Transcript
Page 1: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

Lecture II: Rigid-Body Physics

Page 2: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

2Lecture II: Rigid-Body Physics

Rigid-Body Motion

• Previously: Point dimensionless objects moving through a trajectory.

• Today: Objects with dimensions, moving as one piece.

Page 3: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

3Lecture II: Rigid-Body Physics

Rigid-Body Kinematics• Objects as sets of points.• Relative distances between all points are

invariant to rigid movement.• Free body movement: around the center of mass

(COM).• Movement has two components:

• Linear trajectory of a central point.• Relative rotation around the point.

Page 4: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

4Lecture II: Rigid-Body Physics

Mass• The measure of the amount of matter in the

volume of an object:

𝑚 = #𝜌𝑑𝑉

(

• 𝜌 : the density of each point the object volume 𝑉.• 𝑑𝑉: the volume element.

• Equivalently: a measure of resistance to motion or change in motion.

Page 5: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

5Lecture II: Rigid-Body Physics

Mass• For a 3D object, mass is the integral over its

volume:

𝑚 = ###𝜌(𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧

• For uniform density (𝜌 constant):

𝑚 = 𝜌 ∗ 𝑉

Page 6: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

6Lecture II: Rigid-Body Physics

Center of Mass• The center of mass (COM) is the “average” point

of the object, weighted by density:

𝐶𝑂𝑀 =1𝑚#𝜌 4 �⃗�𝑑𝑉

(• 𝑝: point coordinates.

• Point of balance for the object.• Uniform density: COM ó centroid.

COM

Page 7: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

7Lecture II: Rigid-Body Physics

Center of Mass of System• Sets of bodies have a mutual center of mass:

𝐶𝑂𝑀 =1𝑚7𝑚8𝑝8

9

8:;• 𝑚8: mass of each body.• 𝑝8: location of individual COM.• 𝑚=∑ 𝑚8

98:; .

• Example: two spheres in 1D

𝑥=>? =𝑚;𝑥; +𝑚A𝑥A𝑚; +𝑚A

COM𝒎𝟏

𝒎𝟐

𝒙𝟐

𝒙𝟏𝒙𝑪𝑶𝑴

Page 8: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

8Lecture II: Rigid-Body Physics

Center of Mass

• Quite easy to determine for primitive shapes

• What about complex surface based models?

Page 9: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

9Lecture II: Rigid-Body Physics

Rotational Motion• 𝑃 a point on to the object. • 𝐶 is the center of rotation.• Distance vector �⃗� = 𝑃 − 𝐶.

• 𝑟 = 𝑟 : the distance.• Object rotates ó 𝑃

travels along a circular path.• Unit-length axis of rotation: 𝑢.

• Here, 𝑢=�̂� (“out” from the screen).• Rotation: counterclockwise.

• right-hand rule.

𝐶𝑃

𝑟

𝑃

𝜃

𝑠

𝑢

𝑣

Page 10: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

10Lecture II: Rigid-Body Physics

Angular Displacement• Point 𝑝 covers linear distance 𝑠.

• 𝜃 is the angular displacement of the object:

𝜃 = 𝑠/𝑟

• 𝑠: arc length.

• Unit is radian (𝑟𝑎𝑑)

• 1 radian = angle for arc length 1 at a distance 1.

𝐶𝑃

𝑟

𝑃

𝜃

𝑠

𝑢

𝑣

Page 11: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

11Lecture II: Rigid-Body Physics

Angular Velocity• Angular speed: the rate of change of the angular

displacement:

𝜔 =𝑑𝜃𝑑𝑡

• unit is UVW XYZ⁄ .

• The angular velocity vector is collinear with the rotation axis:

𝜔 = 𝜔𝑢

Page 12: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

12Lecture II: Rigid-Body Physics

Angular Acceleration• Angular acceleration: the rate of change of the

angular velocity:

𝛼 =𝑑𝜔𝑑𝑡

• Paralleling definition of linear acceleration.

• Unit is 𝑟𝑎𝑑/𝑠A

Page 13: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

13Lecture II: Rigid-Body Physics

Tangential and Angular Velocities• Every point moves with the same angular velocity.

• Direction of vector: 𝑢.

• Tangential velocity vector:

�⃗� = 𝜔×�⃗�Or:

𝜔 =�⃗�×�⃗�𝑟A

• 𝜔 = ^_ U⁄ (abs. values)• due to 𝑠 = 𝜃 4 𝑟.

• Only the tangential part matters!

𝐶 𝑃(𝑡)

𝑃(𝑡+ ∆𝑡)

𝑇(𝑡)

𝑉(𝑡)

𝐶𝑃

𝑟

𝑃

𝜃

𝑠

𝑢

𝑣

Page 14: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

14Lecture II: Rigid-Body Physics

Dynamics• The centripetal force creates curved

motion.

• In the direction of (negative) �⃗�• Object is in orbit.

• Constant force ó circular rotation with constant tangential velocity.• Why?

Page 15: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

15Lecture II: Rigid-Body Physics

Tangential & Centripetal Accelerations• Tangential acceleration �⃗� holds:

�⃗� = �⃗�×𝑟

• cf. velocity equation𝑣 = 𝜔×�⃗�.

• The centripetal acceleration drives the rotational movement:

�⃗�9 =^b

U�̂� = −𝜔A�⃗�.

• What is the “centrifugal” force?

Page 16: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

16Lecture II: Rigid-Body Physics

Angular Momentum• Linear motion è linear momentum: �⃗� = 𝑚�⃗�.• Rotational motion è angular momentum about

any fixed relative point (to which �⃗� is measured):

𝐿 = # �⃗�×�⃗� 𝜌𝑑𝑉(

• unit is 𝑁 4 𝑚 4 𝑠• 𝜌𝑑𝑉 = 𝑑𝑚 (mass element)

• Angular momentum is conserved!• Just like the linear momentum.

• Caveat: conserved w.r.t. the same point.

Page 17: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

17Lecture II: Rigid-Body Physics

Angular Momentum• Plugging in angular velocity:

�⃗�×�⃗�𝑑𝑉 = �⃗�×�⃗� 𝑑𝑚 = �⃗�× 𝜔×�⃗� 𝑑𝑚

• Integrating, we get:

𝐿 = # �⃗�× 𝜔×�⃗� 𝑑𝑚

(

• Note: The angular momentum and the angular velocity are not generally collinear!

Page 18: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

18Lecture II: Rigid-Body Physics

Moment of Inertia• Define: 𝑟 =

𝑥𝑦𝑧

and 𝜔 =𝜔f𝜔g𝜔h

.

• For a single rotating body: the angular velocity is constant.• We get:

𝐿 = #𝑟× 𝜔×𝑟 𝑑𝑚

(= #

𝑦A + 𝑧A 𝜔f − 𝑥𝑦𝜔g − 𝑥𝑧𝜔h−𝑦𝑥𝜔f + 𝑧A + 𝑥A 𝜔g − 𝑦𝑧𝜔h−𝑧𝑥𝜔f − 𝑧𝑦𝜔g + (𝑥A + 𝑦A)𝜔h

𝑑𝑚 =

𝐼ff −𝐼fg −𝐼fh−𝐼gf 𝐼gg −𝐼gh−𝐼hf −𝐼hg 𝐼hh

𝜔f𝜔g𝜔h

.

• Note: replacing integral with a (constant) matrix operating on a vector!

Page 19: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

19Lecture II: Rigid-Body Physics

Momentum and Inertia• The inertia tensor 𝐼only depends on the geometry

of the object and the relative fixed point (often, COM):

𝐼fg = 𝐼gf = # 𝑥𝑦 𝑑𝑚

𝐼fh = 𝐼hf = # 𝑥𝑧 𝑑𝑚

𝐼gh = 𝐼hg = # 𝑦𝑧 𝑑𝑚

𝐼ff = # 𝑦A + 𝑧A 𝑑𝑚

𝐼gg = # 𝑧A + 𝑥A 𝑑𝑚

𝐼hh = # 𝑥A + 𝑦A 𝑑𝑚

𝑟 =𝑥𝑦𝑧

Page 20: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

20Lecture II: Rigid-Body Physics

The Inertia Tensor• Compact form:

𝐼 =

# 𝑦A + 𝑧A 𝑑𝑚 −# 𝑥𝑦 𝑑𝑚 −# 𝑥𝑧 𝑑𝑚

−# 𝑥𝑦 𝑑𝑚 # 𝑧A + 𝑥A 𝑑𝑚 −# 𝑦𝑧 𝑑𝑚

−# 𝑥𝑧 𝑑𝑚 −# 𝑦𝑧 𝑑𝑚 # 𝑥A + 𝑦A 𝑑𝑚

• The diagonal elements are called the (principal) moment of inertia.

• The off-diagonal elements are called products of inertia.

Page 21: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

21Lecture II: Rigid-Body Physics

The Inertia Tensor• Equivalently, we separate mass elements to

density and volume elements:

𝐼 = #𝜌 𝑥, 𝑦, 𝑧𝑦A + 𝑧A −𝑥𝑦 −𝑥𝑧−𝑥𝑦 𝑧A + 𝑥A −𝑦𝑧−𝑥𝑧 −𝑦𝑧 𝑥A + 𝑦A

𝑑𝑥𝑑𝑦𝑑𝑧

(

• The diagonal elements: distances to the respective principal axes.

• The non-diagonal elements: products of the perpendicular distances to the respective planes.

Page 22: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

22Lecture II: Rigid-Body Physics

Moment of Inertia• The moment of inertia 𝐼j, with respect to a

rotation axis 𝑢, measures how much the mass “spreads out”:

𝐼j = # 𝑟j A𝑑𝑚(

• 𝑟j: perpendicular distance to axis.• Through the central rotation origin point.

• Measures ability to resist change in rotational motion.• The angular equivalent to mass!

Page 23: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

23Lecture II: Rigid-Body Physics

Moment and Tensor• We have: 𝑟j A = 𝑢×�⃗� A = 𝑢k𝐼(𝑞)𝑢 for any point 𝑞. (Remember: �⃗� is distance to origin).

• Thus:𝐼j = ∫ 𝑢k𝐼(𝑞)𝑢 𝑑𝑚

? =𝑢k𝐼𝑢

• The scalar angular momentum around the axis is then 𝐿j = 𝐼j𝜔.

• Reducible to a planar problem (axis as 𝑍axis).

Page 24: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

24Lecture II: Rigid-Body Physics

Moment of Inertia• For a mass point:

𝐼 = 𝑚 4 𝑟jA

• For a collection of mass points:𝐼 = ∑ 𝑚8𝑟8A8

• For a continuous mass distribution on the plane:𝐼 = ∫ 𝑟jA? 𝑑𝑚

𝑟𝑚

𝑟;𝑚;

𝑟A 𝑚A

𝑟o 𝑚o

𝑟𝑑𝑚

Page 25: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

25Lecture II: Rigid-Body Physics

Inertia of Primitive Shapes

• For primitive shapes, the inertia can be expressed with the parameters of the shape

• Illustration on a solid sphere• Calculating inertia by integration of

thin discs along one axis (e.g. 𝑧).• Surface equation: 𝑥A + 𝑦A + 𝑧A = 𝑅A

Page 26: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

26Lecture II: Rigid-Body Physics

Inertia of Primitive Shapes• Distance to axis of rotation is the radius of the disc at the

cross section along 𝑧: 𝑟A = 𝑥A + 𝑦A = 𝑅A − 𝑧A.

• Summing moments of inertia of small cylinders of inertia 𝐼q= Ubr

Aalong the z-axis:

𝑑𝐼q =12𝑟A𝑑𝑚 =

12𝑟A𝜌𝑑𝑉 =

12𝑟A𝜌𝜋𝑟A𝑑𝑧

• We get:

𝐼q =;A𝜌𝜋 ∫ 𝑟u𝑑𝑧v

wv = ;A𝜌𝜋 ∫ 𝑅A − 𝑧A A𝑑𝑧v

wv = ;A𝜌𝜋[𝑅u𝑧 − 2𝑅A 𝑧o 3⁄

+ 𝑧z 5⁄ ]wvv = 𝜌𝜋 1 − 2 3⁄ + 1 5⁄ 𝑅z.

• As 𝑚 = 𝜌 4 3⁄ 𝜋𝑅o, we finally obtain: 𝐼q =Az𝑚𝑅A.

Page 27: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

27Lecture II: Rigid-Body Physics

Inertia of Primitive Shapes• Solid sphere, radius 𝑟 and mass 𝑚:

• Hollow sphere, radius 𝑟 and mass 𝑚:

𝐼 =

25𝑚𝑟

A 0 0

025𝑚𝑟

A 0

0 025𝑚𝑟

A

𝐼 =

23𝑚𝑟

A 0 0

023𝑚𝑟

A 0

0 023𝑚𝑟

A

xz

y

Page 28: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

28Lecture II: Rigid-Body Physics

Inertia of Primitive Shapes• Solid ellipsoid, semi-axes 𝑎, 𝑏, 𝑐 and mass 𝑚:

• Solid box, width 𝑤, height ℎ, depth 𝑑 and mass 𝑚:

𝐼 =

15𝑚(𝑏

A+𝑐A) 0 0

015𝑚(𝑎

A+𝑐A) 0

0 015𝑚(𝑎

A+𝑏A)

𝐼 =

112𝑚(ℎA+𝑑A) 0 0

0112𝑚(𝑤A+𝑑A) 0

0 0112𝑚(𝑤A+ℎA)

xz

y

wd

h

Page 29: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

29Lecture II: Rigid-Body Physics

Inertia of Primitive Shapes• Solid cylinder, radius 𝑟, height ℎ and mass 𝑚:

• Hollow cylinder, radius 𝑟, height ℎ and mass 𝑚:

𝐼 =

112𝑚(3𝑟

A+ℎA) 0 0

0112𝑚(3𝑟

A+ℎA) 0

0 012𝑚𝑟

A

𝐼 =

112𝑚(6𝑟

A+ℎA) 0 0

0112𝑚(6𝑟

A+ℎA) 0

0 0 𝑚𝑟A

h

h

Page 30: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

30Lecture II: Rigid-Body Physics

Parallel-Axis Theorem• The object does not necessarily rotate around the

center of mass.• Some point can be fixed!

• parallel axis theorem:

𝐼 = 𝐼=>? +𝑚𝑑A

• 𝐼^: inertia around axis 𝑢.• 𝐼=>? inertia about a parallel axis through the COM.• 𝑑 is the distance between the axes.

Page 31: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

31Lecture II: Rigid-Body Physics

Parallel-Axis Theorem• More generally, for point displacements:

𝑑f, 𝑑g, 𝑑h

𝐼ff = # 𝑦A + 𝑧A 𝑑𝑚+ 𝑚𝑑fA

𝐼gg = # 𝑧A + 𝑥A 𝑑𝑚+𝑚𝑑gA

𝐼hh = # 𝑥A + 𝑦A 𝑑𝑚+𝑚𝑑hA

𝐼fg = # 𝑥𝑦 𝑑𝑚+ 𝑚𝑑f𝑑g

𝐼fh = # 𝑥𝑧 𝑑𝑚 +𝑚𝑑f𝑑h

𝐼gh = # 𝑦𝑧 𝑑𝑚+𝑚𝑑g𝑑h

Page 32: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

32Lecture II: Rigid-Body Physics

Perpendicular-Axis Theorem• For a planar 2D object, the moment of inertia

about an axis perpendicular to the plane is the sum of the moments of inertia of two perpendicular axes through the same point in the plane:

𝑥

𝑦𝑧

𝐼h = 𝐼f + 𝐼gfor any planar object

𝑥

𝑦𝑧

𝐼h = 2𝐼f = 2𝐼gfor symmetrical objects

Page 33: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

33Lecture II: Rigid-Body Physics

Reference Frame• The representation of the inertia tensor is coordinate

dependent.

• The physical effect should be invariant to coordinates!

• If transformation 𝑅 changes bases from body to world coordinate, the inertia tensor in world space is:

𝐼��U�W = 𝑅 4 𝐼��Wg 4 𝑅k

• The moment of inertia is invariant!• Why?

Page 34: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

34Lecture II: Rigid-Body Physics

Torque• A force �⃗� applied at a distance r from

a (fixed) center of mass.

• Tangential part causes tangential acceleration:

�⃗�� = 𝑚 4 �⃗��

• The torque 𝜏 is defined as:𝜏 = 𝑟×�⃗�

• So we get𝜏 = 𝑚 ∗ 𝑟 ∗ 𝛼 ∗ 𝑟 = 𝑚 ∗ 𝑟A ∗ 𝛼

• unit is 𝑁 ∗ 𝑚• rotates an object about its axis of

rotation.

Page 35: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

35Lecture II: Rigid-Body Physics

Newton’s Second Law

• The law �⃗� = 𝑚 4 �⃗� has an equivalent with the inertia tensor and torque:

𝜏 = 𝐼�⃗�

• Force ó linear acceleration

• Torque ó angular acceleration

Page 36: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

36Lecture II: Rigid-Body Physics

Torque and Angular Momentum• Reminder: in the linear case: �⃗� = W�⃗

W�(�⃗� is the linear

momentum).• Similarly with torque and angular momentum:

𝑑𝐿𝑑𝑡

=𝑑�⃗�𝑑𝑡×�⃗� + �⃗�×

𝑑�⃗�𝑑𝑡

= �⃗�×𝑚�⃗� + �⃗�×�⃗� = 0 + 𝜏

• Kinematics:𝑑𝐿𝑑𝑡

=𝑑(𝐼𝜔)𝑑𝑡

= 𝐼𝑑𝜔𝑑𝑡

= 𝐼�⃗� = 𝜏

• Force ó derivative of linear momentum.

• Torque ó derivative of angular momentum.

Page 37: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

37Lecture II: Rigid-Body Physics

Rotational Kinetic Energy• Translating energy formulas to rotational motion.

• The rotational kinetic energy is defined as:

𝐸�U =12𝜔k ⋅ 𝐼 ⋅ 𝜔

Page 38: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

38Lecture II: Rigid-Body Physics

Conservation of Mechanical Energy• Adding rotational kinetic energy

𝐸�� 𝑡 + ∆𝑡 + 𝐸� 𝑡 + ∆𝑡 + 𝐸�U 𝑡 + ∆𝑡= 𝐸�� 𝑡 + 𝐸� 𝑡 + 𝐸�U(𝑡) + 𝐸>

• 𝐸�� is the translational kinetic energy.• 𝐸� is the potential energy.• 𝐸�U is the rotational kinetic energy. • 𝐸> the “lost” energies (surface friction, air

resistance etc.).

Page 39: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

39Lecture II: Rigid-Body Physics

Impulse• We may apply off-center forces for a very short

amount of time.

• Such ‘angular’ impulse results in a change in angular momentum, i.e. in angular velocity:

𝜏∆𝑡 = ∆𝐿

Page 40: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

40Lecture II: Rigid-Body Physics

Rigid Body Forces

• A force can be applied anywhere on the object, producing also a rotational motion.

40

𝑭

𝑪𝑶𝑴𝒂

𝜶

Page 41: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

41Lecture II: Rigid-Body Physics

Position of An Object• Remember: the object moves linearly as the COM

moves.• Rotation: the movement for all points relatively to

the COM.• Total motion: sum of the two motions.

41

𝑭

Page 42: Lecture 2 - Rigid-Body Physics - Utrecht University 2 - … ·  · 2016-05-03Lecture II: Rigid-Body Physics 3 Rigid-Body Kinematics • Objects as sets of points. • Relative distances

42Lecture II: Rigid-Body Physics

Complex Objects• When an object consists of multiple primitive shapes:

• Calculate the individual inertia of each shape.• Use parallel axis theorem to transform to inertia about

an axis through the COM of the object.• Add the inertia matrices together.

42


Recommended