Download ppt - Nonlinear Elasticity

Transcript

7/18/05 Princeton Elasticity Lectures

Nonlinear Elasticity

7/18/05 Princeton Elasticity Lectures

Outline

• Some basics of nonlinear elasticity• Nonlinear elasticity of biopolymer

networks• Nematic elastomers

7/18/05 Princeton Elasticity Lectures

What is Elasticity

• Description of distortions of rigid bodies and the energy, forces, and fluctuations arising from these distortions.

• Describes mechanics of extended bodies from the macroscopic to the microscopic, from bridges to the cytoskeleton.

7/18/05 Princeton Elasticity Lectures

Classical Lagrangian Description

Reference material in D dimensions described by a continuum of mass points x. Neighbors of points do not change under distortion

Material distorted to new positions R(x)

( ) ( )= +R x x ux

ii i i

Rxa a a

a

d h¶

L = = +¶

i iua ah = ¶Cauchy deformation tensor

x

x

( )R x

( )R x

7/18/05 Princeton Elasticity Lectures

Linear and Nonlinear ElasticityLinear: Small deformations – near 1

Nonlinear: Large deformations – >>1

Why nonlinear?• Systems can undergo large deformations – rubbers, polymer networks , …• Non-linear theory needed to understand properties of statically strained materials• Non-linearities can renormalize nature of elasticity• Elegant an complex theory of interest in its own right

Why now:• New interest in biological materials under large strain• Liquid crystal elastomers – exotic nonlinear behavior• Old subject but difficult to penetrate – worth a fresh look

7/18/05 Princeton Elasticity Lectures

Deformations and StrainComplete information about shape of body in R(x)= x +u(x);u= const. – translation no energy. No energy cost unless u(x) varies in space. For slow variations, use the Cauchy deformation tensor

i i i i iua a a a ad d hL = +¶ = +3 3det

det 1:

d R d x= L

L =%

%No volume change

1/ 2

1/ 2

0 0

0 0

0 0

-

-

æ öL ÷ç ÷ç ÷ç ÷ç ÷L = Lç ÷ç ÷ç ÷÷ç L÷÷ççè ø%

Volume preserving stretch along z-axis

7/18/05 Princeton Elasticity Lectures

Simple shear strain

1

0 1

æ öL÷ç ÷çL = ÷ç ÷÷çè ø%

1 0

1

æ ö÷ç ÷çL = ÷ç ÷L ÷çè ø%

Constant Volume, but note stretching of sides originally along x or y.

Rotate

Not equivalent to

Note: is not symmetric

7/18/05 Princeton Elasticity Lectures

Pure Shear

2

2

1

1

æ ö+L L ÷ç ÷ç ÷L =ç ÷ç ÷ç ÷L +L ÷çè ø%

Pure shear: symmetric deformation tensor with unit determinant – equivalent to stretch along 45 deg.

7/18/05 Princeton Elasticity Lectures

Pure shear as stretch1 111 12

x x xUy yy

ji ii

j

Tij j

xRR R

x R x x

U U

2

2

1 0

0 1

TU U

7/18/05 Princeton Elasticity Lectures

Pure to simple shear

2tan

1

2 2

2 1

2

/

2

2

1 2 2 1 2

0 (1

1cos sin

sin

2

1

)

cos

7/18/05 Princeton Elasticity Lectures

Cauchy Saint-Venant Strain

( )

1 12 2

12

( ) ( )T T

k k

u

u u u u ua a a aab b b

d h h= L L - » +

= ¶ +¶ +¶ ¶% % % % % %

2 2 2dR dx u dx dxaab b- =

ii i i

Rxa a a

a

d h¶

L = = +¶uis invariant under rotations

in the target space but transforms as a tensor under rotations in the reference space. It contains no information about orientation of object.

R=Reference space

T=Target space

Symmetric!

7/18/05 Princeton Elasticity Lectures

Elastic energyThe elastic energy should be invariant under rigid rotations in the target space: if is a function of u

12

12

( )

[ ]

D

D

F d xf u

d x K u u u

This energy is automatically invariant under rotations in target space. It must also be invariant under the point-group operations of the reference space. These place constraints on the form of the elastic constants.

Note there can be a linear “stress”-like term. This can be removed (except for transverse random components) by redefinition of the reference space

7/18/05 Princeton Elasticity Lectures

Elastic modulus tensorKis the elastic constant or elastic modulus tensor. It has inherent symmetry and symmetries of the reference space.

K K K K

( )K Isotropic system

1 2

123 4

14 5

( )

( )

( )

T T

T T T T T T

T T T T

K C n n n n C n n n n

C C

C n n n n n n n n

Uniaxial (n = unit vector along uniaxial direction)

7/18/05 Princeton Elasticity Lectures

Isotropic and Uniaxial Solid

( )

1

1

2 212

23 2

( ) ( )

( ) ( )

Tr Tr Tr

ff f U V

ff u f V uV

C u DBu u uaa m

-

-

= L = L

= =

= ++ - % %%

Invariant under

( ) U (V )®R x R x

Isotropic: free energy density f has two harmonic elastic constants

Uniaxial: five harmonic elastic constants Invariant under

uni( ) U (V )®R x R x2 21 1

2 21 2 3

2 24 5 ;

( , )

zz zz

z

z

f C u C u u C u

C u C u

x

nn nn

nt n

a n

= + +

+ +

=x x

= shear modulus;B = bulk modulus

7/18/05 Princeton Elasticity Lectures

Force and stress Iext D D

i i i iF d x fu d x u

external force density – vector in target space. The stress tensor i is mixed. This is the engineering or 1st Piola-Kirchhoff stress tensor = force per area of reference space. It is not necessarily symmetric!

i if

( )

( ) ( ) ( )D

i ii i

uF fd x f

u u u

x

x x xab

a aab

dds

d d

¢¶¢- = = = - ¶¢¶ò

12

( )( ) ( )

( ) i ii

u

u

xx x

xab

aa b b

dd

d

¢¢ ¢ ¢= L ¶ +L ¶ -

I Ii i i

fua b b ba

ba

s s¶

= L º L¶

II is the second Piola-Kirchhoff stress tensor - symmetric

Note: In a linearized theory, i = iII

7/18/05 Princeton Elasticity Lectures

Cauchy stressThe Cauchy stress is the familiar force per unit area in the target space. It is a symmetric tensor in the target space.

d I d Ci i ij j i

d x u d R uaas s¶ = Ñò ò i

iR¶

Ñ º¶

detd dd R d x= L% i

i ii

R

x x Ra aa a

¶¶ ¶¶ = = = L Ñ

¶ ¶ ¶

1 1det det

C I T II Tij i j i ja a a aab

s s s= L = L LL L% %

1det

C II Ts s= L LL% %% %%

Symmetric as required

7/18/05 Princeton Elasticity Lectures

Coupling to other fieldsWe are often interested in the coupling of target-space vectors like an electric field or the nematic director to elastic strain. How is this done? The strain tensor u is a scalar in the target space, and it can only couple to target-space scalars, not vectors.

Answer lies in the polar decomposition theorem

1/ 2 1/ 2 1/ 2( ) ( )T T M-L = L L L L L º Q% %% % % % %% 1/ 2( 2 );TM u Md -= L L = + Q = L

% % % % % % %%1/ 2 1/ 2 1/ 2 1/ 2 1( ) ( )T T T T TOO M M M M d- - - - -= L L = L L = L L L L =

%% %% %% %% % % %% % % %M u

O% %

%

is symmetric and depends on only.

is an orthogonal, unimodular rotation matrix

7/18/05 Princeton Elasticity Lectures

Target-reference conversion

i

O

E Ea

%%

The rotation matrix converts target-space

vectors to reference-space vectors and vice-versa

; Ti i i i

E O E E O Ea aa a= =% %

.i ia a

dL O =%

If is symmetric, 12( )i i i i

i i k k

O u ua a a a

a a

d

d e

» + ¶ - ¶

» - W

To linear order in u, Oi has a term proportional to the antisymmetric part of the strain matrix.

7/18/05 Princeton Elasticity Lectures

Strain and Rotation

Simple ShearSymmetric shear

Rotation

n

L

% is a reference space vector; it is equal to the

target space vector that is obtained when is

symmetric

7/18/05 Princeton Elasticity Lectures

Sample couplings

1/ 2 1/ 212

12

( ) ( )( )

( )

Ti i j ij i jj

T T T T T

T

u E E E O u O E v E E

OuO

v

a aab b ab b

d

d

- -

= º

= L L L L L - L L L

= LL - =

% %

%%% %% % % % % % % %

%% % %

Coupling of electric field to strain

( )Ti j ij

ff u gE E v

Free energy no longer depends on the strain u only. The electric field defines a direction in the target space as it should

0i i

i i

xR R

x x xb

a b baa ab

¢¶¶ ¶¢L = = = L L

¢¶ ¶ ¶

i i i Energy depends on both symmetric and anti-symmetric parts of ’

7/18/05 Princeton Elasticity Lectures

Biopolymer Networks

cortical actin gel neurofilament network

7/18/05 Princeton Elasticity Lectures

Characteristics of Networks

• Off Lattice• Complex links, semi-flexible rather

than random-walk polymers• Locally randomly inhomogeneous

and anisotropic but globally homogeneous and isotropic

• Complex frequency-dependent rheology

• Striking non-linear elasticity

7/18/05 Princeton Elasticity Lectures

Goals

• Strain Hardening (more resistance to deformation with increasing strain) – physiological importance

• Formalisms for treating nonlinear elasticity of random lattices– Affine approximation– Non-affine

7/18/05 Princeton Elasticity Lectures

Different Networks

10

100

1000

0.01 0.1 1

Strain stiffening of semiflexible biopolymer networksG

or

G' p

lat(P

a)

Strain

NF

Vimentin

Collagen

Actin

Fibrin

polyacrylamide

Max strain ~.25 except for vimentin and NF

Max stretch:L()/L~1.13 at 45 deg to normal

7/18/05 Princeton Elasticity Lectures

Semi-microscopic models

Random or periodic crosslinked network: Elastic energy resides in bonds (links or strands) connecting nodes

Rb = separation of nodes in bond bVb(| Rb |) = free energy of bond b

0

0

( ) ( )

( )

b bb

b

F V N V

Ff n V

V

R

R

R R

R=f

= =

=

å nb = Number of bonds per unit volume of reference lattice

7/18/05 Princeton Elasticity Lectures

Affine Transformations

Reference network:Positions R0

Strained target network:Ri=ijR0j

00

( )b

Ff n V

V RR= = L

%

1/ 2 1/ 2

1/ 2

0 1/ 2 0

( ) (1 2 )

( ) :

| | |(1 2 ) |

T

T

b b

O O u

O

uR R

-

L = L L = +

= L L L

L = +

% %% % % %

% %% %

% %

Orthogonal

Depends only on uij

7/18/05 Princeton Elasticity Lectures

Example: Rubber

2 20

R Nb=

2

2

3( )

2R

V R TNb

=

02 0 0

3 1( ) Tr

2 2T T

b bR R

TF n V Tn

NbR R R= L = L L = L L

% % % % %

20 0

13i j ij

R R Nbd=

Purely entropic force

Average is over the end-to-end separation in a random walk: random direction, Gaussian magnitude

2

2 2

3 3( ) exp

2 2R

P RNb Nbp

é ùê ú= -ê úë û

7/18/05 Princeton Elasticity Lectures

Rubber : Incompressible Stretch

1 1Tr Tr(1 2 )

2 2T

b bf Tn Tn uf = L L = +

% % %Unstable: nonentropic forces between atoms needed to stabilize; Simply impose incompressibility constraint.

1/ 2

1/ 2

0 0

0 0

0 0

-

-

æ öL ÷ç ÷ç ÷ç ÷ç ÷= Lç ÷ç ÷ç ÷÷ç L÷çè ø

L

21 22 b

f nT=fæ ö÷ç= L + ÷÷çè øL

7/18/05 Princeton Elasticity Lectures

Rubber: stress -strain

( )( )

R Rz R

R

A L f ff V f A

L L

ff

¶¶ ¶= = =

¶ ¶L ¶L

2

1e z

R

ffnT

Af

sæ ö¶ ÷ç= = = L - ÷÷çè ø¶L L

2 1zff nTA

sæ ö¶ ÷ç= = L = L - ÷÷çè ø¶L L

Engineering stress

Physical Stress

AR= area in reference space

A = AR/ = Area in target space

2 1(1 ) ~3

1nT

Y nTs

gg g g

æ ö÷ç= = + - ÷ç ÷ç +è øY=Young’s modulus

7/18/05 Princeton Elasticity Lectures

General Case

e ref

1 refdet

ij j ij j

i ji j

dS dS

dS dS

s s-

=

= LL

( )( )

dV RR

dRt =

Engineering stress: not symmetric

Physical Cauchy Stress: Symmetric

Central force

0

e 00 0

0

00 0 0 0

0

( )'( )

| |

( )( ) ( )

| |

iij j

ij

ii j j

fn V R

n R n R

R

RR

R

RR R

R

s

t t

L¶= = L

¶L L

L= L = L

L

%%

%

%% %

%

0

00 0

0

( )

det | |ij ik k jl l

nR R

R

R

R

ts

L= L L

L L%

% %

7/18/05 Princeton Elasticity Lectures

Semi-flexible Stretchable Link

22 21

| | ( 1)2

dH ds v K v

dsk t^

^

é ùæ öê ú÷ç= + + -÷ç ÷çê úè øë ûò

tt

( ) ( )d

v s sds

=R

t

2| ( ) | 1; ( ) ( ( ), 1 | ( ) | )s s s s^ ^

= = -t t t t

dv

ds=

R

[ ]0

0

0

212

0

,

1 | |

Lz

L

dRR v L ds

ds

dsv^

º =

é ù» -ë û

ò

ò

t

t

t = unit tangentv = stretch

7/18/05 Princeton Elasticity Lectures

Length-force expressions

0

2 012 2 2

1

02

202

( , ) 1 [1 ( ( , ))];

1 1( ) | | ;

coth( ) 1

( , ) 1 ;

np

p

p

B

L K L g KK

Lg

L n

L

L

LK L

K k T

tt j t

jp j

p j p jp j

t kj t t

kp

¥

^=

æ ö÷ç= + -÷çè ø

= =+

-=

æ ö÷ç= + =÷çè ø

åt

L(,K) = equilibrium length at given and K

7/18/05 Princeton Elasticity Lectures

Force-extension Curves

7/18/05 Princeton Elasticity Lectures

Scaling at “Small” StrainG

'/G

' (0

)

Strain/strain8

zero parameter fit to everything

Theoretical curve: calculated from K-1=0

7/18/05 Princeton Elasticity Lectures

What are Nematic Gels?

• Homogeneous Elastic media with broken rotational symmetry (uniaxial, biaxial)

• Most interesting - systems with broken symmetry that develops spontaneously from a homogeneous, isotropic elastic state

7/18/05 Princeton Elasticity Lectures

Examples of LC Gels1. Liquid Crystal Elastomers - Weakly crosslinked liquid crystal polymers

4. Glasses with orientational order

2. Tanaka gels with hard-rod dispersion

3. Anisotropic membranes

Nematic Smectic-C

7/18/05 Princeton Elasticity Lectures

Properties I

• Large thermoelastic effects - Large thermally induced strains - artificial muscles

Courtesy of Eugene Terentjev

300% strain

7/18/05 Princeton Elasticity Lectures

Properties II

Large strain in smalltemperature range

Terentjev

7/18/05 Princeton Elasticity Lectures

Properties III

• Soft or “Semi-soft” elasticity

Vanishing xz shear modulus

Soft stress-strain for stressperpendicular to order

Warner Finkelmann

7/18/05 Princeton Elasticity Lectures

Model for Isotropic-Nematic trans.

( )2 2 23 212 Tr TrTrf Bu u C u D uaa m - += + %% %

13u u uab ab ab ggd= -%

approaches zero signals a transition to a nematic state with a nonvanishing

( )13u S n naab b abd= -%

7/18/05 Princeton Elasticity Lectures

Spontaneous Symmetry Breaking

Phase transition to anisotropicstate as goes to zero

Direction of n0 isarbitrary

0

0 0 13( )

u u

n n

ab ab

a b abd

=

= Y -

% %

2~uaa Y

( )120 0 0

Tu d= L L -

0 02udL = +

Symmetric-Tracelesspart

7/18/05 Princeton Elasticity Lectures

Strain of New Phase

u is the deviation ofthe strain relative to the original reference frame R from u0

u’ is the strain relative to the new state at points x’

u is linearly proportionalto u’( )1 1

2 2' ( )T Tu d h h¢ ¢ ¢ ¢= L L - » +

% %

0( ) ( )

( )

i ij j i

i i

R x u

x u

d= L +

¢ ¢ ¢= +

x x

x

( )0

12 0 0

0 0'

T T

T

u u u

u

d = -

= L L - L L

= L L

% % %

% % % %

%%%

0i i k

ij ik kjj jk

xR R

x x x

¢¶¶ ¶¢L = = = L L

¢¶ ¶ ¶

7/18/05 Princeton Elasticity Lectures

Elasticity of New Phase

Rotation of anisotropy direction costs no energy

C5=0 because ofrotational invariance

This 2nd order expansionis invariant under all U but only infinitesimal V

( )

( )

11 10 0 0 0

1

14 1 1

' ( )

1 cos2 sin2( 1)

sin2 1 cos2

T

r

rr

u V u V u

rq q

q q

-- -= L - L

æ ö- ÷ç ÷ç= - ÷ç ÷- -ç ÷çè ø

( 1)' ~

4xz

ru

rq

-

2

0||20

r^

L=

L

21 12 21 2 3el

54

zz zz

z z

f C u C u u C u u

C u u C u u

nn nn nn

nt nt n n

¢ ¢ ¢ ¢ ¢= + +

¢ ¢ ¢ ¢+ +

7/18/05 Princeton Elasticity Lectures

Soft Extensional Elasticity

Strain uxx can be converted to a zero energy rotation by developing strains uzz and uxz until uxx =(r-1)/2

( )

1

14 1 1

1 cos2 sin2( 1)

sin2 1 cos2

r

rr

u rq q

q q

æ ö- ÷ç ÷ç= - ÷ç ÷- -ç ÷çè ø

1

1( 1 2 )

2

zz xx

xz xx xx

u ur

u u r ur

= -

= - -

7/18/05 Princeton Elasticity Lectures

Frozen anisotropy: Semi-soft

( ) ( )hzzf u f u hu= -

( ) ( ) ( 2 )hzz xzf u f u h u uq¢ = - +

System is now uniaxial – why not simply use uniaxial elastic energy? This predicts linear stress-stain curve and misses lowering of energy by reorientation:

2 2 2 21 12 2 51 2 3 4zz zz zf C u C u u C u C u C unn nn nt n= + + + +

Model Uniaxial system:Produces harmonic uniaxial energy for small strain but has nonlinear terms – reduces to isotropic when h=0

f (u) : isotropic

2

2xz xx zz

xx zz xz

u u uu u u

u u uqæ ö- - ÷ç ÷¢® = + ç ÷ç ÷- ÷çè ø

Rotation

7/18/05 Princeton Elasticity Lectures

Semi-soft stress-strain

2 2 ( ) 2( )

( )0 or

h

xz xz xx zz zz xx xz

xx xzxz xz

xx zzxx

dfhu u u u

dh u

u uu h

s s

ss s

sq

=

= - = - -

-= Þ

-=

+

hfuab

ab

Ward Identity

Second Piola-Kirchoff stress tensor.

7/18/05 Princeton Elasticity Lectures

Semi-soft Extensions

Not perfectly soft because of residual anisotropy arising from crosslinking in the the nematic phase - semi-soft. length of plateau depends on magnitude of spontaneous anisotropy r.

Warner-Terentjev

Stripes form in real systems: semi-soft, BC

Break rotational symmetry

Finkelmann, et al., J. Phys. II 7, 1059 (1997);Warner, J. Mech. Phys. Solids 47, 1355 (1999)

Note: Semi-softness only visible in nonlinear properties

7/18/05 Princeton Elasticity Lectures

Softness with Director

2 2 21 12 21 2 3 4

2 2125 2 1

2 2 21 12 21 2 3 4

2

21

4 214 2

2 21 12 251 2 1 2 1

[ ( / ) ] [ ( / )]

zz zz

z z z

zz zz

zz

z z

n u

gn

f C u C u u C u C u

C u D n n u D n

C u C u u C u C u

D n D D u C D u

u

D

n

n

n n tt

nn nn nt

n n n n

nn nn nt

n n n

l

l

+

+ +

= + + +

+ + +

= + + +

+ + + -

+

%

% %

%

L%% %

22

5 51

10

2R D

C CD

Soft= - = ÞDirector relaxes to zero

( , )zn n n

Nunit vector along uniaxial direction in reference space; layer normal in a locked SmA phase

2 2 21 ( ) ; , etc.zzn N n c u N u N

Red: SmA-SmC transition


Recommended