9
Pergamon PII : S0020- 7403 (96) 00008- 2 Int. J. Mech. Sci. Vol. 39, No. 1, pp. 97 104, 1997 Cop yright (t~ 1996 Elsevier Science Ltd Pfinted in Great Britain. All fights reserved 0020 7403/97 $15.00 + 0.00 NATURAL FREQUENCIES OF VIBRATION OF A CLASS OF SOLIDS COMPOSED OF LAYERS OF ISOTROPIC MATERIALS P. G. YOUNG and S. M. DICKINSON* Department of Mechanical Engineering, The University of Western Ontario, London, Ontario, Canada, N6A 5B9 (Received 19 January 1995; and in final form 6 November 1995) A ~tra et--In a recent paper, the Ritz method with simple algebraic polynomials as trial functions was used to obtain an eigenvalue equation for the free vibration of a class of homogeneous solids with cavities. The method presented i s here extended to the study of a class of non-hom ogeneous solids, in which each solid is composed of a number of isotropic layers with different material properties. The Cartesian coordinate system is used to describe the geometry of the solid which is modelled by means of a segment bounded by the yz, z x a n d x y orthogonal coordinate planes and by two curved surfaces which are defined by fairly general polynomial expressions in the coordinates x, y and z. The surface representing the interface between two m aterial layers in the solid is also described by a polynomial expression in the coordinates x, y and z. In order to dem onstrate the accuracy of the approach, n atural frequencies are given for both a two- a nd three-layered spherical shell and for a homogeneous hollow cylinder, as computed using the present approach, and are com pared with those obtained using an exact solution. Results are then given for a number of two- and three-layered cylinders and, to dem onstrate the versatility of the approach, natural frequencies are given for a five-layered cantilevered beam with a central circular hole as well as for a numb er of composite solids of more general shape. Copyright '.~. 1996 Elsevier Ltd. Keywords: vibrations, solids, lagered solids, natural frequencies. 1. INTRODUCTION A survey of the literature reveals that there has been relatively little research done on the free vibration of non-homogeneous solids of general shape. An exact three-dimensional (3D) closed form solution in terms of Bessel functions of the first and second kind is possible for multi-layered spherical shells as outlined in the book by Lapwood and Usam i [1], whose work was primarily concerned with the free oscillations of the Earth. Complicating effects, such as self-gravitation and rotation, were also studied in order to better model the Earth. The free vibration of hollow laminated spheres, in which each layer is transversely isotropic, was treated by Grigorenko and Kilina [2] who compared the results from 2D and 3D analyses for the problem. For hollow and solid cylinders, including multi-layers, an exact closed form solution to the free vibration problem using 3D elasticity equations is possible only for the infinitely long case and for the derivative case of a finite length cylinder simply supported at both ends, for which extensive numerical results are given for the homogeneous isotropic case by Armenakas et al. [3]. Two-layered solid and hollow composite cylinders have been studied by Armenakas [4-6], by Armenakas and Keck [-7] and by Lai [8] using an exact frequency equation. Other boundary conditions and complicating effects have been studied by a number of researchers using a variety of approaches (including series solutions, finite element and Ritz approaches) and a useful and thorough review of this work, authored by Soldatos [9], has recently been published. In a previous paper [-10], the Ritz method, with simple algebraic polynomials as trial functions, was used to study a class of homogeneous, isotropic solids with cavities. In the present paper, the approach given in [10] is extended to include the effect of discrete changes in material properties throughout the solid. The approach used is straightforward, with a single displacement field extending throughout the solid. The shape of the interface between two different materials is described by means of a fairly general polynomial of similar form to that used to describe the curved boundaries in [10] and it is assumed that the two materials are perfectly bonded.

Natural frequencies of vibration

Embed Size (px)

Citation preview

Page 1: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 1/8

Page 2: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 2/8

98 P.G . Young and S. M. Dickinson

N u m e r i c a l r e s u lt s a r e g i v e n f o r a s e l e c ti o n o f p r o b l e m s , i l lu s t r a ti n g t h e a c c u r a c y a n d a p p l i c a b i l i t y

o f t h e a p p r o a c h .

2 . A N A L Y T I C A L A P P R O A C H

C o n s i d e r t h e m u l t i - la y e r e d s o l i d o r s e g m e n t o f a s o l i d s h o w n i n F i g. 1, e a c h l a y e r b e i n g o f

a d i ff e re n t i s o t r o p i c m a t e r i al . I t s g e o m e t r y a n d d i s p l a c e m e n t s a r e d e s c r i b e d i n t e r m s o f C a r t e s i a n

c o o r d i n a t e s x , y a n d z . A s in [ 1 0 ] , i t i s b o u n d e d b y t h e t h r e e p l a n e s x = 0 , y = 0 a n d z = 0 , b y a n

o u t e r s u r f a c e d e s c r i b e d b y t h e e q u a t i o n f o ( x , y , z ) = 0 , b y a n i n n e r s u r f a c e ( if a c a v i t y is t o b e

m o d e l l e d ) d e s c r i b e d b y f~ (x , y , z ) = 0 . T h e s u r f a c e s d e s c r i b i n g t h e i n t e r f a c e s b e t w e e n e a c h p a i r o f

l a y e r s a r e d e s c r i b e d b y f ~ ( x , y , z ) = 0 w h e r e s is t h e s u b s c r i p t a s s i g n e d t o t h e s t h i n t e r f a c e . T h e f o r m o f

the e qu a t io ns f ~ (x , y , z ) = 0 i s t a ke n a s ,

f s ( x , y , z ) = + \ b J + - 1 = 0 , s = i , 1 , 2 . . . . , 0 (1)

w h e r e Ps, q s a n d rs a r e a r b i t r a r y r e a l p o s i t i v e n u m b e r s a n d t h e v a l u e s as, bs a n d c s a r e t h e x , y a n d z

a x i s i n t e r c e p t s o f t h e o u t e r , t h e i n n e r a n d t h e i n t e r f a c e c u r v e d s u r f a c e s , a s s h o w n i n F i g . 1.S i m p l e h a r m o n i c m o t i o n a t r a d i a n f r e q u e n c y ~o c a n b e a s s u m e d f o r t h e f re e v i b r a t i o n p r o b l e m ,

a n d t h e d i s p l a c em e n t s U , V a n d W c a n b e a p p r o x i m a t e d b y u s in g s i m p l e a l g e b r ai c p o l y n o m i a l

se r i e s in x , y a n d z w i th l i ne a r c oe f f i c i e n t s A i~k , a s f o l l ow s

n x ny n z

U ( x , y , z ) = ~ . ~ ~ A ~ j k X '+ ' ~ '~ ° y J + t ~ -° zk + 'L ° f o (X , y , Z)'~;°°f~(x, y, Z) t~;-o,i = O j = O k = O

n x ny n z• e , + v v v v

V ( X , y , Z ) = ~ Z 2 A 2 i jk X t ÷ l . . . . . y J l Y = ° z k + g : = ° T J O r ~ ( X , , " Z ' l l f ° = °¢ ' [ ' X 1i~, , .," Z~'~'=°, (2)i = O j= O k = O

n x ny n z

W ( x , y , z ) = ~ .. ~ ~ A 3 k X ' + t L ° y J + t ~ - ° Z k + t L ° f o ( X , y , Z ) ' ~ o f ( x , y , Z ) t~ , o ,i = O j= O k = O

l v a n d / w : 0 d e p e n d u p o n t h e r e s t r a i n t s p l a c e d o n t h e U , V a n dh e r e t h e q u a n t i t i e s / V = o , x = o

W d i s p l a c e m e n t s , r e s p e c t i v e ly , o n t h e f a c e d e f i n e d b y x = 0 a n d a s s u m e t h e v a l u e s 0 f o r n o r e s t r a i n t

( U , V o r W :/: 0 ) a n d 1 f o r f u l l r e s t r a in t ( U , V o r W = 0 ). S im i l a r ly , t he qua n t i t i e s I r= o, lvy=o,/y=oWa n d

1Uz=o, ,z=o,JV W=o de pe nd up on the r e s t r a in t s im po se d a t y = 0 a n d z = 0 , re spe c t i ve ly . T h e e x po ne n t s

\

' ' / i ~ ~ ' " b i / / b t / " / b 2 / b o ~ y

X

Fig. 1. Segm ent of a mu lti-layered solid with cavity.

Page 3: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 3/8

Vibration of multi-layered solids 99

/}J= o , l~ = o,/~ v= o , m a y b e u s e d t o i m p o s e r e s t r a i n t s o n t h e o u t e r a n d i n n e r s u r f a c e s , f o = 0 a n d f = 0 ,

i n t h e x , y a n d z d i re c t i o n s , re s p e c ti v e ly , s i m p l y b y g i v i n g t h e a p p r o p r i a t e e x p o n e n t t h e v a l u e 1 f o r

f u ll r e s t r a i n t , o r 0 f o r n o r e s t r a i n t . ( In t h e c a s e s c o n s i d e r e d i n t h e n u m e r i c a l r e s u l t s s e c t io n o f th i s

w o r k , a ll s u r fa c e s n o t l y i n g o n p l a n e s d e f i n e d b y x = 0 , y = 0 a n d z = 0 a r e t r e a t e d a s f r e e, w i t h t h e

e x c e p t i o n o f t h e s i m p l y s u p p o r t e d c y l i n d e r c a se , f o r w h i c h t h e i m p o s i t i o n o f t h e a p p r o p r i a t e

b o u n d a r y c o n d i t i o n s i s d e s c r i b e d l a t e r . H e n c e , a l l e x p o n e n t s o f f o ( x , y , z ) a n d f~ (x , y , z ) a r e t a k e n a sze ro . )

T h e s e g m e n t s h o w n i n F i g. 1 c a n a l s o b e u s e d t o m o d e l a v a r i e t y o f s y s te m s w h i c h e x h i b i t

s y m m e t r y o f b o t h g e o m e t r y a n d b o u n d a r y c o n d i ti o n s a b o u t o n e o r m o r e o f th e p l a n es g i ve n b y

x = 0 , y = 0 a n d / o r z = 0 . T h i s i s a c h i e v e d b y m o d e l l i n g a r e p r e s e n t a t i v e s e g m e n t o f t h e s y s t e m a n d

a s s i g n i n g t h e a p p r o p r i a t e v a l u e s o f l v , l v a n d l w as s oc ia ted wi th x , y and z in s e r i e s Eqn (2 ) , t o

e n f o r c e t h e r e q u i r e d b o u n d a r y c o n d i t i o n s o n t h e p la n e (s ) o f s y m m e t r y t o m o d e l s y m m e t r i c m o d e s

( z e ro d i s p l a c e m e n t n o r m a l t o p l a n e , n o n - z e r o d i s p l a c e m e n t s i n -p l a n e ) a n d a n t i s y m m e t r i c m o d e s

( n o n - z e r o d i s p l a c e m e n t n o r m a l t o p l a n e , z e r o d i s p l a c e m e n t s i n - p la n e ) .

T h e n o r m a l s t r a i n s , ~ x , e y an d ~ z, an d the s he a r s t r a in s , ~ 'xy, 7yz an d 7zx , can be r e l a t ed to the

d i s p l a c e m e n t s U , V a n d W i n t h e u su a l m a n n e r [ 1 0 ] a n d t h e m a x i m u m s t r a in e n e r g y V t f o r t h e t t h

l a y e r o f t h e s o l i d c a n b e e x p r e s s e d a s

V t = ~ [ 2 t ( e x + ~ , + e~ )2 + 2 G t ( e ~ + e y + ~ 2 ) + G t ( T x y + ' /y z + 7 2 x ) ] d x d y d z (3 )

v t E , E tw here 2t = (1 + v t) (1 - 2v~ ) an d G~ - 2 (1 + vt~ a r e the La m b pa ram ete r s ,

a n d i n w h i c h E , is Y o u n g ' s m o d u l u s a n d v t i s t h e P o i s s o n r a t i o o f t h e m a t e r i a l o f th e l a y e r . T h e

m a x i m u m k i n e t ic e n e r g y T f o f e a c h l a y e r c a n b e e x p r e s s e d i n t e r m s o f t h e d is p l a c e m e n t s a s

f f f ( v 2 + V 2 + W 2 ) d x d y d z ,(4 )

w h e r e P t is t h e d e n s i t y o f t h e l a y e r .

T h e i n t e g ra l s in E q n s (3 ) a n d (4 ) a r e p e r f o r m e d o v e r t h e v o l u m e o f e a c h l a y e r o f t h e s o l id a n d t h e n

s u m m e d t o o b t a i n t h e m a x i m u m t o t a l s t ra i n e n e r g y ( V ) a n d k i n e t ic e n e r g y ( T ) o f t h e so l id . T h e

L a g r a n g i a n f u n c t i o n a l L = ( T - V ) is t h e n m i n i m i z e d w i t h r e s p e c t t o c o e f f i c ie n t s A ~ k , a c c o r d i n g t o

t h e R i t z p r in c i p le , t o o b t a i n a h o m o g e n e o u s l i n e a r sy s t e m o f e q u a t i o n s o f s ta n d a r d e i g e n v a l u e fo r m :

H e r e i , j , k , l , m , n = 0, 1 . . . . e = 1 , 2 , 3 , f~ 2 i s the f r eq ue ncy pa ra m ete r and the coe f f i c i en t s

C ~ } k , ~ , , , a n d E ~ k , ~ , , . i n v o l v e i n t e g r a l s o f p r o d u c t s o f t h e s h a p e f u n c t i o n s a n d t h e i r f ir s t d e r i v a t i v e s .

I t is r e c o g n i z e d t h a t t h e d i s p l a c e m e n t f u n c t i o n s E q n (2 ) s a ti s fy c o n t i n u i t y o f d i s p l a c e m e n t a t t h ei n t e r fa c e b e t w e e n a d j a c e n t l a y e r s b u t , o w i n g t o t h e i r c o n t i n u o u s l y d i f f e r e n ti a b l e n a t u r e , t h e y c a n n o t ,

t e r m b y t e r m , s a t i sf y a n y d i s c o n t i n u o u s s t r a in c o n d i t i o n w h i c h e x i s ts a t a n i n te r fa c e . T h i s i m p l ie s

t h a t a n y c o n t i n u i t y o f s tr e ss c o n d i t i o n a c r o s s a n i n t e rf a c e b e t w e e n l a y e rs o f t w o d i f fe r e n t m a t e r i a l s

w i ll n o t b e sa t is f ie d t e r m b y t e r m . S u c h c o n d i t i o n s a r e s a ti sf ie d a p p r o x i m a t e l y , h o w e v e r , b y m e a n s o f

t h e s u m o f t h e s m o o t h f u n c t io n s . T h e r a t e o f c o n v e r g e n c e f o r s y s te m s w i t h l a rg e v a r i a t i o n s i n

m a t e r i a l p r o p e r t i e s m a y t h u s b e d i m i n i s h e d [ 1 1 ].

3 . N U M E R I C A L R E S U L T S

I n o r d e r t o d e m o n s t r a t e t h e a p p l i c a b il i ty a n d a c c u r a c y o f t h e a p p r o a c h , n u m e r i c a l r e su l ts

c o m p u t e d u s i n g t h e p r e s e n t m e t h o d a r e c o m p a r e d w i t h r e s u l t s o b t a i n e d u s i n g a n e x a c t f o r m u l a t i o n

f o r b o t h a t w o - a n d a t h r e e - l a y e r e d h o l l o w s p h e r e a n d f o r a h o l l o w h o m o g e n e o u s c y l in d e r . T w o

d i f fe r e n t t w o - l a y e r e d s i m p l y s u p p o r t e d c y l i n d er s , f o r w h i c h e x a c t n u m e r i c a l s o l u t i o n s a r e p o s s i b le

b u t a r e n o t a v a i l a b le i n t h e o p e n l i te r a t u r e , a r e t h e n c o n s i d e r e d . L a s t l y , a n u m b e r o f c a s es a r e

i n c l u d e d f o r w h i c h n o e x a c t s o l u t i o n s e x i s t: a c a n t i l e v e r e d t h r e e - l a y e r c y l i n d e r , a c a n t i l e v e r e d

f i v e- l a y er b e a m , a n d s e v e ra l so l id s o f m o r e g e n e r a l g e o m e t r y . E a c h p r o b l e m w a s m o d e l l e d b y m e a n s

o f a s ol id l o c a t e d in t h e f ir st o c t a n t w i t h a p p r o p r i a t e s y m m e t r y o r b o u n d a r y c o n d i t i o n s b e i n g

i m p o s e d o n t h e x = 0 , y = 0 a n d / o r z = 0 s ur f a c es . I n a ll c a s e s, a n d f o r a ll m a t e r i a l l a y e r s , P o i s s o n ' s

Page 4: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 4/8

100 P. G. Young and S. M. Dickinson

Table l. Frequency parameters f~ = ~o2ro/ '2x/(po/Eo) for two- and three-layered hollow spheres

Mode number

n~ x n x n~ 1 2 3 4 5 6 7 8

Tw o-layered 8 × 8 × 8 1.714 2.322 2.695 3.463 3.657 3.745 3.784 4.825shell Ex act 1.710 2.322 2.677 3.462 3.656 3.705 3.780 4.761

Th ree-la yere d 8 × 8 x 8 1.861 2.512 2.988 3.737 3.952 4.095 4.260 5.271shell Exa ct 1.858 2.512 2.974 3.736 3.951 4.092 4.227 5.268

r a t io w a s t a k e n a s 0. 3. A m o d u l u s o f e l a st ic i ty r a t i o a n d a d e n s it y r a t i o e q u a l t o 1 /3 w a s c o m m o n l y

u s e d b e t w e e n a d j a c e n t m a t e r i a l l a y e rs a n d i t m a y b e n o t e d t h a t t h e s e c o r r e s p o n d c l o s e l y t o t h e r a ti o s

o f a l u m i n i u m o v e r st ee l. A l so , w h e r e t h e e x p o n e n t ~ is us e d t o g iv e a r e c t a n g u l a r b o u n d a r y , t h is w a s

a p p r o x i m a t e d i n t h e c o m p u t a t i o n s b y t h e a r b i tr a r i ly h i g h v a l u e o f 101 1, a d e v ic e d e m o n s t r a t e d t o b e

e f fec t ive in Re f . [ -10] .

T h e f ir st c as e s c o n s i d e r e d w e r e a t w o - a n d a t h re e - l a y e r e d h o l l o w s p h e r e . O n l y o n e - e i g h t h o f t h e

s he ll w a s m o d e l l e d a n d a p p r o p r i a t e b o u n d a r y c o n d i t i o n s w e r e a p p l i e d a t al l t h r e e p l a n es o f

s y m m e t r y ( c o o r d i n a t e p l a n e s ) t o m o d e l t h e f u ll sp h e r ic a l s h e l l T h e s e g m e n t o f t h e s p h e r e l y i n g in t h e

f ir st o c t a n t w a s b o u n d e d b y t h e th r e e c o o r d i n a t e p l a n e s a n d b y a n o u t e r s p h e r i c a l ly c u r v e d s u r f a ce

g i v en b y f o = x 2 + y2+ Z2--1 = 0 a n d b y a n i n n e r s p h e r i c a l l y c u r v e d s u r f a c e g i v e n b y

f i = (2x) 2 + (2Y)2 + 1 2 z) 2 - 1 = 0 , c o r r e s p o n d i n g t o a n i n n e r t o o u t e r r a d i u s r a t i o r i / ro = 1 / 2 . F o r

t h e t w o - l a y e r s p h e r i c a l s he l l c o n s i d e r e d , t h e i n t e rf a c e s u r f a c e b e t w e e n t h e t w o m a t e r i a l s w a s g i v e n b y

f l = ( 4x /3 )2 + ( 4 y/ 3) 2 + ( 4 z/ 3 ) 2 - 1 = 0 , c o r r e s p o n d i n g t o a n i n t e r f a c e t o o u t e r r a d i u s r a t i o

r l / r o = 3 / 4, a n d t h e r a t i o o f t h e i n n e r t o o u t e r l a y e r m a t e r i a l p r o p e r t i e s w e r e t a k e n a s

E i / E o = P l / P o = 1 /3 (a s f o r a n a l u m i n i u m c o r e a n d s te e l c a s i n g) . F o r t h e t h r e e - l a y e r s p h e r i c a l s h e ll ,

t h e t w o i n t e r f a c e s u r f a c e s w e r e g i v e n b y f l = ( 5 x / 3 ) 2 + ( 5 y / 3 ) 2 + ( 5 z /3 ) 2 - 1 = 0 a n d f 2 = ( x / 0 .9 ) 2

+ ( y / 0 .9 ) 2 + ( z /0 . 9) 2 - 1 = 0 , c o r r e s p o n d i n g t o i n t e r f a c e s u r f a c e t o o u t e r r a d i u s r a t i o s o f r t / r o = 0 .6

a n d r 2 / r o = 0 .9 , r e s p e c ti v e l y . T h e i n n e r l a y e r t o o u t e r l a y e r a n d t h e m i d d l e l a y e r t o o u t e r l a y e r

m a t e r i a l p r o p e r t y r a t i o s w e re t a k e n a s E i / E o = P l / P o = 1 a n d E 2 / E o = P 2 / P o = 3 , r e s p e c t i v e l y ( a s

f o r a s te e l m i d d l e l a y e r s a n d w i c h e d b e t w e e n a n a l u m i n i u m c o r e a n d c a si n g) . T h e f ir st e i g h t n o n - z e r o

n o n - d i m e n s i o n a l f r e q u e n c y p a r a m e t e r s f o r b o t h o f t h e se c a s e s a r e g iv e n i n T a b l e 1 a s o b t a i n e d u s i n g

t h e p r e s e n t m e t h o d w i t h n x = n y = n z = 8 a n d a s c o m p u t e d u s i n g a n e x a c t s o l u t i o n [ 1 2 ] . R e s u l t s

o b t a i n e d u s i ng t h e p r e s e n t m e t h o d a r e v e r y cl o s e to t h e e x a c t s o l u t i o n r e s u l ts f o r a ll m o d e s g i v e n

w i t h t h e la r g e s t p e r c e n t a g e e r r o r b e i n g l e ss t h a n 1 . 3 % f o r t h e t w o - l a y e r c a s e ( m o d e 8 ) a n d 0 . 8 % f o r

t h e t h r e e - l a y e r c a s e ( m o d e 7).

T h e n e x t c a s e s t r e a t e d w e r e a si n g le l a y e r e d a n d t w o d i f f e r e n t t w o - l a y e r e d h o l l o w c y l i n d e r s s i m p l y

s u p p o r t e d a t e a c h e n d ( t h a t is , o n l y a x ia l d i s p l a c e m e n t s w e r e p e r m i t t e d a t e a c h e nd ). O n e - e i g h t h o f

e a c h c y l in d e r w a s m o d e l le d a n d a p p r o p r i a t e b o u n d a r y c o n d i t io n s w e r e a p p l ie d a l o n g t h e t hr e e

p l a n e s o f s y m m e t r y . T h e s e g m e n t o f th e h o l l o w c y l i n d e r in t h e f ir st o c t a n t w a s d e s c r i b e d b y t h e

s u r f a c e s g i v e n b y )Co = ( 2 x / 3 ) 2 + ( 2 y / 3 ) 2 + z ~ ' - 1 = 0 an d f i = (2x) 2 + (2y) 2 + z °c - 1 = 0 , co r re s -

p o n d i n g t o a n i n n e r t o o u t e r r a d i u s r a t i o r i / r o - - 1 / 3 a n d t o a l e n g t h t o o u t e r r a d i u s r a t i o

L / r o = 2 c / r o = 4/ 3. O n l y m o d e s s y m m e t r i c a b o u t z = 0 w e r e c o n s i d e re d . I n o r d e r t o m o d e l t h e

r e q u i r e d g e o m e t r i c , f r e e , b o u n d a r y c o n d i t i o n s o n t h e i n n e r a n d o u t e r c u r v e d s u r f a c e s a n d t h e

" s i m p l e s u p p o r t " a t t h e f la t e n d z = c = L / 2 , t h e e x p o n e n t s o f f o a n d f i n E q n (2 ) w e r e t a k e n a s z e r o

a n d t h e p o l y n o m i a l e x p a n s i o n s f o r U a n d V w e r e m u l t i p li e d b y (1 - z / c ) . T h i s h a s t h e e f f e c t o f

r e s t r a i n i n g t h e l a t e r a l ( U , V ) d i s p l a c e m e n t o n t h e z - - L / 2 p l a n e w h i l e p e r m i t t i n g a x i a l m o t i o n ( W ) .

F o r t h e f i r st t w o - l a y e r c y l i n d e r t r e a t e d ( c a se 1), t h e c y l i n d r i c a l i n t e r f a c e s u r f a c e w a s g i v e n b y

f l = ( 4 x / 5 ) z + ( 4 y /5 ) 2 + z ~ - 1 = 0 a n d t h e i n n e r l a y e r t o o u t e r l a y e r r a t i o o f m a t e r i a l p r o p e r t i e s

w e r e ta k e n a s E i / E o = P i / P o = 3 . F o r t h e s e c o n d t w o - l a y e r c y l i n d e r t r e a t e d ( c a se 2), t h e i n t e r f a c e

s u r f a c e w a s g i v e n b y f l = ( 4 x / 3 ) 2 + ( 4 y / 3 ) 2 + z ~ ' - 1 = 0 , w i t h E i / E o = P i / P o - - 1 / 3. T h e f i rs t e i g h t

n o n - d i m e n s i o n a l n a t u r a l f r e qu e n c i e s f o r t h e s in g le la y e r e d ( h o m o g e n e o u s ) h o l l o w c y l i n d e r, a s

c o m p u t e d u s i n g t h e p r e s e n t m e t h o d w i t h n x = n r - - n z = 8 i n t h e s e ri e s, a r e g i v e n i n T a b l e 2 , a l o n g

w i t h e x a c t r e s u lt s r e p o r t e d i n R e f. [ 3 ] , a n d e x c e l l e nt a g r e e m e n t m a y b e s e e n t o e x is t ( m a x i m u m

d i s c r e p a n c y 0 . 4 % f o r m o d e 3). I n T a b l e 3 , a b r i e f c o n v e r g e n c e s t u d y w i t h n u m b e r o f t e r m s n x, ny a n d

Page 5: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 5/8

Vibration of multi-layered solids

Tabl e 2. Freque ncy pa ram ete rs t~ = ~oZ(ri + r o ) / 2 , v / ( p / E ) for a homoge neous (one-layered) simply

supported cylinder

101

Mode number

n~ × n r × n~ 1 2 3 4 5 6 7 8

8 x 8 x 8 0.7650 0.9298 0.9742* 1.079 1.310 1.450 1.660 1.705

Exact 0.7650 0.9286 0.9742* 1.079 1.310 1.443 1.660 1.705

* Torsio nal mode. Exact result n/(2,v/(2(1 + v))) ~ 0.9742.

Tabl e 3. Frequency p arame ter s l'~ = ~oZ(ri + r o ) / 2 ~ / ' ( p o / E o ) for two-layered hollow simply supporte d cylinders

Mode number

Cas e n~ x n r x n~ 1 2 3 4 5 6 7 8

4 x 4 × 4 0.7545 0.9657 0.9742* 1.134 1.366 1.598 1.728 1.760

1 6 × 6 x 6 0.7507 0.9483 0.9742* 1.130 1.361 1.566 1.724 1.751

8 × 8 x 8 0.7502 0.9400 0.9742* 1.130 1,361 1,544 1.723 1.749

4 × 4 × 4 0.7464 0.8739 0.9742* 1.010 1.272 1.351 1.617 1.690

2 6 × 6 × 6 0.7446 0.8693 0.9742* 1.007 1.270 1.336 1.614 1.688

8 x 8 x 8 0.7443 0.8668 0.9742* 1.007 1.270 1.332 1.613 1.687

* Torsio nal mode. Exac t r esult n/(2~//(2(1 + v)})~0.9742.

Table 4. Frequency parameters ~ = ~ o 2 (r ~ + r o ) / 2 ~ / / I p o / E o ) for a three-layered h ollow cantilevered

cylinder

Mode number

nx × n r × nz 1 2 3 4 5 6 7 8

4 ×4 × 4 0.01819 0.08118" 0.09940 0.1325 0.2634 0.2442 t 0.4878 0.3963

6 × 6 × 6 0.01802 0.08118" 0.09248 0.1318 0.2147 0. 243 51 0.3568 0.3926

8 × 8 × 8 0.01796 0.08118" 0.09226 0.1317 0.2136 0.2435 t 0.3475 0.3920

* Torsio nal mo de. Exact result rc/(24~/(2(1 + v)))-~0.08118.

t Tor sio nal mo de. Exact r esult 7t/(8 ~/(2(1 + v)))~ 0.2435.

n z u s e d i n t h e s e ri e s, E q n (2 ), is g i v e n f o r t h e f i r st e i g h t m o d e s s y m m e t r i c a b o u t z = 0 f o r b o t h

t w o - l a y e r e d c y l in d r i c al c a s e s c o n s i d e r ed . C o n v e r g e n c e is r a p i d a n d r e l a t i v el y g o o d r e s u lt s a r e

o b t a i n e d b y u s i n g a s fe w a s f o u r t e r m s i n e a c h c o o r d i n a t e d i r e c t i o n i n t h e s e ri e s, E q n (2 ).

A t h r e e - l a y e r e d h o l l o w c y l i n d e r , c a n t i l e v e r e d a t z = 0 , w a s c o n s i d e r e d n e x t . O n e q u a r t e r o f t h e

c y l i n d e r w a s m o d e l l e d a n d t h e i n n e r a n d o u t e r s u r fa c e s o f t h e s e g m e n t i n th e f ir s t o c t a n t w e r e g i v e n

b y t h e e q u a t i o n s f o = ( 2 x / 3 ) 2 + ( 2 y / 3 ) 2 + ( z / 1 2 ) ~ - 1 = 0 a n d . ~ = ( 2 x ) 2 + ( 2 y ) 2 + ( z / 1 2 ) ~ - 1 = 0

a n d t h e t w o i n t e r f a c e s u r f a c e s w e r e d e s c r i b e d b y f l = ( 4 x / 3 ) 2 + ( 4 ) : / 3 ) 2 + ( z / 1 2 ) ~ - 1 = 0 a n d

f 2 = ( 4 x / 5 ) z + ( 4 y / 5 ) 2 + ( z / 1 2 ) ~ ' - I = 0 , g i v in g ra d i u s r a t io s r i / r o = l / 3 , r l / r o = l / 2 , a n d

rz /ro = 5 / 6 a n d a l e n g t h t o r a d i u s r a t i o C/ro = 8 . A s f o r t h e t h r e e - l a y e r s p h e r e , t h e i n n e r t o o u t e r

l a y e r a n d m i d d l e t o o u t e r l a y e r m a t e r i a l p r o p e r t y r a t i o s w e r e t a k e n a s Ei/Eo = Pi /Po = 1 a n d

E z / E o = P z/ P o = 3 , r e s p e c t i v e l y . F r o m t h e s t u d y g i v e n i n T a b l e 4 f o r th e f i r st e i g h t m o d e s , t h e r a t e

o f c o n v e r g e n c e c a n b e s ee n t o b e q u i t e r a p i d .

A f a m i ly o f s o l i d s w i t h n o c a v i ti e s, s y m m e t r i c a b o u t a ll th r e e c o o r d i n a t e p l a n e s a n d m a d e o f t w o

d i f f e r e n t m a t e r i a l s w a s t h e n t r e a t e d . T h e o u t e r c u r v e d s u r f a c e o f t h e s e g m e n t i n t h e f ir s t o c t a n t w a s

d e s c ri b e d b y a p o l y n o m i a l g i v e n b y f o = x " + y ' + z ~ - I = 0 ( t h a t i s P o = q o = r o = e a n d

a o = b o = c o = l ) a n d t h e i n t er f a c e s u r f ac e w a s d e s c r i b e d b y a p o l y n o m i a l g iv e n b y

f a = (x /d ) p + (y /d ) p + ( z /d ) p - 1 = 0 ( t h a t i s P l = q l = ra = / 3 a n d a t = b l = c a = d ) . T h e f i r s t

e i g h t n o n - d i m e n s i o n a l f r e q u e n c y p a r a m e t e r s a r e g i v e n i n T a b l e 5 f or th e f o l lo w i n g v a l u e s o f e ,/ 3 a n d

Page 6: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 6/8

1 02 P . G . Y o u n g a n d S . M . D i c k i n s o n

T a b l e 5 . F r e q u e n c y p a r a m e t e r s ~ = ~o2a~v/ '(po /Eo) f o r c o m p o s i t e s o l id s o f o u t e r s u r f ac e d e s c r i b e d b y f 0 = x " + y " + z " - 1 = 0

a n d i n t e r f a c e s u r f a c e d e s c r i b e d b y ./1 = (x / 'd ) ~ + (Y / d ) ~ + ( z / 'd ) ~ -1 = 0

M o d e n u m b e r

]~ d nx × n x n= l 2 3 4 5 6 8

4 x 4 × 4 1 . 91 2 2 . 0 9 2 2 . 1 4 7 2 . 3 7 7 3 . 33 1 3 . 4 7 8 4 . 0 6 6 3 . 2 8 9

2 / 3 2 / 3 0 . 7 6 × 6 × 6 1 . 88 3 2 . 0 6 9 2 . 0 8 3 2 . 3 1 6 2 . 8 8 7 3 . 1 9 3 3 . 2 6 5 3 . 2 8 1

8 x 8 × 8 1 . 8 8 0 2 . 0 6 5 2 . 0 7 7 2 . 3 0 8 2 . 8 4 2 3 . 1 4 7 3 . 1 7 6 3 . 2 7 8

4 x 4 × 4 1 . 38 3 1 . 39 2 1 .5 0 6 1 . 51 9 2 . 1 0 5 2 . 1 4 8 2 . 1 9 2 2 . 3 1 6

2 1 0 . 8 6 × 6 x 6 1 . 3 8 0 1 . 3 8 4 1 . 50 4 1 . 51 8 2 . 0 9 5 2 . 1 3 2 2 . 1 7 9 2 . 3 1 0

8 × 8 x 8 1 .378 1 .381 1 .504 1 ,518 2 ,092 2 .125 2 .17 4 2 .308

3 x 3 × 3 0 .86 02 1 .047 1 .161 1 .190 1 .364 1 .449 1 .532 1 .561

101~ 2 0 ,7 5 × 5 x 5 0 .85 74 1 .028 1 .140 1 .160 1 .350 1 .433 1 .460 1 .524

7 × 7 x 7 0 .85 72 1 .026 1 .137 1 .160 1 .349 1 .433 1 .458 1 .520

X 9

_ ~ 2 o - - i0 . 7 5 o

, 1Z ~

8 o

X 9 / / / / , / / / / / i / / f f

F i g . 2 . C a n t i l e v e r e d m u l t i- l a y e r e d r e c t a n g u l a r c r o s s - s e c ti o n b e a m w i t h a c y l in d r i c a l h o l e t h r o u g h i ts c e n t r e.

d : ~ = 2 / 3 , / 3 = 2 / 3 a n d d = 0 .7 , a n e p i c y l o i d a l s o l i d w i t h a n e p i c y l o i d a l i n c l u s i o n , w i t h i n n e r t o o u t e r

m a t e r i a l p r o p e r t i e s E i / E o = P i / P o = 3; ~ = 2 , /3 = 1 , d = 0 . 8 , a s p h e r e w i t h a d i a m o n d s h a p e d

i n c l u s i o n , w i t h i n n e r t o o u t e r m a t e r i a l p r o p e r t i e s E i / E o = P i / P o = 1 / 3 ; a n d ~ = ~ , / 3 = 2 , d = 0 . 7 ,

a c u b e w i t h a s p h e r i c a l i n c l u s i o n , a g a i n w i t h i n n e r t o o u t e r m a t e r i a l p r o p e r t i e s E i / E o = P l / P o = 1 / 3 .

T h e r e s u l t s g i v e n i n T a b l e 5 a p p e a r t o s u g g e s t g o o d c o n v e r g e n c e .

Page 7: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 7/8

Vibration of multi-layered solids

Table 6. Frequency parameters f~ = t o 2 ( b / 2 ) ~ / ( p o / E o ) for a five-layered cantilevered beam with a central

circular hole running through it

103

Mode number

nx x n r × nz 1 2 3 4 5 6 7 8 9

4× 4 x4 0.03234 0.03635 0.1023 0.154 7 0.1586 0.198 7 0.307 9 0.40 07 0.4178

6 x 6 x6 0.03204 0.03601 0.1018 0.152 2 0.1564 0.197 8 0.30 47 0.32 64 0.3533

8 x 8 x 8 0.03194 0.03590 0. 1017 0.1 517 0.156 1 0.1 975 0.3 042 0.3 250 0.3518

L a s t l y , a f i v e - l a y e r e d r e c t a n g u l a r c r o s s - s e c t i o n b e a m c a n t i l e v e r e d a t z = 0 w i t h a c y l i n d r i c a l h o l e

r u n n i n g d o w n t h e m a i n a x is , a s s h o w n i n F i g. 2 , w a s c o n s i d e re d . A q u a r t e r o f th e b e a m w a s m o d e l l e d

wi th the ou te r a nd inn e r su r fa c e s d e sc r ib e d by f0 = x ® + y ~ + ( z /8 ) °~ - 1 = 0 a nd J ] = (2x) 2 +

( 2y )2 + ( z /8 ) ~ - 1 = 0 a n d t h e t w o i n t e r f a c e s u r f a ce s w e r e d e s c r i b e d b y f t = ( 2 x ) ~ + Y ® +

(z /8 ) ~ - 1 = 0 a n d f2 = (4x /3 ) ~ + Y~ + (z /8 ) ~° - 1 = 0 . T he ou te r l a ye r s we re a s su me d to ha v er e f e r e n c e m o d u l u s o f e l a s t i ci t y E 0 a n d d e n s i t y P o , a n d t h e a d j a c e n t l a y e r s w e r e a s s u m e d t o h a v e t h e

f o l lo w i n g n o n - d i m e n s i o n a l m a t e r i a l c o n s t a n t s E 2 / E o = P 2 /P o = 1 / 2 , a n d t h e m i d d l e l a y e r ( t h r o u g h

w h i c h t h e h o l e is b o r e d ) h a d t h e f o l lo w i n g p r o p e r t i e s E ~ / E o = P l / P o = 1 /3 . T he f i r s t n ine na tu ra l

f r e q u e n c y p a r a m e t e r s a r e g i v e n i n T a b l e 6 a n d , a g a i n , g o o d c o n v e r g e n c e e x is ts a n d i t m a y b e

r e m a r k e d t h a t t h e r e s u l ts o b t a i n e d u s i n g o n l y n x = n r = nz = 4 a p p e a r t o b e r e a s o n a b l y c o n v e r g e d .

4. CONCL UDIN G REMARKS

A s t r a i g h t f o r w a r d m e t h o d o f o b t a i n i n g t h e n a t u r a l f r e q u en c i e s o f a c l as s o f m u l t i - l a y e r e d s o li d s

h a s b e e n p r e s e n t e d . T h e a p p r o a c h h a s b e e n v a l i d a t e d a g a i n s t e x a c t s o l u t i o n s a n d e x c e ll e n t a g r ee -

m e n t o b t a i n e d . N a t u r a l f r e q u e n c y p a r a m e t e r s h a v e b e e n o b t a i n e d f o r s e v e ra l p r o b l e m s f o r w h i c h

e x a c t s o l u t i o n s a r e n o t a v a i l a b l e a n d , i n m o s t c a se s , i t a p p e a r s t h a t r e l a t i v e l y f e w t e r m s n e e d b e u s e d

i n t h e d i s p l a c e m e n t s e r ie s t o o b t a i n r e a s o n a b l y c o n v e r g e d v a l u e s.

T h e u s e o f a s i n gl e , c o n t i n u o u s l y d i f fe r e n t i a b l e d i s p l a c e m e n t f ie l d p e r m i t s t h e a c c u r a t e p r e d i c t i o n

o f n a t u r a l f r e q u en c i e s a n d w o u l d y i e ld r e a s o n a b l y a c c u r a t e m o d e s h a pe s . H o w e v e r , as a l r e a d y n o t e d ,

t h e f u n c t i o n s c a n n o t a c c u r a t e l y m o d e l t h e d i s c o n t i n u i t i e s i n s t r a i n s t h a t m a y e x i s t a t t h e i n t e r f a c e s

b e t w e e n l a y e r s o f d i f f e r en t m a t e r i a l s u n l e s s a l a r g e n u m b e r o f t e r m s i s u s e d i n t h e s e ri e s. H e n c e , t h e

s tr e ss d i s t ri b u t i o n w h i c h o c c u r s t h r o u g h o u t a l a y e r e d so l id w h e n v i b r a t i n g i n a g iv e n m o d e a t

a p a r t i c u l a r a m p l i t u d e m a y n o t b e a c c u r a t e l y p r e d i c t e d i n t h e v i c i n i t y o f t h e i n t er f ac e ( s) . T h i s

p r o b l e m m a y b e o v e r c o m e , a t t h e e x p e n s e o f s o m e s i m p l ic i ty , b y u s i n g s e p a r a t e d i s p l a c e m e n t

f u n c t i o n s f o r e a c h l a y e r .

T h e p o l y n o m i a l t r ia l f u n c t i o n s er ie s u se d i n t h e e x a m p l e s t r e a t e d f o r m m a t h e m a t i c a l l y c o m p l e t es et s o f f u n c t i o n s a n d t h e r es u l ts o b t a i n e d f r o m t h e R i tz m i n i m i z a t i o n p r o c e d u r e c o n v e r g e m o n o t o n i -

c a l l y f r o m a b o v e t o w a r d s t h e e x a c t f r e q u e n c i e s w i t h i n c r e a s e i n t h e n u m b e r o f t e r m s i n t h e se r ie s.

T h e p r e s e n t w o r k h a s b e e n c o n c e r n e d w i t h s o l id s c o m p r i s i n g l a y er s o f i s o t r o p i c m a t e ri a ls . I t c a n

b e e x t e n d e d s t r a i g h f o r w a r d l y t o a p p l y t o s o l id s c o m p o s e d o f l a y er s o f a n i s o t r o p i c m a t e r i al s ,

p r o v i d e d t h a t t h e s t r a in e n e r g y e x p r e s s i o n f o r ea c h l a y e r m a y b e w r i t t e n c o n v e n i e n t l y i n t e r m s o f t h e

s y s t em C a r t e s i a n c o o r d i n a t e s . A n e x a m p l e w o u l d b e a s o li d c o m p r i s i n g l a y e r s o f r e c t a n g u l a r l y

o r t h o t r o p i c m a t e r ia l s w i t h t h e p r i n c i p a l d i r e c ti o n s o f o r t h o t r o p y c o i n c i d e n t w i t h t h e C a r t e s i a n

c o o r d i n a t e s s e l e c t e d f o r t h e d e s c r i p t i o n o f t h e s o l i d .

A c k n o w l e d g e m e n t s - - T h e authors wish to thank the Natural Sciences and Engineering Research Council of Canada , whose

financial support permitted the conduct o f this work, and the reviewers for their thoughtful a nd helpful comments.

R E F E R E N C E S

1. E. R. Lapwood and T. Usami, F r e e O s c i l l a ti o n s o f t h e E a r t h . Cambridge University Press, Cambridge, U.K. (1981).

2. Y. M. Grigorenko and T. N. Kilina, Analysis of the frequencies and modes of natural vibration o f laminated hollow

spheres in two and three dimensional formulations. So t , . App l . Mech . 25, 1165 1171 (1990).

3. A. E. Armenakas, D. C. Gazis and G. Herrmann, F r e e V i b r a t i o n s o f C i r c u l a r C y l i n d r i c a l S h e ll s . Pergamon Press,

New York (1969).

Page 8: Natural frequencies of vibration

8/6/2019 Natural frequencies of vibration

http://slidepdf.com/reader/full/natural-frequencies-of-vibration 8/8

1 04 P . G . Yo u n g a n d S . M. D ic k in s o n

4 . A . E. Ar m e n a k a s , T o r s io n a l w a v e s in c o mp o s i t e r o d s . J . Acous t . Soc . Am. 38, 439 446 (1965).

5 . A . E . Ar m e n a k a s , P r o p a g a t io n o f h a r mo n ic wa v e s in c o m p o s i t e c i r c u la r c y l in d ri c a l s he ll s. I : t h e o r e t i c a l in v e s t ig a t io n .

A I A A . J l 5, 740-744 (1967) .

6 . A . E . Ar me n a k a s , P r o p a g a t io n o f h a r mo n ic wa v e s in c o mp o s i t e c i r c u la r c y lin d r i c a l r o d s . J . Acous t . Soc . Am. 4 7 , 8 2 2 - 8 3 7

(1970).

7 . A . E. Ar m e n a k a s a n d H . E . Ke c k , Ha r mo n ic n o n - a x i s y m me t r i c wa v e s w i th s h o r t wa v e le n g th s p r o p a g a t in g in c o mp o s i t e

rods . J . Acous t . Soc . Am. 48, 1160-1169 (1970).8 . J . L . L a i , E . H . D o we l l a n d T . R . T a u c h e r , P r o p a g a t io n o f h a r m o n ic wa v e s in a c o mp o s i t e e l a st i c c y l in d e r . J . Acous t . Soc .

A m . 49, 220-228 (1971).

9 . K. P . So lda tos , R eview of th ree-d ime ns ion a l dyn am ic ana lyses of c i r cu la r cy l inders and cy l indr ica l shel ls. A p p l . M e c h .

R e v . 47, 501-516 (1994).

1 0. P . G . Yo u n g a n d S . M. D ic k in s o n , F r e e v ib r a t io n o f a c l a ss o f s o l id s w i th c a v i t ie s . Int . J . Mech. Sci . 36, 1099-1107 (1994).

1 1. B . L . J i a o a n d R . Siems , E la s t i c B lo c h wa v e s in c o mp o s i t e ma te r i a l s: v a r i a t io n a l me th o d s a n d b o u n d a r y c o n d i t io n s .

J . Phys . D: App l . Phys . 27, 347-355 (1994).

12. H. ,l iang , P . G. Young an d S . M. Dick ins on , Nat ura l f r equenc ies of v ib ra t io n of layered ho l low spheres us ing exac t th ree

d ime n s io n a l e l a s t i c i ty e q u a t io n s . J. Sound I / ib . (in press).