Transcript
Page 1: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 1/8

Page 2: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 2/8

98 P.G . Young and S. M. Dickinson

N u m e r i c a l r e s u lt s a r e g i v e n f o r a s e l e c ti o n o f p r o b l e m s , i l lu s t r a ti n g t h e a c c u r a c y a n d a p p l i c a b i l i t y

o f t h e a p p r o a c h .

2 . A N A L Y T I C A L A P P R O A C H

C o n s i d e r t h e m u l t i - la y e r e d s o l i d o r s e g m e n t o f a s o l i d s h o w n i n F i g. 1, e a c h l a y e r b e i n g o f

a d i ff e re n t i s o t r o p i c m a t e r i al . I t s g e o m e t r y a n d d i s p l a c e m e n t s a r e d e s c r i b e d i n t e r m s o f C a r t e s i a n

c o o r d i n a t e s x , y a n d z . A s in [ 1 0 ] , i t i s b o u n d e d b y t h e t h r e e p l a n e s x = 0 , y = 0 a n d z = 0 , b y a n

o u t e r s u r f a c e d e s c r i b e d b y t h e e q u a t i o n f o ( x , y , z ) = 0 , b y a n i n n e r s u r f a c e ( if a c a v i t y is t o b e

m o d e l l e d ) d e s c r i b e d b y f~ (x , y , z ) = 0 . T h e s u r f a c e s d e s c r i b i n g t h e i n t e r f a c e s b e t w e e n e a c h p a i r o f

l a y e r s a r e d e s c r i b e d b y f ~ ( x , y , z ) = 0 w h e r e s is t h e s u b s c r i p t a s s i g n e d t o t h e s t h i n t e r f a c e . T h e f o r m o f

the e qu a t io ns f ~ (x , y , z ) = 0 i s t a ke n a s ,

f s ( x , y , z ) = + \ b J + - 1 = 0 , s = i , 1 , 2 . . . . , 0 (1)

w h e r e Ps, q s a n d rs a r e a r b i t r a r y r e a l p o s i t i v e n u m b e r s a n d t h e v a l u e s as, bs a n d c s a r e t h e x , y a n d z

a x i s i n t e r c e p t s o f t h e o u t e r , t h e i n n e r a n d t h e i n t e r f a c e c u r v e d s u r f a c e s , a s s h o w n i n F i g . 1.S i m p l e h a r m o n i c m o t i o n a t r a d i a n f r e q u e n c y ~o c a n b e a s s u m e d f o r t h e f re e v i b r a t i o n p r o b l e m ,

a n d t h e d i s p l a c em e n t s U , V a n d W c a n b e a p p r o x i m a t e d b y u s in g s i m p l e a l g e b r ai c p o l y n o m i a l

se r i e s in x , y a n d z w i th l i ne a r c oe f f i c i e n t s A i~k , a s f o l l ow s

n x ny n z

U ( x , y , z ) = ~ . ~ ~ A ~ j k X '+ ' ~ '~ ° y J + t ~ -° zk + 'L ° f o (X , y , Z)'~;°°f~(x, y, Z) t~;-o,i = O j = O k = O

n x ny n z• e , + v v v v

V ( X , y , Z ) = ~ Z 2 A 2 i jk X t ÷ l . . . . . y J l Y = ° z k + g : = ° T J O r ~ ( X , , " Z ' l l f ° = °¢ ' [ ' X 1i~, , .," Z~'~'=°, (2)i = O j= O k = O

n x ny n z

W ( x , y , z ) = ~ .. ~ ~ A 3 k X ' + t L ° y J + t ~ - ° Z k + t L ° f o ( X , y , Z ) ' ~ o f ( x , y , Z ) t~ , o ,i = O j= O k = O

l v a n d / w : 0 d e p e n d u p o n t h e r e s t r a i n t s p l a c e d o n t h e U , V a n dh e r e t h e q u a n t i t i e s / V = o , x = o

W d i s p l a c e m e n t s , r e s p e c t i v e ly , o n t h e f a c e d e f i n e d b y x = 0 a n d a s s u m e t h e v a l u e s 0 f o r n o r e s t r a i n t

( U , V o r W :/: 0 ) a n d 1 f o r f u l l r e s t r a in t ( U , V o r W = 0 ). S im i l a r ly , t he qua n t i t i e s I r= o, lvy=o,/y=oWa n d

1Uz=o, ,z=o,JV W=o de pe nd up on the r e s t r a in t s im po se d a t y = 0 a n d z = 0 , re spe c t i ve ly . T h e e x po ne n t s

\

' ' / i ~ ~ ' " b i / / b t / " / b 2 / b o ~ y

X

Fig. 1. Segm ent of a mu lti-layered solid with cavity.

Page 3: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 3/8

Vibration of multi-layered solids 99

/}J= o , l~ = o,/~ v= o , m a y b e u s e d t o i m p o s e r e s t r a i n t s o n t h e o u t e r a n d i n n e r s u r f a c e s , f o = 0 a n d f = 0 ,

i n t h e x , y a n d z d i re c t i o n s , re s p e c ti v e ly , s i m p l y b y g i v i n g t h e a p p r o p r i a t e e x p o n e n t t h e v a l u e 1 f o r

f u ll r e s t r a i n t , o r 0 f o r n o r e s t r a i n t . ( In t h e c a s e s c o n s i d e r e d i n t h e n u m e r i c a l r e s u l t s s e c t io n o f th i s

w o r k , a ll s u r fa c e s n o t l y i n g o n p l a n e s d e f i n e d b y x = 0 , y = 0 a n d z = 0 a r e t r e a t e d a s f r e e, w i t h t h e

e x c e p t i o n o f t h e s i m p l y s u p p o r t e d c y l i n d e r c a se , f o r w h i c h t h e i m p o s i t i o n o f t h e a p p r o p r i a t e

b o u n d a r y c o n d i t i o n s i s d e s c r i b e d l a t e r . H e n c e , a l l e x p o n e n t s o f f o ( x , y , z ) a n d f~ (x , y , z ) a r e t a k e n a sze ro . )

T h e s e g m e n t s h o w n i n F i g. 1 c a n a l s o b e u s e d t o m o d e l a v a r i e t y o f s y s te m s w h i c h e x h i b i t

s y m m e t r y o f b o t h g e o m e t r y a n d b o u n d a r y c o n d i ti o n s a b o u t o n e o r m o r e o f th e p l a n es g i ve n b y

x = 0 , y = 0 a n d / o r z = 0 . T h i s i s a c h i e v e d b y m o d e l l i n g a r e p r e s e n t a t i v e s e g m e n t o f t h e s y s t e m a n d

a s s i g n i n g t h e a p p r o p r i a t e v a l u e s o f l v , l v a n d l w as s oc ia ted wi th x , y and z in s e r i e s Eqn (2 ) , t o

e n f o r c e t h e r e q u i r e d b o u n d a r y c o n d i t i o n s o n t h e p la n e (s ) o f s y m m e t r y t o m o d e l s y m m e t r i c m o d e s

( z e ro d i s p l a c e m e n t n o r m a l t o p l a n e , n o n - z e r o d i s p l a c e m e n t s i n -p l a n e ) a n d a n t i s y m m e t r i c m o d e s

( n o n - z e r o d i s p l a c e m e n t n o r m a l t o p l a n e , z e r o d i s p l a c e m e n t s i n - p la n e ) .

T h e n o r m a l s t r a i n s , ~ x , e y an d ~ z, an d the s he a r s t r a in s , ~ 'xy, 7yz an d 7zx , can be r e l a t ed to the

d i s p l a c e m e n t s U , V a n d W i n t h e u su a l m a n n e r [ 1 0 ] a n d t h e m a x i m u m s t r a in e n e r g y V t f o r t h e t t h

l a y e r o f t h e s o l i d c a n b e e x p r e s s e d a s

V t = ~ [ 2 t ( e x + ~ , + e~ )2 + 2 G t ( e ~ + e y + ~ 2 ) + G t ( T x y + ' /y z + 7 2 x ) ] d x d y d z (3 )

v t E , E tw here 2t = (1 + v t) (1 - 2v~ ) an d G~ - 2 (1 + vt~ a r e the La m b pa ram ete r s ,

a n d i n w h i c h E , is Y o u n g ' s m o d u l u s a n d v t i s t h e P o i s s o n r a t i o o f t h e m a t e r i a l o f th e l a y e r . T h e

m a x i m u m k i n e t ic e n e r g y T f o f e a c h l a y e r c a n b e e x p r e s s e d i n t e r m s o f t h e d is p l a c e m e n t s a s

f f f ( v 2 + V 2 + W 2 ) d x d y d z ,(4 )

w h e r e P t is t h e d e n s i t y o f t h e l a y e r .

T h e i n t e g ra l s in E q n s (3 ) a n d (4 ) a r e p e r f o r m e d o v e r t h e v o l u m e o f e a c h l a y e r o f t h e s o l id a n d t h e n

s u m m e d t o o b t a i n t h e m a x i m u m t o t a l s t ra i n e n e r g y ( V ) a n d k i n e t ic e n e r g y ( T ) o f t h e so l id . T h e

L a g r a n g i a n f u n c t i o n a l L = ( T - V ) is t h e n m i n i m i z e d w i t h r e s p e c t t o c o e f f i c ie n t s A ~ k , a c c o r d i n g t o

t h e R i t z p r in c i p le , t o o b t a i n a h o m o g e n e o u s l i n e a r sy s t e m o f e q u a t i o n s o f s ta n d a r d e i g e n v a l u e fo r m :

H e r e i , j , k , l , m , n = 0, 1 . . . . e = 1 , 2 , 3 , f~ 2 i s the f r eq ue ncy pa ra m ete r and the coe f f i c i en t s

C ~ } k , ~ , , , a n d E ~ k , ~ , , . i n v o l v e i n t e g r a l s o f p r o d u c t s o f t h e s h a p e f u n c t i o n s a n d t h e i r f ir s t d e r i v a t i v e s .

I t is r e c o g n i z e d t h a t t h e d i s p l a c e m e n t f u n c t i o n s E q n (2 ) s a ti s fy c o n t i n u i t y o f d i s p l a c e m e n t a t t h ei n t e r fa c e b e t w e e n a d j a c e n t l a y e r s b u t , o w i n g t o t h e i r c o n t i n u o u s l y d i f f e r e n ti a b l e n a t u r e , t h e y c a n n o t ,

t e r m b y t e r m , s a t i sf y a n y d i s c o n t i n u o u s s t r a in c o n d i t i o n w h i c h e x i s ts a t a n i n te r fa c e . T h i s i m p l ie s

t h a t a n y c o n t i n u i t y o f s tr e ss c o n d i t i o n a c r o s s a n i n t e rf a c e b e t w e e n l a y e rs o f t w o d i f fe r e n t m a t e r i a l s

w i ll n o t b e sa t is f ie d t e r m b y t e r m . S u c h c o n d i t i o n s a r e s a ti sf ie d a p p r o x i m a t e l y , h o w e v e r , b y m e a n s o f

t h e s u m o f t h e s m o o t h f u n c t io n s . T h e r a t e o f c o n v e r g e n c e f o r s y s te m s w i t h l a rg e v a r i a t i o n s i n

m a t e r i a l p r o p e r t i e s m a y t h u s b e d i m i n i s h e d [ 1 1 ].

3 . N U M E R I C A L R E S U L T S

I n o r d e r t o d e m o n s t r a t e t h e a p p l i c a b il i ty a n d a c c u r a c y o f t h e a p p r o a c h , n u m e r i c a l r e su l ts

c o m p u t e d u s i n g t h e p r e s e n t m e t h o d a r e c o m p a r e d w i t h r e s u l t s o b t a i n e d u s i n g a n e x a c t f o r m u l a t i o n

f o r b o t h a t w o - a n d a t h r e e - l a y e r e d h o l l o w s p h e r e a n d f o r a h o l l o w h o m o g e n e o u s c y l in d e r . T w o

d i f fe r e n t t w o - l a y e r e d s i m p l y s u p p o r t e d c y l i n d er s , f o r w h i c h e x a c t n u m e r i c a l s o l u t i o n s a r e p o s s i b le

b u t a r e n o t a v a i l a b le i n t h e o p e n l i te r a t u r e , a r e t h e n c o n s i d e r e d . L a s t l y , a n u m b e r o f c a s es a r e

i n c l u d e d f o r w h i c h n o e x a c t s o l u t i o n s e x i s t: a c a n t i l e v e r e d t h r e e - l a y e r c y l i n d e r , a c a n t i l e v e r e d

f i v e- l a y er b e a m , a n d s e v e ra l so l id s o f m o r e g e n e r a l g e o m e t r y . E a c h p r o b l e m w a s m o d e l l e d b y m e a n s

o f a s ol id l o c a t e d in t h e f ir st o c t a n t w i t h a p p r o p r i a t e s y m m e t r y o r b o u n d a r y c o n d i t i o n s b e i n g

i m p o s e d o n t h e x = 0 , y = 0 a n d / o r z = 0 s ur f a c es . I n a ll c a s e s, a n d f o r a ll m a t e r i a l l a y e r s , P o i s s o n ' s

Page 4: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 4/8

100 P. G. Young and S. M. Dickinson

Table l. Frequency parameters f~ = ~o2ro/ '2x/(po/Eo) for two- and three-layered hollow spheres

Mode number

n~ x n x n~ 1 2 3 4 5 6 7 8

Tw o-layered 8 × 8 × 8 1.714 2.322 2.695 3.463 3.657 3.745 3.784 4.825shell Ex act 1.710 2.322 2.677 3.462 3.656 3.705 3.780 4.761

Th ree-la yere d 8 × 8 x 8 1.861 2.512 2.988 3.737 3.952 4.095 4.260 5.271shell Exa ct 1.858 2.512 2.974 3.736 3.951 4.092 4.227 5.268

r a t io w a s t a k e n a s 0. 3. A m o d u l u s o f e l a st ic i ty r a t i o a n d a d e n s it y r a t i o e q u a l t o 1 /3 w a s c o m m o n l y

u s e d b e t w e e n a d j a c e n t m a t e r i a l l a y e rs a n d i t m a y b e n o t e d t h a t t h e s e c o r r e s p o n d c l o s e l y t o t h e r a ti o s

o f a l u m i n i u m o v e r st ee l. A l so , w h e r e t h e e x p o n e n t ~ is us e d t o g iv e a r e c t a n g u l a r b o u n d a r y , t h is w a s

a p p r o x i m a t e d i n t h e c o m p u t a t i o n s b y t h e a r b i tr a r i ly h i g h v a l u e o f 101 1, a d e v ic e d e m o n s t r a t e d t o b e

e f fec t ive in Re f . [ -10] .

T h e f ir st c as e s c o n s i d e r e d w e r e a t w o - a n d a t h re e - l a y e r e d h o l l o w s p h e r e . O n l y o n e - e i g h t h o f t h e

s he ll w a s m o d e l l e d a n d a p p r o p r i a t e b o u n d a r y c o n d i t i o n s w e r e a p p l i e d a t al l t h r e e p l a n es o f

s y m m e t r y ( c o o r d i n a t e p l a n e s ) t o m o d e l t h e f u ll sp h e r ic a l s h e l l T h e s e g m e n t o f t h e s p h e r e l y i n g in t h e

f ir st o c t a n t w a s b o u n d e d b y t h e th r e e c o o r d i n a t e p l a n e s a n d b y a n o u t e r s p h e r i c a l ly c u r v e d s u r f a ce

g i v en b y f o = x 2 + y2+ Z2--1 = 0 a n d b y a n i n n e r s p h e r i c a l l y c u r v e d s u r f a c e g i v e n b y

f i = (2x) 2 + (2Y)2 + 1 2 z) 2 - 1 = 0 , c o r r e s p o n d i n g t o a n i n n e r t o o u t e r r a d i u s r a t i o r i / ro = 1 / 2 . F o r

t h e t w o - l a y e r s p h e r i c a l s he l l c o n s i d e r e d , t h e i n t e rf a c e s u r f a c e b e t w e e n t h e t w o m a t e r i a l s w a s g i v e n b y

f l = ( 4x /3 )2 + ( 4 y/ 3) 2 + ( 4 z/ 3 ) 2 - 1 = 0 , c o r r e s p o n d i n g t o a n i n t e r f a c e t o o u t e r r a d i u s r a t i o

r l / r o = 3 / 4, a n d t h e r a t i o o f t h e i n n e r t o o u t e r l a y e r m a t e r i a l p r o p e r t i e s w e r e t a k e n a s

E i / E o = P l / P o = 1 /3 (a s f o r a n a l u m i n i u m c o r e a n d s te e l c a s i n g) . F o r t h e t h r e e - l a y e r s p h e r i c a l s h e ll ,

t h e t w o i n t e r f a c e s u r f a c e s w e r e g i v e n b y f l = ( 5 x / 3 ) 2 + ( 5 y / 3 ) 2 + ( 5 z /3 ) 2 - 1 = 0 a n d f 2 = ( x / 0 .9 ) 2

+ ( y / 0 .9 ) 2 + ( z /0 . 9) 2 - 1 = 0 , c o r r e s p o n d i n g t o i n t e r f a c e s u r f a c e t o o u t e r r a d i u s r a t i o s o f r t / r o = 0 .6

a n d r 2 / r o = 0 .9 , r e s p e c ti v e l y . T h e i n n e r l a y e r t o o u t e r l a y e r a n d t h e m i d d l e l a y e r t o o u t e r l a y e r

m a t e r i a l p r o p e r t y r a t i o s w e re t a k e n a s E i / E o = P l / P o = 1 a n d E 2 / E o = P 2 / P o = 3 , r e s p e c t i v e l y ( a s

f o r a s te e l m i d d l e l a y e r s a n d w i c h e d b e t w e e n a n a l u m i n i u m c o r e a n d c a si n g) . T h e f ir st e i g h t n o n - z e r o

n o n - d i m e n s i o n a l f r e q u e n c y p a r a m e t e r s f o r b o t h o f t h e se c a s e s a r e g iv e n i n T a b l e 1 a s o b t a i n e d u s i n g

t h e p r e s e n t m e t h o d w i t h n x = n y = n z = 8 a n d a s c o m p u t e d u s i n g a n e x a c t s o l u t i o n [ 1 2 ] . R e s u l t s

o b t a i n e d u s i ng t h e p r e s e n t m e t h o d a r e v e r y cl o s e to t h e e x a c t s o l u t i o n r e s u l ts f o r a ll m o d e s g i v e n

w i t h t h e la r g e s t p e r c e n t a g e e r r o r b e i n g l e ss t h a n 1 . 3 % f o r t h e t w o - l a y e r c a s e ( m o d e 8 ) a n d 0 . 8 % f o r

t h e t h r e e - l a y e r c a s e ( m o d e 7).

T h e n e x t c a s e s t r e a t e d w e r e a si n g le l a y e r e d a n d t w o d i f f e r e n t t w o - l a y e r e d h o l l o w c y l i n d e r s s i m p l y

s u p p o r t e d a t e a c h e n d ( t h a t is , o n l y a x ia l d i s p l a c e m e n t s w e r e p e r m i t t e d a t e a c h e nd ). O n e - e i g h t h o f

e a c h c y l in d e r w a s m o d e l le d a n d a p p r o p r i a t e b o u n d a r y c o n d i t io n s w e r e a p p l ie d a l o n g t h e t hr e e

p l a n e s o f s y m m e t r y . T h e s e g m e n t o f th e h o l l o w c y l i n d e r in t h e f ir st o c t a n t w a s d e s c r i b e d b y t h e

s u r f a c e s g i v e n b y )Co = ( 2 x / 3 ) 2 + ( 2 y / 3 ) 2 + z ~ ' - 1 = 0 an d f i = (2x) 2 + (2y) 2 + z °c - 1 = 0 , co r re s -

p o n d i n g t o a n i n n e r t o o u t e r r a d i u s r a t i o r i / r o - - 1 / 3 a n d t o a l e n g t h t o o u t e r r a d i u s r a t i o

L / r o = 2 c / r o = 4/ 3. O n l y m o d e s s y m m e t r i c a b o u t z = 0 w e r e c o n s i d e re d . I n o r d e r t o m o d e l t h e

r e q u i r e d g e o m e t r i c , f r e e , b o u n d a r y c o n d i t i o n s o n t h e i n n e r a n d o u t e r c u r v e d s u r f a c e s a n d t h e

" s i m p l e s u p p o r t " a t t h e f la t e n d z = c = L / 2 , t h e e x p o n e n t s o f f o a n d f i n E q n (2 ) w e r e t a k e n a s z e r o

a n d t h e p o l y n o m i a l e x p a n s i o n s f o r U a n d V w e r e m u l t i p li e d b y (1 - z / c ) . T h i s h a s t h e e f f e c t o f

r e s t r a i n i n g t h e l a t e r a l ( U , V ) d i s p l a c e m e n t o n t h e z - - L / 2 p l a n e w h i l e p e r m i t t i n g a x i a l m o t i o n ( W ) .

F o r t h e f i r st t w o - l a y e r c y l i n d e r t r e a t e d ( c a se 1), t h e c y l i n d r i c a l i n t e r f a c e s u r f a c e w a s g i v e n b y

f l = ( 4 x / 5 ) z + ( 4 y /5 ) 2 + z ~ - 1 = 0 a n d t h e i n n e r l a y e r t o o u t e r l a y e r r a t i o o f m a t e r i a l p r o p e r t i e s

w e r e ta k e n a s E i / E o = P i / P o = 3 . F o r t h e s e c o n d t w o - l a y e r c y l i n d e r t r e a t e d ( c a se 2), t h e i n t e r f a c e

s u r f a c e w a s g i v e n b y f l = ( 4 x / 3 ) 2 + ( 4 y / 3 ) 2 + z ~ ' - 1 = 0 , w i t h E i / E o = P i / P o - - 1 / 3. T h e f i rs t e i g h t

n o n - d i m e n s i o n a l n a t u r a l f r e qu e n c i e s f o r t h e s in g le la y e r e d ( h o m o g e n e o u s ) h o l l o w c y l i n d e r, a s

c o m p u t e d u s i n g t h e p r e s e n t m e t h o d w i t h n x = n r - - n z = 8 i n t h e s e ri e s, a r e g i v e n i n T a b l e 2 , a l o n g

w i t h e x a c t r e s u lt s r e p o r t e d i n R e f. [ 3 ] , a n d e x c e l l e nt a g r e e m e n t m a y b e s e e n t o e x is t ( m a x i m u m

d i s c r e p a n c y 0 . 4 % f o r m o d e 3). I n T a b l e 3 , a b r i e f c o n v e r g e n c e s t u d y w i t h n u m b e r o f t e r m s n x, ny a n d

Page 5: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 5/8

Vibration of multi-layered solids

Tabl e 2. Freque ncy pa ram ete rs t~ = ~oZ(ri + r o ) / 2 , v / ( p / E ) for a homoge neous (one-layered) simply

supported cylinder

101

Mode number

n~ × n r × n~ 1 2 3 4 5 6 7 8

8 x 8 x 8 0.7650 0.9298 0.9742* 1.079 1.310 1.450 1.660 1.705

Exact 0.7650 0.9286 0.9742* 1.079 1.310 1.443 1.660 1.705

* Torsio nal mode. Exact result n/(2,v/(2(1 + v))) ~ 0.9742.

Tabl e 3. Frequency p arame ter s l'~ = ~oZ(ri + r o ) / 2 ~ / ' ( p o / E o ) for two-layered hollow simply supporte d cylinders

Mode number

Cas e n~ x n r x n~ 1 2 3 4 5 6 7 8

4 x 4 × 4 0.7545 0.9657 0.9742* 1.134 1.366 1.598 1.728 1.760

1 6 × 6 x 6 0.7507 0.9483 0.9742* 1.130 1.361 1.566 1.724 1.751

8 × 8 x 8 0.7502 0.9400 0.9742* 1.130 1,361 1,544 1.723 1.749

4 × 4 × 4 0.7464 0.8739 0.9742* 1.010 1.272 1.351 1.617 1.690

2 6 × 6 × 6 0.7446 0.8693 0.9742* 1.007 1.270 1.336 1.614 1.688

8 x 8 x 8 0.7443 0.8668 0.9742* 1.007 1.270 1.332 1.613 1.687

* Torsio nal mode. Exac t r esult n/(2~//(2(1 + v)})~0.9742.

Table 4. Frequency parameters ~ = ~ o 2 (r ~ + r o ) / 2 ~ / / I p o / E o ) for a three-layered h ollow cantilevered

cylinder

Mode number

nx × n r × nz 1 2 3 4 5 6 7 8

4 ×4 × 4 0.01819 0.08118" 0.09940 0.1325 0.2634 0.2442 t 0.4878 0.3963

6 × 6 × 6 0.01802 0.08118" 0.09248 0.1318 0.2147 0. 243 51 0.3568 0.3926

8 × 8 × 8 0.01796 0.08118" 0.09226 0.1317 0.2136 0.2435 t 0.3475 0.3920

* Torsio nal mo de. Exact result rc/(24~/(2(1 + v)))-~0.08118.

t Tor sio nal mo de. Exact r esult 7t/(8 ~/(2(1 + v)))~ 0.2435.

n z u s e d i n t h e s e ri e s, E q n (2 ), is g i v e n f o r t h e f i r st e i g h t m o d e s s y m m e t r i c a b o u t z = 0 f o r b o t h

t w o - l a y e r e d c y l in d r i c al c a s e s c o n s i d e r ed . C o n v e r g e n c e is r a p i d a n d r e l a t i v el y g o o d r e s u lt s a r e

o b t a i n e d b y u s i n g a s fe w a s f o u r t e r m s i n e a c h c o o r d i n a t e d i r e c t i o n i n t h e s e ri e s, E q n (2 ).

A t h r e e - l a y e r e d h o l l o w c y l i n d e r , c a n t i l e v e r e d a t z = 0 , w a s c o n s i d e r e d n e x t . O n e q u a r t e r o f t h e

c y l i n d e r w a s m o d e l l e d a n d t h e i n n e r a n d o u t e r s u r fa c e s o f t h e s e g m e n t i n th e f ir s t o c t a n t w e r e g i v e n

b y t h e e q u a t i o n s f o = ( 2 x / 3 ) 2 + ( 2 y / 3 ) 2 + ( z / 1 2 ) ~ - 1 = 0 a n d . ~ = ( 2 x ) 2 + ( 2 y ) 2 + ( z / 1 2 ) ~ - 1 = 0

a n d t h e t w o i n t e r f a c e s u r f a c e s w e r e d e s c r i b e d b y f l = ( 4 x / 3 ) 2 + ( 4 ) : / 3 ) 2 + ( z / 1 2 ) ~ - 1 = 0 a n d

f 2 = ( 4 x / 5 ) z + ( 4 y / 5 ) 2 + ( z / 1 2 ) ~ ' - I = 0 , g i v in g ra d i u s r a t io s r i / r o = l / 3 , r l / r o = l / 2 , a n d

rz /ro = 5 / 6 a n d a l e n g t h t o r a d i u s r a t i o C/ro = 8 . A s f o r t h e t h r e e - l a y e r s p h e r e , t h e i n n e r t o o u t e r

l a y e r a n d m i d d l e t o o u t e r l a y e r m a t e r i a l p r o p e r t y r a t i o s w e r e t a k e n a s Ei/Eo = Pi /Po = 1 a n d

E z / E o = P z/ P o = 3 , r e s p e c t i v e l y . F r o m t h e s t u d y g i v e n i n T a b l e 4 f o r th e f i r st e i g h t m o d e s , t h e r a t e

o f c o n v e r g e n c e c a n b e s ee n t o b e q u i t e r a p i d .

A f a m i ly o f s o l i d s w i t h n o c a v i ti e s, s y m m e t r i c a b o u t a ll th r e e c o o r d i n a t e p l a n e s a n d m a d e o f t w o

d i f f e r e n t m a t e r i a l s w a s t h e n t r e a t e d . T h e o u t e r c u r v e d s u r f a c e o f t h e s e g m e n t i n t h e f ir s t o c t a n t w a s

d e s c ri b e d b y a p o l y n o m i a l g i v e n b y f o = x " + y ' + z ~ - I = 0 ( t h a t i s P o = q o = r o = e a n d

a o = b o = c o = l ) a n d t h e i n t er f a c e s u r f ac e w a s d e s c r i b e d b y a p o l y n o m i a l g iv e n b y

f a = (x /d ) p + (y /d ) p + ( z /d ) p - 1 = 0 ( t h a t i s P l = q l = ra = / 3 a n d a t = b l = c a = d ) . T h e f i r s t

e i g h t n o n - d i m e n s i o n a l f r e q u e n c y p a r a m e t e r s a r e g i v e n i n T a b l e 5 f or th e f o l lo w i n g v a l u e s o f e ,/ 3 a n d

Page 6: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 6/8

1 02 P . G . Y o u n g a n d S . M . D i c k i n s o n

T a b l e 5 . F r e q u e n c y p a r a m e t e r s ~ = ~o2a~v/ '(po /Eo) f o r c o m p o s i t e s o l id s o f o u t e r s u r f ac e d e s c r i b e d b y f 0 = x " + y " + z " - 1 = 0

a n d i n t e r f a c e s u r f a c e d e s c r i b e d b y ./1 = (x / 'd ) ~ + (Y / d ) ~ + ( z / 'd ) ~ -1 = 0

M o d e n u m b e r

]~ d nx × n x n= l 2 3 4 5 6 8

4 x 4 × 4 1 . 91 2 2 . 0 9 2 2 . 1 4 7 2 . 3 7 7 3 . 33 1 3 . 4 7 8 4 . 0 6 6 3 . 2 8 9

2 / 3 2 / 3 0 . 7 6 × 6 × 6 1 . 88 3 2 . 0 6 9 2 . 0 8 3 2 . 3 1 6 2 . 8 8 7 3 . 1 9 3 3 . 2 6 5 3 . 2 8 1

8 x 8 × 8 1 . 8 8 0 2 . 0 6 5 2 . 0 7 7 2 . 3 0 8 2 . 8 4 2 3 . 1 4 7 3 . 1 7 6 3 . 2 7 8

4 x 4 × 4 1 . 38 3 1 . 39 2 1 .5 0 6 1 . 51 9 2 . 1 0 5 2 . 1 4 8 2 . 1 9 2 2 . 3 1 6

2 1 0 . 8 6 × 6 x 6 1 . 3 8 0 1 . 3 8 4 1 . 50 4 1 . 51 8 2 . 0 9 5 2 . 1 3 2 2 . 1 7 9 2 . 3 1 0

8 × 8 x 8 1 .378 1 .381 1 .504 1 ,518 2 ,092 2 .125 2 .17 4 2 .308

3 x 3 × 3 0 .86 02 1 .047 1 .161 1 .190 1 .364 1 .449 1 .532 1 .561

101~ 2 0 ,7 5 × 5 x 5 0 .85 74 1 .028 1 .140 1 .160 1 .350 1 .433 1 .460 1 .524

7 × 7 x 7 0 .85 72 1 .026 1 .137 1 .160 1 .349 1 .433 1 .458 1 .520

X 9

_ ~ 2 o - - i0 . 7 5 o

, 1Z ~

8 o

X 9 / / / / , / / / / / i / / f f

F i g . 2 . C a n t i l e v e r e d m u l t i- l a y e r e d r e c t a n g u l a r c r o s s - s e c ti o n b e a m w i t h a c y l in d r i c a l h o l e t h r o u g h i ts c e n t r e.

d : ~ = 2 / 3 , / 3 = 2 / 3 a n d d = 0 .7 , a n e p i c y l o i d a l s o l i d w i t h a n e p i c y l o i d a l i n c l u s i o n , w i t h i n n e r t o o u t e r

m a t e r i a l p r o p e r t i e s E i / E o = P i / P o = 3; ~ = 2 , /3 = 1 , d = 0 . 8 , a s p h e r e w i t h a d i a m o n d s h a p e d

i n c l u s i o n , w i t h i n n e r t o o u t e r m a t e r i a l p r o p e r t i e s E i / E o = P i / P o = 1 / 3 ; a n d ~ = ~ , / 3 = 2 , d = 0 . 7 ,

a c u b e w i t h a s p h e r i c a l i n c l u s i o n , a g a i n w i t h i n n e r t o o u t e r m a t e r i a l p r o p e r t i e s E i / E o = P l / P o = 1 / 3 .

T h e r e s u l t s g i v e n i n T a b l e 5 a p p e a r t o s u g g e s t g o o d c o n v e r g e n c e .

Page 7: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 7/8

Vibration of multi-layered solids

Table 6. Frequency parameters f~ = t o 2 ( b / 2 ) ~ / ( p o / E o ) for a five-layered cantilevered beam with a central

circular hole running through it

103

Mode number

nx x n r × nz 1 2 3 4 5 6 7 8 9

4× 4 x4 0.03234 0.03635 0.1023 0.154 7 0.1586 0.198 7 0.307 9 0.40 07 0.4178

6 x 6 x6 0.03204 0.03601 0.1018 0.152 2 0.1564 0.197 8 0.30 47 0.32 64 0.3533

8 x 8 x 8 0.03194 0.03590 0. 1017 0.1 517 0.156 1 0.1 975 0.3 042 0.3 250 0.3518

L a s t l y , a f i v e - l a y e r e d r e c t a n g u l a r c r o s s - s e c t i o n b e a m c a n t i l e v e r e d a t z = 0 w i t h a c y l i n d r i c a l h o l e

r u n n i n g d o w n t h e m a i n a x is , a s s h o w n i n F i g. 2 , w a s c o n s i d e re d . A q u a r t e r o f th e b e a m w a s m o d e l l e d

wi th the ou te r a nd inn e r su r fa c e s d e sc r ib e d by f0 = x ® + y ~ + ( z /8 ) °~ - 1 = 0 a nd J ] = (2x) 2 +

( 2y )2 + ( z /8 ) ~ - 1 = 0 a n d t h e t w o i n t e r f a c e s u r f a ce s w e r e d e s c r i b e d b y f t = ( 2 x ) ~ + Y ® +

(z /8 ) ~ - 1 = 0 a n d f2 = (4x /3 ) ~ + Y~ + (z /8 ) ~° - 1 = 0 . T he ou te r l a ye r s we re a s su me d to ha v er e f e r e n c e m o d u l u s o f e l a s t i ci t y E 0 a n d d e n s i t y P o , a n d t h e a d j a c e n t l a y e r s w e r e a s s u m e d t o h a v e t h e

f o l lo w i n g n o n - d i m e n s i o n a l m a t e r i a l c o n s t a n t s E 2 / E o = P 2 /P o = 1 / 2 , a n d t h e m i d d l e l a y e r ( t h r o u g h

w h i c h t h e h o l e is b o r e d ) h a d t h e f o l lo w i n g p r o p e r t i e s E ~ / E o = P l / P o = 1 /3 . T he f i r s t n ine na tu ra l

f r e q u e n c y p a r a m e t e r s a r e g i v e n i n T a b l e 6 a n d , a g a i n , g o o d c o n v e r g e n c e e x is ts a n d i t m a y b e

r e m a r k e d t h a t t h e r e s u l ts o b t a i n e d u s i n g o n l y n x = n r = nz = 4 a p p e a r t o b e r e a s o n a b l y c o n v e r g e d .

4. CONCL UDIN G REMARKS

A s t r a i g h t f o r w a r d m e t h o d o f o b t a i n i n g t h e n a t u r a l f r e q u en c i e s o f a c l as s o f m u l t i - l a y e r e d s o li d s

h a s b e e n p r e s e n t e d . T h e a p p r o a c h h a s b e e n v a l i d a t e d a g a i n s t e x a c t s o l u t i o n s a n d e x c e ll e n t a g r ee -

m e n t o b t a i n e d . N a t u r a l f r e q u e n c y p a r a m e t e r s h a v e b e e n o b t a i n e d f o r s e v e ra l p r o b l e m s f o r w h i c h

e x a c t s o l u t i o n s a r e n o t a v a i l a b l e a n d , i n m o s t c a se s , i t a p p e a r s t h a t r e l a t i v e l y f e w t e r m s n e e d b e u s e d

i n t h e d i s p l a c e m e n t s e r ie s t o o b t a i n r e a s o n a b l y c o n v e r g e d v a l u e s.

T h e u s e o f a s i n gl e , c o n t i n u o u s l y d i f fe r e n t i a b l e d i s p l a c e m e n t f ie l d p e r m i t s t h e a c c u r a t e p r e d i c t i o n

o f n a t u r a l f r e q u en c i e s a n d w o u l d y i e ld r e a s o n a b l y a c c u r a t e m o d e s h a pe s . H o w e v e r , as a l r e a d y n o t e d ,

t h e f u n c t i o n s c a n n o t a c c u r a t e l y m o d e l t h e d i s c o n t i n u i t i e s i n s t r a i n s t h a t m a y e x i s t a t t h e i n t e r f a c e s

b e t w e e n l a y e r s o f d i f f e r en t m a t e r i a l s u n l e s s a l a r g e n u m b e r o f t e r m s i s u s e d i n t h e s e ri e s. H e n c e , t h e

s tr e ss d i s t ri b u t i o n w h i c h o c c u r s t h r o u g h o u t a l a y e r e d so l id w h e n v i b r a t i n g i n a g iv e n m o d e a t

a p a r t i c u l a r a m p l i t u d e m a y n o t b e a c c u r a t e l y p r e d i c t e d i n t h e v i c i n i t y o f t h e i n t er f ac e ( s) . T h i s

p r o b l e m m a y b e o v e r c o m e , a t t h e e x p e n s e o f s o m e s i m p l ic i ty , b y u s i n g s e p a r a t e d i s p l a c e m e n t

f u n c t i o n s f o r e a c h l a y e r .

T h e p o l y n o m i a l t r ia l f u n c t i o n s er ie s u se d i n t h e e x a m p l e s t r e a t e d f o r m m a t h e m a t i c a l l y c o m p l e t es et s o f f u n c t i o n s a n d t h e r es u l ts o b t a i n e d f r o m t h e R i tz m i n i m i z a t i o n p r o c e d u r e c o n v e r g e m o n o t o n i -

c a l l y f r o m a b o v e t o w a r d s t h e e x a c t f r e q u e n c i e s w i t h i n c r e a s e i n t h e n u m b e r o f t e r m s i n t h e se r ie s.

T h e p r e s e n t w o r k h a s b e e n c o n c e r n e d w i t h s o l id s c o m p r i s i n g l a y er s o f i s o t r o p i c m a t e ri a ls . I t c a n

b e e x t e n d e d s t r a i g h f o r w a r d l y t o a p p l y t o s o l id s c o m p o s e d o f l a y er s o f a n i s o t r o p i c m a t e r i al s ,

p r o v i d e d t h a t t h e s t r a in e n e r g y e x p r e s s i o n f o r ea c h l a y e r m a y b e w r i t t e n c o n v e n i e n t l y i n t e r m s o f t h e

s y s t em C a r t e s i a n c o o r d i n a t e s . A n e x a m p l e w o u l d b e a s o li d c o m p r i s i n g l a y e r s o f r e c t a n g u l a r l y

o r t h o t r o p i c m a t e r ia l s w i t h t h e p r i n c i p a l d i r e c ti o n s o f o r t h o t r o p y c o i n c i d e n t w i t h t h e C a r t e s i a n

c o o r d i n a t e s s e l e c t e d f o r t h e d e s c r i p t i o n o f t h e s o l i d .

A c k n o w l e d g e m e n t s - - T h e authors wish to thank the Natural Sciences and Engineering Research Council of Canada , whose

financial support permitted the conduct o f this work, and the reviewers for their thoughtful a nd helpful comments.

R E F E R E N C E S

1. E. R. Lapwood and T. Usami, F r e e O s c i l l a ti o n s o f t h e E a r t h . Cambridge University Press, Cambridge, U.K. (1981).

2. Y. M. Grigorenko and T. N. Kilina, Analysis of the frequencies and modes of natural vibration o f laminated hollow

spheres in two and three dimensional formulations. So t , . App l . Mech . 25, 1165 1171 (1990).

3. A. E. Armenakas, D. C. Gazis and G. Herrmann, F r e e V i b r a t i o n s o f C i r c u l a r C y l i n d r i c a l S h e ll s . Pergamon Press,

New York (1969).

Page 8: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 8/8

1 04 P . G . Yo u n g a n d S . M. D ic k in s o n

4 . A . E. Ar m e n a k a s , T o r s io n a l w a v e s in c o mp o s i t e r o d s . J . Acous t . Soc . Am. 38, 439 446 (1965).

5 . A . E . Ar m e n a k a s , P r o p a g a t io n o f h a r mo n ic wa v e s in c o m p o s i t e c i r c u la r c y l in d ri c a l s he ll s. I : t h e o r e t i c a l in v e s t ig a t io n .

A I A A . J l 5, 740-744 (1967) .

6 . A . E . Ar me n a k a s , P r o p a g a t io n o f h a r mo n ic wa v e s in c o mp o s i t e c i r c u la r c y lin d r i c a l r o d s . J . Acous t . Soc . Am. 4 7 , 8 2 2 - 8 3 7

(1970).

7 . A . E. Ar m e n a k a s a n d H . E . Ke c k , Ha r mo n ic n o n - a x i s y m me t r i c wa v e s w i th s h o r t wa v e le n g th s p r o p a g a t in g in c o mp o s i t e

rods . J . Acous t . Soc . Am. 48, 1160-1169 (1970).8 . J . L . L a i , E . H . D o we l l a n d T . R . T a u c h e r , P r o p a g a t io n o f h a r m o n ic wa v e s in a c o mp o s i t e e l a st i c c y l in d e r . J . Acous t . Soc .

A m . 49, 220-228 (1971).

9 . K. P . So lda tos , R eview of th ree-d ime ns ion a l dyn am ic ana lyses of c i r cu la r cy l inders and cy l indr ica l shel ls. A p p l . M e c h .

R e v . 47, 501-516 (1994).

1 0. P . G . Yo u n g a n d S . M. D ic k in s o n , F r e e v ib r a t io n o f a c l a ss o f s o l id s w i th c a v i t ie s . Int . J . Mech. Sci . 36, 1099-1107 (1994).

1 1. B . L . J i a o a n d R . Siems , E la s t i c B lo c h wa v e s in c o mp o s i t e ma te r i a l s: v a r i a t io n a l me th o d s a n d b o u n d a r y c o n d i t io n s .

J . Phys . D: App l . Phys . 27, 347-355 (1994).

12. H. ,l iang , P . G. Young an d S . M. Dick ins on , Nat ura l f r equenc ies of v ib ra t io n of layered ho l low spheres us ing exac t th ree

d ime n s io n a l e l a s t i c i ty e q u a t io n s . J. Sound I / ib . (in press).


Recommended