Model:๐‘ท๐‘ณ ๐’… ๐’…๐‘ฉ = ๐‘ณ ๐’‡๐’„, ๐’… + ๐‘จ๐ ๐’‡๐’„, ๐’… โˆ’ ๐‘ฎ ๐’‰๐’• โˆ’ ๐‘ฎ ๐’‰๐’“ โˆ’ ๐‘ฎ๐‘จ๐‘น๐‘ฌ๐‘จ

โ€ข ๐‘ณ ๐’‡๐’„, ๐’… : FSPL, ๐‘จ๐ ๐’‡๐’„, ๐’… : median attenuation in addition to FSPL

โ€ข ๐บ โ„Ž๐‘ก = 20 log10(โ„Ž๐‘ก

200) , ๐บ โ„Ž๐‘Ÿ =

10 log10โ„Ž๐‘Ÿ

3, โ„Ž๐‘Ÿ โ‰ค 3๐‘š,

20 log10โ„Ž๐‘Ÿ

3, 3๐‘š < โ„Ž๐‘Ÿ < 10๐‘š.

:antenna height gain factor.

โ€ข ๐‘ฎ๐‘จ๐‘น๐‘ฌ๐‘จ: gain due to the type of environment

16

Example: Piecewise Linear Model

โ€ข N segments with N-1 โ€œbreakpointsโ€

โ€ข Applicable to both outdoor and indoor channels

โ€ข Example โ€“ dual-slope model:

โ€ข ๐พ: constant path-loss factor

โ€ข ๐›พ1: path-loss exponent for ๐‘‘0~๐‘‘๐‘โ€ข ๐›พ2: path-loss exponent after ๐‘‘๐‘ 17

๐‘ƒ๐‘Ÿ ๐‘‘ =

๐‘ƒ๐‘ก๐พ๐‘‘0๐‘‘

๐›พ1

๐‘ƒ๐‘ก๐พ๐‘‘๐‘๐‘‘

๐›พ1 ๐‘‘

๐‘‘๐‘

๐›พ2

๐‘‘0 โ‰ค ๐‘‘ โ‰ค ๐‘‘๐‘ ,

๐‘‘ > ๐‘‘๐‘.

Shadow Fading

โ€ข Same T-R distance usually have different path loss

โ€ข Surrounding environment is different

โ€ข Reality: simplified Path-Loss Model represents an โ€œaverageโ€

โ€ข How to represent the difference between the average and the actual path loss?

โ€ข Empirical measurements have shown that

โ€ข it is random (and so is a random variable)

โ€ข Log-normal distributed

18

Log-normal distribution

โ€ข A log-normal distribution is a probability distribution of a random variable whose logarithm is normally distributed:

โ€ข ๐‘ฅ: the random variable (linear scale)

โ€ข ๐œ‡, ๐œŽ2: mean and variance of the distribution (in dB)

19

๐‘“๐‘‹ ๐‘ฅ; ๐œ‡, ๐œŽ2 =1

๐‘ฅ๐œŽ 2๐œ‹exp โˆ’

log ๐‘ฅ โˆ’ ๐œ‡ 2

2๐œŽ2

logarithm of the random variable

normalized so that the integration of the pdf=1

Log-normal Shadowing

โ€ข Expressing the path loss in dB, we have

โ€ข ๐‘ฟ๐ˆ: Describes the random shadowing effects

โ€ข ๐‘ฟ๐ˆ~๐‘ต(๐ŸŽ, ๐ˆ๐Ÿ)

(normal distribution with zero mean and ๐ˆ๐Ÿ variance)

โ€ข Same T-R distance, but different levels of clutter.

โ€ข Empirical Studies show that ๐ˆ ranges from 4 dB to 13dB in an outdoor channel

20

๐‘ƒ๐ฟ ๐‘‘ ๐‘‘๐ต = ๐‘ƒ๐ฟ ๐‘‘ + ๐‘‹๐œŽ = ๐‘ƒ๐ฟ ๐‘‘0 + 10๐›พ log๐‘‘

๐‘‘0+ ๐‘‹๐œŽ

Why is it log-normal distributed?

โ€ข Attenuation of a signal when passing through an object of depth d is approximately:

โ€ข ๐›ผ: Attenuation factor which depends on the material

โ€ข If ๐œถ is approximately the same for all blocking objects:

โ€ข ๐‘‘๐‘ก = ๐‘– ๐‘‘๐‘–: sum of all object depths

โ€ข By central limit theorem, ๐’…๐’•~๐‘ต(๐, ๐ˆ๐Ÿ) when the

number of object is large (which is true).

21

๐‘  ๐‘‘ = exp โˆ’๐›ผ๐‘‘

๐‘  ๐‘‘๐‘ก = exp โˆ’๐›ผ

๐‘–

๐‘‘๐‘– = exp โˆ’๐›ผ๐‘‘๐‘ก

Path Loss, Shadowing, and Multi-Path

22

Cell Coverage Area

โ€ข Cell coverage area: expected percentage of locations within a cell where the received power at these locations is above a given minimum.

23

Some area within the cell has received power lower than ๐‘ƒ๐‘š๐‘–๐‘›

Some area outside of the cell has received power higher than ๐‘ƒ๐‘š๐‘–๐‘›

Cell Coverage Area

โ€ข We can boost the transmission power at the BS

โ€ข Extra interference to the neighbor cells

โ€ข In fact, any mobile in the cell has a nonzero probability of having its received power below ๐‘ท๐’Ž๐’Š๐’.

โ€ข Since Normal distribution has infinite tails

โ€ข Make sense in the real-world: in a tunnel, blocked by large buildings, doesnโ€™t matter if it is very close to the BS

24

Cell Coverage Area

โ€ข Cell coverage area is given by

โ€ข ๐‘ท๐‘จ โ‰ ๐’‘ ๐‘ท๐’“ ๐’“ > ๐‘ท๐’Ž๐’Š๐’

25

๐‘ช = ๐‘ฌ๐Ÿ

๐…๐‘น๐Ÿ ๐’„๐’†๐’๐’ ๐’‚๐’“๐’†๐’‚

๐Ÿ ๐‘ท๐’“ ๐’“ > ๐‘ท๐’Ž๐’Š๐’ ๐’Š๐’ ๐’…๐‘จ ๐’…๐‘จ

=๐Ÿ

๐…๐‘น๐Ÿ ๐’„๐’†๐’๐’ ๐’‚๐’“๐’†๐’‚

๐‘ฌ ๐Ÿ ๐‘ท๐’“ ๐’“ > ๐‘ท๐’Ž๐’Š๐’ ๐’Š๐’ ๐’…๐‘จ ๐’…๐‘จ

1 if the statement is true, 0 otherwise. (indicator function)

๐‘ช =๐Ÿ

๐…๐‘น๐Ÿ ๐’„๐’†๐’๐’ ๐’‚๐’“๐’†๐’‚

๐‘ท๐‘จ๐’…๐‘จ =๐Ÿ

๐…๐‘น๐Ÿ ๐ŸŽ

๐Ÿ๐…

๐ŸŽ

๐‘น

๐‘ท๐‘จ ๐’“๐’…๐’“ ๐’…๐œฝ

Cell Coverage Area

โ€ข Q-function:

26

๐‘ƒ๐ด = ๐‘ ๐‘ƒ๐‘Ÿ ๐‘Ÿ โ‰ฅ ๐‘ƒ๐‘š๐‘–๐‘› = ๐‘„๐‘ƒ๐‘š๐‘–๐‘› โˆ’ ๐‘ƒ๐‘ก โˆ’ ๐‘ƒ๐ฟ ๐‘Ÿ

๐œŽ

๐‘„ ๐‘ง โ‰ ๐‘ ๐‘‹ > ๐‘ง = ๐‘ง

โˆž 1

2๐œ‹exp โˆ’

๐‘ฆ2

2๐‘‘๐‘ฆ

Log-normal distributionโ€™s standard deviation

z

Cell Coverage Area

โ€ข Solving the equations yield:

โ€ข ๐’‚ =๐‘ท๐’Ž๐’Š๐’โˆ’๐‘ท๐’“ ๐‘น

๐ˆ, ๐’ƒ =

๐Ÿ๐ŸŽ๐œธ๐’๐’๐’ˆ๐Ÿ๐ŸŽ ๐’†

๐ˆ

โ€ข If ๐‘ท๐’Ž๐’Š๐’ = ๐‘ท๐’“ ๐‘น

27

๐ถ = ๐‘„ ๐‘Ž + exp2 โˆ’ 2๐‘Ž๐‘

๐‘2๐‘„

2 โˆ’ ๐‘Ž๐‘

๐‘

average received power at cell boundary (distance=R)

๐ถ =1

2+ exp

2

๐‘2๐‘„

2

๐‘

Example

โ€ข Find the coverage area for a cell with

โ€ข a cell radius of 600m

โ€ข a base station transmission power of 20 dBm

โ€ข a minimum received power requirement of -110 dBm.

โ€ข path loss model: ๐‘ƒ๐‘Ÿ(๐‘‘) = ๐‘ƒ๐‘ก๐พ๐‘‘0

๐‘‘

๐›พ, ๐›พ = 3.71,๐พ = โˆ’31.54 ๐‘‘๐ต, ๐‘‘0 = 1, shadowing

standard deviation ๐œŽ = 3.65 dB

โ€ข Ans:

โ€ข ๐‘ท๐’“ ๐‘น = ๐Ÿ๐ŸŽ โˆ’ ๐Ÿ‘๐Ÿ. ๐Ÿ“๐Ÿ’ โˆ’ ๐Ÿ๐ŸŽ ร— ๐Ÿ‘. ๐Ÿ•๐Ÿ ร— ๐’๐’๐’ˆ๐Ÿ๐ŸŽ ๐Ÿ”๐ŸŽ๐ŸŽ = โˆ’๐Ÿ๐Ÿ๐Ÿ’. ๐Ÿ” ๐’…๐‘ฉ๐’Ž

โ€ข ๐’‚ =โˆ’๐Ÿ๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ๐Ÿ’.๐Ÿ”

๐Ÿ‘.๐Ÿ”๐Ÿ“= ๐Ÿ. ๐Ÿ๐Ÿ”, ๐’ƒ =

๐Ÿ๐ŸŽร—๐Ÿ‘.๐Ÿ•๐Ÿร—๐ŸŽ.๐Ÿ’๐Ÿ‘๐Ÿ’

๐Ÿ‘.๐Ÿ”๐Ÿ“= ๐Ÿ’. ๐Ÿ’๐Ÿ

โ€ข ๐‘ช = ๐‘ธ ๐Ÿ. ๐Ÿ๐Ÿ” + ๐’†๐’™๐’‘ โˆ’๐ŸŽ. ๐Ÿ’๐Ÿ” ๐‘ธ โˆ’๐ŸŽ. ๐Ÿ–๐ŸŽ๐Ÿ• = ๐ŸŽ. ๐Ÿ” (not good)

โ€ข If we calculate C for a minimum received power requirement of -120 dBm

โ€ข C=0.988!

28

๐ถ = ๐‘„ ๐‘Ž + exp2 โˆ’ 2๐‘Ž๐‘

๐‘2๐‘„

2 โˆ’ ๐‘Ž๐‘

๐‘

๐’‚ =๐‘ท๐’Ž๐’Š๐’โˆ’๐‘ท๐’“ ๐‘น

๐ˆ, ๐’ƒ =

๐Ÿ๐ŸŽ๐œธ๐’๐’๐’ˆ๐Ÿ๐ŸŽ ๐’†

๐ˆ

Doppler Effect

โ€ข Difference in path lengths ๐šซ๐ฅ = ๐’… ๐’„๐’๐’”๐œฝ = ๐’—๐šซ๐ญ ๐œ๐จ๐ฌ๐œฝ

โ€ข Phase change ๐šซ๐“ =๐Ÿ๐…๐šซ๐ฅ

๐€=

๐Ÿ๐…๐’—๐šซ๐ญ

๐€๐œ๐จ๐ฌ๐œฝ

โ€ข Frequency change, or Doppler shift,

๐’‡๐’… =๐Ÿ

๐Ÿ๐…

๐šซ๐“

๐šซ๐ญ=๐’—

๐€๐’„๐’๐’”๐œฝ

29

Exampleโ€ข Consider a transmitter which radiates a sinusoidal carrier

frequency of 1850 MHz. For a vehicle moving 60 mph, compute the received carrier frequency if the mobile is moving

1. directly toward the transmitter.

2. directly away from the transmitter

3. in a direction which is perpendicular to the direction of arrival of the transmitted signal.

โ€ข Ans:

โ€ข Wavelength=๐œ† =๐‘

๐‘“๐‘=

3ร—108

1850ร—106= 0.162 (๐‘š)

โ€ข Vehicle speed ๐‘ฃ = 60๐‘š๐‘โ„Ž = 26.82๐‘š

๐‘ 

1. ๐‘“๐‘‘ =26.82

0.162cos 0 = 160 ๐ป๐‘ง

2. ๐‘“๐‘‘ =26.82

0.162cos ๐œ‹ = โˆ’160 (๐ป๐‘ง)

3. Since cos๐œ‹

2= 0, there is no Doppler shift!

30

๐’‡๐’… =๐Ÿ

๐Ÿ๐…

๐šซ๐“

๐šซ๐ญ=๐’—

๐€๐’„๐’๐’”๐œฝ

Doppler Effect

โ€ข If the car (mobile) is moving toward the direction of the arriving wave, the Doppler shift is positive

โ€ข Different Doppler shifts if different ๐œฝ (incoming angle)

โ€ข Multi-path: all different angles

โ€ข Many Doppler shifts Doppler spread

31


Recommended